
Next: Assembler Options, Previous: Optimize Options, Up: Invoking GCC

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file
before actual compilation.

If you use the -E option, nothing is done except preprocessing. Some of these
options make sense only together with -E because they cause the preprocessor
output to be unsuitable for actual compilation.

You can use -Wp,option to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor, and
-Wp forcibly bypasses this phase. The preprocessor's direct interface is
undocumented and subject to change, so whenever possible you should avoid
using -Wp and let the driver handle the options instead.
-Xpreprocessor option

Pass option as an option to the preprocessor. You can use this to supply
system-specific preprocessor options which GCC does not know how to
recognize.

If you want to pass an option that takes an argument, you must use
-Xpreprocessor twice, once for the option and once for the argument.

-D name
Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared
during translation phase three in a `#define' directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you
may need to use the shell's quoting syntax to protect characters such as
spaces that have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the
option. With sh and csh, -D'name(args...)=definition' works.

-D and -U options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and
-U options.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

1 of 12 12/28/2015 09:33 PM

-U name
Cancel any previous definition of name, either built in or provided with a -D
option.

-undef

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-I dir
Add the directory dir to the list of directories to be searched for header
files. Directories named by -I are searched before the standard system
include directories. If the directory dir is a standard system include
directory, the option is ignored to ensure that the default search order for
system directories and the special treatment of system headers are not
defeated . If dir begins with =, then the = will be replaced by the sysroot
prefix; see --sysroot and -isysroot.

-o file
Write output to file. This is the same as specifying file as the second
non-option argument to cpp. gcc has a different interpretation of a second
non-option argument, so you must use -o to specify the output file.

-Wall

Turns on all optional warnings which are desirable for normal code. At
present this is -Wcomment, -Wtrigraphs, -Wmultichar and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of
the preprocessor's warnings are on by default and have no options to
control them.

-Wcomment

-Wcomments

Warn whenever a comment-start sequence `/*' appears in a `/*' comment,
or whenever a backslash-newline appears in a `//' comment. (Both forms
have the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program.
However, a trigraph that would form an escaped newline (`??/' at the end
of a line) can, by changing where the comment begins or ends. Therefore,
only trigraphs that would form escaped newlines produce warnings inside
a comment.

This option is implied by -Wall. If -Wall is not given, this option is still
enabled unless trigraphs are enabled. To get trigraph conversion without
warnings, but get the other -Wall warnings, use `-trigraphs -Wall
-Wno-trigraphs'.

-Wtraditional

Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and problematic constructs which should be avoided.

-Wundef

Warn whenever an identifier which is not a macro is encountered in an `#if'

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

2 of 12 12/28/2015 09:33 PM

directive, outside of `defined'. Such identifiers are replaced with zero.
-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is
used if it is expanded or tested for existence at least once. The
preprocessor will also warn if the macro has not been used at the time it is
redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined
in include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional
blocks, then CPP will report it as unused. To avoid the warning in such a
case, you might improve the scope of the macro's definition by, for
example, moving it into the first skipped block. Alternatively, you could
provide a dummy use with something like:

 #if defined the_macro_causing_the_warning
 #endif

-Wendif-labels

Warn whenever an `#else' or an `#endif' are followed by text. This usually
happens in code of the form

 #if FOO
 ...
 #else FOO
 ...
 #endif FOO

The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

-Werror

Make all warnings into hard errors. Source code which triggers warnings
will be rejected.

-Wsystem-headers

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible
for the system library, you may want to see them.

-w

Suppress all warnings, including those which GNU CPP issues by default.
-pedantic

Issue all the mandatory diagnostics listed in the C standard. Some of them
are left out by default, since they trigger frequently on harmless code.

-pedantic-errors

Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
`-pedantic' but treats as warnings.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

3 of 12 12/28/2015 09:33 PM

-M

Instead of outputting the result of preprocessing, output a rule suitable for
make describing the dependencies of the main source file. The preprocessor
outputs one make rule containing the object file name for that source file, a
colon, and the names of all the included files, including those coming from
-include or -imacros command line options.

Unless specified explicitly (with -MT or -MQ), the object file name consists of
the name of the source file with any suffix replaced with object file suffix
and with any leading directory parts removed. If there are many included
files then the rule is split into several lines using `\'-newline. The rule has
no commands.

