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Abstract

Minimal perfect hash functions are used for memory efficient storage and fast retrieval
of items from static sets. We present an infinite family of efficient and practical algorithms
for generating order preserving minimal perfect hash functions. We show that almost all
members of the family construct space and time optimal order preserving minimal perfect
hash functions, and we identify the one with minimum constants. Members of the family
generate a hash function in two steps. First a special kind of function into an r−graph is
computed probabilistically. Then this function is refined deterministically to a minimal
perfect hash function. We give strong theoretical evidence that the first step uses linear
random time. The second step runs in linear deterministic time. The family not only has
theoretical importance, but also offers the fastest known method for generating perfect
hash functions.

Key words: Data structures, probabilistic algorithms, analysis of algorithms, hashing,
random generalized graphs

1 Introduction

Consider a set S of n keys, where S is a subset of some universe U = {0, 1, . . . , u− 1}. We
assume that the keys in S are either integers or strings of characters. In the latter case the
keys can either be treated as numbers base |Σ| where Σ is the alphabet in which the keys
were encoded, or as sequences of characters over Σ. For convenience we assume that u is a
prime.

A hash function is a function h : U → M that maps the set of keys S into some given
interval of integers M , say [0, m − 1], m > 0. The hash function, given a key, computes an
address (an integer from M) for the storage or retrieval of that item. The storage area used
to store items is known as a hash table. A perfect hash function is an injection h : S → M ,
where S and M are sets as defined above, m ≥ n. If m = n, then we say that h is a minimal
perfect hash function. If for any two keys, xi and xj , from S we have that i < j implies
h(xi) < h(xj) then the hash function is order preserving.
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Perfect hashing offers one of the best implementations of a dictionary, a basic data
structure used in many areas of computer science. Overviews of perfect hashing are given by
Gonnet & Baeza-Yates (1991); Lewis & Cook (1988); Havas & Majewski (1992) and some
recent independent results are presented by Fox, Heath, Chen & Daoud (1992); Fox, Chen
& Heath (1992).

Various algorithms with different time complexities have been presented for constructing
perfect or minimal perfect hash functions. These fall into four broad categories: (i) number
theoretical methods; (ii) segmentation techniques; (iii) algorithms based on reducing the
search space; and (iv) algorithms based on sparse matrix packing. The algorithms in each
of the categories provide distinct solutions to the problem of finding perfect hash functions,
using similar ideas but different methods to approach them.

In recent years we have witnessed vital development in the field of probabilistic methods.
A number of powerful techniques have been developed, see Gupta, Bhaskar & Smolka (1994)
for an overview. One method that has proved its usefulness in fields ranging from Number
Theory to the Theory of Data Structures is random search. Often we are presented with tasks
where some vast search space S, which lacks regularity, is to be probed for an element with a
particular property P. Provided P is easily verified and S is abundant in elements satisfying
P, random search is an efficient and simple way of locating a desired element. The technique
relies on picking a random member of the space and testing whether it has property P.

Denote by p the probability that an x, randomly selected from S, has the property P;
p = Pr(x ∈ S has P) = |P|/|S|. Let X be a random variable that counts the number of
attempts executed before an x ∈ S having P is found. X has geometric distribution with

Pr(X = i) = (1− p)i−1p.

The probability distribution function of X, FX(i), is defined as

FX(i) =
i
∑

j=1

Pr(X = j) = 1− (1− p)i.

The expected value of X, which is the expected number of probes executed by the random
search algorithm, is

E(X) =
∞
∑

j=1

j Pr(X = j) =
1

p
.

The probability that the random search algorithm executes no more than i iterations is

Pr(X ≤ i) = FX(i).

For ε, 0 < ε < 1, the smallest i for which the random search algorithm terminates in i or less
iterations with probability at least 1− ε is

QX(ε) = min
i
{FX(i) ≥ 1− ε} =

⌈

ln ε

ln(1− p)

⌉

.

