
Embedded Linux system development

Embedded Linux system
development

free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Latest update: January 2, 2016.

Document updates and sources:
http://free-electrons.com/doc/training/embedded-linux

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@free-electrons.com

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/520

http://free-electrons.com/doc/training/embedded-linux
mailto:feedback@free-electrons.com

Rights to copy

© Copyright 2004-2016, Free Electrons
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute

the resulting work only under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of

this work.
▶ Any of these conditions can be waived if you get permission from the copyright

holder.

Your fair use and other rights are in no way affected by the above.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/520

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hyperlinks in the document

There are many hyperlinks in the document
▶ Regular hyperlinks:

http://kernel.org/

▶ Kernel documentation links:
Documentation/kmemcheck.txt

▶ Links to kernel source files and directories:
drivers/input
include/linux/fb.h

▶ Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/520

http://kernel.org/
http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://lxr.free-electrons.com/source/drivers/input
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=file_operations

Free Electrons at a glance

▶ Engineering company created in 2004
(not a training company!)

▶ Locations: Orange, Toulouse, Lyon (France)
▶ Serving customers all around the world

See http://free-electrons.com/company/customers/

▶ Head count: 9
Only Free Software enthusiasts!

▶ Focus: Embedded Linux, Linux kernel, Android Free Software
/ Open Source for embedded and real-time systems.

▶ Activities: development, training, consulting, technical
support.

▶ Added value: get the best of the user and development
community and the resources it offers.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/520

http://free-electrons.com/company/customers/

Free Electrons on-line resources

▶ All our training materials:
http://free-electrons.com/docs/

▶ Technical blog:
http://free-electrons.com/blog/

▶ Quarterly newsletter:
http://lists.free-
electrons.com/mailman/listinfo/newsletter

▶ News and discussions (Google +):
https://plus.google.com/+FreeElectronsDevelopers

▶ News and discussions (LinkedIn):
http://linkedin.com/groups/Free-Electrons-4501089

▶ Quick news (Twitter):
http://twitter.com/free_electrons

▶ Linux Cross Reference - browse Linux kernel sources on-line:
http://lxr.free-electrons.com

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/520

http://free-electrons.com/docs/
http://free-electrons.com/blog/
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://lists.free-electrons.com/mailman/listinfo/newsletter
https://plus.google.com/+FreeElectronsDevelopers
http://linkedin.com/groups/Free-Electrons-4501089
http://twitter.com/free_electrons
http://lxr.free-electrons.com

Generic course information

Generic course
information
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/520

Hardware used in this training session

Using Atmel SAMA5D3 Xplained boards in all practical labs
▶ SAMA5D36 (Cortex A5) CPU from Atmel
▶ USB powered!
▶ 256 MB DDR2 RAM, 256 MB NAND

flash
▶ 2 Ethernet ports (Gigabit + 100 Mbit)
▶ 2 USB 2.0 host, 1 USB device
▶ 1 MMC/SD slot
▶ 3.3 V serial port (like Beaglebone Black)
▶ Misc: Arduino R3-compatible header,

JTAG, buttons, LEDs
▶ Currently sold at 69 EUR by Mouser

(V.A.T. not included)

Board and CPU documentation, design files, software:
http://www.atmel.com/sama5d3xplained

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/520

http://www.atmel.com/sama5d3xplained

Shopping list: hardware for this course

▶ Atmel SAMA5D3 Xplained board - Available from
Atmel and multiple distributors (Mouser, Digikey...)
See
http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx

▶ USB Serial Cable - Female ends: Olimex:
http://j.mp/18Hk8yF

▶ Logitech USB H340 audio headsets
http://www.logitech.com/en-us/product/11608

▶ An SD card with at least 128 MB of capacity

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/520

http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx
http://j.mp/18Hk8yF
http://www.logitech.com/en-us/product/11608

Participate!

During the lectures...
▶ Don't hesitate to ask questions. Other people in the audience

may have similar questions too.
▶ This helps the trainer to detect any explanation that wasn't

clear or detailed enough.
▶ Don't hesitate to share your experience, for example to

compare Linux / Android with other operating systems used
in your company.

▶ Your point of view is most valuable, because it can be similar
to your colleagues' and different from the trainer's.

▶ Your participation can make our session more interactive and
make the topics easier to learn.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/520

Practical lab guidelines

During practical labs...
▶ We cannot support more than 8 workstations at once (each

with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

▶ So, if you are more than 8 participants, please form up to 8
working groups.

▶ Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

▶ Don't hesitate to copy and paste commands from the PDF
slides and labs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/520

Advise: write down your commands!

During practical labs, write down all your commands in a text file.
▶ You can save a lot of time re-using

commands in later labs.
▶ This helps to replay your work if

you make significant mistakes.
▶ You build a reference to remember

commands in the long run.
▶ That's particular useful to keep

kernel command line settings that
you used earlier.

▶ Also useful to get help from the
instructor, showing the commands
that you run.

gedit ~/lab-history.txt

Booting kernel through tftp:
setenv bootargs console=ttyS0 root=/dev/nfs
setenv bootcmd tftp 0x21000000 zImage; tftp
0x22000000 dtb; bootz 0x21000000 - 0x2200...

Lab commands

Cross-compiling kernel:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
make sama5_defconfig

Making ubifs images:
mkfs.ubifs -d rootfs -o root.ubifs -e 124KiB
-m 2048 -c 1024

Encountered issues:
Restart NFS server after editing /etc/exports!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/520

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

▶ If you complete your labs before other people, don't hesitate
to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

▶ Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

▶ Don't hesitate to report potential bugs to your instructor.
▶ Don't hesitate to look for solutions on the Internet as well.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/520

Command memento sheet

▶ This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

▶ It saves us 1 day of UNIX / Linux
command line training.

▶ Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/command_memento.pdf

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/520

http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf

vi basic commands

▶ The vi editor is very useful to
make quick changes to files in an
embedded target.

▶ Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone's needs!

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/vi_memento.pdf

▶ You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/520

http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf

Introduction to Embedded Linux

Introduction to
Embedded Linux
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/520

Birth of free software

▶ 1983, Richard Stallman, GNU project and the free software
concept. Beginning of the development of gcc, gdb, glibc and
other important tools

▶ 1991, Linus Torvalds, Linux kernel project, a Unix-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU/Linux

▶ 1995, Linux is more and more popular on server systems
▶ 2000, Linux is more and more popular on embedded

systems
▶ 2008, Linux is more and more popular on mobile devices
▶ 2010, Linux is more and more popular on phones

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/520

Free software?

▶ A program is considered free when its license offers to all its
users the following four freedoms

▶ Freedom to run the software for any purpose
▶ Freedom to study the software and to change it
▶ Freedom to redistribute copies
▶ Freedom to distribute copies of modified versions

▶ These freedoms are granted for both commercial and
non-commercial use

▶ They imply the availability of source code, software can be
modified and distributed to customers

▶ Good match for embedded systems!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/520

What is embedded Linux?

Embedded Linux is the usage of the
Linux kernel and various

open-source components in
embedded systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/520

Introduction to Embedded Linux

Advantages of Linux and open-source
for embedded systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/520

Re-using components

▶ The key advantage of Linux and open-source in embedded
systems is the ability to re-use components

▶ The open-source ecosystem already provides many
components for standard features, from hardware support to
network protocols, going through multimedia, graphic,
cryptographic libraries, etc.

▶ As soon as a hardware device, or a protocol, or a feature is
wide-spread enough, high chance of having open-source
components that support it.

▶ Allows to quickly design and develop complicated products,
based on existing components.

▶ No-one should re-develop yet another operating system kernel,
TCP/IP stack, USB stack or another graphical toolkit library.

▶ Allows to focus on the added value of your product.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/520

Low cost

▶ Free software can be duplicated on as many devices as you
want, free of charge.

▶ If your embedded system uses only free software, you can
reduce the cost of software licenses to zero. Even the
development tools are free, unless you choose a commercial
embedded Linux edition.

▶ Allows to have a higher budget for the hardware or to
increase the company’s skills and knowledge

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/520

Full control

▶ With open-source, you have the source code for all
components in your system

▶ Allows unlimited modifications, changes, tuning, debugging,
optimization, for an unlimited period of time

▶ Without lock-in or dependency from a third-party vendor
▶ To be true, non open-source components must be avoided

when the system is designed and developed
▶ Allows to have full control over the software part of your

system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/520

Quality

▶ Many open-source components are widely used, on millions of
systems

▶ Usually higher quality than what an in-house development can
produce, or even proprietary vendors

▶ Of course, not all open-source components are of good
quality, but most of the widely-used ones are.

▶ Allows to design your system with high-quality
components at the foundations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/520

Eases testing of new features

▶ Open-source being freely available, it is easy to get a piece of
software and evaluate it

▶ Allows to easily study several options while making a choice
▶ Much easier than purchasing and demonstration procedures

needed with most proprietary products
▶ Allows to easily explore new possibilities and solutions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/520

Community support

▶ Open-source software components are developed by
communities of developers and users

▶ This community can provide a high-quality support: you can
directly contact the main developers of the component you
are using. The likelyhood of getting an answer doesn't depend
what company you work for.

▶ Often better than traditional support, but one needs to
understand how the community works to properly use the
community support possibilities

▶ Allows to speed up the resolution of problems when
developing your system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/520

Taking part into the community

▶ Possibility of taking part into the development community of
some of the components used in the embedded systems: bug
reporting, test of new versions or features, patches that fix
bugs or add new features, etc.

▶ Most of the time the open-source components are not the
core value of the product: it’s the interest of everybody to
contribute back.

▶ For the engineers: a very motivating way of being recognized
outside the company, communication with others in the same
field, opening of new possibilities, etc.

▶ For the managers: motivation factor for engineers, allows
the company to be recognized in the open-source community
and therefore get support more easily and be more attractive
to open-source developers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/520

Introduction to Embedded Linux

A few examples of embedded systems
running Linux

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/520

Personal routers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/520

Television

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/520

Point of sale terminal

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/520

Laser cutting machine

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/520

Viticulture machine

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/520

Introduction to Embedded Linux

Embedded hardware for Linux
systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/520

Processor and architecture (1)

The Linux kernel and most other architecture-dependent
components support a wide range of 32 and 64 bits architectures

▶ x86 and x86-64, as found on PC platforms, but also
embedded systems (multimedia, industrial)

▶ ARM, with hundreds of different SoC (multimedia, industrial)
▶ PowerPC (mainly real-time, industrial applications)
▶ MIPS (mainly networking applications)
▶ SuperH (mainly set top box and multimedia applications)
▶ Blackfin (DSP architecture)
▶ Microblaze (soft-core for Xilinx FPGA)
▶ Coldfire, SCore, Tile, Xtensa, Cris, FRV, AVR32, M32R

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/520

Processor and architecture (2)

▶ Both MMU and no-MMU architectures are supported, even
though no-MMU architectures have a few limitations.

▶ Linux is not designed for small microcontrollers.
▶ Besides the toolchain, the bootloader and the kernel, all other

components are generally architecture-independent

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/520

RAM and storage

▶ RAM: a very basic Linux system can work within 8 MB of
RAM, but a more realistic system will usually require at least
32 MB of RAM. Depends on the type and size of applications.

▶ Storage: a very basic Linux system can work within 4 MB of
storage, but usually more is needed.

▶ Flash storage is supported, both NAND and NOR flash, with
specific filesystems

▶ Block storage including SD/MMC cards and eMMC is
supported

▶ Not necessarily interesting to be too restrictive on the amount
of RAM/storage: having flexibility at this level allows to
re-use as many existing components as possible.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/520

Communication

▶ The Linux kernel has support for many common
communication buses

▶ I2C
▶ SPI
▶ CAN
▶ 1-wire
▶ SDIO
▶ USB

▶ And also extensive networking support
▶ Ethernet, Wifi, Bluetooth, CAN, etc.
▶ IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
▶ Firewalling, advanced routing, multicast

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/520

Types of hardware platforms

▶ Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products.

▶ Component on Module, a small board with only
CPU/RAM/flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

▶ Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use and
low cost, but usually have less peripherals than evaluation
platforms. To some extent, can also be used for real products.

▶ Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/520

Criteria for choosing the hardware

▶ Make sure the hardware you plan to use is already supported
by the Linux kernel, and has an open-source bootloader,
especially the SoC you’re targeting.

▶ Having support in the official versions of the projects (kernel,
bootloader) is a lot better: quality is better, and new versions
are available.

▶ Some SoC vendors and/or board vendors do not contribute
their changes back to the mainline Linux kernel. Ask them to
do so, or use another product if you can. A good measurement
is to see the delta between their kernel and the official one.

▶ Between properly supported hardware in the official
Linux kernel and poorly-supported hardware, there will
be huge differences in development time and cost.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/520

Introduction to Embedded Linux

Embedded Linux system architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/520

Global architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/520

Software components

▶ Cross-compilation toolchain
▶ Compiler that runs on the development machine, but generates

code for the target
▶ Bootloader

▶ Started by the hardware, responsible for basic initialization,
loading and executing the kernel

▶ Linux Kernel
▶ Contains the process and memory management, network stack,

device drivers and provides services to user space applications
▶ C library

▶ The interface between the kernel and the user space
applications

▶ Libraries and applications
▶ Third-party or in-house

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/520

Embedded Linux work

Several distinct tasks are needed when deploying embedded Linux
in a product:

▶ Board Support Package development
▶ A BSP contains a bootloader and kernel with the suitable

device drivers for the targeted hardware
▶ Purpose of our Kernel Development training

▶ System integration
▶ Integrate all the components, bootloader, kernel, third-party

libraries and applications and in-house applications into a
working system

▶ Purpose of this training
▶ Development of applications

▶ Normal Linux applications, but using specifically chosen
libraries

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/520

Embedded Linux development environment

Embedded Linux
development
environment
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/520

Embedded Linux solutions

▶ Two ways to switch to embedded Linux
▶ Use solutions provided and supported by vendors like

MontaVista, Wind River or TimeSys. These solutions come
with their own development tools and environment. They use
a mix of open-source components and proprietary tools.

▶ Use community solutions. They are completely open,
supported by the community.

▶ In Free Electrons training sessions, we do not promote a
particular vendor, and therefore use community solutions

▶ However, knowing the concepts, switching to vendor solutions
will be easy

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/520

OS for Linux development

▶ We strongly recommend to use Linux as the desktop operating
system to embedded Linux developers, for multiple reasons.

▶ All community tools are developed and designed to run on
Linux. Trying to use them on other operating systems
(Windows, Mac OS X) will lead to trouble, and their usage on
these systems is generally not supported by community
developers.

▶ As Linux also runs on the embedded device, all the knowledge
gained from using Linux on the desktop will apply similarly to
the embedded device.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/520

Desktop Linux distribution

▶ Any good and sufficiently recent Linux
desktop distribution can be used for the
development workstation

▶ Ubuntu, Debian, Fedora, openSUSE,
Red Hat, etc.

▶ We have chosen Ubuntu, as it is a widely
used and easy to use desktop Linux
distribution

▶ The Ubuntu setup on the training laptops
has intentionally been left untouched after
the normal installation process. Learning
embedded Linux is also about learning the
tools needed on the development
workstation!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/520

Linux root and non-root users

▶ Linux is a multi-user operating system
▶ The root user is the administrator, and it can do privileged

operations such as: mounting filesystems, configuring the
network, creating device files, changing the system
configuration, installing or removing software

▶ All other users are unprivileged, and cannot perform these
administrator-level operations

▶ On an Ubuntu system, it is not possible to log in as root,
only as a normal user.

▶ The system has been configured so that the user account
created first is allowed to run privileged operations through a
program called sudo.

▶ Example: sudo mount /dev/sda2 /mnt/disk

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/520

Software packages

▶ The distribution mechanism for software in GNU/Linux is
different from the one in Windows

▶ Linux distributions provides a central and coherent way of
installing, updating and removing applications and libraries:
packages

▶ Packages contains the application or library files, and
associated meta-information, such as the version and the
dependencies

▶ .deb on Debian and Ubuntu, .rpm on Red Hat, Fedora,
openSUSE

▶ Packages are stored in repositories, usually on HTTP or FTP
servers

▶ You should only use packages from official repositories for
your distribution, unless strictly required.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/520

Managing software packages (1)

Instructions for Debian based GNU/Linux systems
(Debian, Ubuntu...)

▶ Package repositories are specified in /etc/apt/sources.list

▶ To update package repository lists:
sudo apt-get update

▶ To find the name of a package to install, the best is to use
the search engine on http://packages.debian.org or on
http://packages.ubuntu.com. You may also use:
apt-cache search <keyword>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/520

http://packages.debian.org
http://packages.ubuntu.com

Managing software packages (2)

▶ To install a given package:
sudo apt-get install <package>

▶ To remove a given package:
sudo apt-get remove <package>

▶ To install all available package updates:
sudo apt-get dist-upgrade

▶ Get information about a package:
apt-cache show <package>

▶ Graphical interfaces
▶ Synaptic for GNOME
▶ KPackageKit for KDE

Further details on package management:
http://www.debian.org/doc/manuals/apt-howto/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/520

http://www.debian.org/doc/manuals/apt-howto/

Host vs. target

▶ When doing embedded development, there is always a split
between

▶ The host, the development workstation, which is typically a
powerful PC

▶ The target, which is the embedded system under development
▶ They are connected by various means: almost always a serial

line for debugging purposes, frequently an Ethernet
connection, sometimes a JTAG interface for low-level
debugging

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/520

Serial line communication program

▶ An essential tool for embedded development is a serial line
communication program, like HyperTerminal in Windows.

▶ There are multiple options available in Linux: Minicom,
Picocom, Gtkterm, Putty, etc.

▶ In this training session, we recommend using the simplest of
them: picocom

▶ Installation with sudo apt-get install picocom
▶ Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE
▶ Exit with Control-A Control-X

▶ SERIAL_DEVICE is typically
▶ ttyUSBx for USB to serial converters
▶ ttySx for real serial ports

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/520

Command line tips

▶ Using the command line is mandatory for many operations
needed for embedded Linux development

▶ It is a very powerful way of interacting with the system, with
which you can save a lot of time.

▶ Some useful tips
▶ You can use several tabs in the Gnome Terminal
▶ Remember that you can use relative paths (for example:

../../linux) in addition to absolute paths (for example:
/home/user)

▶ In a shell, hit [Control] [r], then a keyword, will search
through the command history. Hit [Control] [r] again to
search backwards in the history

▶ You can copy/paste paths directly from the file manager to the
terminal by drag-and-drop.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/520

Practical lab - Training Setup

Prepare your lab environment
▶ Download the lab archive
▶ Enforce correct permissions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/520

Cross-compiling toolchains

Cross-compiling
toolchains
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/520

Cross-compiling toolchains

Definition and Components

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/520

Definition (1)

▶ The usual development tools available on a GNU/Linux
workstation is a native toolchain

▶ This toolchain runs on your workstation and generates code
for your workstation, usually x86

▶ For embedded system development, it is usually impossible or
not interesting to use a native toolchain

▶ The target is too restricted in terms of storage and/or memory
▶ The target is very slow compared to your workstation
▶ You may not want to install all development tools on your

target.
▶ Therefore, cross-compiling toolchains are generally used.

They run on your workstation but generate code for your
target.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/520

Definition (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/520

Machines in build procedures

▶ Three machines must be distinguished when discussing
toolchain creation

▶ The build machine, where the toolchain is built.
▶ The host machine, where the toolchain will be executed.
▶ The target machine, where the binaries created by the

toolchain are executed.
▶ Four common build types are possible for toolchains

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/520

Different toolchain build procedures

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/520

Components

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/520

Binutils

▶ Binutils is a set of tools to generate and manipulate binaries
for a given CPU architecture

▶ as, the assembler, that generates binary code from assembler
source code

▶ ld, the linker
▶ ar, ranlib, to generate .a archives, used for libraries
▶ objdump, readelf, size, nm, strings, to inspect binaries.

Very useful analysis tools!
▶ strip, to strip useless parts of binaries in order to reduce their

size
▶ http://www.gnu.org/software/binutils/

▶ GPL license

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/520

http://www.gnu.org/software/binutils/

Kernel headers (1)

▶ The C library and compiled
programs needs to interact with
the kernel

▶ Available system calls and their
numbers

▶ Constant definitions
▶ Data structures, etc.

▶ Therefore, compiling the C library
requires kernel headers, and many
applications also require them.

▶ Available in <linux/...> and
<asm/...> and a few other
directories corresponding to the
ones visible in include/ in the
kernel sources

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/520

Kernel headers (2)

▶ System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3

▶ Constant definitions, here in <asm-generic/fcntl.h>,
included from <asm/fcntl.h>, included from
<linux/fcntl.h>

#define O_RDWR 00000002

▶ Data structures, here in <asm/stat.h>

struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/520

Kernel headers (3)

▶ The kernel to user space ABI is backward compatible
▶ Binaries generated with a toolchain using kernel headers older

than the running kernel will work without problem, but won't
be able to use the new system calls, data structures, etc.

▶ Binaries generated with a toolchain using kernel headers newer
than the running kernel might work on if they don't use the
recent features, otherwise they will break

▶ Using the latest kernel headers is not necessary, unless access
to the new kernel features is needed

▶ The kernel headers are extracted from the kernel sources using
the headers_install kernel Makefile target.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/520

GCC

▶ GNU Compiler Collection, the famous free
software compiler

▶ Can compile C, C++, Ada, Fortran, Java,
Objective-C, Objective-C++, and generate code
for a large number of CPU architectures,
including ARM, AVR, Blackfin, CRIS, FRV,
M32, MIPS, MN10300, PowerPC, SH, v850,
i386, x86_64, IA64, Xtensa, etc.

▶ http://gcc.gnu.org/

▶ Available under the GPL license, libraries under
the LGPL.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/520

http://gcc.gnu.org/

C library

▶ The C library is an essential component of
a Linux system

▶ Interface between the applications and
the kernel

▶ Provides the well-known standard C API
to ease application development

▶ Several C libraries are available:
glibc, uClibc, musl, dietlibc, newlib, etc.

▶ The choice of the C library must be made
at the time of the cross-compiling
toolchain generation, as the GCC compiler
is compiled against a specific C library.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/520

Cross-compiling toolchains

C Libraries

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/520

glibc

▶ License: LGPL
▶ C library from the GNU project
▶ Designed for performance, standards

compliance and portability
▶ Found on all GNU / Linux host systems
▶ Of course, actively maintained
▶ By default, quite big for small embedded

systems: approx 2.5 MB on ARM (version
2.9 - libc: 1.5 MB, libm: 750 KB)

▶ But some features not needed in
embedded systems can be configured out
(merged from the old eglibc project).

▶ http://www.gnu.org/software/libc/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/520

http://www.gnu.org/software/libc/

uClibc-ng (1)

▶ http://uclibc-ng.org/

▶ A continuation of the old uClibc project
▶ License: LGPL
▶ Lightweight C library for small embedded systems

▶ High configurability: many features can be enabled or disabled
through a menuconfig interface

▶ Supports most embedded architectures
▶ No guaranteed binary compatibility. May need to recompile

applications when the library configuration changes.
▶ Focus on size rather than performance
▶ Small compile time

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/520

http://uclibc-ng.org/

uClibc-ng (2)

▶ Most of the applications compile with uClibc-ng. This applies
to all applications used in embedded systems.

▶ Size (arm): 4 times smaller than glibc!
▶ uClibc 0.9.30.1: approx. 600 KB (libuClibc: 460 KB, libm:

96KB)
▶ glibc 2.9: approx 2.5 MB

▶ Some features not available or limited: priority-inheritance
mutexes, NPTL support is relatively recent, fixed Name
Service Switch functionality, etc.

▶ Used on a large number of production embedded products,
including consumer electronic devices

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/520

Honey, I shrunk the programs!

▶ Executable size comparison on ARM, tested with eglibc (now
glibc) 2.15 and uClibc 0.9.33.2

▶ Plain ``hello world'' program (stripped):
helloworld static dynamic

uClibc 18kB 2.5kB
uClibc with Thumb-2 14kB 2.4kB
eglibc with Thumb-2 361kB 2.7kB

▶ Busybox (stripped):
busybox static dynamic
uClibc 750kB 603kB

uClibc with Thumb-2 533kB 439kB
eglibc with Thumb-2 934kB 444kB

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/520

musl C library

http://www.musl-libc.org/

▶ A lightweight, fast and simple library for embedded systems
▶ Created while uClibc's development was stalled
▶ In particular, great at making small static executables
▶ Permissive license (MIT)
▶ Compare features with other C libraries:

http://www.etalabs.net/compare_libcs.html

▶ Supported by build systems such as Buildroot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/520

http://www.musl-libc.org/
http://www.etalabs.net/compare_libcs.html

Other smaller C libraries

▶ Several other smaller C libraries have been developed, but
none of them have the goal of allowing the compilation of
large existing applications

▶ They can run only relatively simple programs, typically to
make very small static executables and run in very small root
filesystems.

▶ Choices:
▶ Dietlibc, http://fefe.de/dietlibc/. Approximately 70 KB.
▶ Newlib, http://sourceware.org/newlib/
▶ Klibc, http://www.kernel.org/pub/linux/libs/klibc/,

designed for use in an initramfs or initrd at boot time.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/520

http://fefe.de/dietlibc/
http://sourceware.org/newlib/
http://www.kernel.org/pub/linux/libs/klibc/

Cross-compiling toolchains

Toolchain Options

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/520

ABI

▶ When building a toolchain, the ABI used to generate binaries
needs to be defined

▶ ABI, for Application Binary Interface, defines the calling
conventions (how function arguments are passed, how the
return value is passed, how system calls are made) and the
organization of structures (alignment, etc.)