This option does not suppress the preprocessor's debug output, such as -dM.
To avoid mixing such debug output with the dependency rules you should
explicitly specify the dependency output file with -MF, or use an
environment variable like DEPENDENCIES_OUTPUT (see Environment Variables).
Debug output will still be sent to the regular output stream as normal.

Passing -M to the driver implies -E, and suppresses warnings with an
implicit -w.

-MM

Like -M but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from
such a header.

This implies that the choice of angle brackets or double quotes in an
`#include' directive does not in itself determine whether that header will
appear in -MM dependency output. This is a slight change in semantics from
GCC versions 3.0 and earlier.

-MF file
When used with -M or -MM, specifies a file to write the dependencies to. If no
-MF switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options -MD or -MMD, -MF overrides the default
dependency output file.

-MG

In conjunction with an option such as -M requesting dependency
generation, -MG assumes missing header files are generated files and adds
them to the dependency list without raising an error. The dependency
filename is taken directly from the #include directive without prepending
any path. -MG also suppresses preprocessed output, as a missing header file

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

4 of 12 12/28/2015 09:33 PM

renders this useless.

This feature is used in automatic updating of makefiles.

-MP

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating
the Makefile to match.

This is typical output:

 test.o: test.c test.h

 test.h:

-MT target
Change the target of the rule emitted by dependency generation. By
default CPP takes the name of the main input file, deletes any directory
components and any file suffix such as `.c', and appends the platform's
usual object suffix. The result is the target.

An -MT option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to -MT, or
use multiple -MT options.

For example, -MT '$(objpfx)foo.o' might give

 $(objpfx)foo.o: foo.c

-MQ target
Same as -MT, but it quotes any characters which are special to Make.
-MQ '$(objpfx)foo.o' gives

 $$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with -MQ.

-MD

-MD is equivalent to -M -MF file, except that -E is not implied. The driver
determines file based on whether an -o option is given. If it is, the driver
uses its argument but with a suffix of .d, otherwise it takes the name of the
input file, removes any directory components and suffix, and applies a .d
suffix.

If -MD is used in conjunction with -E, any -o switch is understood to specify
the dependency output file (see -MF), but if used without -E, each -o is

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

5 of 12 12/28/2015 09:33 PM

understood to specify a target object file.

Since -E is not implied, -MD can be used to generate a dependency output
file as a side-effect of the compilation process.

-MMD

Like -MD except mention only user header files, not system header files.
-fpch-deps

When using precompiled headers (see Precompiled Headers), this flag will
cause the dependency-output flags to also list the files from the
precompiled header's dependencies. If not specified only the precompiled
header would be listed and not the files that were used to create it because
those files are not consulted when a precompiled header is used.

-fpch-preprocess

This option allows use of a precompiled header (see Precompiled Headers)
together with -E. It inserts a special #pragma, #pragma GCC pch_preprocess
"<filename>" in the output to mark the place where the precompiled header
was found, and its filename. When -fpreprocessed is in use, GCC recognizes
this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is
only really suitable as input to GCC. It is switched on by -save-temps.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename
may be absolute or it may be relative to GCC's current directory.

-x c

-x c++

-x objective-c

-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has
nothing to do with standards conformance or extensions; it merely selects
which base syntax to expect. If you give none of these options, cpp will
deduce the language from the extension of the source file: `.c', `.cc', `.m', or
`.S'. Some other common extensions for C++ and assembly are also
recognized. If cpp does not recognize the extension, it will treat the file as
C; this is the most generic mode.

Note: Previous versions of cpp accepted a -lang option which selected both
the language and the standards conformance level. This option has been
removed, because it conflicts with the -l option.

-std=standard
-ansi

Specify the standard to which the code should conform. Currently CPP
knows about C and C++ standards; others may be added in the future.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

6 of 12 12/28/2015 09:33 PM

standard may be one of:

iso9899:1990

c89

The ISO C standard from 1990. `c89' is the customary shorthand for
this version of the standard.