Observe that if p is a constant then random search requires an average of O(1) attempts and,
with high probability (that is probability exceeding 1 − O(n−k) for some positive k), takes
no more than O(logn) attempts to find an x ∈ S having P. If p = 1 − O(n−δ), for δ > 0,
then with high probability only 1 attempt is necessary.
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We present a parameterized method for generating minimal perfect hash functions, which
allows arbitrary distribution of keys in the hash table. The method is probabilistic and uses
random search to complete the first of two steps. It uses the concept of generalized graphs,
called r−graphs, where an r−graph is a graph in which each edge is a subset of a vertex set
V , containing precisely r elements, r ≥ 1. The hash function is of the form

h : x 7→ g(f1(x)) ¦ g(f2(x)) ¦ · · · ¦ g(fr(x))

where binary operator ¦ is a mapping from M × M to M , the functions fi map U into
V = {0, 1, . . . , ν − 1} for some integer ν > 0, and function g maps V into M . As the
generated function is to be minimal, we set |M | (= m) to n. For simplicity we choose ¦ to
be addition modulo n. Actually, any binary operator ¦ that forms a group together with M
may be used. For example we could choose exclusive or, giving benefits in speed and avoiding
overflow for large n. We show that each member of the family, for r ≥ 2 and a suitable choice
of parameters, constructs a minimal perfect hash function for S in O(n) expected time and
requires O(n logn) space. (The theoretical derivation is based on a reasonable assumption
about uniformity of the graphs involved in our algorithms.) An announcement of some of
the results presented here is given by Havas, Majewski, Wormald & Czech (1994).

2 The family

In order to generate a minimal perfect hash function we first compute a special kind of
function from the n keys into an r−graph with µ = n edges and ν vertices, where ν (which
depends on n and r) is determined in Sections 3 and 4. The special feature is that the
resulting r−graph must be acyclic (which we define formally below). We achieve acyclicity
probabilistically. Then, deterministically, we refine this function (from the keys into an
r−graph) to a minimal perfect hash function. The expected time for finding the hash function
is O(rµ + ν). This type of approach works for any r > 0. As the family of r−graphs for
r > 0 is infinite, we have an infinite family of algorithms for generating minimal perfect hash
functions.

Consider the following assignment problem. For a given r−graph G = (V, E), |E| = µ,
|V | = ν, where each e ∈ E is an r−subset of V , find a function g : V → {0, 1, . . . , µ − 1}
such that the function h : E → {0, 1, . . . , µ− 1} defined for e ∈ E, e = {v1, v2, . . . , vr}, as

h : e 7→
(

g(v1) + g(v2) + · · ·+ g(vr)
)

mod µ

is a bijection. In other words we are looking for an assignment of values to vertices so that
for each edge the sum of values associated with its vertices, modulo the number of edges, is
a unique integer in the range [0, µ− 1].

Acyclic r−graphs play a prominent role in our algorithm. However, because acyclicity
of r−graphs, especially for r ≥ 3, may be defined in many ways (Duke, 1985) we make the
notion precise by providing the explicit definition applicable to our case. We define a cycle
in an r−graph to be a subgraph with all vertices of degree at least 2. Thus we say that an
r−graph is acyclic if it does not contain a subgraph with minimum degree 2. An equivalent
definition of acyclicity of r−graphs is:

Definition 2.1 An r−graph is acyclic if and only if some sequence of repeated deletions of
edges containing vertices of degree 1 yields a graph with no edges.
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As has been shown by Majewski (1992) and Havas & Majewski (1993), acyclicity of an
r−graph is a sufficient (although not a necessary) condition for the assignment problem to
have a solution

Unfortunately, the acyclicity test suggested directly by the definition for r−graphs with
r > 1 may take O(µ2) time. A solution that runs in optimal time has the following form
(Havas, Majewski, Wormald & Czech, 1994). Initially mark all the edges of the r−graph as
not removed. Then scan all vertices, each vertex only once. If vertex v has degree 1 then
remove the edge e, such that v ∈ e, from the r−graph. When edge e is removed check if any
other vertex in e now has degree 1. If so, then for each such vertex remove the unique edge
to which the vertex belongs. Repeat this recursively until no further deletions are possible.
After all vertices have been scanned, check if the r−graph contains edges. If so, the r−graph
has failed the acyclicity test. If not, the r−graph is acyclic and the reverse order to that in
which the edges were removed is one we are looking for. (A stack can be used to arrange the
edges of G in an appropriate order for the second step.)

Theorem 2.2 The recursive acyclicity test runs in O(rµ+ ν) time.