▶ All binaries in a system must be compiled with the same ABI,
and the kernel must understand this ABI.

▶ On ARM, two main ABIs: OABI and EABI
▶ Nowadays everybody uses EABI

▶ On MIPS, several ABIs: o32, o64, n32, n64
▶ http://en.wikipedia.org/wiki/Application_Binary_Interface

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/520

http://en.wikipedia.org/wiki/Application_Binary_Interface

Floating point support

▶ Some processors have a floating point unit, some others do
not.

▶ For example, many ARMv4 and ARMv5 CPUs do not have a
floating point unit. Since ARMv7, a VFP unit is mandatory.

▶ For processors having a floating point unit, the toolchain
should generate hard float code, in order to use the floating
point instructions directly

▶ For processors without a floating point unit, two solutions
▶ Generate hard float code and rely on the kernel to emulate the

floating point instructions. This is very slow.
▶ Generate soft float code, so that instead of generating floating

point instructions, calls to a user space library are generated
▶ Decision taken at toolchain configuration time
▶ Also possible to configure which floating point unit should be

used

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/520

CPU optimization flags

▶ A set of cross-compiling tools is specific to a CPU architecture
(ARM, x86, MIPS, PowerPC)

▶ However, with the -march=, -mcpu=, -mtune= options, one
can select more precisely the target CPU type

▶ For example, -march=armv7 -mcpu=cortex-a8

▶ At the toolchain compilation time, values can be chosen.
They are used:

▶ As the default values for the cross-compiling tools, when no
other -march, -mcpu, -mtune options are passed

▶ To compile the C library
▶ Even if the C library has been compiled for armv5t, it doesn't

prevent from compiling other programs for armv7

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/520

Cross-compiling toolchains

Obtaining a Toolchain

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/520

Building a toolchain manually

Building a cross-compiling toolchain by yourself is a difficult and
painful task! Can take days or weeks!

▶ Lots of details to learn: many components to build,
complicated configuration

▶ Lots of decisions to make (such as C library version, ABI,
floating point mechanisms, component versions)

▶ Need kernel headers and C library sources
▶ Need to be familiar with current gcc issues and patches on

your platform
▶ Useful to be familiar with building and configuring tools
▶ See the Crosstool-NG docs/ directory for details on how

toolchains are built.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/520

Get a pre-compiled toolchain

▶ Solution that many people choose
▶ Advantage: it is the simplest and most convenient solution
▶ Drawback: you can't fine tune the toolchain to your needs

▶ Make sure the toolchain you find meets your requirements:
CPU, endianness, C library, component versions, ABI, soft
float or hard float, etc.

▶ Possible choices
▶ Toolchains packaged by your distribution

Ubuntu examples:
sudo apt-get install gcc-arm-linux-gnueabi
sudo apt-get install gcc-arm-linux-gnueabihf

▶ Sourcery CodeBench toolchains, now only supporting MIPS,
NIOS-II, AMD64, Hexagon. Old versions with ARM support
still available through build systems (Buildroot...)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/520

Toolchain building utilities

Another solution is to use utilities that automate the process of
building the toolchain

▶ Same advantage as the pre-compiled toolchains: you don't
need to mess up with all the details of the build process

▶ But also offers more flexibility in terms of toolchain
configuration, component version selection, etc.

▶ They also usually contain several patches that fix known
issues with the different components on some architectures

▶ Multiple tools with identical principle: shell scripts or Makefile
that automatically fetch, extract, configure, compile and
install the different components

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/520

Toolchain building utilities (2)

▶ Crosstool-ng
▶ Rewrite of the older Crosstool, with a menuconfig-like

configuration system
▶ Feature-full: supports uClibc, glibc, musl, hard and soft float,

many architectures
▶ Actively maintained
▶ http://crosstool-ng.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/520

http://crosstool-ng.org/

Toolchain building utilities (3)

Many root filesystem build systems also allow the construction of a
cross-compiling toolchain

▶ Buildroot
▶ Makefile-based. Can build (e)glibc, uClibc and musl based

toolchains, for a wide range of architectures.
▶ http://www.buildroot.net

▶ PTXdist
▶ Makefile-based, uClibc or glibc, maintained mainly by

Pengutronix
▶ http://pengutronix.de/software/ptxdist/

▶ OpenEmbedded / Yocto
▶ A featureful, but more complicated build system
▶ http://www.openembedded.org/
▶ https://www.yoctoproject.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/520

http://www.buildroot.net
http://pengutronix.de/software/ptxdist/
http://www.openembedded.org/
https://www.yoctoproject.org/

Crosstool-NG: installation and usage

▶ Installation of Crosstool-NG can be done system-wide, or just
locally in the source directory. For local installation:
./configure --enable-local
make
make install

▶ Some sample configurations for various architectures are
available in samples, they can be listed using
./ct-ng list-samples

▶ To load a sample configuration
./ct-ng <sample-name>

▶ To adjust the configuration
./ct-ng menuconfig

▶ To build the toolchain
./ct-ng build

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/520

Toolchain contents

▶ The cross compilation tool binaries, in bin/
▶ This directory should be added to your PATH to ease usage of

the toolchain
▶ One or several sysroot, each containing

▶ The C library and related libraries, compiled for the target
▶ The C library headers and kernel headers

▶ There is one sysroot for each variant: toolchains can be
multilib if they have several copies of the C library for different
configurations (for example: ARMv4T, ARMv5T, etc.)

▶ Old CodeSourcery ARM toolchains were multilib, the sysroots
in: arm-none-linux-gnueabi/libc/,
arm-none-linux-gnueabi/libc/armv4t/,
arm-none-linux-gnueabi/libc/thumb2

▶ Crosstool-NG toolchains can be multilib too (still
experimental), otherwise the sysroot is in
arm-unknown-linux-uclibcgnueabi/sysroot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/520

Practical lab - Using Crosstool-NG

Time to build your toolchain
▶ Configure Crosstool-NG
▶ Run it to build your own

cross-compiling toolchain

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/520

Bootloaders

Bootloaders
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/520

Bootloaders

Boot Sequence

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/520

Bootloaders

▶ The bootloader is a piece of code responsible for
▶ Basic hardware initialization
▶ Loading of an application binary, usually an operating system

kernel, from flash storage, from the network, or from another
type of non-volatile storage.

▶ Possibly decompression of the application binary
▶ Execution of the application

▶ Besides these basic functions, most bootloaders provide a shell
with various commands implementing different operations.

▶ Loading of data from storage or network, memory inspection,
hardware diagnostics and testing, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/520

Bootloaders on x86 (1)

▶ The x86 processors are typically bundled on a
board with a non-volatile memory containing a
program, the BIOS.

▶ This program gets executed by the CPU after
reset, and is responsible for basic hardware
initialization and loading of a small piece of code
from non-volatile storage.

▶ This piece of code is usually the first 512 bytes
of a storage device

▶ This piece of code is usually a 1st stage
bootloader, which will load the full bootloader
itself.

▶ The bootloader can then offer all its features. It
typically understands filesystem formats so that
the kernel file can be loaded directly from a
normal filesystem.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/520

Bootloaders on x86 (2)

▶ GRUB, Grand Unified Bootloader, the most powerful one.
http://www.gnu.org/software/grub/

▶ Can read many filesystem formats to load the kernel image and
the configuration, provides a powerful shell with various
commands, can load kernel images over the network, etc.

▶ See our dedicated presentation for details:
http://free-electrons.com/docs/grub/

▶ Syslinux, for network and removable media booting (USB key,
CD-ROM)
http://www.kernel.org/pub/linux/utils/boot/syslinux/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/520

http://www.gnu.org/software/grub/
http://free-electrons.com/docs/grub/
http://www.kernel.org/pub/linux/utils/boot/syslinux/

Booting on embedded CPUs: case 1

▶ When powered, the CPU starts executing code
at a fixed address

▶ There is no other booting mechanism provided
by the CPU

▶ The hardware design must ensure that a NOR
flash chip is wired so that it is accessible at the
address at which the CPU starts executing
instructions

▶ The first stage bootloader must be programmed
at this address in the NOR

▶ NOR is mandatory, because it allows random
access, which NAND doesn't allow

▶ Not very common anymore (unpractical, and
requires NOR flash)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/520

Booting on embedded CPUs: case 2

▶ The CPU has an integrated boot code in ROM
▶ BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
▶ Exact details are CPU-dependent

▶ This boot code is able to load a first stage bootloader from a
storage device into an internal SRAM (DRAM not initialized
yet)

▶ Storage device can typically be: MMC, NAND, SPI flash,
UART (transmitting data over the serial line), etc.

▶ The first stage bootloader is
▶ Limited in size due to hardware constraints (SRAM size)
▶ Provided either by the CPU vendor or through community

projects
▶ This first stage bootloader must initialize DRAM and other

hardware devices and load a second stage bootloader into
RAM

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/520

Booting on ARM Atmel AT91

▶ RomBoot: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM (DRAM not initialized yet). Size limited
to 4 KB. No user interaction possible in standard
boot mode.

▶ AT91Bootstrap: runs from SRAM. Initializes the
DRAM, the NAND or SPI controller, and loads
the secondary bootloader into RAM and starts it.
No user interaction possible.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/520

Booting on ARM TI OMAP3

▶ ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM or RAM (RAM can be initialized by ROM
code through a configuration header). Size
limited to <64 KB. No user interaction possible.

▶ X-Loader or U-Boot: runs from SRAM.
Initializes the DRAM, the NAND or MMC
controller, and loads the secondary bootloader
into RAM and starts it. No user interaction
possible. File called MLO.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.bin or u-boot.img.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/520

Booting on Marvell SoC

▶ ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
RAM. The RAM configuration is described in a
CPU-specific header, prepended to the bootloader
image.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.kwb.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/520

Generic bootloaders for embedded CPUs

▶ We will focus on the generic part, the main bootloader,
offering the most important features.

▶ There are several open-source generic bootloaders.
Here are the most popular ones:

▶ U-Boot, the universal bootloader by Denx
The most used on ARM, also used on PPC, MIPS, x86, m68k,
NIOS, etc. The de-facto standard nowadays. We will study it
in detail.
http://www.denx.de/wiki/U-Boot

▶ Barebox, a new architecture-neutral bootloader, written as a
successor of U-Boot. Better design, better code, active
development, but doesn't yet have as much hardware support
as U-Boot.
http://www.barebox.org

▶ There are also a lot of other open-source or proprietary
bootloaders, often architecture-specific

▶ RedBoot, Yaboot, PMON, etc.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/520

http://www.denx.de/wiki/U-Boot
http://www.barebox.org

Bootloaders

The U-boot bootloader

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 100/520

U-Boot

U-Boot is a typical free software project
▶ License: GPLv2 (same as Linux)
▶ Freely available at http://www.denx.de/wiki/U-Boot
▶ Documentation available at

http://www.denx.de/wiki/U-Boot/Documentation

▶ The latest development source code is available in a Git
repository: http://git.denx.de/?p=u-boot.git;a=summary

▶ Development and discussions happen around an open
mailing-list http://lists.denx.de/pipermail/u-boot/

▶ Since the end of 2008, it follows a fixed-interval release
schedule. Every three months, a new version is released.
Versions are named YYYY.MM.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 101/520

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot/Documentation
http://git.denx.de/?p=u-boot.git;a=summary
http://lists.denx.de/pipermail/u-boot/

U-Boot configuration

▶ Get the source code from the website, and uncompress it
▶ The include/configs/ directory contains one configuration

file for each supported board
▶ It defines the CPU type, the peripherals and their

configuration, the memory mapping, the U-Boot features that
should be compiled in, etc.

▶ It is a simple .h file that sets C pre-processor constants. See
the README file for the documentation of these constants. This
file can also be adjusted to add or remove features from
U-Boot (commands, etc.).

▶ Assuming that your board is already supported by U-Boot,
there should be one entry corresponding to your board in the
boards.cfg file.

▶ Or just look in the configs/ directory.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 102/520

U-Boot configuration file excerpt

/* CPU configuration */
#define CONFIG_ARMV7 1
#define CONFIG_OMAP 1
#define CONFIG_OMAP34XX 1
#define CONFIG_OMAP3430 1
#define CONFIG_OMAP3_IGEP0020 1
[...]
/* Memory configuration */
#define CONFIG_NR_DRAM_BANKS 2
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20)
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
[...]
/* USB configuration */
#define CONFIG_MUSB_UDC 1
#define CONFIG_USB_OMAP3 1
#define CONFIG_TWL4030_USB 1
[...]

/* Available commands and features */
#define CONFIG_CMD_CACHE
#define CONFIG_CMD_EXT2
#define CONFIG_CMD_FAT
#define CONFIG_CMD_I2C
#define CONFIG_CMD_MMC
#define CONFIG_CMD_NAND
#define CONFIG_CMD_NET
#define CONFIG_CMD_DHCP
#define CONFIG_CMD_PING
#define CONFIG_CMD_NFS
#define CONFIG_CMD_MTDPARTS
[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 103/520

Configuring and compiling U-Boot

▶ U-Boot must be configured before being compiled
▶ make BOARDNAME_defconfig
▶ Where BOARDNAME is the name of the board, as visible in the

boards.cfg file (first column).
▶ New: you can now run make menuconfig to further edit

U-Boot's configuration!
▶ Make sure that the cross-compiler is available in PATH

▶ Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-linux-gcc:
make CROSS_COMPILE=arm-linux-

▶ The main result is a u-boot.bin file, which is the U-Boot
image. Depending on your specific platform, there may be
other specialized images: u-boot.img, u-boot.kwb, MLO, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 104/520

Installing U-Boot

▶ U-Boot must usually be installed in flash memory to be
executed by the hardware. Depending on the hardware, the
installation of U-Boot is done in a different way:

▶ The CPU provides some kind of specific boot monitor with
which you can communicate through serial port or USB using
a specific protocol

▶ The CPU boots first on removable media (MMC) before
booting from fixed media (NAND). In this case, boot from
MMC to reflash a new version

▶ U-Boot is already installed, and can be used to flash a new
version of U-Boot. However, be careful: if the new version of
U-Boot doesn't work, the board is unusable

▶ The board provides a JTAG interface, which allows to write to
the flash memory remotely, without any system running on the
board. It also allows to rescue a board if the bootloader
doesn't work.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 105/520

U-boot prompt

▶ Connect the target to the host through a serial console
▶ Power-up the board. On the serial console, you will see

something like:

U-Boot 2013.04 (May 29 2013 - 10:30:21)

OMAP36XX/37XX-GP ES1.2, CPU-OPP2, L3-165MHz, Max CPU Clock 1 Ghz
IGEPv2 + LPDDR/NAND
I2C: ready
DRAM: 512 MiB
NAND: 512 MiB
MMC: OMAP SD/MMC: 0

Die ID #255000029ff800000168580212029011
Net: smc911x-0
U-Boot #

▶ The U-Boot shell offers a set of commands. We will study the
most important ones, see the documentation for a complete
reference or the help command.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 106/520

Information commands
Flash information (NOR and SPI flash)

U-Boot> flinfo
DataFlash:AT45DB021
Nb pages: 1024
Page Size: 264
Size= 270336 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C0001FFF (RO) Bootstrap
Area 1: C0002000 to C0003FFF Environment
Area 2: C0004000 to C0041FFF (RO) U-Boot

NAND flash information

U-Boot> nand info
Device 0: nand0, sector size 128 KiB

Page size 2048 b
OOB size 64 b
Erase size 131072 b

Version details

U-Boot> version
U-Boot 2013.04 (May 29 2013 - 10:30:21)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 107/520

Important commands (1)

▶ The exact set of commands depends on the U-Boot
configuration

▶ help and help command

▶ boot, runs the default boot command, stored in bootcmd

▶ bootz <address>, starts a kernel image loaded at the given
address in RAM

▶ ext2load, loads a file from an ext2 filesystem to RAM
▶ And also ext2ls to list files, ext2info for information

▶ fatload, loads a file from a FAT filesystem to RAM
▶ And also fatls and fatinfo

▶ tftp, loads a file from the network to RAM
▶ ping, to test the network

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 108/520

Important commands (2)

▶ loadb, loads, loady, load a file from the serial line to RAM
▶ usb, to initialize and control the USB subsystem, mainly used

for USB storage devices such as USB keys
▶ mmc, to initialize and control the MMC subsystem, used for

SD and microSD cards
▶ nand, to erase, read and write contents to NAND flash
▶ erase, protect, cp, to erase, modify protection and write to

NOR flash
▶ md, displays memory contents. Can be useful to check the

contents loaded in memory, or to look at hardware registers.
▶ mm, modifies memory contents. Can be useful to modify

directly hardware registers, for testing purposes.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 109/520

Environment variables commands (1)

▶ U-Boot can be configured through environment variables,
which affect the behavior of the different commands.

▶ Environment variables are loaded from flash to RAM at
U-Boot startup, can be modified and saved back to flash for
persistence

▶ There is a dedicated location in flash (or in MMC storage) to
store the U-Boot environment, defined in the board
configuration file

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 110/520

Environment variables commands (2)

Commands to manipulate environment variables:
▶ printenv

Shows all variables
▶ printenv <variable-name>

Shows the value of a variable
▶ setenv <variable-name> <variable-value>

Changes the value of a variable, only in RAM
▶ editenv <variable-name>

Edits the value of a variable, only in RAM
▶ saveenv

Saves the current state of the environment to flash

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 111/520

Environment variables commands - Example

u-boot # printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial
u-boot # printenv serverip
serverip=10.0.0.1
u-boot # setenv serverip 10.0.0.100
u-boot # saveenv

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 112/520

Important U-Boot env variables

▶ bootcmd, contains the command that U-Boot will
automatically execute at boot time after a configurable delay
(bootdelay), if the process is not interrupted

▶ bootargs, contains the arguments passed to the Linux kernel,
covered later

▶ serverip, the IP address of the server that U-Boot will
contact for network related commands

▶ ipaddr, the IP address that U-Boot will use
▶ netmask, the network mask to contact the server
▶ ethaddr, the MAC address, can only be set once
▶ autostart, if yes, U-Boot starts automatically an image that

has been loaded into memory
▶ filesize, the size of the latest copy to memory (from tftp,

fatload, nand read...)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 113/520

Scripts in environment variables

▶ Environment variables can contain small scripts, to execute
several commands and test the results of commands.

▶ Useful to automate booting or upgrade processes
▶ Several commands can be chained using the ; operator
▶ Tests can be done using

if command ; then ... ; else ... ; fi
▶ Scripts are executed using run <variable-name>
▶ You can reference other variables using ${variable-name}

▶ Example
▶ setenv mmc-boot 'if fatload mmc 0 80000000 boot.ini;

then source; else if fatload mmc 0 80000000 zImage;
then run mmc-do-boot; fi; fi'

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 114/520

Transferring files to the target

▶ U-Boot is mostly used to load and boot a kernel image, but it
also allows to change the kernel image and the root filesystem
stored in flash.

▶ Files must be exchanged between the target and the
development workstation. This is possible:

▶ Through the network if the target has an Ethernet connection,
and U-Boot contains a driver for the Ethernet chip. This is the
fastest and most efficient solution.

▶ Through a USB key, if U-Boot supports the USB controller of
your platform

▶ Through a SD or microSD card, if U-Boot supports the MMC
controller of your platform

▶ Through the serial port

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 115/520

TFTP

▶ Network transfer from the development workstation to U-Boot
on the target takes place through TFTP

▶ Trivial File Transfer Protocol
▶ Somewhat similar to FTP, but without authentication and over

UDP
▶ A TFTP server is needed on the development workstation

▶ sudo apt-get install tftpd-hpa
▶ All files in /var/lib/tftpboot are then visible through TFTP
▶ A TFTP client is available in the tftp-hpa package, for testing

▶ A TFTP client is integrated into U-Boot
▶ Configure the ipaddr and serverip environment variables
▶ Use tftp <address> <filename> to load a file

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 116/520

Practical lab - U-Boot

Time to start the practical lab!
▶ Communicate with the board using

a serial console
▶ Configure, build and install U-Boot
▶ Learn U-Boot commands
▶ Set up TFTP communication with

the board

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 117/520

Linux kernel introduction

Linux kernel
introduction
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 118/520

Linux kernel introduction

Linux features

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 119/520

History

▶ The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

▶ The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

▶ Linux quickly started to be used as the kernel for free software
operating systems

▶ Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

▶ Nowadays, more than one thousand people contribute to each
kernel release, individuals or companies big and small.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 120/520

Linux kernel key features

▶ Portability and hardware
support. Runs on most
architectures.

▶ Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

▶ Compliance to standards
and interoperability.

▶ Exhaustive networking
support.

▶ Security. It can't hide its
flaws. Its code is reviewed
by many experts.

▶ Stability and reliability.
▶ Modularity. Can include

only what a system needs
even at run time.

▶ Easy to program. You can
learn from existing code.
Many useful resources on
the net.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 121/520

Linux kernel in the system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 122/520

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware

independent APIs to allow user space applications and
libraries to use the hardware resources.

▶ Handle concurrent accesses and usage of hardware
resources from different applications.

▶ Example: a single network interface is used by multiple user
space applications through various network connections. The
kernel is responsible to ``multiplex'' the hardware resource.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 123/520

System calls

▶ The main interface between the kernel and user space is the
set of system calls

▶ About 300 system calls that provide the main kernel services
▶ File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

▶ This interface is stable over time: only new system calls can
be added by the kernel developers

▶ This system call interface is wrapped by the C library, and
user space applications usually never make a system call
directly but rather use the corresponding C library function

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 124/520

Pseudo filesystems

▶ Linux makes system and kernel information available in user
space through pseudo filesystems, sometimes also called
virtual filesystems

▶ Pseudo filesystems allow applications to see directories and
files that do not exist on any real storage: they are created
and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
▶ proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

▶ sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 125/520

Inside the Linux kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 126/520

Linux license

▶ The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).

▶ For the Linux kernel, this basically implies that:
▶ When you receive or buy a device with Linux on it, you should

receive the Linux sources, with the right to study, modify and
redistribute them.

▶ When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 127/520

Supported hardware architectures

▶ See the arch/ directory in the kernel sources
▶ Minimum: 32 bit processors, with or without MMU, and gcc

support
▶ 32 bit architectures (arch/ subdirectories)

Examples: arm, avr32, blackfin, c6x, m68k, microblaze,
mips, score, sparc, um

▶ 64 bit architectures:
Examples: alpha, arm64, ia64, tile

▶ 32/64 bit architectures
Examples: powerpc, x86, sh, sparc

▶ Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 128/520

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/arm
http://lxr.free-electrons.com/source/arch/avr32
http://lxr.free-electrons.com/source/arch/blackfin
http://lxr.free-electrons.com/source/arch/c6x
http://lxr.free-electrons.com/source/arch/m68k
http://lxr.free-electrons.com/source/arch/microblaze
http://lxr.free-electrons.com/source/arch/mips
http://lxr.free-electrons.com/source/arch/score
http://lxr.free-electrons.com/source/arch/sparc
http://lxr.free-electrons.com/source/arch/um
http://lxr.free-electrons.com/source/arch/alpha
http://lxr.free-electrons.com/source/arch/arm64
http://lxr.free-electrons.com/source/arch/ia64
http://lxr.free-electrons.com/source/arch/tile
http://lxr.free-electrons.com/source/arch/powerpc
http://lxr.free-electrons.com/source/arch/x86
http://lxr.free-electrons.com/source/arch/sh
http://lxr.free-electrons.com/source/arch/sparc

Linux kernel introduction

Linux versioning scheme and
development process

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 129/520

Until 2.6 (1)

▶ One stable major branch every 2 or 3 years
▶ Identified by an even middle number
▶ Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

▶ One development branch to integrate new functionalities and
major changes

▶ Identified by an odd middle number
▶ Examples: 2.1.x, 2.3.x, 2.5.x
▶ After some time, a development version becomes the new base

version for the stable branch
▶ Minor releases once in while: 2.2.23, 2.5.12, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 130/520

Until 2.6 (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 131/520

Changes since Linux 2.6

▶ Since 2.6.0, kernel developers have been able to introduce
lots of new features one by one on a steady pace, without
having to make disruptive changes to existing subsystems.

▶ Since then, there has been no need to create a new
development branch massively breaking compatibility with the
stable branch.

▶ Thanks to this, more features are released to users at a
faster pace.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 132/520

Versions since 2.6.0

▶ From 2003 to 2011, the official kernel versions were named
2.6.x.

▶ Linux 3.0 was released in July 2011
▶ Linux 4.0 was released in April 2015
▶ This is only a change to the numbering scheme

▶ Official kernel versions are now named x.y
(3.0, 3.1, 3.2, ..., 3.19, 4.0, 4.1, etc.)

▶ Stabilized versions are named x.y.z (3.0.2, 4.2.7, etc.)
▶ It effectively only removes a digit compared to the previous

numbering scheme

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 133/520

New development model

Using merge and bug fixing windows

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 134/520

New development model - Details

▶ After the release of a 4.x version (for example), a two-weeks
merge window opens, during which major additions are
merged.

▶ The merge window is closed by the release of test version
4.(x+1)-rc1

▶ The bug fixing period opens, for 6 to 10 weeks.
▶ At regular intervals during the bug fixing period, 4.(x+1)-rcY

test versions are released.
▶ When considered sufficiently stable, kernel 4.(x+1) is

released, and the process starts again.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 135/520

More stability for the kernel source tree

▶ Issue: bug and security fixes only released for
most recent stable kernel versions.

▶ Some people need to have a recent kernel,
but with long term support for security
updates.

▶ You could get long term support from a
commercial embedded Linux provider.

▶ You could reuse sources for the kernel used in
Ubuntu Long Term Support releases (5 years
of free security updates).

