http://www.cs.swarthmore.edu/~newhall/unixhelp...

Using make and writing Makefiles

make is a Unix tool to simplify building program executables from many
modules. make reads in rules (specified as a list of target entries) from a user
created Makefile. make will only re-build things that need to be re-built (object
or executables that depend on files that have been modified since the last time
the objects or executables were built).

Using make
Writing a Makefile

Example simple C (or C++) makefile

Example more advanced C Makefile
Example simple Java makefile (using makedepend and more advanced make

syntax)

GNU make Manual. A complete reference for writing makefiles from simple to
advanced features.

Also, CMake, is a cross platform build system. Among other things, cmake will
generate makefiles for you. It is particularly useful for large projects, for builds
that use lots of libraries, and for dealing with platform-specific compilation
issues. It automatically generates (often hard to read and debug) makefiles for
different platforms. For small projects, writing makefiles by hand is likely easier.
See Andy Danner's Cmake documentation for more information on cmake.

Using make

1. Create a Makefile listing the rules for building the executable the file
should be named 'Makefile' or 'makefile'. This only has to be done once,
except when new modules are added to the program, the Makefile must be
updated to add new module dependencies to existing rules and to add new
rules to build the new modules.

2. After editing program file(s), rebuild the executable by typing make:

% make

A specific target in the Makefile can be executed by typing:
% make target label

For example, to execute the rm commands in the example makefile below, type:
% make clean

Creating a Makefile

A Makefile typically starts with some variable definitions which are then
followed by a set of target entries for building specific targets (typically .0 &
executable files in C and C++, and .class files in Java) or executing a set of
command associated with a target label.

1of5 12/28/2015 03:36 PM

http://www.cs.swarthmore.edu/~newhall/unixhelp...

The following is the generic target entry form:

comment
(note: the <tab> in the command line is necessary for make to work)
target: dependencyl dependency2 ...

<tab> command

for example:
#
target entry to build program executable from program and mylib
object files
#
program: program.o mylib.o
gcc -0 program program.o mylib.o

Example simple Makefiles for a C (or C++)

The most simple Makefile for compiling a C (or C++) program from a single .c
file, with make and make clean rules, looks something like this (remember to
add a TAB character before the command part):

build an executable named myprog from myprog.c
all: myprog.c
gcc -g -Wall -o myprog myprog.c
clean:
$(RM) myprog
a slightly more generic simple makefile

A slightly more generic version of the makefile above, uses makefile variables
(just change the variable definitions to build differnet executables or with
different compilers or compiler flags):

the compiler: gcc for C program, define as g++ for C++
CC = gcc

compiler flags:

-g adds debugging information to the executable file
-Wall turns on most, but not all, compiler warnings
CFLAGS = -g -Wall

the build target executable:
TARGET = myprog

all: $(TARGET)

$(TARGET) : $(TARGET).c
$(CC) $(CFLAGS) -o $(TARGET) $(TARGET).c

clean:
$(RM) $(TARGET)

An example of building an executable from multiple .o files:

20f5 12/28/2015 03:36 PM

http://www.cs.swarthmore.edu/~newhall/unixhelp...

#

This is an example Makefile for a countwords program. This

program uses both the scanner module and a counter module.

Typing 'make' or 'make count' will create the executable file.
#

define some Makefile variables for the compiler and compiler flags
to use Makefile variables later in the Makefile: $()

#

-g adds debugging information to the executable file

-Wall turns on most, but not all, compiler warnings

#

for C++ define CC = g++

CC = gcc

CFLAGS = -g -Wall

typing 'make' will invoke the first target entry in the file

(in this case the default target entry)

you can name this target entry anything, but "default" or "all"
are the most commonly used names by convention

#

default: count

To create the executable file count we need the object files
countwords.o, counter.o, and scanner.o:
#
count: countwords.o counter.o scanner.o
$(CC) $(CFLAGS) -o count countwords.o counter.o scanner.o

To create the object file countwords.o, we need the source
files countwords.c, scanner.h, and counter.h:
#
countwords.o: countwords.c scanner.h counter.h
$(CC) $(CFLAGS) -c countwords.c