Proof. Consider an r−graph G = (V, E), represented by a bipartite 2−graph H = (V1 ∪
V2, E

′) such that V1 ∩ V2 = ∅, where V1 = V and V2 = E and E′ = {{v, e} : v ∈ V, e ∈
E, v ∈ e}. In this representation both edges and vertices of the r−graph G become vertices
of the bipartite graph H. An edge in the bipartite graph connects two vertices v ∈ V1 and
e ∈ V2 if and only if v, a vertex in the r−graph, belongs to e, an edge, in the r−graph.
During the acyclicity test each vertex in V1 is tested at least once by the loop which looks for
vertices of degree 1. Once some edge e (which is a vertex in V2) is deleted, we test each other
vertex of e to see if its degree is now 1. This corresponds to traveling in graph H through
some edge {e, v}, where v belongs to e in G. Regardless of the result of the test, we never
use that edge (of H) again. Consequently, the number of tests performed on vertices in V1
is at most

∑

v∈V1
dg(v). As we access vertices in V2 only once (when we delete them) and all

operations mentioned here take constant time (for details see Section 3), the whole process
takes at most |V1|+ |V2|+

∑

v∈V1
dg(v) = ν + µ(r + 1) constant-time steps. ut

To obtain a solution to the generalized assignment problem we proceed as follows. As-
sociate with each edge a unique number h(e) ∈ {0, 1, . . . , µ − 1} in any order. Consider
the edges in reverse order to the order of deletion in an acyclicity test, and assign values to
each as yet unassigned vertex in that edge. Each edge, at the time it is considered, will have
one (or more) vertices unique to it, to which no value has yet been assigned. Let the set of
unassigned vertices for edge e be {v1, v2, . . . , vj}. For edge e assign 0 to g(v2), . . . , g(vj)
and set g(v1) = (h(e)−

∑r
i=2 g(vi)) mod µ .

To prove the correctness of the method it is sufficient to show that the values of the
function g are computed exactly once for each vertex, and for each edge we have at least one
unassigned vertex by the time it is considered. This property is clearly fulfilled if G is acyclic
and the edges of G are processed in the reverse order to that imposed by the acyclicity proof.

A complete algorithm comprises two steps: mapping and assignment. In the mapping
step the input set is mapped into an acyclic r−graph G = (V,E), where V = {0, 1, . . . , ν−1},
E = {{f1(x), f2(x), . . . , fr(x)} : x ∈ S}, and fi : U → V . An acyclic mapping is found using
random search. Then the assignment step is executed. Generating a minimal perfect hash
function is reduced to the assignment problem as follows. As each edge e = {v1, v2, . . . , vr} ∈
E corresponds uniquely to some key x (such that fi(x) = vi, 1 ≤ i ≤ r) we simply set,
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for e = {f1(x), f2(x), . . . , fr(x)}), h(e) = i − 1 if x is the ith key of S, yielding the order
preserving property. Then values of function g for each v ∈ V are computed by the assignment
step (which solves the assignment problem for G). The function h is an order preserving
minimal perfect hash function for S.

To complete the description of the algorithm we need to define the mapping functions fi.
Let us begin with the case when keys in the input set are integers. Ideally the fi functions
should map any key x ∈ S randomly into the range [0, ν− 1]. There is no efficient algorithm
for realizing a random function in the ideal sense, however limited randomness is often as
good as total randomness (Carter & Wegman, 1979; Schmidt & Siegel, 1990). A suitable
solution comes from the field originated by Carter & Wegman (1977) and called universal
hashing. A class of universal hash functions H is a collection of generally good quality hash
functions, from which we can easily select one at random. Carter &Wegman (1979) suggested
that polynomials of fixed degree be used while Dietzfelbinger & Meyer auf der Heide (1990)
proposed a class of universal hash functions which has many properties of truly random
functions. Another class was suggested by Siegel (1989). The last two classes require O(nε)
extra space, 0 < ε < 1. Finally Dietzfelbinger, Gil, Matias & Pippenger (1992) proved that
polynomials of degree d ≥ 3 perform well with high probability. An advantage that this class
offers is a compact representation of functions, as each requires only O(d log u) bits of space.
Any of these can be used for our purposes. Our experiments indicate that polynomials of
degree 3 or the class defined by Dietzfelbinger & Meyer auf der Heide (1990) are the most
reliable choices. For applications where speedy evaluation of the hash function is critical,
polynomials of degree 1 or 2 may be used, at the risk of longer than expected generation
time.

Character keys are more naturally treated as sequences of characters. Therefore we define
one more class of universal hash functions, Cν , designed specially for character keys. (This
class has been used by others, including Fox, Heath, Chen & Daoud (1992).) We denote the
length of the key x by |x| and its ith character by x[i]. A member of this class, a function
f : Σ∗ → {0, 1, . . . , ν − 1}, is defined as

f : x 7→





|x|
∑

i=1

T
[

i, x[i]
]



 mod ν

where T is a table of random integers modulo ν for each character and for each position of
a character in a key. Selecting a member of the class is done by selecting (at random) the
mapping table T . The performance of this class is satisfactory for alphabets with more than
about 8 symbols.