▶ The http://kernel.org front page shows
which versions will be supported for some
time (up to 2 or 3 years), and which ones
won't be supported any more ("EOL: End Of
Life")

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 136/520

http://kernel.org

What's new in each Linux release?
▶ The official list of changes for each Linux release is just a

huge list of individual patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

▶ Very difficult to find out the key changes and to get the global
picture out of individual changes.

▶ Fortunately, there are some useful resources available
▶ http://wiki.kernelnewbies.org/LinuxChanges (until Linux

4.1)
▶ http://lwn.net
▶ http://linuxfr.org, for French readers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 137/520

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://linuxfr.org

Linux kernel introduction

Linux kernel sources

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 138/520

Location of kernel sources

▶ The official versions of the Linux kernel, as released by Linus
Torvalds, are available at http://www.kernel.org

▶ These versions follow the development model of the kernel
▶ However, they may not contain the latest development from a

specific area yet. Some features in development might not be
ready for mainline inclusion yet.

▶ Many chip vendors supply their own kernel sources
▶ Focusing on hardware support first
▶ Can have a very important delta with mainline Linux
▶ Useful only when mainline hasn't caught up yet.

▶ Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

▶ Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI, network,
etc.), other communities (real-time, etc.)

▶ No official releases, only development trees are available.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 139/520

http://www.kernel.org

Getting Linux sources

▶ The kernel sources are available from
http://kernel.org/pub/linux/kernel as full tarballs
(complete kernel sources) and patches (differences between
two kernel versions).

▶ However, more and more people use the git version control
system. Absolutely needed for kernel development!

▶ Fetch the entire kernel sources and history
git clone git://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git

▶ Create a branch that starts at a specific stable version
git checkout -b <name-of-branch> v3.11

▶ Web interface available at http://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/tree/.

▶ Read more about Git at http://git-scm.com/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 140/520

http://kernel.org/pub/linux/kernel
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git-scm.com/

Linux kernel size (1)

▶ Linux 3.10 sources:
Raw size: 573 MB (43,000 files, approx 15,800,000 lines)
gzip compressed tar archive: 105 MB
bzip2 compressed tar archive: 83 MB (better)
xz compressed tar archive: 69 MB (best)

▶ Minimum Linux 3.17 compiled kernel size, booting on the
ARM Versatile board (hard drive on PCI, ext2 filesystem, ELF
executable support, framebuffer console and input devices):
876 KB (compressed), 2.3 MB (raw)

▶ Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...

▶ The Linux core (scheduler, memory management...) is pretty
small!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 141/520

Linux kernel size (2)

As of kernel version 3.10.
▶ drivers/: 49.4%
▶ arch/: 21.9%
▶ fs/: 6.0%
▶ include/: 4.7%
▶ sound/: 4.4%
▶ Documentation/: 4.0%
▶ net/: 3.9%
▶ firmware/: 1.0%
▶ kernel/: 1.0%

▶ tools/: 0.9%
▶ scripts/: 0.5%
▶ mm/: 0.5%
▶ crypto/: 0.4%
▶ security/: 0.4%
▶ lib/: 0.4%
▶ block/: 0.2%
▶ ...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 142/520

http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/firmware/
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/tools/
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/mm/
http://lxr.free-electrons.com/source/crypto/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/block/

Getting Linux sources
▶ Full tarballs

▶ Contain the complete kernel sources: long to download and
uncompress, but must be done at least once

▶ Example:
http://www.kernel.org/pub/linux/kernel/v3.x/linux-

3.10.9.tar.xz

▶ Extract command:
tar xf linux-3.10.9.tar.xz

▶ Incremental patches between versions
▶ It assumes you already have a base version and you apply the

correct patches in the right order. Quick to download and
apply

▶ Examples:
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.xz
(3.9 to 3.10)
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.9.xz
(3.10 to 3.10.9)

▶ All previous kernel versions are available in
http://kernel.org/pub/linux/kernel/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 143/520

http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.9.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.9.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.xz
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.9.xz
http://kernel.org/pub/linux/kernel/

Patch

▶ A patch is the difference between two source trees
▶ Computed with the diff tool, or with more elaborate version

control systems
▶ They are very common in the open-source community
▶ Excerpt from a patch:

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00
@@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11
-EXTRAVERSION =
+EXTRAVERSION = .1
NAME=Woozy Numbat

DOCUMENTATION

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 144/520

Contents of a patch

▶ One section per modified file, starting with a header
diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00

▶ One sub-section per modified part of the file, starting with
header with the affected line numbers
@@ -1,7 +1,7 @@

▶ Three lines of context before the change
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

▶ The change itself
-EXTRAVERSION =
+EXTRAVERSION = .1

▶ Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 145/520

Using the patch command

The patch command:
▶ Takes the patch contents on its standard input
▶ Applies the modifications described by the patch into the

current directory
patch usage examples:

▶ patch -p<n> < diff_file

▶ cat diff_file | patch -p<n>

▶ xzcat diff_file.xz | patch -p<n>

▶ bzcat diff_file.bz2 | patch -p<n>

▶ zcat diff_file.gz | patch -p<n>
▶ Notes:

▶ n: number of directory levels to skip in the file paths
▶ You can reverse apply a patch with the -R option
▶ You can test a patch with --dry-run option

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 146/520

Applying a Linux patch

▶ Two types of Linux patches:
▶ Either to be applied to the previous stable version

(from 3.<x-1> to 3.x)
▶ Or implementing fixes to the current stable version

(from 3.x to 3.x.y)
▶ Can be downloaded in gzip, bzip2 or xz (much smaller)

compressed files.
▶ Always produced for n=1

(that's what everybody does... do it too!)
▶ Need to run the patch command inside the kernel source

directory
▶ Linux patch command line example:

cd linux-3.9
xzcat ../patch-3.10.xz | patch -p1
xzcat ../patch-3.10.9.xz | patch -p1
cd ..; mv linux-3.9 linux-3.10.9

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 147/520

Practical lab - Kernel sources

Time to start the practical lab!
▶ Get the Linux kernel sources
▶ Apply patches

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 148/520

Linux kernel introduction

Kernel configuration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 149/520

Kernel configuration and build system

▶ The kernel configuration and build system is based on
multiple Makefiles

▶ One only interacts with the main Makefile, present at the
top directory of the kernel source tree

▶ Interaction takes place
▶ using the make tool, which parses the Makefile
▶ through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run make help
to see all available targets.

▶ Example
▶ cd linux-3.6.x/
▶ make <target>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 150/520

http://lxr.free-electrons.com/source/Makefile

Kernel configuration (1)

▶ The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

▶ Thousands of options are available, that are used to
selectively compile parts of the kernel source code

▶ The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

▶ The set of options depends
▶ On your hardware (for device drivers, etc.)
▶ On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 151/520

Kernel configuration (2)

▶ The configuration is stored in the .config file at the root of
kernel sources

▶ Simple text file, key=value style
▶ As options have dependencies, typically never edited by hand,

but through graphical or text interfaces:
▶ make xconfig, make gconfig (graphical)
▶ make menuconfig, make nconfig (text)
▶ You can switch from one to another, they all load/save the

same .config file, and show the same set of options
▶ To modify a kernel in a GNU/Linux distribution: the

configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 152/520

Kernel or module?

▶ The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

▶ This is the file that gets loaded in memory by the bootloader
▶ All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however

be compiled as modules
▶ These are plugins that can be loaded/unloaded dynamically to

add/remove features to the kernel
▶ Each module is stored as a separate file in the filesystem,

and therefore access to a filesystem is mandatory to use
modules

▶ This is not possible in the early boot procedure of the kernel,
because no filesystem is available

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 153/520

Kernel option types

▶ There are different types of options
▶ bool options, they are either

▶ true (to include the feature in the kernel) or
▶ false (to exclude the feature from the kernel)

▶ tristate options, they are either
▶ true (to include the feature in the kernel image) or
▶ module (to include the feature as a kernel module) or
▶ false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values
▶ string options, to specify string values

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 154/520

Kernel option dependencies

▶ There are dependencies between kernel options
▶ For example, enabling a network driver requires the network

stack to be enabled
▶ Two types of dependencies

▶ depends on dependencies. In this case, option A that depends
on option B is not visible until option B is enabled

▶ select dependencies. In this case, with option A depending
on option B, when option A is enabled, option B is
automatically enabled

▶ make xconfig allows to see all options, even the ones that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 155/520

make xconfig

make xconfig

▶ The most common graphical interface to configure the kernel.
▶ Make sure you read

help -> introduction: useful options!

▶ File browser: easier to load configuration files
▶ Search interface to look for parameters
▶ Required Debian / Ubuntu packages: libqt4-dev g++

(libqt3-mt-dev for older kernel releases)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 156/520

make xconfig screenshot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 157/520

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 158/520

Kernel configuration options

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 159/520

Corresponding .config file excerpt
Options are grouped by sections and are prefixed with CONFIG_.
#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#
DOS/FAT/NT Filesystems
#
CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m
CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 160/520

make gconfig

make gconfig

▶ GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

▶ Just lacking a search
functionality.

▶ Required Debian packages:
libglade2-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 161/520

make menuconfig

make menuconfig

▶ Useful when no graphics are
available. Pretty convenient
too!

▶ Same interface found in
other tools: BusyBox,
Buildroot...

▶ Required Debian packages:
libncurses-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 162/520

make nconfig

make nconfig

▶ A newer, similar text
interface

▶ More user friendly (for
example, easier to access
help information).

▶ Required Debian packages:
libncurses-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 163/520

make oldconfig

make oldconfig

▶ Needed very often!
▶ Useful to upgrade a .config file from an earlier kernel release
▶ Issues warnings for configuration parameters that no longer

exist in the new kernel.
▶ Asks for values for new parameters (while xconfig and

menuconfig silently set default values for new parameters).
If you edit a .config file by hand, it's strongly recommended to
run make oldconfig afterwards!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 164/520

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your

kernel no longer works.
▶ If you don't remember all the changes you made, you can get

back to your previous configuration:
$ cp .config.old .config

▶ All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup
copy.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 165/520

Configuration per architecture

▶ The set of configuration options is architecture dependent
▶ Some configuration options are very architecture-specific
▶ Most of the configuration options (global kernel options,

network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

▶ By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

▶ The architecture is not defined inside the configuration, but at
a higher level

▶ We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 166/520

Linux kernel introduction

Compiling and installing the kernel
for the host system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 167/520

Kernel compilation

▶ make
▶ in the main kernel source directory
▶ Remember to run multiple jobs in parallel if you have multiple

CPU cores. Example: make -j 4
▶ No need to run as root!

▶ Generates
▶ vmlinux, the raw uncompressed kernel image, in the ELF

format, useful for debugging purposes, but cannot be booted
▶ arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
▶ bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,

etc.
▶ arch/<arch>/boot/dts/*.dtb, compiled Device Tree files (on

some architectures)
▶ All kernel modules, spread over the kernel source tree, as .ko

files.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 168/520

Kernel installation

▶ make install
▶ Does the installation for the host system by default, so needs

to be run as root. Generally not used when compiling for an
embedded system, as it installs files on the development
workstation.

▶ Installs
▶ /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

▶ /boot/System.map-<version>
Stores kernel symbol addresses

▶ /boot/config-<version>
Kernel configuration for this version

▶ Typically re-runs the bootloader configuration utility to take
the new kernel into account.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 169/520

Module installation

▶ make modules_install
▶ Does the installation for the host system by default, so needs

to be run as root
▶ Installs all modules in /lib/modules/<version>/

▶ kernel/
Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

▶ modules.alias
Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd_mixer_oss

▶ modules.dep, modules.dep.bin (binary hashed)
Module dependencies

▶ modules.symbols, modules.symbols.bin (binary hashed)
Tells which module a given symbol belongs to.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 170/520

Kernel cleanup targets

▶ Clean-up generated files (to force
re-compilation):
make clean

▶ Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

▶ Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 171/520

Linux kernel introduction

Cross-compiling the kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 172/520

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture
▶ Much faster than compiling natively, when the target system

is much slower than your GNU/Linux workstation.
▶ Much easier as development tools for your GNU/Linux

workstation are much easier to find.
▶ To make the difference with a native compiler, cross-compiler

executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-
arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 173/520

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

▶ ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

▶ Example: arm if you want to compile a kernel for the arm
architecture.

▶ CROSS_COMPILE is the prefix of the cross compilation tools
▶ Example: arm-linux- if your compiler is arm-linux-gcc

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 174/520

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 175/520

Predefined configuration files

▶ Default configuration files available, per board or per-CPU
family

▶ They are stored in arch/<arch>/configs/, and are just
minimal .config files

▶ This is the most common way of configuring a kernel for
embedded platforms

▶ Run make help to find if one is available for your platform
▶ To load a default configuration file, just run

make acme_defconfig
▶ This will overwrite your existing .config file!

▶ To create your own default configuration file
▶ make savedefconfig, to create a minimal configuration file
▶ mv defconfig arch/<arch>/configs/myown_defconfig

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 176/520

Configuring the kernel

▶ After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

▶ As the architecture is different from your host architecture
▶ Some options will be different from the native configuration

(processor and architecture specific options, specific drivers,
etc.)

▶ Many options will be identical (filesystems, network protocols,
architecture-independent drivers, etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 177/520

Device Tree

▶ Many embedded architectures have a lot of non-discoverable
hardware.

▶ Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using a
special hardware description language in a Device Tree.

▶ ARM, PowerPC, OpenRISC, ARC, Microblaze are examples of
architectures using the Device Tree.

▶ A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, passed at boot time
to the kernel.

▶ There is one different Device Tree for each board/platform
supported by the kernel, available in
arch/arm/boot/dts/<board>.dtb.

▶ The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 178/520

Building and installing the kernel

▶ Run make
▶ Copy the final kernel image to the target storage

▶ can be zImage, vmlinux, bzImage in arch/<arch>/boot
▶ copying the Device Tree Blob might be necessary as well, they

are available in arch/<arch>/boot/dts

▶ make install is rarely used in embedded development, as the
kernel image is a single file, easy to handle

▶ It is however possible to customize the make install behaviour
in arch/<arch>/boot/install.sh

▶ make modules_install is used even in embedded
development, as it installs many modules and description files

▶ make INSTALL_MOD_PATH=<dir>/ modules_install
▶ The INSTALL_MOD_PATH variable is needed to install the

modules in the target root filesystem instead of your host root
filesystem.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 179/520

Booting with U-Boot

▶ Recent versions of U-Boot can boot the zImage binary.
▶ Older versions require a special kernel image format: uImage

▶ uImage is generated from zImage using the mkimage tool. It is
done automatically by the kernel make uImage target.

▶ On some ARM platforms, make uImage requires passing a
LOADADDR environment variable, which indicates at which
physical memory address the kernel will be executed.

▶ In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.

▶ The typical boot process is therefore:
1. Load zImage or uImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y (zImage case), or

bootm X - Y (uImage case)
The - in the middle indicates no initramfs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 180/520

Kernel command line

▶ In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

▶ The kernel command line is a string that defines various
arguments to the kernel

▶ It is very important for system configuration
▶ root= for the root filesystem (covered later)
▶ console= for the destination of kernel messages
▶ Many more exist. The most important ones are documented in

Documentation/kernel-parameters.txt in kernel sources.
▶ This kernel command line is either

▶ Passed by the bootloader. In U-Boot, the contents of the
bootargs environment variable is automatically passed to the
kernel

▶ Built into the kernel, using the CONFIG_CMDLINE option.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 181/520

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Practical lab - Kernel cross-compiling

▶ Set up the cross-compiling
environment

▶ Configure and cross-compile the
kernel for an arm platform

▶ On this platform, interact with the
bootloader and boot your kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 182/520

Linux kernel introduction

Using kernel modules

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 183/520

Advantages of modules

▶ Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

▶ Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

▶ Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only need later.

▶ Caution: once loaded, have full control and privileges in the
system. No particular protection. That's why only the root
user can load and unload modules.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 184/520

Module dependencies

▶ Some kernel modules can depend on other modules, which
need to be loaded first.

▶ Example: the usb-storage module depends on the scsi_mod,
libusual and usbcore modules.

▶ Dependencies are described both in
/lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin
These files are generated when you run
make modules_install.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 185/520

Kernel log

When a new module is loaded, related information is available in
the kernel log.

▶ The kernel keeps its messages in a circular buffer (so that it
doesn't consume more memory with many messages)

▶ Kernel log messages are available through the dmesg
command (diagnostic message)

▶ Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel
kernel parameter, or completely disabled with the quiet
parameter).

▶ Note that you can write to the kernel log from user space too:
echo "<n>Debug info" > /dev/kmsg

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 186/520

Module utilities (1)

▶ modinfo <module_name>
modinfo <module_path>.ko
Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

▶ sudo insmod <module_path>.ko
Tries to load the given module. The full path to the module
object file must be given.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 187/520

Understanding module loading issues

▶ When loading a module fails, insmod often doesn't give you
enough details!

▶ Details are often available in the kernel log.
▶ Example:

$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg
[17549774.552000] Failed to register handler for irq channel 2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 188/520

Module utilities (2)

▶ sudo modprobe <module_name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

▶ lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 189/520

Module utilities (3)

▶ sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

▶ sudo modprobe -r <module_name>
Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 190/520

Passing parameters to modules

▶ Find available parameters:
modinfo snd-intel8x0m

▶ Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

▶ Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

▶ Through the kernel command line, when the driver is built
statically into the kernel:
snd-intel8x0m.index=-2

▶ snd-intel8x0m is the driver name
▶ index is the driver parameter name
▶ -2 is the driver parameter value

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 191/520

Check module parameter values

How to find the current values for the parameters of a loaded
module?

▶ Check /sys/module/<name>/parameters.
▶ There is one file per parameter, containing the parameter

value.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 192/520

Useful reading

Linux Kernel in a Nutshell, Dec 2006
▶ By Greg Kroah-Hartman, O'Reilly

http://www.kroah.com/lkn/

▶ A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

▶ Freely available on-line!
Great companion to the printed book for
easy electronic searches!
Available as single PDF file on
http://free-
electrons.com/community/kernel/lkn/

▶ Our rating: 2 stars

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 193/520

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Linux Root Filesystem

Linux Root
Filesystem
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 194/520

Linux Root Filesystem

Principle and solutions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 195/520

Filesystems

▶ Filesystems are used to organize data in directories and files
on storage devices or on the network. The directories and files
are organized as a hierarchy

▶ In Unix systems, applications and users see a single global
hierarchy of files and directories, which can be composed of
several filesystems.

▶ Filesystems are mounted in a specific location in this
hierarchy of directories

▶ When a filesystem is mounted in a directory (called mount
point), the contents of this directory reflects the contents of
the storage device

▶ When the filesystem is unmounted, the mount point is empty
again.

▶ This allows applications to access files and directories easily,
regardless of their exact storage location

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 196/520

Filesystems (2)

▶ Create a mount point, which is just a directory
$ mkdir /mnt/usbkey

▶ It is empty
$ ls /mnt/usbkey
$

▶ Mount a storage device in this mount point
$ mount -t vfat /dev/sda1 /mnt/usbkey
$

▶ You can access the contents of the USB key
$ ls /mnt/usbkey
docs prog.c picture.png movie.avi
$

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 197/520

mount / umount

▶ mount allows to mount filesystems
▶ mount -t type device mountpoint
▶ type is the type of filesystem
▶ device is the storage device, or network location to mount
▶ mountpoint is the directory where files of the storage device or

network location will be accessible
▶ mount with no arguments shows the currently mounted

filesystems
▶ umount allows to unmount filesystems

▶ This is needed before rebooting, or before unplugging a USB
key, because the Linux kernel caches writes in memory to
increase performance. umount makes sure that these writes are
committed to the storage.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 198/520

Root filesystem

▶ A particular filesystem is mounted at the root of the hierarchy,
identified by /

▶ This filesystem is called the root filesystem
▶ As mount and umount are programs, they are files inside a

filesystem.
▶ They are not accessible before mounting at least one

filesystem.
▶ As the root filesystem is the first mounted filesystem, it

cannot be mounted with the normal mount command
▶ It is mounted directly by the kernel, according to the root=

kernel option
▶ When no root filesystem is available, the kernel panics

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 199/520

Location of the root filesystem

▶ It can be mounted from different locations
▶ From the partition of a hard disk
▶ From the partition of a USB key
▶ From the partition of an SD card
▶ From the partition of a NAND flash chip or similar type of

storage device
▶ From the network, using the NFS protocol
▶ From memory, using a pre-loaded filesystem (by the

bootloader)
▶ etc.

▶ It is up to the system designer to choose the configuration for
the system, and configure the kernel behaviour with root=

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 200/520

Mounting rootfs from storage devices

▶ Partitions of a hard disk or USB key
▶ root=/dev/sdXY, where X is a letter indicating the device, and

Y a number indicating the partition
▶ /dev/sdb2 is the second partition of the second disk drive

(either USB key or ATA hard drive)
▶ Partitions of an SD card

▶ root=/dev/mmcblkXpY, where X is a number indicating the
device and Y a number indicating the partition

▶ /dev/mmcblk0p2 is the second partition of the first device
▶ Partitions of flash storage

▶ root=/dev/mtdblockX, where X is the partition number
▶ /dev/mtdblock3 is the fourth partition of a NAND flash chip

(if only one NAND flash chip is present)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 201/520

Mounting rootfs over the network (1)
Once networking works, your root filesystem could be a directory
on your GNU/Linux development host, exported by NFS (Network
File System). This is very convenient for system development:

▶ Makes it very easy to update files on the root filesystem,
without rebooting. Much faster than through the serial port.

▶ Can have a big root filesystem even if you don't have support
for internal or external storage yet.

▶ The root filesystem can be huge. You can even build native
compiler tools and build all the tools you need on the target
itself (better to cross-compile though).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 202/520

Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed
▶ Install an NFS server (example: Debian, Ubuntu)

sudo apt-get install nfs-kernel-server

▶ Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash,no_
subtree_check)

▶ 192.168.1.111 is the client IP address
▶ rw,no_root_squash,no_subtree_check are the NFS server

options for this directory export.
▶ Start or restart your NFS server (example: Debian, Ubuntu)

sudo /etc/init.d/nfs-kernel-server restart

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 203/520

Mounting rootfs over the network (3)

▶ On the target system
▶ The kernel must be compiled with

▶ CONFIG_NFS_FS=y (NFS support)
▶ CONFIG_IP_PNP=y (configure IP at boot time)
▶ CONFIG_ROOT_NFS=y (support for NFS as rootfs)

▶ The kernel must be booted with the following parameters:
▶ root=/dev/nfs (we want rootfs over NFS)
▶ ip=192.168.1.111 (target IP address)
▶ nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server

details)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 204/520

Mounting rootfs over the network (4)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 205/520

rootfs in memory: initramfs (1)

▶ It is also possible to have the root filesystem integrated into
the kernel image

▶ It is therefore loaded into memory together with the kernel
▶ This mechanism is called initramfs

▶ It integrates a compressed archive of the filesystem into the
kernel image

▶ Variant: the compressed archive can also be loaded separately
by the bootloader.

▶ It is useful for two cases
▶ Fast booting of very small root filesystems. As the filesystem is

completely loaded at boot time, application startup is very fast.
▶ As an intermediate step before switching to a real root

filesystem, located on devices for which drivers not part of the
kernel image are needed (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of
desktop/server distributions to keep the kernel image size
reasonable.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 206/520

rootfs in memory: initramfs (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 207/520

rootfs in memory: initramfs (3)

▶ The contents of an initramfs are defined at the kernel
configuration level, with the CONFIG_INITRAMFS_SOURCE
option

▶ Can be the path to a directory containing the root filesystem
contents

▶ Can be the path to a cpio archive
▶ Can be a text file describing the contents of the initramfs

(see documentation for details)
▶ The kernel build process will automatically take the contents

of the CONFIG_INITRAMFS_SOURCE option and integrate the
root filesystem into the kernel image

▶ Details (in kernel sources):
Documentation/filesystems/ramfs-rootfs-initramfs.txt

Documentation/early-userspace/README

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 208/520

http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/early-userspace/README

Linux Root Filesystem

Contents

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 209/520

Root filesystem organization

▶ The organization of a Linux root filesystem in terms of
directories is well-defined by the Filesystem Hierarchy
Standard

▶ http://www.linuxfoundation.org/collaborate/
workgroups/lsb/fhs

▶ Most Linux systems conform to this specification
▶ Applications expect this organization
▶ It makes it easier for developers and users as the filesystem

organization is similar in all systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 210/520

http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs

Important directories (1)

/bin Basic programs
/boot Kernel image (only when the kernel is loaded from a

filesystem, not common on non-x86 architectures)
/dev Device files (covered later)
/etc System-wide configuration

/home Directory for the users home directories
/lib Basic libraries

/media Mount points for removable media
/mnt Mount points for static media
/proc Mount point for the proc virtual filesystem

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 211/520

Important directories (2)

/root Home directory of the root user
/sbin Basic system programs
/sys Mount point of the sysfs virtual filesystem

/tmp Temporary files
/usr /usr/bin Non-basic programs

/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files. This includes spool directories
and files, administrative and logging data, and
transient and temporary files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 212/520

Separation of programs and libraries

▶ Basic programs are installed in /bin and /sbin and basic
libraries in /lib

▶ All other programs are installed in /usr/bin and /usr/sbin
and all other libraries in /usr/lib

▶ In the past, on Unix systems, /usr was very often mounted
over the network, through NFS

▶ In order to allow the system to boot when the network was
down, some binaries and libraries are stored in /bin, /sbin
and /lib

▶ /bin and /sbin contain programs like ls, ifconfig, cp,
bash, etc.

