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Abstract
The advent of multi-core microprocessors with restricted transac-
tional memory (RTM) and accompanying compiler support allows
us to revisit fundamental data structures with an eye to extracting
more parallelism. The Patricia trie is one such common data struc-
ture used for storing both sets and dictionaries in a variety of con-
texts. This paper presents a concurrent implementation of a dynam-
ically sized Patricia trie using a lock teleportation RTM fast path for
find, add and remove operations, and a slow path based on atomic
exchange spinlocks. We weigh the tradeoffs between alphabet size
and tree depth inherent to tries and propose a novel means of deter-
mining the optimal number of retry attempts for specific operations
on dynamically allocated data structures. The strategy proposed
separates the retry policy governing operations that potentially in-
teract with the operating system’s memory management facilities
from read-only operations, and we find that this transactional trie
can support considerably higher multiprogramming levels than its
lock-based equivalent. A notable result is that this scheme keeps
throughput from collapsing at high thread counts, even when the
number of threads interacting with the data structure exceeds the
number of hardware contexts available on the system.

Keywords Patricia trie, symmetric multiprocessing, concurrent
data structure, hardware transactional memory, restricted transac-
tional memory

1. Introduction
1.1 Transactional Memory
Transactional memory is a synchronization paradigm, which ef-
fectively exends the atomicity of traditional atomic shared mem-
ory operations like compare-and-swap or fetch-and-add to gener-
alized read-modify-write operations on arbitrary regions of mem-
ory [12]. Although it was originally conceived as an architectural
feature to extend cache coherency protocols in hardware, until re-
cently all implementations were strictly in software [29]. The com-
posability of speculative regions of software execution alone is a
benefit to the productivity of programmers writing concurrent soft-
ware, but before the widespread commercial availability of hard-
ware with transactional memory support, the full performance ben-
efits of the technique could not be brought to bear. Currently avail-
able commercial hardware such as Intel’s Haswell processors [14]
and POWER8 architecture systems like IBM Blue Gene/Q [11] and
System z [16] all support best-effort hardware transactional mem-
ory, meaning there are no guarantees of forward progress, and a
transaction may abort for any reason, the cause of which may be
opaque to the programmer. Avni and Kuszmaul preface [1] with
a good summary of the variety of issues that may trigger an abort
for unspecified reasons under Intel’s Transactional Synchronization

Extensions (TSX) RTM. The reasons for transactional aborts under
the TSX scheme that do not have an cause visible to the program-
mer may include cache misses, TLB misses and interrupts. For
these reasons, it is common to use pre-allocation strategies when
investigating data structures under HTM in order to avoid inter-
ference from the operating system. The implementation presented
here, however, uses dynamic memory allocation at runtime as one
would expect from a normal data structure in the field.

1.2 Tries
Tries [9] are tree data structures used to store a set of arbitrary
length keys. The root of such a tree is a node corresponding to
the null string key. Each node, including the root, has a number
of possible children determined by the number of characters in the
alphabet from which strings are composed. A string present in the
set will have a succession of non-null pointers to character nodes
starting at the root which match each character in its sequence. This
assumes the presence of a string termination signifier such as the
“\0” character from the C string model or a flag within the node
signfying the end of a string. Without a signifier of this kind, it
could be inferred that prefixes of strings in the set were themselves
keys in the set when in fact they were not [3]. In their simplest
form, therefore, tries have exactly one node for every character in a
unique suffix of a given string within the set. Shared string prefixes
then share the prefix nodes descending from the root since their
unique suffixes will only branch at the node corresponding to the
character at which the strings themselves diverge.

1.3 Patricia Tries
A Patricia trie [24] (also known as a radix tree or prefix tree) is a
compact trie, in which any only child node can be eliminated by in-
corporating it into its parent node. A string with a suffix unique to
the set can consequently be stored with a single node regardless of
the length of the suffix. By the same logic, common internal sub-
strings need only be represented by a single node as well, which
further reduces memory overhead. This modification requires that
the data structure keep track of the omitted characters in the com-
pressed portions of the string on a node-by-node basis. Due to their
modest time complexity for key lookup, Patricia tries are often
used in IP address lookup [26] [30], as well as as natural language
processing applications such as approximate string matching [28].
They also often serve as an intermediary lookup data structure for
more intricate objects such as the string B-tree [8].