To create the object file counter.o, we need the source files
counter.c and counter.h:
#
counter.o: counter.c counter.h
$(CC) $(CFLAGS) -c counter.c

To create the object file scanner.o, we need the source files
scanner.c and scanner.h:
#
scanner.o: scanner.c scanner.h
$(CC) $(CFLAGS) -c scanner.c

To start over from scratch, type 'make clean'. This
removes the executable file, as well as old .o object
files and *~ backup files:
#
clean:

$(RM) count *.o0 *~

Another makefile (using makedepend and more advanced
make syntax)

This is an easier to use and modify makefile, but it is slightly more difficult to

3of5 12/28/2015 03:36 PM

http://www.cs.swarthmore.edu/~newhall/unixhelp...

read than the simple one:

'make depend' uses makedepend to automatically generate dependencies
(dependencies are added to end of Makefile)

'make’ build executable file 'mycc'

'make clean' removes all .o and executable files

HoH oW R R H

define the C compiler to use
CC = gcc

define any compile-time flags
CFLAGS = -Wall -g

define any directories containing header files other than /usr/include
#
INCLUDES = -I/home/newhall/include -I../include

define library paths in addition to /usr/lib

if I wanted to include libraries not in /usr/lib I'd specify
their path using -Lpath, something like:

LFLAGS = -L/home/newhall/lib -L../lib

define any libraries to link into executable:

if I want to link in libraries (libx.so or libx.a) I use the -1libname
option, something like (this will link in libmylib.so and libm.so:
LIBS = -lmylib -1m

define the C source files
SRCS = emitter.c error.c init.c lexer.c main.c symbol.c parser.c

define the C object files

#

This uses Suffix Replacement within a macro:

$(name:stringl=string2)

For each word in 'name' replace 'stringl' with 'string2'

Below we are replacing the suffix .c of all words in the macro SRCS
with the .o suffix

#

0BJS = $(SRCS:.c=.0)

define the executable file
MAIN = mycc

The following part of the makefile is generic; it can be used to
build any executable just by changing the definitions above and by
deleting dependencies appended to the file from 'make depend'

HoH oW W R

.PHONY: depend clean

all: $ (MAIN)
@echo Simple compiler named mycc has been compiled

$(MAIN): $(0OBJS)
$(CC) $(CFLAGS) $(INCLUDES) -o $(MAIN) $(0BJS) $(LFLAGS) $(LIBS)

this is a suffix replacement rule for building .o's from .c's

40f5 12/28/2015 03:36 PM

http://www.cs.swarthmore.edu/~newhall/unixhelp...

it uses automatic variables $<: the name of the prerequisite of
the rule(a .c file) and $@: the name of the target of the rule (a .o file)
(see the gnu make manual section about automatic variables)
.C.0:
$(CC) $(CFLAGS) $(INCLUDES) -c $< -0 %@

clean:
$(RM) *.0 *~ $(MAIN)

depend: $(SRCS)
makedepend $(INCLUDES) $°

DO NOT DELETE THIS LINE -- make depend needs it

An example simple Makefile for a Java

#

A simple makefile for compiling three java classes
#

define a makefile variable for the java compiler
#

JCC = javac

define a makefile variable for compilation flags
the -g flag compiles with debugging information
#

JFLAGS = -g

typing 'make' will invoke the first target entry in the makefile
(the default one in this case)

#

default: Average.class Convert.class Volume.class

this target entry builds the Average class
the Average.class file is dependent on the Average.java file
and the rule associated with this entry gives the command to create it
#
Average.class: Average.java
$(JCC) $(JFLAGS) Average.java

Convert.class: Convert.java
$(JCC) $(JFLAGS) Convert.java

Volume.class: Volume.java
$(JCC) $(JFLAGS) Volume.java

To start over from scratch, type 'make clean'.
Removes all .class files, so that the next make rebuilds them
#
clean:
$(RM) *.class

Here is an example of a Java makefile that uses more advanced makefile syntax.

50f5 12/28/2015 03:36 PM