▶ /lib contains the C library and sometimes a few other basic
libraries

▶ All other programs and libraries are in /usr

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 213/520

Linux Root Filesystem

Device Files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 214/520

Devices

▶ One of the kernel important role is to allow applications to
access hardware devices

▶ In the Linux kernel, most devices are presented to user space
applications through two different abstractions

▶ Character device
▶ Block device

▶ Internally, the kernel identifies each device by a triplet of
information

▶ Type (character or block)
▶ Major (typically the category of device)
▶ Minor (typically the identifier of the device)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 215/520

Types of devices

▶ Block devices
▶ A device composed of fixed-sized blocks, that can be read and

written to store data
▶ Used for hard disks, USB keys, SD cards, etc.

▶ Character devices
▶ Originally, an infinite stream of bytes, with no beginning, no

end, no size. The pure example: a serial port.
▶ Used for serial ports, terminals, but also sound cards, video

acquisition devices, frame buffers
▶ Most of the devices that are not block devices are represented

as character devices by the Linux kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 216/520

Devices: everything is a file

▶ A very important Unix design decision was to represent most
of the ``system objects'' as files

▶ It allows applications to manipulate all “system objects” with
the normal file API (open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to

user space applications to the triplet (type, major, minor) that
the kernel understands

▶ All device files are by convention stored in the /dev directory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 217/520

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda1 /dev/sda2 /dev/zero
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a
serial port

int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 218/520

Creating device files

▶ On a basic Linux system, the device files have to be created
manually using the mknod command

▶ mknod /dev/<device> [c|b] major minor
▶ Needs root privileges
▶ Coherency between device files and devices handled by the

kernel is left to the system developer
▶ On more elaborate Linux systems, mechanisms can be added

to create/remove them automatically when devices appear
and disappear

▶ devtmpfs virtual filesystem, since kernel 2.6.32
▶ udev daemon, solution used by desktop and server Linux

systems
▶ mdev program, a lighter solution than udev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 219/520

Linux Root Filesystem

Pseudo Filesystems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 220/520

proc virtual filesystem

▶ The proc virtual filesystem exists since the beginning of Linux
▶ It allows

▶ The kernel to expose statistics about running processes in the
system

▶ The user to adjust at runtime various system parameters about
process management, memory management, etc.

▶ The proc filesystem is used by many standard user space
applications, and they expect it to be mounted in /proc

▶ Applications such as ps or top would not work without the
proc filesystem

▶ Command to mount /proc:
mount -t proc nodev /proc

▶ Documentation/filesystems/proc.txt in the kernel sources
▶ man proc

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 221/520

http://free-electrons.com/kerneldoc/latest/filesystems/proc.txt

proc contents

▶ One directory for each running process in the system
▶ /proc/<pid>
▶ cat /proc/3840/cmdline
▶ It contains details about the files opened by the process, the

CPU and memory usage, etc.
▶ /proc/interrupts, /proc/devices, /proc/iomem,

/proc/ioports contain general device-related information
▶ /proc/cmdline contains the kernel command line
▶ /proc/sys contains many files that can be written to to

adjust kernel parameters
▶ They are called sysctl. See Documentation/sysctl/ in kernel

sources.
▶ Example

echo 3 > /proc/sys/vm/drop_caches

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 222/520

http://free-electrons.com/kerneldoc/latest/sysctl/

sysfs filesystem

▶ The sysfs filesystem is a feature integrated in the 2.6 Linux
kernel

▶ It allows to represent in user space the vision that the kernel
has of the buses, devices and drivers in the system

▶ It is useful for various user space applications that need to list
and query the available hardware, for example udev or mdev.

▶ All applications using sysfs expect it to be mounted in the
/sys directory

▶ Command to mount /sys:
mount -t sysfs nodev /sys

▶ $ ls /sys/
block bus class dev devices firmware
fs kernel module power

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 223/520

Linux Root Filesystem

Minimal filesystem

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 224/520

Basic applications

▶ In order to work, a Linux system needs at least a few applications
▶ An init application, which is the first user space application started

by the kernel after mounting the root filesystem
▶ The kernel tries to run /sbin/init, /bin/init, /etc/init

and /bin/sh.
▶ In the case of an initramfs, it will only look for /init. Another

path can be supplied by the rdinit kernel argument.
▶ If none of them are found, the kernel panics and the boot

process is stopped.
▶ The init application is responsible for starting all other user

space applications and services
▶ Usually a shell, to allow a user to interact with the system
▶ Basic Unix applications, to copy files, move files, list files

(commands like mv, cp, mkdir, cat, etc.)
▶ These basic components have to be integrated into the root

filesystem to make it usable

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 225/520

Overall booting process

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 226/520

Overall booting process with initramfs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 227/520

Busybox

Busybox
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 228/520

Why Busybox?

▶ A Linux system needs a basic set of programs to work
▶ An init program
▶ A shell
▶ Various basic utilities for file manipulation and system

configuration
▶ In normal Linux systems, these programs are provided by

different projects
▶ coreutils, bash, grep, sed, tar, wget, modutils, etc. are all

different projects
▶ A lot of different components to integrate
▶ Components not designed with embedded systems constraints

in mind: they are not very configurable and have a wide range
of features

▶ Busybox is an alternative solution, extremely common on
embedded systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 229/520

General purpose toolbox: BusyBox

▶ Rewrite of many useful Unix command line utilities
▶ Integrated into a single project, which makes it easy to work

with
▶ Designed with embedded systems in mind: highly configurable,

no unnecessary features
▶ All the utilities are compiled into a single executable,

/bin/busybox
▶ Symbolic links to /bin/busybox are created for each

application integrated into Busybox
▶ For a fairly featureful configuration, less than 500 KB

(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

▶ http://www.busybox.net/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 230/520

http://www.busybox.net/

BusyBox commands!

Commands available in BusyBox 1.13
[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh, brctl,
bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod, chown, chpasswd,
chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw, cttyhack, cut,
date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df, dhcprelay, diff, dirname, dmesg,
dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases, e2fsck, echo, ed, egrep, eject, env,
envdir, envuidgid, ether_wake, expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat,
fdisk, fetchmail, fgrep, find, findfs, fold, free, freeramdisk, fsck, fsck_minix, ftpget, ftpput,
fuser, getenforce, getopt, getsebool, getty, grep, gunzip, gzip, halt, hd, hdparm, head, hexdump,
hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd, init, inotifyd,
insmod, install, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode, kill,
killall, killall5, klogd, lash, last, length, less, linux32, linux64, linuxrc, ln, load_policy,
loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod,
lzmacat, makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo, mkfs_
minix, mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc, netstat,
nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6, pipe_
progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev,
readahead, readlink, readprofile, realpath, reboot, renice, reset, resize, restorecon, rm, rmdir,
rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel, runsv, runsvdir, rx, script, sed,
selinuxenabled, sendmail, seq, sestatus, setarch, setconsole, setenforce, setfiles, setfont,
setkeycodes, setlogcons, setsebool, setsid, setuidgid, sh, sha1sum, showkey, slattach, sleep,
softlimit, sort, split, start_stop_daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet, telnetd,
test, tftp, tftpd, time, top, touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc, udhcpd,
udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep, uudecode,
uuencode, vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat, zcip

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 231/520

Applet highlight: Busybox init

▶ Busybox provides an implementation of an init program
▶ Simpler than the init implementation found on desktop/server

systems: no runlevels are implemented
▶ A single configuration file: /etc/inittab

▶ Each line has the form <id>::<action>:<process>

▶ Allows to run services at startup, and to make sure that
certain services are always running on the system

▶ See examples/inittab in Busybox for details on the
configuration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 232/520

Applet highlight - BusyBox vi

▶ If you are using BusyBox, adding vi support only adds 20K.
(built with shared libraries, using uClibc).

▶ You can select which exact features to compile in.
▶ Users hardly realize that they are using a lightweight vi

version!
▶ Tip: you can learn vi on the desktop, by running the

vimtutor command.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 233/520

Configuring BusyBox

▶ Get the latest stable sources from http://busybox.net
▶ Configure BusyBox (creates a .config file):

▶ make defconfig
Good to begin with BusyBox.
Configures BusyBox with all options for regular users.

▶ make allnoconfig
Unselects all options. Good to configure only what you need.

▶ make xconfig (graphical, needs the libqt3-mt-dev package)
or make menuconfig (text)
Same configuration interfaces as the ones used by the Linux
kernel (though older versions are used).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 234/520

http://busybox.net

BusyBox make xconfig

You can choose:
▶ the commands

to compile,
▶ and even the

command
options and
features that
you need!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 235/520

Compiling BusyBox

▶ Set the cross-compiler prefix in the configuration interface:
BusyBox Settings -> Build Options -
> Cross Compiler prefix
Example: arm-linux-

▶ Set the installation directory in the configuration interface:
BusyBox Settings -> Installation Options -
> BusyBox installation prefix

▶ Add the cross-compiler path to the PATH environment
variable:
export PATH=/usr/xtools/arm-unknown-linux-
uclibcgnueabi/bin:$PATH

▶ Compile BusyBox:
make

▶ Install it (this creates a Unix directory structure symbolic links
to the busybox executable):
make install

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 236/520

Practical lab - A tiny embedded system

▶ Make Linux boot on a directory on
your workstation, shared by NFS

▶ Create and configure a minimalistic
Linux embedded system

▶ Install and use BusyBox
▶ System startup with /sbin/init

▶ Set up a simple web interface
▶ Use shared libraries

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 237/520

Block filesystems

Block filesystems
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 238/520

Block vs. flash

▶ Storage devices are classified in two main types: block
devices and flash devices

▶ They are handled by different subsystems and different
filesystems

▶ Block devices can be read and written to on a per-block
basis, without erasing.

▶ Hard disks, floppy disks, RAM disks
▶ USB keys, Compact Flash, SD card: these are based on flash

storage, but have an integrated controller that emulates a
block device, managing and erasing flash sectors in a
transparent way.

▶ Raw flash devices are driven by a controller on the SoC.
They can be read, but writing requires erasing, and often
occurs on a larger size than the “block” size.

▶ NOR flash, NAND flash

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 239/520

Block device list

▶ The list of all block devices available in the system can be
found in /proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 0 3866624 mmcblk0
179 1 73712 mmcblk0p1
179 2 3792896 mmcblk0p2

8 0 976762584 sda
8 1 1060258 sda1
8 2 975699742 sda2

▶ And also in /sys/block/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 240/520

Traditional block filesystems

Traditional filesystems
▶ Can be left in a non-coherent state after a system crash or

sudden poweroff, which requires a full filesystem check after
reboot.

▶ ext2: traditional Linux filesystem
(repair it with fsck.ext2)

▶ vfat: traditional Windows filesystem
(repair it with fsck.vfat on GNU/Linux or Scandisk on
Windows)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 241/520

Journaled filesystems

▶ Designed to stay in a
correct state even
after system crashes
or a sudden poweroff

▶ All writes are first
described in the
journal before being
committed to files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 242/520

Filesystem recovery after crashes

▶ Thanks to the
journal, the filesystem
is never left in a
corrupted state

▶ Recently saved data
could still be lost

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 243/520

Journaled block filesystems

Journaled filesystems
▶ ext3: ext2 with journal extension

ext4: newest version in the family with many improvements.
▶ Btrfs (``Butter FS'')

The next generation. Great performance. Now used in major
GNU/Linux distros.

▶ The Linux kernel supports many other filesystems: reiserFS,
JFS, XFS, etc. Each of them have their own characteristics,
but are more oriented towards server or scientific workloads.

▶ It's easy to switch filesystems. The best is to try each and find
out which yields the best performance on your own system.

We recommend ext2 for very small partitions (< 5 MB), because
other filesystems need too much space for metadata (ext3 and
ext4 need about 1 MB for a 4 MB partition).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 244/520

Creating ext2/ext3/ext4 volumes

▶ To create an empty ext2/ext3/ext4 filesystem on a block
device or inside an already-existing image file

▶ mkfs.ext2 /dev/hda3
▶ mkfs.ext3 /dev/sda2
▶ mkfs.ext4 /dev/sda3
▶ mkfs.ext2 disk.img

▶ To create a filesystem image from a directory containing all
your files and directories

▶ Use the genext2fs tool, from the package of the same name
▶ genext2fs -d rootfs/ rootfs.img
▶ Your image is then ready to be transferred to your block device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 245/520

Mounting filesystem images

▶ Once a filesystem image has been created, one can access and
modifies its contents from the development workstation, using
the loop mechanism

▶ Example:
genext2fs -d rootfs/ rootfs.img
mkdir /tmp/tst
mount -t ext2 -o loop rootfs.img /tmp/tst

▶ In the /tmp/tst directory, one can access and modify the
contents of the rootfs.img file.

▶ This is possible thanks to loop, which is a kernel driver that
emulates a block device with the contents of a file.

▶ Do not forget to run umount before using the filesystem image!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 246/520

F2FS

http://en.wikipedia.org/wiki/F2FS

▶ Filesystem optimized for block devices based on NAND flash
▶ Available in the mainline Linux kernel
▶ Benchmarks: best performer on flash devices most of the time:

See http://lwn.net/Articles/520003/

▶ Technical details: http://lwn.net/Articles/518988/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 247/520

http://en.wikipedia.org/wiki/F2FS
http://lwn.net/Articles/520003/
http://lwn.net/Articles/518988/

Squashfs

Squashfs: http://squashfs.sourceforge.net

▶ Read-only, compressed filesystem for block devices. Fine for
parts of a filesystem which can be read-only (kernel,
binaries...)

▶ Great compression rate and read access performance
▶ Used in most live CDs and live USB distributions
▶ Supports LZO compression for better performance on

embedded systems with slow CPUs (at the expense of a
slightly degraded compression rate)

▶ Now supports the XZ algorithm, for a much better
compression rate, at the expense of higher CPU usage and
time.

Benchmarks: (roughly 3 times smaller than ext3, and 2-4 times
faster)
http://elinux.org/Squash_Fs_Comparisons

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 248/520

http://squashfs.sourceforge.net
http://elinux.org/Squash_Fs_Comparisons

Squashfs - How to use

▶ Need to install the squashfs-tools package
▶ Creation of the image

▶ On your workstation, create your filesystem image:
mksquashfs rootfs/ rootfs.sqfs

▶ Caution: if the image already exists remove it first,
or use the -noappend option.

▶ Installation of the image
▶ Let's assume your partition on the target is in /dev/sdc1
▶ Copy the filesystem image on the device

dd if=rootfs.sqfs of=/dev/sdc1
Be careful when using dd to not overwrite the incorrect
partition!

▶ Mount your filesystem:
mount -t squashfs /dev/sdc1 /mnt/root

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 249/520

tmpfs

Not a block filesystem of course!
Perfect to store temporary data in RAM: system log files,
connection data, temporary files...

▶ tmpfs configuration: File systems -> Pseudo filesystems
Lives in the Linux file cache. Doesn't waste RAM: unlike
ramdisks, no need to copy files to the file cache, grows and
shrinks to accommodate stored files. Saves RAM: can swap
out pages to disk when needed.

▶ How to use: choose a name to distinguish the various tmpfs
instances you could have. Examples:
mount -t tmpfs varrun /var/run
mount -t tmpfs udev /dev

See Documentation/filesystems/tmpfs.txt in kernel sources.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 250/520

http://free-electrons.com/kerneldoc/latest/filesystems/tmpfs.txt

Mixing read-only and read-write filesystems

Good idea to split your block storage into:
▶ A compressed read-only partition

(Squashfs)
Typically used for the root filesystem
(binaries, kernel...).
Compression saves space. Read-only
access protects your system from mistakes
and data corruption.

▶ A read-write partition with a journaled
filesystem (like ext3)
Used to store user or configuration data.
Guarantees filesystem integrity after
power off or crashes.

▶ Ram storage for temporary files (tmpfs)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 251/520

Issues with flash-based block storage

▶ Flash storage made available only through a block interface.
▶ Hence, no way to access a low level flash interface and use the

Linux filesystems doing wear leveling.
▶ No details about the layer (Flash Translation Layer) they use.

Details are kept as trade secrets, and may hide poor
implementations.

▶ Can use flashbench
(https://github.com/bradfa/flashbench) to find out the
erase block size and optimize filesystem formating.

▶ Not knowing about the wear leveling algorithm, it is highly
recommended to limit the number of writes to these devices.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 252/520

https://github.com/bradfa/flashbench

Practical lab - Block filesystems

▶ Creating partitions on your block
storage

▶ Booting your system with a mix of
filesystems: SquashFS for the root
filesystem (including applications),
ext3 for configuration and user
data, and tmpfs for temporary
system files.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 253/520

Flash filesystems

Flash filesystems
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 254/520

Block devices vs flash devices: reminder

▶ Block devices:
▶ Allow for random data access using fixed size blocks
▶ Do not require special care when writing on the media
▶ Block size is relatively small (minimum 512 bytes, can be

increased for performance reasons)
▶ Considered as reliable (if the storage media is not, some

hardware or software parts are supposed to make it reliable)
▶ Flash devices:

▶ Allow for random data access too
▶ Require special care before writing on the media (erasing the

region you are about to write on)
▶ Erase, write and read operation might not use the same block

size
▶ Reliability depends on the flash technology

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 255/520

NAND flash chips: how they work ?

▶ Encode bits with voltage levels
▶ Start with all bits set to 1
▶ Programming implies changing some bits from 1 to 0
▶ Restoring bits to 1 is done via the ERASE operation
▶ Programming and erasing is not done on a per bit or per byte

basis
▶ Organization

▶ Page: minimum unit for PROGRAM operation
▶ Block: minimum unit for ERASE operation

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 256/520

NAND flash storage: organization

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 257/520

NAND flash storage: constraints

▶ Reliability
▶ Far less reliable than NOR flash
▶ Reliability depends on the NAND flash technology (SLC, MLC)
▶ Require additional mechanisms to recover from bit flips: ECC

(Error Correcting Code)
▶ ECC information stored in the OOB (Out-of-band area)

▶ Lifetime
▶ Short lifetime compared to other storage media
▶ Lifetime depends on the NAND flash technology (SLC, MLC):

between 1000000 and 1000 erase cycles per block
▶ Wear leveling mechanisms are required
▶ Bad block detection/handling required too

▶ Despite the number of constraints brought by NAND they are
widely used in embedded systems for several reasons:

▶ Cheaper than other flash technologies
▶ Provide high capacity storage
▶ Provide good performance (both in read and write access)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 258/520

NAND flash: ECC

▶ ECC partly addresses the reliability problem on NAND flash
▶ Operates on blocks (usually 512 or 1024 bytes)
▶ ECC data are stored in the OOB area
▶ Three algorithms:

▶ Hamming: can fixup a single bit per block
▶ Reed-Solomon: can fixup several bits per block
▶ BCH: can fixup several bits per block

▶ BCH and Reed-Solomon strength depends on the size
allocated for ECC data, which in turn depends on the OOB
size

▶ NAND manufacturers specify the required ECC strength in
their datasheets: ignoring these requirements might
compromise data integrity

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 259/520

The MTD subsystem (1)

▶ MTD stands for Memory Technology Devices
▶ Generic subsystem dealing with all types of storage media that

are not fitting in the block subsystem
▶ Supported media types: RAM, ROM, NOR flash, NAND

flash, Dataflash
▶ Independent of the communication interface (drivers available

for parallel, SPI, direct memory mapping, ...)
▶ Abstract storage media characteristics and provide a simple

API to access MTD devices
▶ MTD device characteristics exposed to users:

▶ erasesize: minimum erase size unit
▶ writesize: minimum write size unit
▶ oobsize: extra size to store metadata or ECC data
▶ size: device size
▶ flags: information about device type and capabilities

▶ Various kind of MTD users: file-systems, block device
emulation layers, user space interfaces...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 260/520

The MTD subsystem (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 261/520

MTD partitioning

▶ MTD devices are usually partitioned
▶ It allows to use different areas of the flash for different

purposes: read-only filesystem, read-write filesystem, backup
areas, bootloader area, kernel area, etc.

▶ Unlike block devices, which contains their own partition table,
the partitioning of MTD devices is described externally (don't
want to put it in a flash sector which could become bad)

▶ Specified in the board Device Tree
▶ Hard-coded into the kernel code (if no Device Tree)
▶ Specified through the kernel command line

▶ Each partition becomes a separate MTD device
▶ Different from block device labeling (hda3, sda2)
▶ /dev/mtd1 is either the second partition of the first flash

device, or the first partition of the second flash device
▶ Note that the master MTD device (the device those partitions

belongs to) is not exposed in /dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 262/520

Linux: definition of MTD partitions

The Device Tree is the standard place to define MTD partitions for
platforms with Device Tree support.
Example from arch/arm/boot/dts/omap3-igep.dtsi:

nand@0,0 {
linux,mtd-name= "micron,mt29c4g96maz";

[...]
partition@0 {

label = "SPL";
reg = <0 0x100000>;

};
partition@0x80000 {

label = "U-Boot";
reg = <0x100000 0x180000>;

};
[...]

partition@0x780000 {
label = "Filesystem";
reg = <0x680000 0x1f980000>;

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 263/520

http://lxr.free-electrons.com/source/arch/arm/boot/dts/omap3-igep.dtsi

U-Boot: defining MTD partitions (1)

▶ U-Boot also provides a way to define MTD partitions on flash
devices

▶ Named partitions are easier to use, and much less error prone
than using offsets.

▶ U-Boot partition definitions can also be used by Linux too,
eliminating the risk of mismatches between Linux and U-Boot.

▶ Use flash specific commands (detailed soon), and pass
partition names instead of numerical offsets

▶ Example: nand erase.part <partname>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 264/520

U-Boot: defining MTD partitions (2)

▶ Example:
setenv mtdids nand0=omap2-nand.0
setenv mtdparts mtdparts=omap2-nand.0:512k(X-Loader)ro,1536k(U-Boot)ro,512k(Env),4m(Kernel),-(RootFS)

▶ This defines 5 partitions in the omap2-nand.0 device:
▶ 1st stage bootloader (512 KiB, read-only)
▶ U-Boot (1536 KiB, read-only)
▶ U-Boot environment (512 KiB)
▶ Kernel (4 MiB)
▶ Root filesystem (Remaining space)

▶ Partition sizes must be multiple of the erase block size. You
can use sizes in hexadecimal too. Remember the below sizes:
0x20000 = 128k, 0x100000 = 1m, 0x1000000 = 16m

▶ ro lists the partition as read only
▶ - is used to use all the remaining space.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 265/520

U-Boot: defining MTD partitions (3)

Details about the two environment variables needed by U-Boot:
▶ mtdids attaches an mtdid to a flash device.

setenv mtdids <devid>=<mtdid>[,<devid>=<mtdid>]
▶ devid: device identifier retrieved with nand info or flinfo
▶ mtdid: mtd identifier (should match Linux MTD device

name). It is displayed when booting the Linux kernel:
NAND device: Manufacturer ID: 0x2c, Chip ID: 0xbc (Micron NAND 512MiB 1,8V 16-bit)
Creating 5 MTD partitions on "omap2-nand.0":
0x000000000000-0x000000080000 : "X-Loader"
0x000000080000-0x000000200000 : "U-Boot"
0x000000200000-0x000000280000 : "Environment"
0x000000280000-0x000000580000 : "Kernel"
0x000000580000-0x000020000000 : "File System"

▶ mtdparts defines partitions for the different devices
setenv mtdparts <mtdid>:<partition>[,partition]
partition format: <size>[@offset](<name>)[ro]

Use the mtdparts command to setup the configuration specified
by the mtdids and mtdparts variables

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 266/520

U-Boot: sharing partition definitions with Linux

Linux understands U-Boot's mtdparts partition definitions.
Here is a recommended way to pass them from U-Boot to Linux:

▶ Define a bootargs_base environment variable:
setenv bootargs_base console=ttyS0 root=....

▶ Define the final kernel command line (bootargs) through the
bootcmd environment variable:
setenv bootcmd 'setenv bootargs ${bootargs_base}
${mtdparts}; <rest of bootcmd>'

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 267/520

U-Boot: manipulating NAND devices
U-Boot provides a set of commands to manipulate NAND devices,
grouped under the nand command

▶ nand info
Show available NAND devices and characteristics

▶ nand device [dev]
Select or display the active NAND device

▶ nand read[.option] <addr> <offset|partname> <size>
Read data from NAND

▶ nand write[.option] <addr> <offset|partname> <size>
Write data on NAND

▶ Use nand write.trimffs to avoid writing empty pages (those
filled with 0xff)

▶ nand erase <offset> <size>
Erase a NAND region

▶ nand erase.part <partname>
Erase a NAND partition

▶ More commands for debugging purposes
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 268/520

U-Boot: manipulating NOR devices (1)

▶ U-Boot provides a set of commands to manipulate NOR
devices

▶ Memory mapped NOR devices
▶ flinfo [devid]

Display information of all NOR devices or a specific one if
devid is provided

▶ cp.[bwl] <src> <target> <count>
Read/write data from/to the NOR device

▶ erase <start> <end> or erase <start> +<len>
Erase a memory region

▶ erase bank <bankid>
Erase a memory bank

▶ erase all
Erase all banks

▶ protect on|off <range-description>
Protect a memory range

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 269/520

U-Boot: manipulating NOR devices (2)

▶ SPI NOR devices
▶ Grouped under the sf command
▶ sf probe [[bus:]cs] [hz] [mode]

Probe a NOR device on
▶ sf read|write <addr> <offset> <len>

Read/write data from/to a SPI NOR
▶ sf erase <offset> +<len>

Erase a memory region
▶ sf update <addr> <offset> <len>

Erase + write operation

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 270/520

Linux: MTD devices interface with user space

▶ MTD devices are visible in /proc/mtd

▶ The user space only see MTD partitions, not the flash device
under those partitions

▶ The mtdchar driver creates a character device for each MTD
device/partition of the system

▶ Usually named /dev/mtdX or /dev/mtdXro
▶ Provide ioctl() to erase and manage the flash
▶ Used by the mtd-utils utilities

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 271/520

Linux: user space flash management tools

▶ mtd-utils is a set of utilities to manipulate MTD devices
▶ mtdinfo to get detailed information about an MTD device
▶ flash_erase to partially or completely erase a given MTD

device
▶ flashcp to write to NOR flash
▶ nandwrite to write to NAND flash
▶ Flash filesystem image creation tools: mkfs.jffs2,

mkfs.ubifs, ubinize, etc.
▶ Usually available as the mtd-utils package in your

distribution
▶ Most commands now also available in BusyBox
▶ See http://www.linux-mtd.infradead.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 272/520

http://www.linux-mtd.infradead.org/

Flash wear leveling (1)

▶ Wear leveling consists in distributing erases over the whole
flash device to avoid quickly reaching the maximum number
of erase cycles on blocks that are written really often

▶ Can be done in:
▶ the filesystem layer (JFFS2, YAFFS2, ...)
▶ an intermediate layer dedicated to wear leveling (UBI)

▶ The wear leveling implementation is what makes your flash
lifetime good or not

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 273/520

Flash wear leveling (2)

Flash users should also take the limited lifetime of flash devices
into account by taking additional precautions

▶ Do not use your flash storage as swap area (rare in embedded
systems anyway)

▶ Mount your filesystems as read-only, or use read-only
filesystems (SquashFS), whenever possible.