1.4 Alphabet Size
The most natural choice of alphabet, in which there are 256 pos-
sible characters for each byte, may be efficient in the overall num-
ber of pointer references necessary to store a given string, but this
incurs an additional memory cost because of the per-node stor-

1



∅

p

a

r

s

e

\0 r

\0 s

\0

i

n

g

\0

t

r

i

c

i

a

\0 n

\0

r

i

n

t

\0

c

e

\0

t

h

o

u

g

h

\0 t

\0

r

i

e

\0

u

e

\0

t

h

\0

Figure 1. An uncompressed trie.
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Figure 2. A Patricia trie.

age required to store the large alphabet. Each node’s data structure
must account for the 256 possible child nodes with 256 initially
null pointers. On 64-bit architectures, this gives each node an in-
herent 2 KB memory overhead. Although small in absolute terms,
this prohibits a node from fitting in a single cache line on all cur-
rent consumer systems. While cache locality is important for any
data structure, we will discuss why it is particularly important for
hardware transactional memory in the section on data structure op-
timization.

Bitwise Patricia tries (also known as binary Patricia tries) all
but eliminate this overhead in individual nodes by reducing the al-
phabet size to two, 0 and 1. It is partly due to this minimal mem-
ory footprint that bitwise Patricia tries have seen use in operating
system infrastructure. One notable example is Doug Lea’s Malloc
(dlmalloc) [20], which uses a bitwise Patricia trie to efficiently
index free chunks by their sizes [21]. A proposed intermediate al-
phabet reduction approach suggests using a hexadecmial alphabet

to reduce memory overhead to 128 B [3]. Several proposed prefix
trees and Patricia tries use an alphabet smaller than a byte alphabet
but larger than a binary alphabet [2] [5]. While not having a strictly
minimal memory footprint like tries based on binary alphabets, Pa-
tricia tries with alphabet size 2k have, on average, half the maxi-
mum tree depth of those with alphabet size 2k−1. Read operations
are performed in O(l) time where l is the length of the search string
in alphabetic units, and modify operations are performed in O(kl)
time. As touched upon in discussing node size, n strings each with
length li are stored with O(nk +

∑
i<n li) space complexity [3].

We consider tries over a range of practical alphabets: binary, quar-
ternary, hexadecimal and byte, each with 1-bit, 2-bit, 4-bit and 8-bit
character sizes, respectively.

2. Related work
Shafiei describes a scalable, lock-free implementation of binary Pa-
tricia tries using compare-and-swap operations [27]. The initial im-
plementation presented here was directly inspired by her thorough
description of the issues in developing concurrent tries. As of the
time of writing, however, we are unable to find any lock-free im-
plementations for Patricia tries with arbitrary alphabet sizes.

Boehm et al. introduce the the uncompressed Generalized Prefix
Tree (GPT), which takes advantage of an array of “jumper” pointers
to find the nodes representing known prefixes without needing to
lock nodes near the root in concurrent execution. They couple this
with a node preallocation strategy to improve scalability. [2]

Leis et al. describe the Adaptive Radix Tree (ART), a novel solu-
tion to the trade-off alphabet size presents between tree-depth and
node size, in which the number of child pointers in a given node is
free to vary with the number of suffixes that happen to diverge from
a particular node’s prefix [22]. They also demonstrate the improved
scalability of their data structure using HTM, specifically Intel’s
RTM, and propose the use of memory allocators with thread-local
buffers to mitigate aborts caused by the allocator’s trapping to the
operating system [23]. The work thoroughly explores the implica-
tions of an HTM-enable ART within a main memory database, but
it does not provide experimental data on the implications of concur-
rent workloads in which the multiprogramming level significantly
exceeds the number of hardware contexts available on a given sys-
tem, which is a primary aim of our work presented here.

3. Implementation
3.1 Data structure
The top-level trie data structure only needs to be aware of the size
of the alphabet its nodes have and to maintain a reference to the
root node of the trie. We also include a size parameter to allow for
convenient memory usage housekeeping.

typedef struct pt {
// Number of characters in the alphabet.
uint8_t alphabet_size;
// Data structure size in bytes.
size_t size;
// Root (empty string) node.
pt_node_t *root;

} pt_t;

Listing 1. pt_t.