The -ansi option is equivalent to -std=c89.

iso9899:199409

The 1990 C standard, as amended in 1994.
iso9899:1999

c99

iso9899:199x

c9x

The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89

The 1990 C standard plus GNU extensions. This is the default.
gnu99

gnu9x

The 1999 C standard plus GNU extensions.
c++98

The 1998 ISO C++ standard plus amendments.
gnu++98

The same as -std=c++98 plus GNU extensions. This is the default for
C++ code.

-I-

Split the include path. Any directories specified with -I options before -I-
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with -I
options after the -I-, those directories are searched for all `#include'
directives.

In addition, -I- inhibits the use of the directory of the current file directory
as the first search directory for #include "file". This option has been
deprecated.

-nostdinc

Do not search the standard system directories for header files. Only the
directories you have specified with -I options (and the directory of the
current file, if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but
do still search the other standard directories. (This option is used when
building the C++ library.)

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

7 of 12 12/28/2015 09:33 PM

-include file
Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the
preprocessor's working directory instead of the directory containing the
main source file. If not found there, it is searched for in the remainder of
the #include "..." search chain as normal.

If multiple -include options are given, the files are included in the order
they appear on the command line.

-imacros file
Exactly like -include, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire
all the macros from a header without also processing its declarations.

All files specified by -imacros are processed before all files specified by
-include.

-idirafter dir
Search dir for header files, but do it after all directories specified with -I
and the standard system directories have been exhausted. dir is treated as
a system include directory. If dir begins with =, then the = will be replaced
by the sysroot prefix; see --sysroot and -isysroot.

-iprefix prefix
Specify prefix as the prefix for subsequent -iwithprefix options. If the prefix
represents a directory, you should include the final `/'.

-iwithprefix dir
-iwithprefixbefore dir

Append dir to the prefix specified previously with -iprefix, and add the
resulting directory to the include search path. -iwithprefixbefore puts it in
the same place -I would; -iwithprefix puts it where -idirafter would.

-isysroot dir
This option is like the --sysroot option, but applies only to header files. See
the --sysroot option for more information.

-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++
headers.

-isystem dir
Search dir for header files, after all directories specified by -I but before
the standard system directories. Mark it as a system directory, so that it
gets the same special treatment as is applied to the standard system
directories. If dir begins with =, then the = will be replaced by the sysroot
prefix; see --sysroot and -isysroot.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by -I and before
the standard system directories. If dir begins with =, then the = will be

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

8 of 12 12/28/2015 09:33 PM

replaced by the sysroot prefix; see --sysroot and -isysroot.
-fdirectives-only

When preprocessing, handle directives, but do not expand macros.

The option's behavior depends on the -E and -fpreprocessed options.

With -E, preprocessing is limited to the handling of directives such as
#define, #ifdef, and #error. Other preprocessor operations, such as macro
expansion and trigraph conversion are not performed. In addition, the -dD
option is implicitly enabled.

With -fpreprocessed, predefinition of command line and most builtin macros
is disabled. Macros such as __LINE__, which are contextually dependent, are
handled normally. This enables compilation of files previously preprocessed
with -E -fdirectives-only.

With both -E and -fpreprocessed, the rules for -fpreprocessed take precedence.
This enables full preprocessing of files previously preprocessed with -E
-fdirectives-only.

-fdollars-in-identifiers

Accept `$' in identifiers.
-fextended-identifiers

Accept universal character names in identifiers. This option is
experimental; in a future version of GCC, it will be enabled by default for
C99 and C++.

-fpreprocessed

Indicate to the preprocessor that the input file has already been
preprocessed. This suppresses things like macro expansion, trigraph
conversion, escaped newline splicing, and processing of most directives.
The preprocessor still recognizes and removes comments, so that you can
pass a file preprocessed with -C to the compiler without problems. In this
mode the integrated preprocessor is little more than a tokenizer for the
front ends.

-fpreprocessed is implicit if the input file has one of the extensions `.i', `.ii'
or `.mi'. These are the extensions that GCC uses for preprocessed files
created by -save-temps.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report
correct column numbers in warnings or errors, even if tabs appear on the
line. If the value is less than 1 or greater than 100, the option is ignored.
The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants.
The default is UTF-8. charset can be any encoding supported by the
system's iconv library routine.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

9 of 12 12/28/2015 09:33 PM

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character
constants. The default is UTF-32 or UTF-16, whichever corresponds to the
width of wchar_t. As with -fexec-charset, charset can be any encoding
supported by the system's iconv library routine; however, you will have
problems with encodings that do not fit exactly in wchar_t.