▶ Keep volatile files in RAM (tmpfs)
▶ Don't use the sync mount option (commits writes

immediately). Use the fsync() system call for per-file
synchronization.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 274/520

Flash file-systems

▶ 'Standard' file systems are meant to work on block devices
▶ Specific file systems have been developed to deal flash

constraints
▶ These file systems are relying on the MTD layer to access

flash chips
▶ There are several legacy flash filesystems which might be

useful for specific usage: JFFS2, YAFFS2.
▶ Nowadays, UBI/UBIFS is the de facto standard for medium to

large capacity NANDs (above 128MB)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 275/520

Legacy flash filesystems: JFFS2

▶ Supports on the fly compression
▶ Wear leveling, power failure resistant
▶ Available in the official Linux kernel
▶ Boot time depends on the filesystem size:

doesn't scale well for large partitions.
▶ http://www.linux-

mtd.infradead.org/doc/jffs2.html

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 276/520

http://www.linux-mtd.infradead.org/doc/jffs2.html
http://www.linux-mtd.infradead.org/doc/jffs2.html

Legacy flash filesystems: YAFFS2

▶ Mainly supports NAND flash
▶ No compression
▶ Wear leveling, power failure resistant
▶ Fast boot time
▶ Not part of the official Linux kernel: code

only available separately
(Dual GPL / Proprietary license for non
Linux operating systems)

▶ http://www.yaffs.net/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 277/520

http://www.yaffs.net/

UBI/UBIFS

▶ Aimed at replacing JFFS2 by addressing
its limitations

▶ Design choices:
▶ Split the wear leveling and filesystem

layers
▶ Add some flexibility
▶ Focus on scalability, performance and

reliability
▶ Drawback: introduces noticeable

overhead, especially when used on small
devices or partitions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 278/520

UBI (1)

Unsorted Block Images
▶ http://www.linux-mtd.infradead.org/doc/ubi.html

▶ Volume management system on top of MTD devices (similar
to what LVM provides for block devices)

▶ Allows to create multiple logical volumes and spread writes
across all physical blocks

▶ Takes care of managing the erase blocks and wear leveling.
Makes filesystems easier to implement

▶ Wear leveling can operate on the whole storage, not only on
individual partitions (strong advantage)

▶ Volumes can be dynamically resized or, on the opposite, can
be read-only (static)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 279/520

http://www.linux-mtd.infradead.org/doc/ubi.html

UBI (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 280/520

UBI: internals

▶ UBI is storing its metadata
in-band

▶ In each MTD erase block
▶ One page is reserved to

count the number of erase
cycles

▶ Another page is reserved
to attach the erase block
to a UBI volume

▶ The remaining pages are
used to store payload data

▶ If the device supports
subpage write, the EC and
VID headers can be stored
on the same page

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 281/520

UBI: good practice

▶ UBI is responsible for distributing writes all over the flash
device: the more space you assign to a partition attached to
the UBI layer the more efficient the wear leveling will be

▶ If you need partitioning, use UBI volumes not MTD partitions
▶ Some partitions will still have to be MTD partitions: e.g. the

bootloaders and bootloader environments
▶ If you need extra MTD partitions, try to group them at the

end or the beginning of the flash device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 282/520

UBI layout: bad example

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 283/520

UBI layout: good example

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 284/520

UBIFS

Unsorted Block Images File System
▶ http://www.linux-mtd.infradead.org/doc/ubifs.html

▶ The filesystem part of the UBI/UBIFS couple
▶ Works on top of UBI volumes
▶ Journaling file system providing better performance than

JFFS2 and addressing its scalability issues
▶ See this paper for more technical details about UBIFS

internals http://www.linux-
mtd.infradead.org/doc/ubifs_whitepaper.pdf

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 285/520

http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

Linux: UBI host tools (1)

▶ ubinize is the only host tool for the UBI layer
▶ Creates a UBI image to be flashed on an MTD partition
▶ Takes the following arguments:

▶ -o <output-file-path>
Path to the output image file

▶ -p <peb-size>
The PEB size (MTD erase block size)

▶ -m <min-io-size>
The minimum write unit size (e.g. MTD write size)

▶ -s <subpage-size>
Subpage size, only needed if both your flash and your flash
controller are supporting subpage writes

▶ The last argument is a path to a UBI image description file
▶ Example:

ubinize -o ubi.img -p 16KiB -m 512 -s 256 cfg.ini

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 286/520

Linux: UBI host tools (2)

▶ ubinize config file can contain several sections
▶ Each section is describing a UBI volume
▶ Example:

[kernel-volume]
mode=ubi
image=zImage
vol_id=1
vol_type=static
vol_name=kernel

[rootfs-volume]
mode=ubi
image=rootfs.squashfs
vol_id=2
vol_type=static
vol_name=rootfs

[data-volume]
mode=ubi
image=data.ubifs
vol_id=3
vol_size=30MiB
vol_type=dynamic
vol_name=data
vol_flags=autoresize

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 287/520

U-Boot: UBI tools
Grouped under the ubi command

▶ ubi part <part-name>
Attach an MTD partition to the UBI layer

▶ ubi info [layout]
Display UBI device information
(or volume information if the layout string is passed

▶ ubi check <vol-name>
Check if a volume exists

▶ ubi readvol <dest-addr> <vol-name> [<size>]
Read volume contents

▶ U-Boot also provides tools to update the UBI device contents
▶ Using them is highly discouraged (the U-Boot UBI

implementation is not entirely stable, and using commands
that do not touch the UBI metadata is safer)

▶ ubi createvol <vol-name> [<size>] [<type>]
▶ ubi removevol <vol-name>
▶ ubi writevol <src-addr> <vol-name> <size>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 288/520

Linux: UBI target tools (1)

▶ Tools used on the target to dynamically create and modify
UBI elements

▶ UBI device management:
▶ ubiformat <MTD-device-id>

Format an MTD partition and preserve Erase Counter
information if any

▶ ubiattach -m <MTD-device-id> /dev/ubi_ctrl
Attach an MTD partition/device to the UBI layer, and create a
UBI device

▶ ubidetach -m <MTD-device-id> /dev/ubi_ctrl
Detach an MTD partition/device from the UBI layer, and
remove the associated UBI device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 289/520

Linux: UBI target tools (2)

UBI volume management:
▶ ubimkvol /dev/ubi<UBI-device-id> -N <name> -s <size>

Create a new volume. Use -m in place of -s <size> if you
want to assign all the remaining space to this volume.

▶ ubirmvol /dev/ubi<UBI-device-id> -N <name>

Delete a UBI volume
▶ ubiupdatevol /dev/ubi<UBI-device-id>_<UBI-vol-id> [-

s <size>] <vol-image-file>

Update volume contents
▶ ubirsvol /dev/ubi<UBI-device-id> -N <name> -s <size>

Resize a UBI volume
▶ ubirename /dev/ubi<UBI-device-id>_<UBI-vol-id> <old-

name> <new-size>

Rename a UBI volume

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 290/520

Linux tools: BusyBox UBI limitations

Beware that the implementation of UBI commands in BusyBox is
still incomplete. For example:

▶ ubirsvol doesn't support -N <name>. You have to use
specify the volume to resize by its id (-n num):
ubirsvol /dev/ubi0 -n 4 -s 64 MiB

▶ Same constraint for ubirmvol:
ubirmvol /dev/ubi0 -n 4

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 291/520

Linux: UBIFS host tools

UBIFS filesystems images can be created using mkfs.ubifs
▶ mkfs.ubifs -m 4096 -e 258048 -c 1000 -

r rootfs/ ubifs.img
▶ -m 4096, minimal I/O size

(see /sys/class/mtd/mtdx/writesize).
▶ -e 258048, logical erase block size (smaller than PEB size,

can be found in the kernel log after running ubiattach)
▶ -c 1000, maximum number of logical erase blocks. Details:

http://linux-mtd.infradead.org/faq/ubifs.html#L_max_leb_cnt

▶ Once created
▶ Can be written to a UBI volume from the target using

ubiupdatevol
▶ Or, can be included in a UBI image (using ubinize on the

host)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 292/520

http://linux-mtd.infradead.org/faq/ubifs.html#L_max_leb_cnt

Linux: UBIFS target tools

▶ No specific tools are required to manipulate a UBIFS
filesystem

▶ Mounting a UBIFS filesystem is done with mount:
mount -t ubifs <ubi-device-id>:<volume-
name> <mount-point>

▶ Example:
mount -t ubifs ubi0:data /data

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 293/520

Linux: UBI image creation workflow

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 294/520

Linux: flashing UBI/UBIFS howtos

▶ See http://free-electrons.com/blog/creating-
flashing-ubi-ubifs-images/ for details about creating UBI
and UBIFS images.

▶ See http://www.linux-
mtd.infradead.org/doc/ubi.html#L_flasher_algo for
what is required when flashing UBI images.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 295/520

http://free-electrons.com/blog/creating-flashing-ubi-ubifs-images/
http://free-electrons.com/blog/creating-flashing-ubi-ubifs-images/
http://www.linux-mtd.infradead.org/doc/ubi.html#L_flasher_algo
http://www.linux-mtd.infradead.org/doc/ubi.html#L_flasher_algo

Linux: Using a UBIFS filesystem as root filesystem

▶ You just have to pass the following information on the kernel
command line:

▶ ubi.mtd=1
Attach /dev/mtd1 to the UBI layer and create ubi0

▶ rootfstype=ubifs root=ubi0:rootfs
Mount the rootfs volume on ubi0 as a UBIFS filesystem

▶ Example: rootfstype=ubifs ubi.mtd=1 root=ubi0:rootfs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 296/520

Summary: how to boot on a UBIFS filesystem
In U-Boot:

▶ Define partitions:
setenv mtdids ...
setenv mtdparts ...

▶ Define the base Linux kernel bootargs, specifying booting on
UBIFS, the UBI volume used as root filesystem, and the MTD
partition attached to UBI. Example:
setenv base_bootargs console=ttyS0 rootfstype=ubifs
root=ubi0:rootfs ubi.mtd=2 ...

▶ Define the boot command sequence, loading the U-Boot
partition definitions, loading kernel and DTB images from UBI
partitions, and adding mtdparts to the kernel command line.
Example:
setenv bootcmd 'mtdparts; ubi part UBI; ubi readvol
0x81000000 kernel; ubi readvol 0x82000000 dtb;
setenv bootargs ${bootargs_base} ${mtdparts}; bootz
0x81000000 - 0x82000000'

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 297/520

Linux: Block emulation layers

▶ Sometimes we need block devices to re-use existing block
filesystems

▶ Particularly useful for read-only block filesystems like squashfs
▶ Linux provides two block emulation layers:

▶ mtdblock: block devices emulated on top of MTD devices
▶ ubiblock: block devices emulated on top of UBI volumes

▶ For read access, using emulated block devices is exactly the
same as using regular block devices

▶ Even if supported through the mtdblock emulation layer,
writing on emulated block devices is highly discouraged

▶ the emulation layer does not properly deal with wear leveling
and data retention issues occurring on the flash media

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 298/520

Linux: mtdblock

▶ The mtdblock layer creates a block device for each MTD
device of the system

▶ Usually named /dev/mtdblockX.
▶ Allows read/write block-level access. But bad blocks are not

handled, and no wear leveling is done for writes.
▶ For historical reasons JFFS2 filesystems require a block device

to be mounted
▶ Do not write on mtdblock devices

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 299/520

Linux: ubiblock

▶ Preferred over mtdblock if UBI is available (UBI accounts for
data retention and wear leveling issues, while MTD does not)

▶ The ubiblock layer creates read-only block devices on
demand

▶ The user specifies which static volumes (s)he would like to
attach to ubiblock

▶ Through the kernel command line: by passing
ubi.block=<ubi-dev-id>,<volume-name>

▶ Using the ubiblock utility provided by mtd-utils:
ubiblock --create <ubi-volume-dev-file>

▶ Usually named /dev/ubiblockX_Y, where X is the UBI device
id and Y is the UBI volume id

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 300/520

Useful reading

▶ Managing flash storage with Linux:
http://free-electrons.com/blog/managing-flash-
storage-with-linux/

▶ Documentation on the linux-mtd website:
http://www.linux-mtd.infradead.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 301/520

http://free-electrons.com/blog/managing-flash-storage-with-linux/
http://free-electrons.com/blog/managing-flash-storage-with-linux/
http://www.linux-mtd.infradead.org/

Practical lab - Flash Filesystems

▶ Creating partitions in your internal
flash storage

▶ Creating a UBI image with several
volumes and flashing it from
U-Boot

▶ Manipulating UBI volumes from
Linux

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 302/520

Embedded Linux system development

Embedded Linux
system
development
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 303/520

Contents

▶ Using open-source components
▶ Tools for the target device

▶ Networking
▶ System utilities
▶ Language interpreters
▶ Audio, video and multimedia
▶ Graphical toolkits
▶ Databases
▶ Web browsers

▶ System building

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 304/520

Embedded Linux system development

Leveraging open-source components
in an Embedded Linux system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 305/520

Third party libraries and applications

▶ One of the advantages of embedded Linux is the wide range
of third-party libraries and applications that one can leverage
in its product

▶ They are freely available, freely distributable, and thanks to
their open-source nature, they can be analyzed and modified
according to the needs of the project

▶ However, efficiently re-using these components is not always
easy. One must:

▶ Find these components
▶ Choose the most appropriate ones
▶ Cross-compile them
▶ Integrate them in the embedded system and with the other

applications

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 306/520

Find existing components

▶ Free Software Directory
http://directory.fsf.org

▶ Look at other embedded Linux products, and see what their
components are

▶ Look at the list of software packaged by embedded Linux
build systems

▶ These are typically chosen for their suitability to embedded
systems

▶ Ask the community or Google
▶ This presentation will also feature a list of components for

common needs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 307/520

http://directory.fsf.org

Choosing components
Not all free software components are necessarily good to re-use.
One must pay attention to:

▶ Vitality of the developer and user communities. This vitality
ensures long-term maintenance of the component, and
relatively good support. It can be measured by looking at the
mailing-list traffic and the version control system activity.

▶ Quality of the component. Typically, if a component is
already available through embedded build systems, and has a
dynamic user community, it probably means that the quality is
relatively good.

▶ License. The license of the component must match your
licensing constraints. For example, GPL libraries cannot be
used in proprietary applications.

▶ Technical requirements. Of course, the component must
match your technical requirements. But don't forget that you
can improve the existing components if a feature is missing!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 308/520

Licenses (1)

▶ All software that are under a free software license give four
freedoms to all users

▶ Freedom to use
▶ Freedom to study
▶ Freedom to copy
▶ Freedom to modify and distribute modified copies

▶ See http://www.gnu.org/philosophy/free-sw.html for a
definition of Free Software

▶ Open Source software, as per the definition of the Open
Source Initiative, are technically similar to Free Software in
terms of freedoms

▶ See http://www.opensource.org/docs/osd for the definition
of Open Source Software

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 309/520

http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/osd

Licenses (2)

▶ Free Software licenses fall in two main categories
▶ The copyleft licenses
▶ The non-copyleft licenses

▶ The concept of copyleft is to ask for reciprocity in the
freedoms given to a user.

▶ The result is that when you receive a software under a
copyleft free software license and distribute modified versions
of it, you must do so under the same license

▶ Same freedoms to the new users
▶ It's an incentive to contribute back your changes instead of

keeping them secret
▶ Non-copyleft licenses have no such requirements, and

modified versions can be kept proprietary, but they still require
attribution

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 310/520

GPL

▶ GNU General Public License
▶ Covers around 55% of the free software projects

▶ Including the Linux kernel, Busybox and many applications
▶ Is a copyleft license

▶ Requires derivative works to be released under the same license
▶ Programs linked with a library released under the GPL must

also be released under the GPL
▶ Some programs covered by version 2 (Linux kernel, Busybox

and others)
▶ More and more programs covered by version 3, released in

2007
▶ Major change for the embedded market: the requirement that

the user must be able to run the modified versions on the
device, if the device is a consumer device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 311/520

GPL: redistribution

▶ No obligation when the software is not distributed
▶ You can keep your modifications secret until the product

delivery
▶ It is then authorized to distribute binary versions, if one of the

following conditions is met:
▶ Convey the binary with a copy of the source on a physical

medium
▶ Convey the binary with a written offer valid for 3 years that

indicates how to fetch the source code
▶ Convey the binary with the network address of a location

where the source code can be found
▶ See section 6. of the GPL license

▶ In all cases, the attribution and the license must be preserved
▶ See section 4. and 5.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 312/520

LGPL

▶ GNU Lesser General Public License
▶ Covers around 10% of the free software projects
▶ A copyleft license

▶ Modified versions must be released under the same license
▶ But, programs linked against a library under the LGPL do not

need to be released under the LGPL and can be kept
proprietary.

▶ However, the user must keep the ability to update the library
independently from the program. Dynamic linking is the
easiest solution. Statically linked executables are only possible
if the developer provides a way to relink with an update (with
source code or linkable object files).

▶ Used instead of the GPL for most of the libraries, including
the C libraries

▶ Some exceptions: MySQL, or Qt <= 4.4
▶ Also available in two versions, v2 and v3

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 313/520

Licensing: examples

▶ You make modifications to the Linux kernel (to add drivers or
adapt to your board), to Busybox, U-Boot or other GPL
software

▶ You must release the modified versions under the same license,
and be ready to distribute the source code to your customers

▶ You make modifications to the C library or any other LGPL
library

▶ You must release the modified versions under the same license
▶ You create an application that relies on LGPL libraries

▶ You can keep your application proprietary, but you must link
dynamically with the LGPL libraries

▶ You make modifications to a non-copyleft licensed software
▶ You can keep your modifications proprietary, but you must still

credit the authors

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 314/520

Non-copyleft licenses

▶ A large family of non-copyleft licenses that are relatively
similar in their requirements

▶ A few examples
▶ Apache license (around 4%)
▶ BSD license (around 6%)
▶ MIT license (around 4%)
▶ X11 license
▶ Artistic license (around 9 %)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 315/520

BSD license

.

.

Copyright (c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 316/520

Is this free software?

▶ Most of the free software projects are covered by 10
well-known licenses, so it is fairly easy for the majority of
project to get a good understanding of the license

▶ Otherwise, read the license text
▶ Check Free Software Foundation's opinion

http://www.fsf.org/licensing/licenses/

▶ Check Open Source Initiative's opinion
http://www.opensource.org/licenses

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 317/520

http://www.fsf.org/licensing/licenses/
http://www.opensource.org/licenses

Respect free software licenses

▶ Free Software is not public domain software, the distributors
have obligations due to the licenses

▶ Before using a free software component, make sure the license
matches your project constraints

▶ Make sure to keep a complete list of the free software
packages you use, the original versions you used, and to keep
your modifications and adaptations well-separated from the
original version.

▶ Buildroot and Yocto Project can generate this list for you!
▶ Conform to the license requirements before shipping the

product to the customers.
▶ Free Software licenses have been enforced successfully in

courts. Organizations which can help:
▶ Software Freedom Law Center,

http://www.softwarefreedom.org/
▶ Software Freedom Conservancy, http://sfconservancy.org/

▶ Ask your legal department!
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 318/520

http://www.softwarefreedom.org/
http://sfconservancy.org/

Keeping changes separate (1)

▶ When integrating existing open-source components in your
project, it is sometimes needed to make modifications to them

▶ Better integration, reduced footprint, bug fixes, new features,
etc.

▶ Instead of mixing these changes, it is much better to keep
them separate from the original component version

▶ If the component needs to be upgraded, easier to know what
modifications were made to the component

▶ If support from the community is requested, important to
know how different the component we're using is from the
upstream version

▶ Makes contributing the changes back to the community
possible

▶ It is even better to keep the various changes made on a given
component separate

▶ Easier to review and to update to newer versions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 319/520

Keeping changes separate (2)

▶ The simplest solution is to use Quilt
▶ Quilt is a tool that allows to maintain a stack of patches over

source code
▶ Makes it easy to add, remove modifications from a patch, to

add and remove patches from stack and to update them
▶ The stack of patches can be integrated into your version

control system
▶ https://savannah.nongnu.org/projects/quilt/

▶ Another solution is to use a version control system
▶ Import the original component version into your version

control system
▶ Maintain your changes in a separate branch

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 320/520

https://savannah.nongnu.org/projects/quilt/

Embedded Linux system development

Tools for the target device:
Networking

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 321/520

ssh server and client: Dropbear

http://matt.ucc.asn.au/dropbear/dropbear.html

▶ Very small memory footprint ssh server for embedded systems
▶ Satisfies most needs. Both client and server!
▶ Size: 110 KB, statically compiled with uClibc on i386.

(OpenSSH client and server: approx 1200 KB, dynamically
compiled with glibc on i386)

▶ Useful to:
▶ Get a remote console on the target device
▶ Copy files to and from the target device (scp or rsync -e ssh).

▶ An alternative to OpenSSH, used on desktop and server
systems.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 322/520

http://matt.ucc.asn.au/dropbear/dropbear.html

Benefits of a web server interface

Many network enabled devices can just have a network interface
▶ Examples: modems / routers, IP cameras, printers...
▶ No need to develop drivers and applications for computers

connected to the device. No need to support multiple
operating systems!

▶ Just need to develop static or dynamic HTML pages (possibly
with powerful client-side JavaScript).
Easy way of providing access to device information and
parameters.

▶ Reduced hardware costs (no LCD, very little storage space
needed)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 323/520

Web servers

▶ BusyBox http server: http://busybox.net
▶ Tiny: only adds 9 K to BusyBox (dynamically

linked with glibc on i386, with all features
enabled.)

▶ Sufficient features for many devices with a web
interface, including CGI, http authentication
and script support (like PHP, with a separate
interpreter).

▶ License: GPL
▶ lighttpd: http://lighttpd.net

Low footprint server good at managing high
loads.
May be useful in embedded systems too

▶ Other possibilities: Boa, thttpd, nginx, etc

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 324/520

http://busybox.net
http://lighttpd.net

Network utilities (1)

▶ avahi is an implementation of Multicast DNS Service
Discovery, that allows programs to publish and discover
services on a local network

▶ bind, a DNS server
▶ iptables, the user space tools associated to the Linux firewall,

Netfilter
▶ iw and wireless tools, the user space tools associated to

Wireless devices
▶ netsnmp, implementation of the SNMP protocol
▶ openntpd, implementation of the Network Time Protocol, for

clock synchronization
▶ openssl, a toolkit for SSL and TLS connections

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 325/520

Network utilities (2)

▶ pppd, implementation of the Point to Point Protocol, used
for dial-up connections

▶ samba, implements the SMB and CIFS protocols, used by
Windows to share files and printers

▶ coherence, a UPnP/DLNA implementation
▶ vsftpd, proftpd, FTP servers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 326/520

Embedded Linux system development

Tools for the target device: System
utilities

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 327/520

System utilities

▶ dbus, an inter-application object-oriented communication bus
▶ gpsd, a daemon to interpret and share GPS data
▶ libraw1394, raw access to Firewire devices
▶ libusb, a user space library for accessing USB devices without

writing an in-kernel driver
▶ Utilities for kernel subsystems: i2c-tools for I2C, input-tools

for input, mtd-utils for MTD devices, usbutils for USB
devices

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 328/520

Embedded Linux system development

Tools for the target device: Language
interpreters

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 329/520

Language interpreters

▶ Interpreters for the most common scripting languages are
available. Useful for

▶ Application development
▶ Web services development
▶ Scripting

▶ Languages supported
▶ Lua
▶ Python
▶ Perl
▶ Ruby
▶ TCL
▶ PHP

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 330/520

Embedded Linux system development

Tools for the target device: Audio,
video and multimedia

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 331/520

Audio, video and multimedia

▶ GStreamer, a multimedia framework
▶ Allows to decode/encode a wide variety of codecs.
▶ Supports hardware encoders and decoders through plugins,

proprietary/specific plugins are often provided by SoC vendors.
▶ alsa-lib, the user space tools associated to the ALSA sound

kernel subsystem
▶ Directly using encoding and decoding libraries, if you decide

not to use GStreamer:
libavcodec, libogg, libtheora, libvpx, flac, libvorbis, libmad,
libsndfile, speex, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 332/520

Embedded Linux system development

Tools for the target device: Graphical
toolkits

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 333/520

Embedded Linux system development

Graphical toolkits: ``Low-level''
solutions and layers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 334/520

DirectFB

▶ Low-level graphical library
▶ Lines, rectangles, triangles drawing and filling
▶ Blitting, flipping
▶ Text drawing
▶ Windows and transparency
▶ Image loading and video display

▶ But also handles input event handling: mice, keyboards,
joysticks, touchscreens, etc.