We compose the contents of our trie out of two defined types, a
generic string and a Patricia trie node. The use of a generic string as
opposed to native C strings is warranted since we are interested in
sequences of values at arbitrary granularities. Therefore all strings
mentioned in the following algorithmic description include a length
field defined in terms of alphabetic units.

typedef struct string {
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// An array of bytes.
char *string;
// String length in alphabetic units.
uint32_t length;

} string_t;

Listing 2. string_t.

Fundamentally, a trie node must have a generic label string that
specifies the prefix it represents, a flag for whether the node’s label
itself is a key in the set and an array of child nodes whose size is
specified by the alphabet we are using. Our trie implements a set for
testing purposes, but all that would be needed to create a dictionary
instead is a pointer at leaf nodes to some arbitrary payload, and this
would require minimal changes to the layout of pt node t.

typedef struct pt_node {
// Mutual exclusion lock.
pthread_mutex_t lock;
// Prefix and prefix length.
string_t label;
// Whether the node is a leaf.
uint8_t leaf;
// Number of immediate child nodes.
uint16_t n_children;
// Child nodes.
struct pt_node *next[ALPHABET_SIZE ];

} pt_node_t;

Listing 3. pt_node_t for a mutex-based trie.

Figure 3 shows the logical layout of the several internal nodes
within the trie data structure as described. Note that internal nodes
may be leaves if they are so marked.

0 1 2 3

Label: 31204

Leaf: false
Number of children: 2

0 1 2 3

Label: 312003234

Leaf: true
Number of children: 1

0 1 2 3

Label: 3120214

Leaf: false
Number of children: 3

Figure 3. An example of the logical layout of a portion of a
quarternary alphabet Patricia trie. The characters at which child
node labels diverge from their parent node label are shown in bold.

3.2 Hand-over-hand Locking
Hand-over-hand locking is a well understood synchronization
paradigm for list- and tree-like concurrent data structures [4]. We
based our implementation of a lock-based Patricia trie off of a
simplified (not lock-free) implementation of Shafiei’s lock-free bi-
nary Patricia trie [27] and generalized it to arbitrary alphabet sizes.
Hand-over-hand locking for our trie only needs to satisfy the in-
variant that a thread may only modify or dereference a pointer if
it has a lock on the node containing said pointer. Since the mecha-
nism behind such a locking scheme is commonplace, what follows
is just a summary of the assumptions and effects of each primitive
leaf operation and how they are composed into operations on keys
in the set.

search():

• Arguments: a pointer to the trie and a pointer to the query string.
• Returns: a custom data structure with the grandparent, parent,

current node in the search routine, and a Boolean integer rep-
resenting the current node represents an exact match or merely
the parent of where a prospective match might go. All the nodes
in the structure are locked upon return.

• Assumptions: the trie exists, and the query string conforms to
the specifications of the string t type.

insert leaf():

• Arguments: the presumptive grandparent of the node to insert
(i.e., parent in the result from search() and the presumptive
parent of the of the node insert (i.e., current in the result from
search()).

• Returns: number of bytes added to the trie data structure, with
all argument nodes and inserted nodes having been unlocked.

• Assumptions: the grandparent and parent nodes exist and are
locked, and the insertion string conforms to the specifications
of the string t type.

delete leaf():

• Arguments: the grandparent of the node, the parent of the node,
and the actual node to delete.

• Returns: number of bytes removed from the trie data struc-
ture, with all argument nodes having been either unlocked or
destoyed.

• Assumptions: the grandparent node, the parent node and the
deletion node exist and are locked.

From these basic operations, we can easily construct an external
find string() function to determine if a key is in the set the trie
represents by calling search(), unlocking the grandparent, parent
and result nodes and returning whether there was a match. Simi-
larly, it is straightforward to construct an add string() function
by calling search() and passing its output into insert leaf().
By the same logic, a remove string() function is the equivalent
combination of search() and delete leaf().