-finput-charset=charset
Set the input character set, used for translation from the character set of
the input file to the source character set used by GCC. If the locale does
not specify, or GCC cannot get this information from the locale, the default
is UTF-8. This can be overridden by either the locale or this command line
option. Currently the command line option takes precedence if there's a
conflict. charset can be any encoding supported by the system's iconv
library routine.

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let
the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor will emit,
after the initial linemarker, a second linemarker with the current working
directory followed by two slashes. GCC will use this directory, when it's
present in the preprocessed input, as the directory emitted as the current
working directory in some debugging information formats. This option is
implicitly enabled if debugging information is enabled, but this can be
inhibited with the negated form -fno-working-directory. If the -P flag is
present in the command line, this option has no effect, since no #line
directives are emitted whatsoever.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as dejagnu.

-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This
form is preferred to the older form -A predicate(answer), which is still
supported, because it does not use shell special characters.

-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.

-dCHARS

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the
compiler proper, or reserved for future versions of GCC, and so are silently
ignored. If you specify characters whose behavior conflicts, the result is
undefined.
`M'

Instead of the normal output, generate a list of `#define' directives for
all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out what
is predefined in your version of the preprocessor. Assuming you have

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

10 of 12 12/28/2015 09:33 PM

no file foo.h, the command

 touch foo.h; cpp -dM foo.h

will show all the predefined macros.

If you use -dM without the -E option, -dM is interpreted as a synonym for
-fdump-rtl-mach. See Debugging Options.

`D'
Like `M' except in two respects: it does not include the predefined
macros, and it outputs both the `#define' directives and the result of
preprocessing. Both kinds of output go to the standard output file.

`N'
Like `D', but emit only the macro names, not their expansions.

`I'
Output `#include' directives in addition to the result of preprocessing.

`U'
Like `D' except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and `#undef'
directives are also output for macros tested but undefined at the time.

-P

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C
code, and will be sent to a program which might be confused by the
linemarkers.

-C

Do not discard comments. All comments are passed through to the output
file, except for comments in processed directives, which are deleted along
with the directive.

You should be prepared for side effects when using -C; it causes the
preprocessor to treat comments as tokens in their own right. For example,
comments appearing at the start of what would be a directive line have the
effect of turning that line into an ordinary source line, since the first token
on the line is no longer a `#'.

-CC

Do not discard comments, including during macro expansion. This is like
-C, except that comments contained within macros are also passed through
to the output file where the macro is expanded.

In addition to the side-effects of the -C option, the -CC option causes all
C++-style comments inside a macro to be converted to C-style comments.
This is to prevent later use of that macro from inadvertently commenting
out the remainder of the source line.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

11 of 12 12/28/2015 09:33 PM

The -CC option is generally used to support lint comments.

-traditional-cpp

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to
ISO C preprocessors.

-trigraphs

Process trigraph sequences. These are three-character sequences, all
starting with `??', that are defined by ISO C to stand for single characters.
For example, `??/' stands for `\', so `'??/n'' is a character constant for a
newline. By default, GCC ignores trigraphs, but in standard-conforming
modes it converts them. See the -std and -ansi options.

The nine trigraphs and their replacements are

 Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??-
 Replacement: [] { } # \ ^ | ~

-remap

Enable special code to work around file systems which only permit very
short file names, such as MS-DOS.

--help

--target-help

Print text describing all the command line options instead of preprocessing
anything.

-v

Verbose mode. Print out GNU CPP's version number at the beginning of
execution, and report the final form of the include path.

-H

Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the `#include' stack it
is. Precompiled header files are also printed, even if they are found to be
invalid; an invalid precompiled header file is printed with `...x' and a valid
one with `...!' .

-version

--version

Print out GNU CPP's version number. With one dash, proceed to
preprocess as normal. With two dashes, exit immediately.

Preprocessor Options - Using the GNU Compiler ... https://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Prep...

12 of 12 12/28/2015 09:33 PM