▶ Provides accelerated graphic operations on a few hardware
platforms

▶ Single-application by default, but multiple applications can
share the framebuffer thanks to fusion

▶ License: LGPL 2.1
▶ http://www.directfb.org (Caution: website broken since

Oct. 4, 2015. Bad sign for the vitality of the project)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 335/520

http://www.directfb.org

DirectFB: architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 336/520

DirectFB: usage

▶ Multimedia applications
▶ For example the Disko framework, for set-top box related

applications
▶ ``Simple'' graphical applications

▶ Industrial control
▶ Device control with limited number of widgets

▶ Visualization applications
▶ As a lower layer for higher-level graphical libraries

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 337/520

DirectFB: screenshot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 338/520

X.org - KDrive

▶ Stand-alone simplified version of the X server,
for embedded systems

▶ Formerly know as Tiny-X
▶ Kdrive is integrated in the official X.org server

▶ Works on top of the Linux frame buffer, thanks
to the Xfbdev variant of the server

▶ Real X server
▶ Fully supports the X11 protocol: drawing, input

event handling, etc.
▶ Allows to use any existing X11 application or

library
▶ Actively developed and maintained.
▶ X11 license
▶ http://www.x.org

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 339/520

http://www.x.org

Kdrive: architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 340/520

Kdrive: usage

▶ Can be directly programmed using Xlib / XCB
▶ Low-level graphic library
▶ Probably doesn't make sense since DirectFB is a more

lightweight solution for an API of roughly the same level (no
widgets)

▶ Or, usually used with a toolkit on top of it
▶ Gtk
▶ Qt
▶ Enlightment Foundation Libraries
▶ Others: Fltk, WxEmbedded, etc

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 341/520

Wayland

▶ Intended to be a simpler replacement for X
▶ Wayland is a protocol for a compositor to talk to

its clients as well as a C library implementation
of that protocol.

▶ Weston: a minimal and fast reference
implementation of a Wayland compositor, and is
suitable for many embedded and mobile use
cases.

▶ Not fully deployed yet. However, the ports of
Gtk and Qt to Wayland are complete.

▶ http://wayland.freedesktop.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 342/520

http://wayland.freedesktop.org/

Wayland: architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 343/520

Embedded Linux system development

Graphical toolkits: ``High-level''
solutions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 344/520

Gtk

▶ The famous toolkit, providing
widget-based high-level APIs to develop
graphical applications

▶ Standard API in C, but bindings exist for
various languages: C++, Python, etc.

▶ Works on top of X.org.
▶ No windowing system, a lightweight

window manager needed to run several
applications. Possible solution: Matchbox.

▶ License: LGPL
▶ http://www.gtk.org

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 345/520

http://www.gtk.org

Gtk stack components

▶ Glib, core infrastructure
▶ Object-oriented infrastructure GObject
▶ Event loop, threads, asynchronous queues, plug-ins, memory

allocation, I/O channels, string utilities, timers, date and time,
internationalization, simple XML parser, regular expressions

▶ Data types: memory slices and chunks, linked lists, arrays,
trees, hash tables, etc.

▶ Pango, internationalization of text handling
▶ ATK, accessibility toolkit
▶ Cairo, vector graphics library
▶ Gtk+, the widget library itself
▶ The Gtk stack is a complete framework to develop applications

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 346/520

Gtk examples (1)

Openmoko phone interface

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 347/520

Gtk examples (2)

Maemo tablet / phone interface
GTK is losing traction, however: Mer, the descendent of Maemo,
is now implemented in EFL (see next slides).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 348/520

Qt (1)

▶ The other famous toolkit, providing widget-based high-level
APIs to develop graphical applications

▶ Implemented in C++
▶ the C++ library is required on the target system
▶ standard API in C++, but with bindings for other languages

▶ Works either on top of
▶ Framebuffer
▶ X11
▶ DirectFB back-end integrated in version 4.4, which allows to

take advantage of the acceleration provided by DirectFB
drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 349/520

Qt (2)

▶ Qt is more than just a graphical toolkit, it also offers a
complete development framework: data structures, threads,
network, databases, XML, etc.

▶ See our presentation Qt for non graphical applications
presentation at ELCE 2011 (Thomas Petazzoni):
http://j.mp/W4PK85

▶ Qt Embedded has an integrated windowing system, allowing
several applications to share the same screen

▶ Very well documented
▶ Since version 4.5, available under the LGPL, allowing

proprietary applications

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 350/520

http://j.mp/W4PK85

Qt's usage

Qt on the Dash Express
navigation system

Qt on the Netflix player by Roku

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 351/520

Other less frequent solutions

▶ Enlightenment Foundation Libraries (EFL)
▶ Very powerful. Supported by Samsung, Intel and Free.fr.
▶ Work on top of X or Wayland.
▶ http://www.enlightenment.org/p.php?p=about/efl

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 352/520

http://www.enlightenment.org/p.php?p=about/efl

Embedded Linux system development

Tools for the target device:
Databases

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 353/520

Lightweight database - SQLite

http://www.sqlite.org

▶ SQLite is a small C library that implements a self-contained,
embeddable, lightweight, zero-configuration SQL database
engine

▶ The database engine of choice for embedded Linux systems
▶ Can be used as a normal library
▶ Can be directly embedded into a application, even a

proprietary one since SQLite is released in the public domain

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 354/520

http://www.sqlite.org

Embedded Linux system development

Tools for the target device: Web
browsers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 355/520

WebKit

http://webkit.org/

▶ Web browser engine. Application framework that
can be used to develop web browsers.

▶ License: portions in LGPL and others in BSD.
Proprietary applications allowed.

▶ Used by many web browsers: Safari, iPhone and
Android default browsers ... Google Chrome now
uses a fork of its WebCore component). Used by
e-mail clients too to render HTML:
http://trac.webkit.org/wiki/
Applications%20using%20WebKit

▶ Multiple graphical back-ends: Qt4, GTK, EFL...
▶ You could use it to create your custom browser.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 356/520

http://webkit.org/
http://trac.webkit.org/wiki/Applications%20using%20WebKit
http://trac.webkit.org/wiki/Applications%20using%20WebKit

Embedded Linux system development

System building

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 357/520

System building: goal and solutions

▶ Goal
▶ Integrate all the software components, both third-party and

in-house, into a working root filesystem
▶ It involves the download, extraction, configuration, compilation

and installation of all components, and possibly fixing issues
and adapting configuration files

▶ Several solutions
▶ Manually
▶ System building tools
▶ Distributions or ready-made filesystems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 358/520

System building: manually

▶ Manually building a target system involves downloading,
configuring, compiling and installing all the components of the
system.

▶ All the libraries and dependencies must be configured,
compiled and installed in the right order.

▶ Sometimes, the build system used by libraries or applications
is not very cross-compile friendly, so some adaptations are
necessary.

▶ There is no infrastructure to reproduce the build from scratch,
which might cause problems if one component needs to be
changed, if somebody else takes over the project, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 359/520

System building: manually (2)

▶ Manual system building is not recommended for production
projects

▶ However, using automated tools often requires the developer
to dig into specific issues

▶ Having a basic understanding of how a system can be built
manually is therefore very useful to fix issues encountered with
automated tools

▶ We will first study manual system building, and during a
practical lab, create a system using this method

▶ Then, we will study the automated tools available, and use one
of them during a lab

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 360/520

System foundations

▶ A basic root file system needs at least
▶ A traditional directory hierarchy, with /bin, /etc, /lib, /root,

/usr/bin, /usr/lib, /usr/share, /usr/sbin, /var, /sbin
▶ A set of basic utilities, providing at least the init program, a

shell and other traditional Unix command line tools. This is
usually provided by Busybox

▶ The C library and the related libraries (thread, math, etc.)
installed in /lib

▶ A few configuration files, such as /etc/inittab, and
initialization scripts in /etc/init.d

▶ On top of this foundation common to most embedded Linux
system, we can add third-party or in-house components

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 361/520

Target and build spaces

▶ The system foundation, Busybox and C library, are the core of
the target root filesystem

▶ However, when building other components, one must
distinguish two directories

▶ The target space, which contains the target root filesystem,
everything that is needed for execution of the application

▶ The build space, which will contain a lot more files than the
target space, since it is used to keep everything needed to
compile libraries and applications. So we must keep the
headers, documentation, and other configuration files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 362/520

Build systems

▶ Each open-source component comes with a mechanism to
configure, compile and install it

▶ A basic Makefile
▶ Need to read the Makefile to understand how it works and

how to tweak it for cross-compilation
▶ A build system based on the Autotools

▶ As this is the most common build system, we will study it in
details

▶ CMake, http://www.cmake.org/
▶ Newer and simpler than the autotools. Used by large projects

such as KDE or Second Life
▶ Scons, http://www.scons.org/
▶ Waf, http://code.google.com/p/waf/
▶ Other manual build systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 363/520

http://www.cmake.org/
http://www.scons.org/
http://code.google.com/p/waf/

Autotools and friends

▶ A family of tools, which associated together form a complete
and extensible build system

▶ autoconf is used to handle the configuration of the software
package

▶ automake is used to generate the Makefiles needed to build
the software package

▶ pkgconfig is used to ease compilation against already installed
shared libraries

▶ libtool is used to handle the generation of shared libraries in a
system-independent way

▶ Most of these tools are old and relatively complicated to use,
but they are used by a majority of free software packages
today. One must have a basic understanding of what they do
and how they work.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 364/520

automake / autoconf / autoheader

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 365/520

automake / autoconf

▶ Files written by the developer
▶ configure.in describes the configuration options and the

checks done at configure time
▶ Makefile.am describes how the software should be built

▶ The configure script and the Makefile.in files are
generated by autoconf and automake respectively.

▶ They should never be modified directly
▶ They are usually shipped pre-generated in the software

package, because there are several versions of autoconf and
automake, and they are not completely compatible

▶ The Makefile files are generated at configure time, before
compiling

▶ They are never shipped in the software package.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 366/520

Configuring and compiling: native case

▶ The traditional steps to configure and compile an autotools
based package are

▶ Configuration of the package
./configure

▶ Compilation of the package
make

▶ Installation of the package
make install

▶ Additional arguments can be passed to the ./configure
script to adjust the component configuration.

▶ Only the make install needs to be done as root if the
installation should take place system-wide

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 367/520

Configuring and compiling: cross case (1)

▶ For cross-compilation, things are a little bit more complicated.
▶ At least some of the environment variables AR, AS, LD, NM, CC,

GCC, CPP, CXX, STRIP, OBJCOPY must be defined to point to
the proper cross-compilation tools. The host tuple is also by
default used as prefix.

▶ configure script arguments:
▶ --host: mandatory but a bit confusing. Corresponds to the

target platform the code will run on. Example:
--host=arm-linux

▶ --build: build system. Automatically detected.
▶ --target is only for tools generating code.

▶ It is recommended to pass the --prefix argument. It defines
from which location the software will run in the target
environment. Usually, /usr is fine.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 368/520

Configuring and compiling: cross case (2)

▶ If one simply runs make install, the software will be installed
in the directory passed as --prefix. For cross-compiling, one
must pass the DESTDIR argument to specify where the
software must be installed.

▶ Making the distinction between the prefix (as passed with
--prefix at configure time) and the destination directory (as
passed with DESTDIR at installation time) is very important.

▶ Example:
.

.

export PATH=/usr/local/arm-linux/bin:$PATH
export CC=arm-linux-gcc
export STRIP=arm-linux-strip
./configure --host=arm-linux --prefix=/usr
make
make DESTDIR=$HOME/work/rootfs install

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 369/520

Installation (1)

▶ The autotools based software packages provide both a
install and install-strip make targets, used to install the
software, either stripped or unstripped.

▶ For applications, the software is usually installed in
<prefix>/bin, with configuration files in <prefix>/etc and
data in <prefix>/share/<application>/

▶ The case of libraries is a little more complicated:
▶ In <prefix>/lib, the library itself (a .so.<version>), a few

symbolic links, and the libtool description file (a .la file)
▶ The pkgconfig description file in <prefix>/lib/pkgconfig
▶ Include files in <prefix>/include/
▶ Sometimes a <libname>-config program in <prefix>/bin
▶ Documentation in <prefix>/share/man or

<prefix>/share/doc/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 370/520

Installation (2)

Contents of usr/lib after installation of libpng and zlib
▶ libpng libtool description files

./lib/libpng12.la

./lib/libpng.la -> libpng12.la

▶ libpng static version
./lib/libpng12.a
./lib/libpng.a -> libpng12.a

▶ libpng dynamic version
./lib/libpng.so.3.32.0
./lib/libpng12.so.0.32.0
./lib/libpng12.so.0 -> libpng12.so.0.32.0
./lib/libpng12.so -> libpng12.so.0.32.0
./lib/libpng.so -> libpng12.so
./lib/libpng.so.3 -> libpng.so.3.32.0

▶ libpng pkg-config description files
./lib/pkgconfig/libpng12.pc
./lib/pkgconfig/libpng.pc -> libpng12.pc

▶ zlib dynamic version
./lib/libz.so.1.2.3
./lib/libz.so -> libz.so.1.2.3
./lib/libz.so.1 -> libz.so.1.2.3

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 371/520

Installation in the build and target spaces

▶ From all these files, everything except documentation is
necessary to build an application that relies on libpng.

▶ These files will go into the build space
▶ However, only the library .so binaries in <prefix>/lib and

some symbolic links are needed to execute the application on
the target.

▶ Only these files will go in the target space
▶ The build space must be kept in order to build other

applications or recompile existing applications.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 372/520

pkg-config

▶ pkg-config is a tool that allows to query a small database to
get information on how to compile programs that depend on
libraries

▶ The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

▶ pkg-config is used by the configure script to get the library
configurations

▶ It can also be used manually to compile an application:
arm-linux-gcc -o test test.c $(pkg-config --libs --
cflags thelib)

▶ By default, pkg-config looks in /usr/lib/pkgconfig for the
*.pc files, and assumes that the paths in these files are
correct.

▶ PKG_CONFIG_PATH allows to set another location for the *.pc
files and PKG_CONFIG_SYSROOT_DIR to prepend a prefix to the
paths mentioned in the .pc files.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 373/520

Let's find the libraries

▶ When compiling an application or a library that relies on other
libraries, the build process by default looks in /usr/lib for
libraries and /usr/include for headers.

▶ The first thing to do is to set the CFLAGS and LDFLAGS
environment variables:
export CFLAGS=-I/my/build/space/usr/include/
export LDFLAGS=-L/my/build/space/usr/lib

▶ The libtool files (.la files) must be modified because they
include the absolute paths of the libraries:
- libdir='/usr/lib'
+ libdir='/my/build/space/usr/lib'

▶ The PKG_CONFIG_PATH environment variable must be set to
the location of the .pc files and the PKG_CONFIG_SYSROOT_DIR
variable must be set to the build space directory.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 374/520

Practical lab - Manual cross-compiling

▶ Manually cross-compiling
applications and libraries

▶ Learning about common techniques
and issues.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 375/520

System building tools: principle

▶ Different tools are available to automate the process of
building a target system, including the kernel, and sometimes
the toolchain.

▶ They automatically download, configure, compile and install
all the components in the right order, sometimes after
applying patches to fix cross-compiling issues.

▶ They already contain a large number of packages, that should
fit your main requirements, and are easily extensible.

▶ The build becomes reproducible, which allows to easily change
the configuration of some components, upgrade them, fix
bugs, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 376/520

Available system building tools
Large choice of tools

▶ Buildroot, developed by the community
http://www.buildroot.net

▶ PTXdist, developed by Pengutronix
http://pengutronix.de/software/ptxdist/

▶ OpenWRT, originally a fork of Buildroot for wireless routers, now a
more generic project
http://www.openwrt.org

▶ LTIB. Good support for Freescale boards, but small community
http://ltib.org/

▶ OpenEmbedded, more flexible but also far more complicated
http://www.openembedded.org, its industrialized version Yocto
Project and vendor-specific derivatives such as Arago.
See our dedicated course and training materials:
http://free-electrons.com/training/yocto/.

▶ Vendor specific tools (silicon vendor or embedded Linux vendor)
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 377/520

http://www.buildroot.net
http://pengutronix.de/software/ptxdist/
http://www.openwrt.org
http://ltib.org/
http://www.openembedded.org
http://free-electrons.com/training/yocto/

Buildroot (1)

▶ Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image

▶ Or any combination of the previous items
▶ Supports building uClibc, glibc and musl toolchains, either

built by Buildroot, or external
▶ Over 1200+ applications or libraries integrated, from basic

utilities to more elaborate software stacks: X.org, GStreamer,
Qt, Gtk, WebKit, Python, PHP, etc.

▶ Good for small to medium embedded systems, with a fixed set
of features

▶ No support for generating packages (.deb or .ipk)
▶ Needs complete rebuild for most configuration changes.

▶ Active community, releases published every 3 months.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 378/520

Buildroot (2)

▶ Configuration takes place through
a *config interface similar to the
kernel
make menuconfig

▶ Allows to define
▶ Architecture and specific CPU
▶ Toolchain configuration
▶ Set of applications and libraries

to integrate
▶ Filesystem images to generate
▶ Kernel and bootloader

configuration
▶ Build by just running

make

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 379/520

Buildroot: adding a new package (1)

▶ A package allows to integrate a user application or library to
Buildroot

▶ Each package has its own directory (such as
package/gqview). This directory contains:

▶ A Config.in file (mandatory), describing the configuration
options for the package. At least one is needed to enable the
package. This file must be sourced from package/Config.in

▶ A gqview.mk file (mandatory), describing how the package is
built.

▶ Patches (optional). Each file of the form gqview-*.patch will
be applied as a patch.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 380/520

Buildroot: adding a new package (2)

▶ For a simple package with a single configuration option to
enable/disable it, the Config.in file looks like:

.

.

config BR2_PACKAGE_GQVIEW
bool "gqview"
depends on BR2_PACKAGE_LIBGTK2
help

GQview is an image viewer for Unix operating systems

http://prdownloads.sourceforge.net/gqview

▶ It must be sourced from package/Config.in:
.
.source "package/gqview/Config.in"

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 381/520

Buildroot: adding new package (3)

▶ Create the gqview.mk file to describe the build steps
.

.

GQVIEW_VERSION = 2.1.5
GQVIEW_SOURCE = gqview-$(GQVIEW_VERSION).tar.gz
GQVIEW_SITE = http://prdownloads.sourceforge.net/gqview
GQVIEW_DEPENDENCIES = host-pkgconf libgtk2
GQVIEW_CONF_ENV = LIBS="-lm"

$(eval $(autotools-package))

▶ The package directory and the prefix of all variables must be
identical to the suffix of the main configuration option
BR2_PACKAGE_GQVIEW

▶ The autotools-package infrastructure knows how to build
autotools packages. A more generic generic-package
infrastructure is available for packages not using the autotools
as their build system.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 382/520

OpenEmbedded / Yocto Project

▶ The most versatile and powerful embedded Linux build system

▶ A collection of recipes (.bb files)
▶ A tool that processes the recipes: bitbake

▶ Integrates 2000+ application and libraries, is highly
configurable, can generate binary packages to make the
system customizable, supports multiple versions/variants of
the same package, no need for full rebuild when the
configuration is changed.

▶ Configuration takes place by editing various configuration files
▶ Good for larger embedded Linux systems, or people looking

for more configurability and extensibility
▶ Drawbacks: very steep learning curve, very long first build.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 383/520

Distributions - Debian

Debian GNU/Linux, http://www.debian.org
▶ Provides the easiest environment for quickly building

prototypes and developing applications. Countless
runtime and development packages available.

▶ But probably too costly to maintain and
unnecessarily big for production systems.

▶ Available on ARM (armel, armhf, arm64), MIPS and
PowerPC architectures

▶ Software is compiled natively by default.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 384/520

http://www.debian.org

Distributions - Others

Fedora
▶ http://fedoraproject.org/wiki/

Architectures/ARM

▶ Supported on various recent ARM boards
(such as Beaglebone Black). Pidora
supports Raspberry Pi too.

▶ Supports QEMU emulated ARM boards
too (Versatile Express board)

▶ Shipping the same version as for desktops!
Ubuntu

▶ Had some releases for ARM mobile
multimedia devices, but stopped at
version 12.04. Now focusing on ARM
servers only.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 385/520

http://fedoraproject.org/wiki/Architectures/ARM
http://fedoraproject.org/wiki/Architectures/ARM

Embedded distributions

Distributions designed for specific types of devices
▶ Android: http://www.android.com/

Google's distribution for phones and tablet PCs.
Except the Linux kernel, very different user space
than other Linux distributions. Very successful, lots
of applications available (many proprietary).

▶ Ångström:
http://www.angstrom-distribution.org/
Targets PDAs and webpads (Siemens Simpad...)
Binaries available for arm little endian.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 386/520

http://www.android.com/
http://www.angstrom-distribution.org/

Application frameworks

Not real distributions you can download. Instead, they
implement middleware running on top of the Linux kernel
and allowing to develop applications.

▶ Mer: http://merproject.org/
Fork from the Meego project.
Targeting mobile devices.
Supports x86, ARM and MIPS.
See http://en.wikipedia.org/wiki/Mer_
(software_distribution)

▶ Tizen: https://www.tizen.org/
Targeting smartphones, tablets, netbooks, smart TVs
and In Vehicle Infotainment devices.
Supported by big phone manufacturers and operators
HTML5 base application framework.
See http://en.wikipedia.org/wiki/Tizen

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 387/520

http://merproject.org/
http://en.wikipedia.org/wiki/Mer_(software_distribution)
http://en.wikipedia.org/wiki/Mer_(software_distribution)
https://www.tizen.org/
http://en.wikipedia.org/wiki/Tizen

Practical lab - Buildroot

▶ Rebuild the same system, this time
with Buildroot.

▶ See how easier it gets!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 388/520

Embedded Linux application development

Embedded Linux
application
development
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 389/520

Contents

▶ Application development
▶ Developing applications on embedded Linux
▶ Building your applications

▶ Source management
▶ Integrated development environments (IDEs)
▶ Version control systems

▶ Debugging and analysis tools
▶ Debuggers
▶ Memory checkers
▶ System analysis

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 390/520

Embedded Linux application development

Developing applications on embedded
Linux

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 391/520

Application development

▶ An embedded Linux system is just a normal Linux system,
with usually a smaller selection of components

▶ In terms of application development, developing on embedded
Linux is exactly the same as developing on a desktop Linux
system

▶ All existing skills can be re-used, without any particular
adaptation

▶ All existing libraries, either third-party or in-house, can be
integrated into the embedded Linux system

▶ Taking into account, of course, the limitation of the embedded
systems in terms of performance, storage and memory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 392/520

Programming language

▶ The default programming language for system-level
application in Linux is usually C

▶ The C library is already present on your system, nothing to add
▶ C++ can be used for larger applications

▶ The C++ library must be added to the system
▶ Some libraries, including Qt, are developed in C++ so they

need the C++ library on the system anyway
▶ Scripting languages can also be useful for quick application

development, web applications or scripts
▶ But they require an interpreter on the embedded system and

have usually higher memory consumption and slightly lower
performance

▶ Languages: Python, Perl, Lua, Ada, Fortran, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 393/520

C library or higher-level libraries?

▶ For many applications, the C library already provides a
relatively large set of features

▶ file and device I/O, networking, threads and synchronization,
inter-process communication

▶ Thoroughly described in the glibc manual, or in any Linux
system programming book

▶ However, the API carries a lot of history and is not necessarily
easy to grasp for new comers

▶ Therefore, using a higher level framework, such as Qt or the
Gtk stack, might be a good idea

▶ These frameworks are not only graphical libraries, their core is
separate from the graphical part

▶ But of course, these libraries have some memory and storage
footprint, in the order of a few megabytes

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 394/520

Building your applications

▶ For simple applications that do not need to be really portable
or provide compile-time configuration options, a simple
Makefile will be sufficient

▶ For more complicated applications, or if you want to be able
to run your application on a desktop Linux PC and on the
target device, using a build system is recommended

▶ autotools is ancient, complicated but very widely used.
▶ We recommend to invest in CMake instead: modern, simpler,

smaller but growing user base.
▶ The QT library is a special case, since it comes with its own

build system for applications, called qmake.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 395/520

Simple Makefile (1)

▶ Case of an application that only uses the C library, contains
two source files and generates a single binary

.

.

CROSS_COMPILE?=arm-linux-
CC=$(CROSS_COMPILE)gcc
OBJS=foo.o bar.o

all: foobar

foobar: $(OBJS)
$(CC) -o $@ $^

clean:
$(RM) -f foobar $(OBJS)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 396/520

Simple Makefile (2)

▶ Case of an application that uses the Glib and the GPS libraries
.

.

CROSS_COMPILE?=arm-linux-
LIBS=libgps glib-2.0
OBJS=foo.o bar.o

CC=$(CROSS_COMPILE)gcc
CFLAGS=$(shell pkg-config --cflags $(LIBS))
LDFLAGS=$(shell pkg-config --libs $(LIBS))

all: foobar

foobar: $(OBJS)
$(CC) -o $@ $^ $(LDFLAGS)

clean:
$(RM) -f foobar $(OBJS)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 397/520

Embedded Linux application development

Integrated Development
Environments (IDE)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 398/520

KDevelop

http://kdevelop.org

▶ A full featured IDE!
▶ License: GPL
▶ Supports many languages: Ada, C, C++,

Database, Java, Perl, PHP, Python, Ruby, Shell
▶ Supports many kinds of projects: KDE, but also

GTK, Gnome, kernel drivers, embedded (Opie)...
▶ Many features: editor, syntax highlighting, code

completion, compiler interface, debugger
interface, file manager, class browser...