Class Cν allows us to treat character keys in the most natural way, as sequences of
characters from a finite alphabet Σ. However, we must remember that, for any fixed
maximum key length L, the total number of keys cannot exceed

∑L
i=1 |Σ|

i ∼ |Σ|L keys.
Thus either L cannot be treated as a constant and L ≥ log|Σ| n or, for a fixed L, there is an
upper limit on the number of keys. In the former case, strictly speaking, processing a key
character-by-character takes nonconstant time. Nevertheless, in practice it is often faster and
more convenient to use the character-by-character approach than it is to treat a character
key as a binary string. Other hashing schemes (Sager, 1985; Pearson, 1990; Fox, Heath, Chen
& Daoud, 1992) use this approach, asserting that the maximum key length is bounded. This
is an abuse of the RAM model (Aho, Hopcroft & Ullman, 1974, pp. 5–14), however it is a
pragmatic abuse. We make this assumption, keeping in mind that it is a convenience that
works in practice. It can be avoided by using for character keys our integer key approach,
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giving a theoretical validation of our claims. In practice, the schemes designed specially for
character keys have superior performance.

3 Implementation

In this section we explain two aspects of our implementation of the algorithm which are of
interest. We outline a graph representation that allows us to carry out the acyclicity test in
optimal time. We also show how to generate a random set of r vertices in such a way that
no two vertices are identical. We start with the former.

We use a modification of the edge-oriented graph representation suggested by Ebert
(1987). Ebert’s graph representation is for directed graphs, and the direction of edges plays
a significant role. The lists of edges incident with all vertices of a graph are stored in two
arrays: FIRST and NEXT. The element FIRST[v] defines the entry point to the list of edges
incident with the vertex v, while NEXT[FIRST[v]], NEXT[NEXT[FIRST[v]]], and so on, define the
subsequent edges containing v. The list ends with a special null edge, denoted by 0. Given
any edge e with two endpoints v1 and v2, we need a mechanism that allows us to store e on
both lists, without getting those lists interconnected. By introducing the notion of direction
and storing e as −|e| on one list and as +|e| on the other we avoid the problem of duplicate
entries in the two lists.

In the case of r graphs we need a more sophisticated mechanism. Using signs we have only
2 choices, but each edge e is present on r (generally greater than 2) different lists. Observing
that the sign of an integer is simply one extra bit reserved in a computer word and extending
that concept by allocating dlog2(r)e extra bits, we achieve the same effect that Ebert had
for 2−graphs. We choose to reserve those extra bits at the least significant part of the word.
Then, for notational convenience, we denote e× 2dlog2(r)e + i by e⊕ i.

In order to facilitate fast deletion of edges we add one more array, called PREV. For an edge
e, PREV[e⊕i] (for i = 1, . . . , r) stores the edge preceding edge e⊕i. Thus, if NEXT[e⊕i] = b⊕j
then PREV[b ⊕ j] = e ⊕ i. For those edges e for which NEXT[e ⊕ i] = 0, no entry in PREV is
equal to e⊕ i. For all edges e for which FIRST[v] = e⊕ i, PREV[e⊕ i] = 0.

procedure insert(v1, v2, . . . , vr)
G.µ := G.µ+ 1;
for i ∈ [1, 2, . . , r] do

NODE[G.µ][i] := vi;
if FIRST[vi] 6= 0 then

PREV[FIRST[vi]] := G.µ⊕ i;
end if;
NEXT[G.µ⊕ i] := FIRST[vi];
PREV[G.µ⊕ i] := 0;
FIRST[vi] := G.µ⊕ i;

end for;
end insert;

Figure 1: Edge insertion
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procedure delete(e)
for i ∈ [1, 2, . . , r] do

if PREV[e⊕ i] = 0 then {initial edge}
FIRST[vi] := NEXT[e⊕ i];

else {not initial}
NEXT[PREV[e⊕ i]] := NEXT[e⊕ i];

end if;
if NEXT[e⊕ i] 6= 0 then {not at the end}

PREV[NEXT[e⊕ i]] := PREV[e⊕ i];
end if;

end for;
end delete;

Figure 2: Edge deletion

For the complete representation, and also to facilitate retrieval of vertices given an edge,
for each e we store its r endpoints in NODE[e][1], . . . , NODE[e][r].