4. Baseline Transactional Impementation
4.1 Experimental Setup
All of the experimental results presented in the following sections
have been generated on an Intel Core i7-4770 3.40 GHz Haswell
CPU, with four discrete cores. Each core has 64 B cache lines, a
32 KB eight-way associative L1 cache, a 256 KB eight-way asso-
ciative L2 cache and two hardware contexts, giving the chip a total
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of eight simultaneous multithreading hardware threads or Hyper-
Threads. The four cores share an 8 MB L3 cache and beneath that,
8 GB of main memory. At the time of writing, the experimental
computer was running Debian 7 “Wheezy” and version 3.10.11 of
the Linux kernel, and the C code was compiled under GCC 4.8.10
with -O2 optimization enabled. All node allocations have been
aligned to cache line boundaries using posix_memalign(), and
unless otherwise specified all keys are randomly generated 128-bit
integers so as to simulate a probable use case, the storage of IPv6
addresses.

4.2 Algorithmic Description
“Lock teleportation” [13] forms the basis of our speculative search
implementation. We define individual speculative critical sections
for search(), insert leaf() and delete leaf() as those re-
gions of execution in which hand-over-hand locking proceeding
from the root would—in a mutual exclusion implementation—obey
the invariant that a pointer may only be dereferenced or modified
by a thread holding the containing node’s lock. A lock teleportation
traversal of the trie in speculative_search() simply traverses
without locking, knowing that its speculative reads would be inval-
idated should it observe an inconsistent state. Such states include,
among other things, a pointer to a region of memory which has
since been set to null and deallocated in another thread’s cache, a
fact which eliminates the need for locking on the basis of concur-
rent memory safety. Before commiting its speculative transaction,
a thread in speculative_search() just needs to modify the lock
variable of the result node and its parent to mimic the scenario in
which it had actually traversed the entirety of the trie, locking each
node along the way. Thus a thread, which successfully commits the
transaction, will have traversed the trie having seen a state consis-
tent with a linearizable execution while not excluding other threads
from operating on those same nodes along its path. This property
allows for considerably more parallelism than we would observe in
a method in which other threads are barred form accessing nodes
through mutual exclusion during concurrent traversals.

Should speculative_search() fail to commit, we may retry
the search operation for a set number of times before falling back to
a serialized spinlock-based implementation locking_search().
The retry policy, as it applies to each type of abort, reflects the
likelihood of another attempt committing in a style based on
Avni and Kuszmaul’s implementation in [1]. For instance, given
the abort code explanations in [14], if encouraged to retry by an
_XABORT_RETRY abort code, it would be prudent to make an-
other attempt, but an _XABORT_CAPACITY abort code indicates
the read set may have exceeded the hardware limits, and another
attempt would be wasteful. The initial default configuration al-
lows for a maximum of ten retries per speculative critical section
as a worst case. Listing 4 describes our retry procedure in detail
by showing the source code for search(); insert_leaf() and
delete_leaf() follow a similar prototype.

The search(), insert leaf() and delete leaf() func-
tions composed into find string(), add string() and
remove string() operations commit their own transactions and
have their own retry policies. Despite requiring two speculative
critical sections for modify operations like add_string() and
remove_string() and creating a kind of globally consistent way-
point between the two phases, this extra step allows us to decouple
our retry policy between the read and modify sections of trie oper-
ations, and allows for performance tuning covered in Section 5.2.

4.3 Choice of Memory Allocator
The lack of standard library transaction-friendly memory alloca-
tion has until very recently been an issue preventing the wide ap-
plication of hardware transactional memory to dynamically sized

data structures [17]. Most memory allocators, including the default
allocator in the version of glibc available on our test system at
the time of writing (see Appendix), make frequent system calls to
brk() and sbrk(), potentially trapping to the operating system
through a fault handler in order to acquire more space on the heap.
Such behavior, however, causes any speculative execution at the
time of the system call to abort. Thread caching allocators are a
proposed [17] [23] solution to this issue in that a thread may re-
quest more heap space from a private cache of free chunks with-
out having to explicity invoke operating system facilities for small
allocations. Below we detail the performance of the transactional
binary alphabet implementation of the trie when paired with the
standard glibc malloc implementation, and two thread-caching
allocators, FreeBSD’s jemalloc [7] and Google’s tcmalloc [10].
Our test has eight threads operating on a set of initially 1,000,000
128-bit random keys with 100% add operations. All transactional
aborts, except conflict and capacity aborts, are retried ten times.

memory allocator mean ops / sec mean abort rate
glibc 2.13 273,541 100.0%

jemalloc 3.0.0 732,995 100.0%
tcmalloc 2.0 839,010 58.2%

Across all three allocators, the majority of aborts were due to either
capacity aborts (either traversing the trie itself or the underlying
chunk layout data structure in the system’s memory allocator) or
unspecified aborts (presumably related to trapping to the operating
system), with approximately four times as many unspecified aborts
as capacity aborts. glibc malloc and jemalloc, which both had a
100.0% abort rate, differed in that jemalloc posted approximately
four times the number of aborts as glibc malloc, which suggests
that aborts occurred earlier in execution although ultimately failing.
tcmalloc is the only allocator which performed successful alloca-
tions in speculative execution, although its abort rate was still quite
high.