Nice overview:
http://en.wikipedia.org/wiki/Kdevelop

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 399/520

http://kdevelop.org
http://en.wikipedia.org/wiki/Kdevelop

KDevelop screenshot

Ruby debugger

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 400/520

Eclipse (1)

http://www.eclipse.org/

▶ An extensible, plug-in based software
development kit, typically used for creating IDEs.

▶ Supported by the Eclipse foundation, a
non-profit consortium of major software industry
vendors (IBM, Intel, Borland, Nokia, Wind
River, Zend, Computer Associates...).

▶ Free Software license (Eclipse Public License).
Incompatible with the GPL.

▶ Supported platforms: GNU/Linux, Unix,
Windows

Extremely popular: created a lot of attraction.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 401/520

http://www.eclipse.org/

Eclipse (2)

▶ Eclipse is actually a platform composed of many projects:
http://www.eclipse.org/projects/

▶ Some projects are dedicated to integrating into Eclipse
features useful for embedded developers (cross-compilation,
remote development, remote debugging, etc.)

▶ The platform is used by major embedded Linux software
vendors for their (proprietary) system development kits:
MontaVista DevRocket, TimeSys TimeStorm, Wind River
Workbench, Sysgo ELinOS.

▶ Used by free software build systems and development
environments too, such as Yocto and Buildroot.

Eclipse is a huge project. It would require an entire training session!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 402/520

http://www.eclipse.org/projects/

Other popular solutions

▶ Many embedded Linux developers
simply use Vim or Emacs. They
can integrate with debuggers,
source code browsers such as
cscope, offer syntax highlighting
and more.

▶ Geany is an easy-to-use graphical
code editor.

▶ CodeBlocks is also quite popular,
since it's also available on the
Windows platform.

All these editors are available in most
Linux distributions, simply install them
and try them out!

Vim

Emacs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 403/520

Embedded Linux application development

Version control systems

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 404/520

Version control systems

Real projects can't do without them
▶ Allow multiple developers to contribute on the same project.

Each developer can see the latest changes from the others, or
choose to stick with older versions of some components.

▶ Allow to keep track of changes, and revert them if needed.
▶ Allow developers to have their own development branch

(branching)
▶ Supposed to help developers resolving conflicts with different

branches (merging)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 405/520

Traditional version control systems

Rely on a central repository. The most popular open-source ones:
▶ CVS - Concurrent Versions System

▶ Still quite popular in enterprise contexts. Almost no longer
exists in the open-source community.

▶ Should no longer be used for new projects
▶ http:

//en.wikipedia.org/wiki/Concurrent_Versions_System

▶ Subversion
▶ Created as a replacement of CVS, removing many of its

limitations.
▶ Commits on several files, proper renaming support, better

performance, etc.
▶ The user interface is very similar to CVS
▶ http://en.wikipedia.org/wiki/Subversion_(software)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 406/520

http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Subversion_(software)

Distributed source control systems (1)

No longer have a central repository
▶ More adapted to the way the Free Software community

develops software and organizes
▶ Allows each developer to have a full local history of the

project, to create local branches. Makes each developer's work
easier.

▶ People get working copies from other people's working copies,
and exchange changes between themselves. Branching and
merging is made easier.

▶ Make it easier for new developers to join, making their own
experiments without having to apply for repository access.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 407/520

Distributed source control systems (2)

▶ Git
▶ Initially designed and developed by Linus Torvalds for Linux

kernel development
▶ Extremely popular in the community, and used by more and

more projects (kernel, U-Boot, Barebox, uClibc, GNOME,
X.org, etc.)

▶ Outstanding performance, in particular in big projects
▶ http://en.wikipedia.org/wiki/Git_(software)

▶ Mercurial
▶ Another system, created with the same goals as Git.
▶ Used by some big projects too
▶ http://en.wikipedia.org/wiki/Mercurial

http://en.wikipedia.org/wiki/Version_control_systems#
Distributed_revision_control

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 408/520

http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Mercurial
http://en.wikipedia.org/wiki/Version_control_systems#Distributed_revision_control
http://en.wikipedia.org/wiki/Version_control_systems#Distributed_revision_control

Embedded Linux application development

Debuggers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 409/520

GDB

The GNU Project Debugger
http://www.gnu.org/software/gdb/

▶ The debugger on GNU/Linux, available for most
embedded architectures.

▶ Supported languages: C, C++, Pascal,
Objective-C, Fortran, Ada...

▶ Console interface (useful for remote debugging).
▶ Graphical front-ends available.
▶ Can be used to control the execution of a

program, set breakpoints or change internal
variables. You can also use it to see what a
program was doing when it crashed (by loading
its memory image, dumped into a core file).

See also http://en.wikipedia.org/wiki/Gdb

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 410/520

http://www.gnu.org/software/gdb/
http://en.wikipedia.org/wiki/Gdb

GDB crash course

▶ A few useful GDB commands
▶ break foobar

puts a breakpoint at the entry of function foobar()
▶ break foobar.c:42

puts a breakpoint in foobar.c, line 42
▶ print var or print task->files[0].fd

prints the variable var, or a more complicated reference. GDB
can also nicely display structures with all their members

▶ continue
continue the execution

▶ next
continue to the next line, stepping over function calls

▶ step
continue to the next line, entering into subfunctions

▶ backtrace
display the program stack

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 411/520

GDB graphical front-ends

▶ DDD - Data Display Debugger
http://www.gnu.org/software/ddd/
A popular graphical front-end, with advanced data plotting
capabilities.

▶ GDB/Insight
http://sourceware.org/insight/
From the GDB maintainers.

▶ KDbg
http://www.kdbg.org/
Another front-end, for the K Display Environment.

▶ Integration with other IDEs: Eclipse, Emacs, KDevelop, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 412/520

http://www.gnu.org/software/ddd/
http://sourceware.org/insight/
http://www.kdbg.org/

Embedded Linux application development

Remote debugging

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 413/520

Remote debugging

▶ In a non-embedded environment, debugging takes place using
gdb or one of its front-ends.

▶ gdb has direct access to the binary and libraries compiled with
debugging symbols.

▶ However, in an embedded context, the target platform
environment is often too limited to allow direct debugging
with gdb (2.4 MB on x86).

▶ Remote debugging is preferred
▶ gdb is used on the development workstation, offering all its

features.
▶ gdbserver is used on the target system (only 100 KB on arm).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 414/520

Remote debugging: architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 415/520

Remote debugging: usage

▶ On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver localhost:<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

▶ Otherwise, attach gdbserver to an already running program:
gdbserver --attach localhost:<port> <pid>

▶ Then, on the host, run the ARCH-linux-gdb program,
and use the following gdb commands:

▶ To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyS0 (serial link)

▶ To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (without lib/)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 416/520

Post mortem analysis

▶ When an application crashes due to a segmentation fault and
the application was not under control of a debugger, we get
no information about the crash

▶ Fortunately, Linux can generate a core file that contains the
image of the application memory at the moment of the crash,
and gdb can use this core file to let us analyze the state of the
crashed application

▶ On the target
▶ Use ulimit -c unlimited to enable the generation of a core

file when a crash occurs
▶ On the host

▶ After the crash, transfer the core file from the target to the
host, and run
ARCH-linux-gdb -c core-file application-binary

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 417/520

Embedded Linux application development

Memory checkers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 418/520

DUMA

Detect Unintended Memory Access
http://duma.sourceforge.net/

▶ Fork and replacement for Electric Fence
▶ Stops your program on the exact instruction that overruns or

underruns a malloc() memory buffer.
▶ GDB will then display the source-code line that causes the

bug.
▶ Works by using the virtual-memory hardware to create a

red-zone at the border of each buffer - touch that, and your
program stops.

▶ Works on any platform supported by Linux, whatever the CPU
(provided virtual memory support is available).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 419/520

http://duma.sourceforge.net/

Valgrind (1)

http://valgrind.org/

▶ GNU GPL Software suite for debugging and
profiling programs.

▶ Supported platforms: Linux on x86, x86_64,
ppc32, ppc64 and arm (armv7 only: Cortex A8,
A9 and A5)

▶ Can detect many memory management and
threading bugs.

▶ Profiler: provides information helpful to speed
up your program and reduce its memory usage.

▶ The most popular tool for this usage. Even used
by projects with hundreds of programmers.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 420/520

http://valgrind.org/

Valgrind (2)

▶ Can be used to run any program, without the
need to recompile it.

▶ Example usage
valgrind --leak-check=yes ls -la

▶ Works by adding its own instrumentation to your
code and then running in on its own virtual cpu
core.
Significantly slows down execution, but still fine
for testing!

▶ More details on http://valgrind.org/info/
and http://valgrind.org/docs/manual/
coregrind_core.html#howworks

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 421/520

http://valgrind.org/info/
http://valgrind.org/docs/manual/coregrind_core.html#howworks
http://valgrind.org/docs/manual/coregrind_core.html#howworks

Embedded Linux application development

System analysis

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 422/520

strace

System call tracer
http://sourceforge.net/projects/strace/

▶ Available on all GNU/Linux systems
Can be built by your cross-compiling toolchain generator.

▶ Even easier: drop a ready-made static binary for your
architecture, just when you need it. See
http://git.free-electrons.com/users/michael-
opdenacker/static-binaries/tree/strace

▶ Allows to see what any of your processes is doing:
accessing files, allocating memory...
Often sufficient to find simple bugs.

▶ Usage:
strace <command> (starting a new process)
strace -p <pid> (tracing an existing process)

See man strace for details.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 423/520

http://sourceforge.net/projects/strace/
http://git.free-electrons.com/users/michael-opdenacker/static-binaries/tree/strace
http://git.free-electrons.com/users/michael-opdenacker/static-binaries/tree/strace

strace example output

> strace cat Makefile
execve("/bin/cat", ["cat", "Makefile"], [/* 38 vars */]) = 0
brk(0) = 0x98b4000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f85000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2(0xb7f63000, 12288, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x15c) = 0xb7f63000
mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000
close(3) = 0

Hint: follow the open file descriptors returned by open().
This tells you what files system calls are run on.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 424/520

ltrace

A tool to trace library calls used by a program and all the signals it
receives

▶ Very useful complement to strace, which shows only system
calls.

▶ Of course, works even if you don't have the sources
▶ Allows to filter library calls with regular expressions, or just by

a list of function names.
▶ Manual page: http://linux.die.net/man/1/ltrace

See http://en.wikipedia.org/wiki/Ltrace for details

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 425/520

http://linux.die.net/man/1/ltrace
http://en.wikipedia.org/wiki/Ltrace

ltrace example output

.

.

ltrace nedit index.html
sscanf(0x8274af1, 0x8132618, 0x8248640, 0xbfaadfe8, 0) = 1
sprintf("const 0", "const %d", 0) = 7
strcmp("startScan", "const 0") = 1
strcmp("ScanDistance", "const 0") = -1
strcmp("const 200", "const 0") = 1
strcmp("$list_dialog_button", "const 0") = -1
strcmp("$shell_cmd_status", "const 0") = -1
strcmp("$read_status", "const 0") = -1
strcmp("$search_end", "const 0") = -1
strcmp("$string_dialog_button", "const 0") = -1
strcmp("$rangeset_list", "const 0") = -1
strcmp("$calltip_ID", "const 0") = -1

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 426/520

ltrace summary

Example summary at the end of the ltrace output (-c option)
.

.

Process 17019 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
100.00 0.000050 50 1 set_thread_area

0.00 0.000000 0 48 read
0.00 0.000000 0 44 write
0.00 0.000000 0 80 63 open
0.00 0.000000 0 19 close
0.00 0.000000 0 1 execve
0.00 0.000000 0 2 2 access
0.00 0.000000 0 3 brk
0.00 0.000000 0 1 munmap
0.00 0.000000 0 1 uname
0.00 0.000000 0 1 mprotect
0.00 0.000000 0 19 mmap2
0.00 0.000000 0 50 46 stat64
0.00 0.000000 0 18 fstat64

------ ----------- ----------- --------- --------- ----------------
100.00 0.000050 288 111 total

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 427/520

OProfile

http://oprofile.sourceforge.net

▶ A system-wide profiling tool
▶ Can collect statistics like the top users of the CPU.
▶ Works without having the sources.
▶ Requires a kernel patch to access all features, but is already

available in a standard kernel.
▶ Requires more investigation to see how it works.
▶ Ubuntu/Debian packages: oprofile, oprofile-gui

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 428/520

http://oprofile.sourceforge.net

Callgrind / KCachegrind

▶ Cachegrind / Callgrind: part of the Valgrind tool suite
Collects function call statistics and call graphs. Useful to
know in which functions most time is spent.

▶ KCachegrind: http://kcachegrind.sourceforge.net/
An amazing visualizer for Cachegrind / Callgrind data.

▶ KCachegrind can also import data from other profilers (such
as OProfile), and from profiling output from Python, Perl and
PHP.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 429/520

http://kcachegrind.sourceforge.net/

KCachegrind screenshot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 430/520

Practical lab - App. development and debugging

Application development
▶ Compile your own application with

the ncurses library
Remote debugging

▶ Set up remote debugging tools on
the target: strace, ltrace
and gdbserver.

▶ Debug a simple application running
on the target using remote
debugging

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 431/520

Real-time in embedded Linux systems

Real-time in
embedded Linux
systems
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 432/520

Real-time in embedded Linux systems

Introduction

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 433/520

Embedded Linux and real time

▶ Due to its advantages, Linux and open-source software are
more and more commonly used in embedded applications

▶ However, some applications also have real-time constraints
▶ They, at the same time, want to

▶ Get all the nice advantages of Linux: hardware support,
components re-use, low cost, etc.

▶ Get their real-time constraints met

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 434/520

Embedded Linux and real time

▶ Linux is an operating system part of the large Unix family
▶ It was originally designed as a time-sharing system

▶ The main goal was to get the best throughput from the
available hardware, by making the best possible usage of
resources (CPU, memory, I/O)

▶ Time determinism was not taken into account
▶ On the opposite, real-time constraints imply time

determinism, even at the expense of lower global throughput
▶ Best throughput and time determinism are contradictory

requirements

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 435/520

Linux and real-time approaches (1)

▶ Over time, two major approaches have been taken to bring
real-time requirements into Linux

▶ Approach 1
▶ Improve the Linux kernel itself so that it matches real-time

requirements, by providing bounded latencies, real-time APIs,
etc.

▶ Approach taken by the mainline Linux kernel and the
PREEMPT_RT project.

▶ Approach 2
▶ Add a layer below the Linux kernel that will handle all the

real-time requirements, so that the behaviour of Linux doesn't
affect real-time tasks.

▶ Approach taken by RTLinux, RTAI and Xenomai

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 436/520

Linux and real-time approaches (2)

An alternative approach is to use specific hardware to run real-time
work on:

▶ Dedicating a CPU core to a real-time OS or to a real-time
application, using some kind of hypervizor.

▶ Running real-time work on an FPGA
▶ Running real-time work on a dedicated microcontroller. For

example, the TI AM335x CPU (used in the Beaglebone Black)
has a "Programmable Real-Time Unit and Industrial
Communication Subsystem (PRU-ICSS)", which can be used
for real-time processing.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 437/520

Real-time in embedded Linux systems

Improving the main Linux kernel with
PREEMPT_RT

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 438/520

Understanding latency

▶ When developing real-time applications with a system such as
Linux, the typical scenario is the following

▶ An event from the physical world happens and gets notified to
the CPU by means of an interrupt

▶ The interrupt handler recognizes and handles the event, and
then wake-up the user space task that will react to this event

▶ Some time later, the user space task will run and be able to
react to the physical world event

▶ Real-time is about providing guaranteed worst case latencies
for this reaction time, called latency

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 439/520

Linux kernel latency components

kernel latency = interrupt latency + handler duration + scheduler
latency + scheduler duration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 440/520

Interrupt latency

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 441/520

Sources of interrupt latency

▶ One of the concurrency prevention mechanism used in the
kernel is the spinlock

▶ It has several variants, but one of the variant commonly used
to prevent concurrent accesses between a process context and
an interrupt context works by disabling interrupts

▶ Critical sections protected by spinlocks, or other section in
which interrupts are explicitly disabled will delay the beginning
of the execution of the interrupt handler

▶ The duration of these critical sections is unbounded
▶ Other possible source: shared interrupts (not a real problem:

mustn't be used for time-critical interrupt-sources anyway).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 442/520

Interrupt handler duration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 443/520

Interrupt handler implementation

▶ In Linux, many interrupt handlers are split in two parts
▶ A top-half, started by the CPU as soon as interrupts are

enabled. It runs with the interrupt line disabled and is
supposed to complete as quickly as possible.

▶ A bottom-half, scheduled by the top-half, which starts after all
pending top-halves have completed their execution.

▶ Therefore, for real-time critical interrupts, bottom-halves
shouldn't be used: their execution is delayed by all other
interrupts in the system.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 444/520

Scheduler latency

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 445/520

Understanding preemption (1)

▶ The Linux kernel is a preemptive operating system
▶ When a task runs in user space mode and gets interrupted by

an interruption, if the interrupt handler wakes up another
task, this task can be scheduled as soon as we return from the
interrupt handler.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 446/520

Understanding preemption (2)

▶ However, when the interrupt comes while the task is executing
a system call, this system call has to finish before another task
can be scheduled.

▶ By default, the Linux kernel does not do kernel preemption.
▶ This means that the time before which the scheduler will be

called to schedule another task is unbounded.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 447/520

Scheduler duration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 448/520

Other non-deterministic mechanisms

▶ Outside of the critical path detailed previously, other
non-deterministic mechanisms of Linux can affect the
execution time of real-time tasks

▶ Linux is highly based on virtual memory, as provided by an
MMU, so that memory is allocated on demand. Whenever an
application accesses code or data for the first time, it is
loaded on demand, which can creates huge delays.

▶ Many C library services or kernel services are not designed
with real-time constraints in mind.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 449/520

Priority inversion

A process with a low priority might hold a lock needed by a higher
priority process, effectively reducing the priority of this process.
Things can be even worse if a middle priority process uses the CPU.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 450/520

Interrupt handler priority

In Linux, interrupt handlers are executed directly by the CPU
interrupt mechanisms, and not under control of the Linux
scheduler. Therefore, all interrupt handlers have a higher priority
than all tasks running on the system.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 451/520

The PREEMPT_RT project

▶ Long-term project lead by Linux kernel developers Ingo
Molnar, Thomas Gleixner and Steven Rostedt

▶ https://rt.wiki.kernel.org

▶ The goal is to gradually improve the Linux kernel regarding
real-time requirements and to get these improvements merged
into the mainline kernel

▶ PREEMPT_RT development works very closely with the
mainline development

▶ Many of the improvements designed, developed and debugged
inside PREEMPT_RT over the years are now part of the
mainline Linux kernel

▶ The project is a long-term branch of the Linux kernel that
ultimately should disappear as everything will have been
merged

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 452/520

https://rt.wiki.kernel.org

Improvements in the mainline kernel

From the PREEMPT_RT project

▶ Since the beginning of 2.6
▶ O(1) scheduler
▶ Kernel preemption
▶ Better POSIX real-time

API support
▶ Since 2.6.18

▶ Priority inheritance
support for mutexes

▶ Since 2.6.21
▶ High-resolution timers

▶ Since 2.6.30
▶ Threaded interrupts

▶ Since 2.6.33
▶ Spinlock annotations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 453/520

New preemption options in Linux 2.6

2 new preemption models offered by standard Linux 2.6:

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 454/520

1st option: no forced preemption

CONFIG_PREEMPT_NONE
Kernel code (interrupts, exceptions, system calls) never preempted.
Default behavior in standard kernels.

▶ Best for systems making intense computations, on which
overall throughput is key.

▶ Best to reduce task switching to maximize CPU and cache
usage (by reducing context switching).

▶ Still benefits from some Linux 2.6 improvements: O(1)
scheduler, increased multiprocessor safety (work on RT
preemption was useful to identify hard to find SMP bugs).

▶ Can also benefit from a lower timer frequency (100 Hz instead
of 250 or 1000).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 455/520

2nd option: voluntary kernel preemption

CONFIG_PREEMPT_VOLUNTARY
Kernel code can preempt itself

▶ Typically for desktop systems, for quicker application reaction
to user input.

▶ Adds explicit rescheduling points throughout kernel code.
▶ Minor impact on throughput.
▶ Used in: Ubuntu Desktop 15.04, Ubuntu Server 14.04

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 456/520

3rd option: preemptible kernel

CONFIG_PREEMPT
Most kernel code can be involuntarily preempted at any time.
When a process becomes runnable, no more need to wait for kernel
code (typically a system call) to return before running the
scheduler.

▶ Exception: kernel critical sections (holding spinlocks). In a
case you hold a spinlock on a uni-processor system, kernel
preemption could run another process, which would loop
forever if it tried to acquire the same spinlock.

▶ Typically for desktop or embedded systems with latency
requirements in the milliseconds range.

▶ Still a relatively minor impact on throughput.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 457/520

Priority inheritance

▶ One classical solution to the priority inversion problem is
called priority inheritance

▶ In Linux, since 2.6.18, mutexes support priority inheritance
▶ In user space, priority inheritance must be explicitly enabled

on a per-mutex basis.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 458/520

High resolution timers

▶ The resolution of the timers used to be bound to the
resolution of the regular system tick

▶ Usually 100 Hz or 250 Hz, depending on the architecture and
the configuration

▶ A resolution of only 10 ms or 4 ms.
▶ Increasing the regular system tick frequency is not an option as

it would consume too many resources
▶ The high-resolution timers infrastructure, merged in 2.6.21,

allows to use the available hardware timers to program
interrupts at the right moment.

▶ Hardware timers are multiplexed, so that a single hardware
timer is sufficient to handle a large number of
software-programmed timers.

▶ Usable directly from user space using the usual timer APIs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 459/520

Threaded interrupts

▶ To solve the interrupt inversion problem, PREEMPT_RT has
introduced the concept of threaded interrupts

▶ The interrupt handlers run in normal kernel threads, so that
the priorities of the different interrupt handlers can be
configured

▶ The real interrupt handler, as executed by the CPU, is only in
charge of masking the interrupt and waking-up the
corresponding thread

▶ The idea of threaded interrupts also allows to use sleeping
spinlocks (see later)

▶ Merged since 2.6.30, the conversion of interrupt handlers to
threaded interrupts is not automatic: drivers must be modified

▶ In PREEMPT_RT, all interrupt handlers are switched to
threaded interrupts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 460/520

The future of the PREEMPT_RT patchset

▶ Before Oct. 2015: project stalled because of the lack of
funding. Thomas Gleixner still the maintainer but lacked time
for further development and mainlining efforts. Patch releases
only made for specific kernel releases.

▶ Oct. 2015: the Linux Foundation at last got funding for
mainlining the patchset into the Linux kernel (see
http://lwn.net/Articles/659193/).

▶ There's at last a good chance for the patchset to be merged
by the end of 2016.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 461/520

http://lwn.net/Articles/659193/

Real-time in embedded Linux systems

PREEMPT_RT specifics

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 462/520

CONFIG_PREEMPT_RT (1)

▶ The PREEMPT_RT patch adds a new level of preemption,
called CONFIG_PREEMPT_RT

▶ This level of preemption replaces all kernel spinlocks by
mutexes (or so-called sleeping spinlocks)

▶ Instead of providing mutual exclusion by disabling interrupts
and preemption, they are just normal locks: when contention
happens, the process is blocked and another one is selected by
the scheduler.

▶ Works well with threaded interrupts, since threads can block,
while usual interrupt handlers could not.

▶ Some core, carefully controlled, kernel spinlocks remain as
normal spinlocks.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 463/520

CONFIG_PREEMPT_RT (2)

▶ With CONFIG_PREEMPT_RT, virtually all kernel code becomes
preemptible

▶ An interrupt can occur at any time, when returning from the
interrupt handler, the woken up process can start immediately.

▶ This is the last big part of PREEMPT_RT that isn't fully in
the mainline kernel yet

▶ Part of it has been merged in 2.6.33: the spinlock annotations.
The spinlocks that must remain as spinning spinlocks are now
differentiated from spinlocks that can be converted to sleeping
spinlocks. This has reduced a lot the PREEMPT_RT patch
size!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 464/520

Threaded interrupts

▶ The mechanism of threaded interrupts in PREEMPT_RT is
still different from the one merged in mainline

▶ In PREEMPT_RT, all interrupt handlers are unconditionally
converted to threaded interrupts.