In this environment, building the representation of a graph is achieved by initializing
FIRST[v ∈ V ] := 0 and then executing the procedure insert (Fig. 1) µ times. Testing whether
a vertex v has degree 1 is done by verifying that FIRST[v] 6= 0∧NEXT[FIRST[v]] = 0. Removing
an edge requires O(r) constant time operations, as illustrated by the procedure delete (Fig. 2).
These and a few other simple operations allow us to implement the acyclicity test in O(ν+rµ)
time.

The second issue that we clarify is how, using exactly r calls to a random number
generator, we construct r numbers v1, v2, . . . , vr in the range [0, ν − 1], so that vi 6= vj
for i 6= j. Clearly simply generating r numbers between 0 and ν − 1 may create two or
more equal numbers, which is unsatisfactory, so we need a suitable alternative. We present
solutions that work for r = 2 and r = 3. As indicated later, these are the two most useful
cases and thus suffice for all practical purposes. An algorithm due to Floyd (Bentley, 1987)
can be used for general r.

In the following we assume that the function fi(x) returns a random number between 0
and ν − i, for i = 1, 2, . . . , r. For r = 2 we use the following device to generate the endpoints
of an edge:

v1 := f1(x);
v2 := (v1 + f2(x) + 1) mod ν;

This generates any pair of distinct numbers between 0 and ν − 1 with equal likelihood. For
r = 3 we use the following algorithm:

v1 := f1(x);
v2 := v1 + f2(x) + 1;
v3 := v1 + f3(x) + 1;
if v3 ≥ v2 then

v3 := v3 + 1;
end if;
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v2 := v2 mod ν;
v3 := v3 mod ν;

The second vertex is placed randomly anywhere except the first vertex; the third vertex is
placed randomly anywhere except the first or second vertex. This solution maintains an even
probability for any triple of values to be selected. As long as the functions fi take constant
time to compute, the time necessary to generate all vertices of an edge is O(r).

4 Complexity analysis

In this section we give strong theoretical evidence that the expected time complexity of our
algorithm is O(rµ+ ν), with µ = n. For r ≥ 2, ν = O(µ) and thus the method stops in O(n)
time.

The second step of the algorithm, assignment as described above, runs in O(rµ+ν) time.
We now show that each iteration of the mapping step takes O(rµ+ ν) time, and that we can
choose ν suitably so that the probability of generating an acyclic mapping tends to a nonzero
constant. By the argument presented in Section 1, the expected number of iterations in such
a case is O(1).

In each iteration of the mapping step, the following operations are executed: (i) selection
of a set of r hash functions from some class of universal hash functions; (ii) computation of
values of auxiliary functions for each key in a set; (iii) testing whether the generated graph
G is acyclic. Operation (i) for any of the described classes takes no more than O(µ+ν) time.
Operations (ii) and (iii) need O(rµ) and O(rµ+ν) time, respectively. Hence, the complexity
of a single iteration is O(rµ+ ν).

To obtain a nonzero probability of generating an acyclic r−graph we use very sparse
graphs. We choose ν = cµ, for some c > 1. We present three results which estimate c’s
for every r > 0, such that, as µ goes to infinity the associated probability, p, is a nonzero
constant. For r ≥ 3, p = 1.

4.1 Case 1; 1−graphs

Theorem 4.1 The probability of a random 1−graph with ν = cµ vertices and µ edges being
acyclic is a nonzero constant if and only if c = Ω(µ).

Proof. This follows from the solution to the occupancy problem (Feller, 1968). To prove it in
the case of limited randomness we may use Fredman, Komlós & Szemerédi (1984, Corollary 2)
or Dietzfelbinger, Gil, Matias & Pippenger (1992, Fact 3.2). ut

Use of 1−graphs is not efficient. It requires O(n2) space and time to build the hash
function.

4.2 Case 2; 2−graphs

This case is described in detail by Czech, Havas & Majewski (1992), including an example
and code for the algorithm.
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Theorem 4.2 Let G be a random graph with ν vertices and µ edges. Then if ν = cµ holds,
with c > 2, the probability that G is acyclic, for µ→∞, is

p = e1/c
√

c− 2

c
.