A method of analysis suggested by Doeppner in [6] to track the
frequency of system calls used by concurrent memory allocators
with strace proves very useful here. The primary trapping sys-
tem calls that may be at fault for unspecified aborts in the memory
allocator include futex(), mmap() and brk(). A call to futex()
may only trap to the operating system if the mutex in question is un-
der contention and has a wait queue already established, but it will
otherwise remain in user mode (hence Fast Userspace muTEX).
mmap(), which is primarily used for large changes to the process
heap, and brk(), which is used to for smaller increases in heap
size, are both prone to triggering page fault interrupts. If we mon-
itor the number of system calls invoked using a non-transactional
spinlock execution with eight threads (strace does not seem to
operate correctly with TSX programs) and compare the system call
activity of a binary linked against glibc’s ptmalloc to that of one
linked against Google’s tcmalloc, we can see the following trend.

memory allocator futex() calls mmap() calls brk() calls
glibc 2.13 22 50 6196

tcmalloc 2.0 3912 301 409

Although in this test there were many more calls to futex() in the
tcmalloc version, it is very likely that a thread will only be ac-
cessing its own cached heap’s mutex and thus there will be no wait
queue and no need to trap to the kernel to involve the scheduler. The
more telling statistic is the fact that glibc’s allocator made over fif-
teen times as many trapping calls to brk(). Instead of small incre-
mental increases to the heap, tcmalloc allocated large amounts

4



pt_result_t search(pt_t *trie , string_t *query_string)
{

// Transactional memory variables.
int retries , status;

// Algorithm variables.
pt_result_t result;

// Entry point for speculative execution.
retries = 0;
search_retry:

// Begin speculative execution.
status = _xbegin ();

// --- RTM Fast Path ---

if (status == _XBEGIN_STARTED) {
result = speculative_search(trie , query_string);
_xend();

// --- Spinlock Slow Path ---

} else {
// Retry the transaction under certain conditions if the retry count has not been exceeded.
if (status == _XABORT_RETRY) {

retries ++;
if (retries <= NUM_RETRIES_SEARCH)

goto search_retry; // Always retry if encouraged to do so.
} else if (status == _XABORT_EXPLICIT && _XABORT_CODE(status) == 0xff) {

retries ++;
if (retries <= NUM_RETRIES_SEARCH)

goto search_retry; // One of the teleported locks was busy , so always retry.
} else {

if (status != _XABORT_CONFLICT && status != _XABORT_CAPACITY) {
retries ++;
if (retries <= NUM_RETRIES_SEARCH)

goto search_retry; // Unspecified abort , so always retry.
}

}

// If we get here , we should just perform hand -over -hand locking.
result = locking_search(trie , query_string);

}

return result;
}

Listing 4. search().

of memory in the form of calls to a mmap() to divide among the
threads as needed, and crucially it needed to do this far less often
than glibc’s ptmalloc called brk(). In short, tcmalloc seems
far less likely to trap to the operating system and abort a transac-
tion. In light of these results, we will use tcmalloc as the baseline
allocator against which to link the test binaries.

4.4 Baseline Performance
As seen in Figure 4, the transactional implementation matches the
scaling of its slow-path spinlock implementation at thread counts
below the number of available hardware contexts, but unlike the the
spinlock version, its throughput does not collapse as the number
of concurrent threads increases. In fact for all concurrent thread
counts less than thirteen, its performance surpasses that of all other
synchronization methods outright. Since there does not appear to
be a notable increase in abort rate at the highest thread counts,
some of the decline in throughput may be due to context switching
overhead and thrashing that is difficult to quantify in the absence of
a TSX-enabled profiler (see Appendix).