▶ This is a temporary solution, until interesting drivers in
mainline get gradually converted to the new threaded
interrupt API that has been merged in 2.6.30.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 465/520

Real-time in embedded Linux systems

Setting up PREEMPT_RT

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 466/520

PREEMPT_RT setup (1)

▶ PREEMPT_RT is delivered as a patch against the mainline
kernel

▶ Best to have a board supported by the mainline kernel,
otherwise the PREEMPT_RT patch may not apply and may
require some adaptations

▶ Not all releases of the Linux kernel are supported. Currently:
3.0, 3.2, 3.4, 3.6, 3.8, 3.10, 3.12, 3.14, 3.18, 4.0, 4.1

▶ Quick set up:
▶ Download the latest PREEMPT_RT patch

from http://www.kernel.org/pub/linux/kernel/projects/rt/

▶ Download and extract the corresponding mainline kernel
version

▶ Apply the patch to the mainline kernel tree

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 467/520

http://www.kernel.org/pub/linux/kernel/projects/rt/

PREEMPT_RT setup (2)

▶ In the kernel configuration, be sure to enable
▶ CONFIG_PREEMPT_RT
▶ High-resolution timers

▶ Compile your kernel, and boot
▶ You are now running the real-time Linux kernel
▶ Of course, some system configuration remains to be done, in

particular setting appropriate priorities to the interrupt
threads, which depend on your application.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 468/520

Real-time in embedded Linux systems

Real-time application development
with PREEMPT_RT

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 469/520

Development and compilation

▶ No special library is needed, the POSIX real-time API is part
of the standard C library

▶ The glibc C library is recommended, as support for some
real-time features is not mature in other C libraries

▶ Priority inheritance mutexes or NPTL on some architectures,
for example

▶ Compile a program
▶ ARCH-linux-gcc -o myprog myprog.c -lrt

▶ To get the documentation of the POSIX API
▶ Install the manpages-posix-dev package
▶ Run man function-name

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 470/520

Process, thread?

▶ Confusion about the terms process, thread and task
▶ In Unix, a process is created using fork() and is composed of

▶ An address space, which contains the program code, data,
stack, shared libraries, etc.

▶ One thread, that starts executing the main() function.
▶ Upon creation, a process contains one thread

▶ Additional threads can be created inside an existing process,
using pthread_create()

▶ They run in the same address space as the initial thread of the
process

▶ They start executing a function passed as argument to
pthread_create()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 471/520

Process, thread: kernel point of view

▶ The kernel represents each thread running in the system by a
structure of type task_struct

▶ From a scheduling point of view, it makes no difference
between the initial thread of a process and all additional
threads created dynamically using pthread_create()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 472/520

Creating threads

▶ Linux support the POSIX thread API
▶ To create a new thread

.

.
pthread_create(pthread_t *thread, pthread_attr_t *attr,

void *(*routine)(void*), void *arg);

▶ The new thread will run in the same address space, but will
be scheduled independently

▶ Exiting from a thread
.
.pthread_exit(void *value_ptr);

▶ Waiting for the termination of a thread
.
.pthread_join(pthread_t *thread, void **value_ptr);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 473/520

Scheduling classes (1)

▶ The Linux kernel scheduler support different scheduling classes
▶ The default class, in which processes are started by default is

a time-sharing class
▶ All processes, regardless of their priority, get some CPU time
▶ The proportion of CPU time they get is dynamic and affected

by the nice value, which ranges from -20 (highest) to 19
(lowest). Can be set using the nice or renice commands

▶ The real-time classes SCHED_FIFO and SCHED_RR
▶ The highest priority process gets all the CPU time, until it

blocks.
▶ In SCHED_RR, round-robin scheduling between the processes of

the same priority. All must block before lower priority
processes get CPU time.

▶ Priorities ranging from 0 (lowest) to 99 (highest)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 474/520

Scheduling classes (2)

▶ An existing program can be started in a specific scheduling
class with a specific priority using the chrt command line tool

▶ Example: chrt -f 99 ./myprog
-f: SCHED_FIFO
-r: SCHED_RR

▶ The sched_setscheduler() API can be used to change the
scheduling class and priority of a process

.

.
int sched_setscheduler(pid_t pid, int policy,

const struct sched_param *param);

▶ policy can be SCHED_OTHER, SCHED_FIFO, SCHED_RR, etc.
▶ param is a structure containing the priority

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 475/520

Scheduling classes (3)

▶ The priority can be set on a per-thread basis when a thread is
created

.

.

struct sched_param parm;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
parm.sched_priority = 42;
pthread_attr_setschedparam(&attr, &parm);

▶ Then the thread can be created using pthread_create(),
passing the attr structure.

▶ Several other attributes can be defined this way: stack size,
etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 476/520

Memory locking

▶ In order to solve the non-determinism introduced by virtual
memory, memory can be locked

▶ Guarantee that the system will keep it allocated
▶ Guarantee that the system has pre-loaded everything into

memory
▶ mlockall(MCL_CURRENT | MCL_FUTURE);

▶ Locks all the memory of the current address space, for
currently mapped pages and pages mapped in the future

▶ Other, less useful parts of the API: munlockall, mlock,
munlock.

▶ Watch out for non-currently mapped pages
▶ Stack pages
▶ Dynamically-allocated memory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 477/520

Mutexes

▶ Allows mutual exclusion between two threads in the same
address space

▶ Initialization/destruction
.

.

pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

pthread_mutex_destroy(pthread_mutex_t *mutex);

▶ Lock/unlock
.

.
pthread_mutex_lock(pthread_mutex_t *mutex);
pthread_mutex_unlock(pthread_mutex_t *mutex);

▶ Priority inheritance must be activated explicitly
.

.

pthread_mutexattr_t attr;
pthread_mutexattr_init (&attr);
pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 478/520

Timers

▶ Timer creation
.

.
timer_create(clockid_t clockid, struct sigevent *evp,

timer_t *timerid);

▶ clockid is usually CLOCK_MONOTONIC. sigevent defines what
happens upon timer expiration: send a signal or start a
function in a new thread. timerid is the returned timer
identifier.

▶ Configure the timer for expiration at a given time
.

.

timer_settime(timer_t timerid, int flags,
struct itimerspec *newvalue,
struct itimerspec *oldvalue);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 479/520

Timers (2)

▶ Delete a timer
.
.timer_delete(timer_t timerid)

▶ Get the resolution of a clock, clock_getres
▶ Other functions: timer_getoverrun(), timer_gettime()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 480/520

Signals

▶ Signals are asynchronous notification mechanisms
▶ Notification occurs either

▶ By the call of a signal handler. Be careful with the limitations
of signal handlers!

▶ By being unblocked from the sigwait(), sigtimedwait() or
sigwaitinfo() functions. Usually better.

▶ Signal behaviour can be configured using sigaction()

▶ The mask of blocked signals can be changed with
pthread_sigmask()

▶ Delivery of a signal using pthread_kill() or tgkill()
▶ All signals between SIGRTMIN and SIGRTMAX, 32 signals under

Linux.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 481/520

Inter-process communication

▶ Semaphores
▶ Usable between different processes using named semaphores
▶ sem_open(), sem_close(), sem_unlink(), sem_init(),

sem_destroy(), sem_wait(), sem_post(), etc.
▶ Message queues

▶ Allows processes to exchange data in the form of messages.
▶ mq_open(), mq_close(), mq_unlink(), mq_send(),

mq_receive(), etc.
▶ Shared memory

▶ Allows processes to communicate by sharing a segment of
memory

▶ shm_open(), ftruncate(), mmap(), munmap(), close(),
shm_unlink()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 482/520

Real-time in embedded Linux systems

Debugging latencies in
PREEMPT_RT

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 483/520

ftrace - Kernel function tracer

Infrastructure that can be used for debugging or analyzing
latencies and performance issues in the kernel.

▶ Very well documented in Documentation/trace/ftrace.txt

▶ Negligible overhead when tracing is not enabled at run-time.
▶ Can be used to trace any kernel function!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 484/520

http://free-electrons.com/kerneldoc/latest/trace/ftrace.txt

Using ftrace

▶ Tracing information available through the debugfs virtual fs
(CONFIG_DEBUG_FS in the Kernel Hacking section)

▶ Mount this filesystem as follows:
mount -t debugfs nodev /sys/kernel/debug

▶ When tracing is enabled (see the next slides), tracing
information is available in /sys/kernel/debug/tracing.

▶ Check available tracers in
/sys/kernel/debug/tracing/available_tracers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 485/520

Scheduling latency tracer

CONFIG_SCHED_TRACER (Kernel Hacking section)
▶ Maximum recorded time between waking up a top priority task and its

scheduling on a CPU, expressed in us.
▶ Check that wakeup is listed in

/sys/kernel/debug/tracing/available_tracers
▶ To select, reset and enable this tracer:

.

.

echo wakeup > /sys/kernel/debug/tracing/current_tracer
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
echo 1 > /sys/kernel/debug/tracing/tracing_enabled

▶ Let your system run, in particular real-time tasks.
Dummy example: chrt -f 5 sleep 1

▶ Disable tracing:
.
.echo 0 > /sys/kernel/debug/tracing/tracing_enabled

▶ Read the maximum recorded latency and the corresponding trace:
.
.cat /sys/kernel/debug/tracing/tracing_max_latency

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 486/520

Exemple of worst-case latencies

Tests done with cyclictest

▶ x86 Geode 500 Mhz: 96 us
▶ x86 Pentium Dual-core T4500 2.3 Ghz: 36 us
▶ ARM Freescale i.MX35 533 Mhz: 120 us
▶ ARM Marvell 88FR131 1200 Mhz: 54 us

See more results at https://www.osadl.org/QA-Farm-
Realtime.qa-farm-about.0.html

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 487/520

https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html
https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html

Useful reading

About real-time support in the standard Linux kernel
▶ Inside the RT patch, Steven Rostedt, Red Hat, ELC 2013

http://elinux.org/images/b/ba/Elc2013_Rostedt.pdf
Video: http://j.mp/1apUtu6

▶ The Real-Time Linux Wiki: http://rt.wiki.kernel.org
“The Wiki Web for the CONFIG_PREEMPT_RT community,
and real-time Linux in general.”
Contains nice and useful documents!

▶ See also our books page.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 488/520

http://elinux.org/images/b/ba/Elc2013_Rostedt.pdf
http://j.mp/1apUtu6
http://rt.wiki.kernel.org

Real-time in embedded Linux systems

Real-time extensions to the Linux
kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 489/520

Linux real-time extensions

Three generations
▶ RTLinux
▶ RTAI
▶ Xenomai

A common principle
▶ Add an extra layer between

the hardware and the Linux
kernel, to manage real-time
tasks separately.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 490/520

RTLinux

First real-time extension for Linux, created by Victor Yodaiken.
▶ Nice, but the author filed a software patent covering the

addition of real-time support to general operating systems as
implemented in RTLinux!

▶ Its Open Patent License drew many developers away and
frightened users. Community projects like RTAI and Xenomai
now attract most developers and users.

▶ February, 2007: RTLinux rights sold to Wind River. Today, no
longer advertised by Wind River.

▶ Project completely dead.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 491/520

RTAI

https://www.rtai.org/ - Real-Time Application Interface for
Linux

▶ Created in 1999, by Prof. Paolo Mantegazza (long time
contributor to RTLinux), Dipartimento di Ingegneria
Aerospaziale Politecnico di Milano (DIAPM).

▶ Community project. Significant user base. Attracted
contributors frustrated by the RTLinux legal issues.

▶ Only really actively maintained on x86
▶ May offer slightly better latencies than Xenomai, at the

expense of a less maintainable and less portable code base
▶ Since RTAI is not really maintained on ARM and other

embedded architectures, our presentation is focused on
Xenomai.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 492/520

https://www.rtai.org/

Xenomai project

http://www.xenomai.org/

▶ Started in 2001 as a project aiming at emulating
traditional RTOS.

▶ Initial goals: facilitate the porting of programs to
GNU / Linux.

▶ Initially related to the RTAI project (as the RTAI
/ fusion branch), now independent.

▶ Skins mimicking the APIs of traditional RTOS
such as VxWorks, pSOS+, and VRTXsa as well
as the POSIX API, and a “native” API.

▶ Aims at working both as a co-kernel and on top
of PREEMPT_RT in future upstream Linux
versions.

▶ Will never be merged in the mainline kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 493/520

http://www.xenomai.org/

Xenomai architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 494/520

The Adeos interrupt pipeline abstraction

▶ From the Adeos point of view, guest OSes are prioritized
domains.

▶ For each event (interrupts, exceptions, syscalls, etc...), the
various domains may handle the event or pass it down the
pipeline.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 495/520

Xenomai features

▶ Factored real-time core with skins implementing various
real-time APIs

▶ Seamless support for hard real-time in user space
▶ No second-class citizen, all ports are equivalent feature-wise
▶ Xenomai support is as much as possible independent from the

Linux kernel version (backward and forward compatible when
reasonable)

▶ Each Xenomai branch has a stable user/kernel ABI
▶ Timer system based on hardware high-resolution timers
▶ Per-skin time base which may be periodic
▶ RTDM skin allowing to write real-time drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 496/520

Xenomai user space real-time support

▶ Xenomai supports real-time in user space on 5 architectures,
including 32 and 64 bits variants.

▶ Two modes are defined for a thread
▶ the primary mode, where the thread is handled by the Xenomai

scheduler
▶ the secondary mode, when it is handled by the Linux scheduler.

▶ Thanks to the services of the Adeos I-pipe service, Xenomai
system calls are defined.

▶ A thread migrates from secondary mode to primary mode
when such a system call is issued

▶ It migrates from primary mode to secondary mode when a
Linux system call is issued, or to handle gracefully exceptional
events such as exceptions or Linux signals.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 497/520

Life of a Xenomai application

▶ Xenomai applications are started like normal Linux processes,
they are initially handled by the Linux scheduler and have
access to all Linux services

▶ After their initialization, they declare themselves as real-time
applications, which migrates them to primary mode. In this
mode:

▶ They are scheduled directly by the Xenomai scheduler, so they
have the real-time properties offered by Xenomai

▶ They don't have access to any Linux service, otherwise they
get migrated back to secondary mode and loose all real-time
properties

▶ They can only use device drivers that are implemented in
Xenomai, not the ones of the Linux kernel

▶ Need to implement device drivers in Xenomai, and to split
real-time and non real-time parts of your applications.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 498/520

Real Time Driver Model (RTDM)

▶ An approach to unify the interfaces for developing device
drivers and associated applications under real-time Linux

▶ An API very similar to the native Linux kernel driver API
▶ Allows to develop in kernel space:

▶ Character-style device drivers
▶ Network-style device drivers

▶ See the whitepaper on
http://www.xenomai.org/documentation/xenomai-
2.6/pdf/RTDM-and-Applications.pdf

▶ Current notable RTDM based drivers:
▶ Serial port controllers;
▶ RTnet UDP/IP stack;
▶ RT socket CAN, drivers for CAN controllers;
▶ Analogy, fork of the Comedi project, drivers for acquisition

cards.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 499/520

http://www.xenomai.org/documentation/xenomai-2.6/pdf/RTDM-and-Applications.pdf
http://www.xenomai.org/documentation/xenomai-2.6/pdf/RTDM-and-Applications.pdf

Real-time in embedded Linux systems

Setting up Xenomai

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 500/520

How to build Xenomai

▶ Download Xenomai sources at
http://download.gna.org/xenomai/stable/

▶ Download one of the Linux versions supported by this release
(see ksrc/arch/<arch>/patches/)

▶ Since version 2.0, split kernel/user building model.
▶ Kernel uses a script called script/prepare-kernel.sh which

integrates Xenomai kernel-space support in the Linux sources.
▶ Run the kernel configuration menu.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 501/520

http://download.gna.org/xenomai/stable/

Linux options for Xenomai configuration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 502/520

Xenomai user space support

▶ User space libraries are compiled using the traditional
autotools

▶ ./configure --host=arm-
linux && make && make DESTDIR=/your/rootfs/ install

▶ Xenomai installs pkg-config files which helps you to compile
your own programs against the Xenomai libraries.

▶ See Xenomai's examples directory.
▶ Installation details may be found in the README.INSTALL

guide.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 503/520

Real-time in embedded Linux systems

Developing applications on Xenomai

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 504/520

The POSIX skin

▶ The POSIX skin allows to recompile without changes a
traditional POSIX application so that instead of using Linux
real-time services, it uses Xenomai services

▶ http://www.xenomai.org/index.php/Porting_POSIX_
applications_to_Xenomai

▶ Clocks and timers, condition variables, message queues,
mutexes, semaphores, shared memory, signals, thread
management

▶ Good for existing code or programmers familiar with the
POSIX API

▶ Of course, if the application uses any Linux service that isn't
available in Xenomai, it will switch back to secondary mode

▶ To link an application against the POSIX skin
.

.

CFL=`pkg-config --cflags libxenomai_posix`
LDF=`pkg-config --libs libxenomai_posix`
ARCH-gcc $CFL -o rttest rttest.c $LDF

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 505/520

http://www.xenomai.org/index.php/Porting_POSIX_applications_to_Xenomai
http://www.xenomai.org/index.php/Porting_POSIX_applications_to_Xenomai

Communication with a normal task

▶ If a Xenomai real-time application using the POSIX skin
wishes to communicate with a separate non-real-time
application, it must use the rtipc mechanism

▶ In the Xenomai application, create an IPCPROTO_XDDP socket
.

.

socket(AF_RTIPC, SOCK_DGRAM, IPCPROTO_XDDP);
setsockopt(s, SOL_RTIPC, XDDP_SETLOCALPOOL,

&poolsz, sizeof(poolsz));
memset(&saddr, 0, sizeof(saddr));
saddr.sipc_family = AF_RTIPC;
saddr.sipc_port = PORTX;
ret = bind(s, (struct sockaddr *)&saddr, sizeof(saddr));

▶ And then the normal socket API sendto() / recvfrom()

▶ In the Linux application
▶ Open /dev/rtpPORTX, where PORTX is the XDDP port
▶ Use read() and write()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 506/520

The native API (1)

▶ A Xenomai specific API for developing real-time tasks
▶ http://xenomai.org/documentation/branches/v2.4.x/

pdf/Native-API-Tour-rev-C.pdf
▶ Usable both in user space and kernel space. Development of

tasks in user space is the preferred way.
▶ More coherent and more flexible API than the POSIX API.

Easier to learn and understand. Certainly the way to go for
new applications.

▶ Applications should include <native/service.h>, where
service can be alarm, buffer, cond, event, heap, intr,
misc, mutex, pipe, queue, sem, task, timer

▶ To compile applications:
.

.

CFL=`pkg-config --cflags libxenomai_native`
LDF=`pkg-config --libs libxenomai_native`
ARCH-gcc $CFL -o rttest rttest.c $LDF

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 507/520

http://xenomai.org/documentation/branches/v2.4.x/pdf/Native-API-Tour-rev-C.pdf
http://xenomai.org/documentation/branches/v2.4.x/pdf/Native-API-Tour-rev-C.pdf

The native API (2)

▶ Task management services
▶ rt_task_create(), rt_task_start(), rt_task_suspend(),

rt_task_resume(), rt_task_delete(), rt_task_join(), etc.
▶ Counting semaphore services

▶ rt_sem_create(), rt_sem_delete(), rt_sem_p(),
rt_sem_v(), etc.

▶ Message queue services
▶ rt_queue_create(), rt_queue_delete(),

rt_queue_alloc(), rt_queue_free(), rt_queue_send(),
rt_queue_receive(), etc.

▶ Mutex services
▶ rt_mutex_create(), rt_mutex_delete(),

rt_mutex_acquire(), rt_mutex_release(), etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 508/520

The native API (3)

▶ Alarm services
▶ rt_alarm_create(), rt_alarm_delete(),

rt_alarm_start(), rt_alarm_stop(), rt_alarm_wait(), etc.
▶ Memory heap services

▶ Allows to share memory between processes and/or to
pre-allocate a pool of memory

▶ rt_heap_create(), rt_heap_delete(), rt_heap_alloc(),
rt_heap_bind()

▶ Condition variable services
▶ rt_cond_create(), rt_cond_delete(), rt_cond_signal(),

rt_cond_broadcast(), rt_cond_wait(), etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 509/520

Xenomai and normal task communication

▶ Using rt_pipes
▶ In the native Xenomai application, use the Pipe API

▶ rt_pipe_create(), rt_pipe_delete(), rt_pipe_receive(),
rt_pipe_send(), rt_pipe_alloc(), rt_pipe_free()

▶ In the normal Linux application
▶ Open the corresponding /dev/rtpX file, the minor is specified

at rt_pipe_create() time
▶ Then, just read() and write() to the opened file

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 510/520

Xenomai worst-case latencies results

▶ ARM OMAP5432 1.1 GHz: 24 us
▶ ARM OMAP4430 1 GHz: 23 us
▶ ARM OMAP3530 720 MHz: 44 us
▶ ARM SAMA5D3 528 MHz: 51 us
▶ ARM AT91RM9200 180 MHz: 181 us
▶ x86 Atom 1.6 GHz: 35 us
▶ Geode LX800 processor at 500 MHz: 55 us

See results at http://xenomai.org/~gch/core-3.14-latencies/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 511/520

http://xenomai.org/~gch/core-3.14-latencies/

Books

Building Embedded Linux Systems, O'Reilly

By Karim Yaghmour, Jon Masters,
Gilad Ben-Yossef, Philippe Gerum and others
(including Michael Opdenacker), August 2008

A nice coverage of Xenomai (Philippe Gerum)
and the RT patch (Steven Rostedt)

http://oreilly.com/catalog/9780596529680/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 512/520

http://oreilly.com/catalog/9780596529680/

Organizations

▶ http://www.osadl.org
Open Source Automation Development Lab (OSADL)
Targets machine and plant control systems. Most member
companies are German (Thomas Gleixner is on board).
Supports the use of PREEMPT_RT and Xenomai and
contributes to these projects. Shares useful documentation
and resources.
They also organize a yearly Real Time Linux Workshop.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 513/520

http://www.osadl.org

Practical lab - Real-time - Scheduling latency

▶ Check clock accuracy.
▶ Start processes with real-time

priority.
▶ Build a real-time application

against the standard POSIX
real-time API, and against
Xenomai’s POSIX skin

▶ Compare scheduling latency on
your system, between a standard
kernel and a kernel with Xenomai.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 514/520

References

References
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 515/520

Books

▶ Embedded Linux Primer, Second Edition,
Prentice Hall
By Christopher Hallinan, October 2010
Covers a very wide range of interesting topics.
http://j.mp/17NYxBP

▶ Building Embedded Linux Systems, O'Reilly
By Karim Yaghmour, Jon Masters, Gilad Ben-Yossef,
Philippe Gerum and others (including Michael
Opdenacker), August 2008
http://oreilly.com/catalog/9780596529680/

▶ Embedded Linux System Design and
Development
P. Raghavan, A. Lad, S. Neelakandan, Auerbach,
Dec. 2005. Very good coverage of the POSIX
programming API (still up to date).
http://j.mp/19X8iu2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 516/520

http://j.mp/17NYxBP
http://oreilly.com/catalog/9780596529680/
http://j.mp/19X8iu2

Web sites

▶ ELinux.org, http://elinux.org, a Wiki entirely dedicated to
embedded Linux. Lots of topics covered: real-time, filesystem,
multimedia, tools, hardware platforms, etc. Interesting to
explore to discover new things.

▶ LWN, http://lwn.net, very interesting news site about
Linux in general, and specifically about the kernel. Weekly
newsletter, available for free after one week for non-paying
visitors.

▶ Linux Gizmos, http://linuxgizmos.com, a news site about
embedded Linux, mainly oriented on hardware platforms
related news.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 517/520

http://elinux.org
http://lwn.net
http://linuxgizmos.com

International conferences

Useful conferences featuring embedded Linux and kernel topics
▶ Embedded Linux Conference:

http://embeddedlinuxconference.com/
Organized by the Linux Foundation: California (San
Francisco, Spring), in Europe (Fall). Very interesting kernel
and user space topics for embedded systems developers.
Presentation slides freely available

▶ Linux Plumbers, http://linuxplumbersconf.org
Conference on the low-level plumbing of Linux: kernel, audio,
power management, device management, multimedia, etc.

▶ FOSDEM: http://fosdem.org (Brussels, February)
For developers. Presentations about system development.

▶ Don't miss our free conference videos on http://free-
electrons.com/community/videos/conferences/!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 518/520

http://embeddedlinuxconference.com/
http://linuxplumbersconf.org
http://fosdem.org
http://free-electrons.com/community/videos/conferences/
http://free-electrons.com/community/videos/conferences/

Last slides

Last slides
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 519/520

Last slide

Thank you!
And may the Source be with you

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 520/520

	Generic course information
	Introduction to Embedded Linux
	Advantages of Linux and open-source for embedded systems
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	C Libraries
	Toolchain Options
	Obtaining a Toolchain

	Bootloaders
	Boot Sequence
	The U-boot bootloader

	Linux kernel introduction
	Linux features
	Linux versioning scheme and development process
	Linux kernel sources
	Kernel configuration
	Compiling and installing the kernel for the host system
	Cross-compiling the kernel
	Using kernel modules

	Linux Root Filesystem
	Principle and solutions
	Contents
	Device Files
	Pseudo Filesystems
	Minimal filesystem

	Busybox
	Block filesystems
	Flash filesystems
	Embedded Linux system development
	Leveraging open-source components in an Embedded Linux system
	Tools for the target device: Networking
	Tools for the target device: System utilities
	Tools for the target device: Language interpreters
	Tools for the target device: Audio, video and multimedia
	Tools for the target device: Graphical toolkits
	Graphical toolkits: ``Low-level'' solutions and layers
	Graphical toolkits: ``High-level'' solutions
	Tools for the target device: Databases
	Tools for the target device: Web browsers
	System building

	Embedded Linux application development
	Developing applications on embedded Linux
	Integrated Development Environments (IDE)
	Version control systems
	Debuggers
	Remote debugging
	Memory checkers
	System analysis

	Real-time in embedded Linux systems
	Introduction
	Improving the main Linux kernel with PREEMPT_RT
	PREEMPT_RT specifics
	Setting up PREEMPT_RT
	Real-time application development with PREEMPT_RT
	Debugging latencies in PREEMPT_RT
	Real-time extensions to the Linux kernel
	Setting up Xenomai
	Developing applications on Xenomai

	References
	Last slides