All lock-based schemes use standard POSIX thread locking
facilities, but the adaptive mutex lock is a special, non-portable
form of mutex available in glibc which can switch dynamically
between exponential backoff spinlock behavior and traditional wait

queue mutex behavior [18]. We will show later that, as it turns
out, the hexadecimal alphabet shown here is the best among those
considered, but there are further benefits that can be gained from
modifying the retry strategy.

5. Areas for Optimization
5.1 Alphabet Size
Using a baseline number of retry attempts with ten attempts for read
operations and ten for write operations, we may assess the through-
put of each alphabet size superficially in Figure 5 before looking
at the primary sources of performance variation. There is a known
correlation between alphabet size and tree depth already discussed
in Section 1.4, and following that line of logic without considering
cache friendliness would suggest the optimality of large alphabets.
The superior throughput of moderate alphabet sizes observed in
Figure 5, however, shows that a higher rate of L1 and L3 cache
misses incurred by large alphabets is not negligible. We have simu-
lated the cache behavior of various tries with cachegrind profiling
tool [25] using our default spinlock imlementation with eight con-
current threads.
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the mean throughput over ten runs in each configuration, and error bars reflect the minimum and maximum throughput recorded. Note the
inflection in throughput when the number of OS threads exceeds the available number of hardware threads on the system.

alpha. size L1 D-cache miss rate L3 D-cache miss rate
2 2.4% 0.7%
4 3.8% 1.3%
16 4.1% 1.8%

256 7.4% 5.6%

Since a last-level cache miss on modern architectures may take
several hundred times longer than an L1 hit, it follows that the
high L3 data cache miss rate we observe with the byte alphabet
may have an unduly large impact on throughput figures. It is also
stands out that the poor cache behavior of the byte version is not
consistent: looking at the error bars, there are executions in which
it attains 14 million operations per second, which is well above the
performance of other alphabet tries. That said, the significant drop
in mean performance between the hexadecimal and byte alphabets
at eight threads is still mainly due to the much larger node and data
structure size we see with larger alphabets in the table below.

alpha. size node size trie size with 1,000,000 128-bit keys
2 48 B 107,963,659 B
4 64 B 114,748,505 B

16 160 B 225,471,634 B
256 2,080 B 2,284,996,369 B

Since the hexadecimal alphabet version of the trie offers the
best performance at full hardware thread residency (eight threads)
and shows only modest throughput deterioration at higher multi-
programming levels, we will use it as the basis of futher retry pol-

icy optimizations in the following section. A strange observation,
however, is that the hexadecimal alphabet despite having the high-
est absolute throughput, does not have the consistent performance
of smaller alphabets as the number of threads increases. This seems
to be more pronounced on less populated tries (1,000,000 initial
keys in Figure 5 as opposed to 10,000,000 used in Figure 4). The
rationale behind the smaller initial key population in the alphabet
comparison is entirely due to memory constraints: the byte alphabet
trie is simply too memory intensive to populate more fully.

5.2 Retry Policy
Having separate retry policies for search(), insert leaf() and
delete leaf() lets us vary the number of retry attempts allowed
for a given task as seen fit. In order to define a retry policy de-
sign space, we have divided the basic operations broadly into two
categories: a read operation, search(), and two modify opera-
tions, insert leaf() and delete leaf(). Read operations are
not able to invoke the memory allocator and only interact with ex-
isting objects allocated on the heap, while modify operations may
invoke the memory allocator, although they are not guaranteed to
do so. This distinction allows us to tune our retry policy to minimize
potential interference from the memory allocator, and represents
a new approach to dealing with dynamically sized data structures
which support hardware transactions. We explore the correlation
between retry rate policies in a realistic (90% search, 5% insert and
5% remove) database workload on the set.

5.2.1 Database Workload (90-5-5), 8 Threads
With eight threads there is little correlation between retry policy,
throughput and abort rate.
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Constant: no retries per modify operation.
read retry rate mean ops / sec mean abort rate

0 9,607,605 25.0%
2 9,718,439 23.9%
4 9,883,110 23.1%
6 9,990,135 22.9%
8 9,865,361 23.0%

10 9,836,080 23.5%

Constant: no retries per read operation.
modify retry rate mean ops / sec mean abort rate

0 9,508,619 24.8%
2 9,445,998 26.4%
4 9,492,777 25.1%
6 9,346,614 26.7%
8 9,385,468 26.2%

10 9,199,493 28.2%

5.2.2 Database Workload (90-5-5), 16 Threads
At sixteen threads, however, there is a somewhat stronger correla-
tion between the number of read operation retries and the through-
put as seen in Figure 6. For instance, along the modify retry rate =
5 line, average throughput goes from 4,305,519 operations per sec-
ond with an abort rate of 34.5% at (5, 0) to 7,908,826 operations
per second with an abort rate of 22.1% at (5, 10). Maximal im-
provement from the baseline retry policy’s (10, 10) throughput of
7,806,431 occurs at (8, 9) with 8,339,432, which represents a 6.8%
increase over the baseline. Although the data has considerable noise
and the improvement over the baseline not overwhelming, such im-
provements at all suggest there is the potential to tailor retry to the
multiprogramming level to augment performance.

6. Conclusions
We have introduced a concurrent, dynamically sized implementa-
tion of the Patricia trie that uses Intel’s TSX instruction extensions
as a means for improving shared memory multiprocessing support.
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Figure 6. Heatmap visualization of throughput and retry rate de-
pendence with less than ten retry attempts.

The TSX-enabled version yields a significant improvement in per-
formance at high multiprogramming levels compared with other
synchronization primitives under realistic database workloads, and
we attempted to mitigate the negative affects of OS-level memory
management by isolating retried modify operations with their own
local policy, which also brought some benefit over the baseline.

An extended version of this project might focus more on scaling
behavior under high-contention workloads with short keys and see
if the orthogonal retry policy knobs give more leverage in that
scenario. It might also be interesting to see if the more stable
throughput of smaller alphabet tries seen in Figure 5 holds up in
these circumstances.

We have only performed a basic exploration of the space of pos-
sible retry strategies, but it is not hard to imagine situations where
there may be interactions between read and modify retry strategies
that are not so clear. To address such situations, it might be use-
ful to use heatmaps like the one exemplified in the retry/throughput
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chart in Figure 6. More rigorously, there are a variety of tools from
multivariate optimization that may be applicable which are beyond
the scope of the analysis presented here. The ability to modify retry
policy at runtime also presents the opportunity for dynamic work-
load characterization that may point to optimal retry policies under
certain conditions in a form of self-tuning data structure.

As it seems that most hardware transactional memory systems
will be best-effort for the foreseeable future, developers are left
to speculate about the causes of unspecified transactional aborts,
but analysis of this kind can provide insight into factors affecting
performance on a case-by-case basis. More generalized insight into
the interaction between runtime memory allocation and hardware
transactions is an open area of future research that will become
more feasible as future transactional hardware becomes more stable
and standard library support improves. A potential path for future
inquiry might be the characterization of the transaction-friendliness
of a variety of allocators including more recent versions of glibc
(see Appendix) under a less data-structure-centric workload.

Appendix
The most efficient way to profile a TSX-enabled application is
through the perf profiling tool, which allows access to hardware
counters with minimal performance impact on the program under
test [19]. The version of GNU binutils containing a TSX-aware
version of the perf utility, however, requires a more recent version
of the Linux kernel than the 3.10.11 kernel on the test system. We
were reluctant to update the kernel on the test system in light of
recent widely published bug in the RTM implementation on con-
sumer Haswell chips [15]. Intel has been disabling RTM function-
ality on many active Haswell processors through microcode up-
dates due to the hardware errors, and updating the test system past
this kernel version did not seem prudent given the the risk of dis-
abling the feature altogether. To circumvent this issue, we relied on
runtime abort and commit rate accounting that can potentially im-
pact throughput values, so figures and results comparing through-
put and abort/commit rates are decoupled, and the collection of the
two data points was performed in different executions on modified
binaries which enabled thread-local performance metric tracking.

Simliarly, all cache hit and miss rate figures were provided
by simulating the spinlock implementation in the cachegrind
environment when it would have been simpler and more accurate
to use perf alongside the transactional TSX-enabled binary.

A secondary side effect of using an older kernel version was
the inability to use a more recent version of glibc (≥2.15) in
which experimental support for RTM allocations has been enabled.
We suspect that the results using this more recent version with
the improved ptmalloc implementation may be similar to those
observed with tcmalloc in this study.
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