Proof. The probability that a random graph has no cycles, as µ tends to infinity, is exp(1/c+

1/c2)
√

c−2
c (Erdős & Rényi, 1960). As our graphs may have multiple edges, but no loops, the

probability that the graph generated in the mapping step is acyclic is equal to the probability
that there are no cycles times the probability that there are no multiple edges. The jth edge
is unique with probability (

(ν
2

)

− j + 1)/
(ν
2

)

. Thus the probability that all µ edges are

unique is
∏µ−1

j=0

((ν
2

)

− j
)

/
(ν
2

)µ ∼ exp(−1/c2 + o(1)) (Palmer, 1985, p. 129). Multiplying the
probabilities proves the theorem.

In the case of limited randomness we may use Fredman, Komlós & Szemerédi (1984,
Corollary 4) to prove that the probability of having no multiple edges tends to a nonzero
constant, and differs only slightly from the result obtained for unlimited randomness. For
longer cycles we must rely on the uniformity assumption. ut

Thus, if c = 2+ε the algorithm constructs a minimal perfect hash function in Θ(n) random
time. For c as small as 2.09 the probability of a random graph being acyclic exceeds p > 1

3 .
Consequently, for such c, the expected number of iterations in the mapping step is E(X) ≤ 3.
The probability that the algorithm executes more than j iterations is FX(j) ≤ 1− (2/3)j and
with probability exceeding 0.999 the algorithm does not execute more than QX(0.001) = 18
iterations.

4.3 Case 3; r−graphs for r ≥ 3

Recent theoretical work done by Pittel, Spencer & Wormald (1996) on 2−graphs allows us
to identify the ratio of ν to µ for which r−graphs tend to be acyclic. The following claim
characterizes the minimum cr such that if ν > crµ a random r−graph is acyclic with high
probability. (We choose to give a claim and justification rather than a theorem and proof
because of the length of a complete proof, witness Pittel, Spencer & Wormald (1996) which
runs to about 40 pages.)

Claim 4.3 The threshold for the appearance of a subgraph of minimum degree 2 in a random
r−graph, r ≥ 3, is cr = r/γ where

γ = min
x>0

{

x

(1− e−x)r−1

}

.

Justification. The argument given by Pittel, Spencer & Wormald (1996) is primarily
devoted to graphs (that is, 2-graphs) having subgraphs of minimum degree at least k. Here
is a brief summary, suitably modified so as to apply to r−graphs in general having subgraphs
of minimum degree at least 2.

Let H be a randomly chosen r−graph. Define V0 = V (H) (the vertex set of H) and,
for j ≥ 0, define by induction Vj+1 to be the set of vertices of Vj that have degree at least
2 in Hj , which we define as the restriction of H to Vj ; that is, we derive Hj+1 from Hj

by peeling off those vertices of degree less than 2. This process eventually terminates when
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Vj+1 = Vj = V∞, say, for some j. H has a subgraph of minimum degree at least 2 if and
only if V∞ 6= ∅, since V∞ will be the vertex set of the maximal subgraph of H of minimum
degree at least 2. Suppose H is selected by choosing each edge independently with probability
γ(r − 1)!/νr−1, where γ is some constant. Define

pi+1 = (1− e−γpi)r−1, qi+1 = (1− e−γpi)r.

Arguments similar to those of Pittel, Spencer and Wormald show that |Vj | ∼ qjν almost
surely as ν → ∞ with j fixed. Thus, if limj→∞ qj = 0 then for all ε > 0 we get |Vj | < εν
almost surely for j sufficiently large. A separate argument then shows that in this case there
is almost surely no subgraph of minimum degree 2. For higher edge probabilities, we have
lim
j→∞

qj 6= 0, and in this case it follows that a subgraph of minimum degree 2 exists almost

surely.

To see how these claims imply the stated value for the threshold, consider that in the
limit pi = pi+1 = p where

p = (1− e−γp)r−1.

Then
γ =

γp

(1− e−γp)r−1
,

and so
γ =

x

(1− e−x)r−1

for some x > 0. Thus the minimum positive value of x
(1−e−x)r−1 is the minimum γ for which

lim
j→∞

qj 6= 0. This gives the claimed threshold. ut

Since, for the critical cr, there is almost surely no subgraph of minimum degree 2 we
deduce that a random r−graph with µ edges and at least crµ vertices is acyclic with high
probability. This corresponds well with the preliminary analysis and observations made by
Havas, Majewski, Wormald & Czech (1994). There it was noticed that, for an increasing
number of keys, the probability of generating an acyclic r−graph, for r ≥ 3, approaches 1
polynomially fast in n. This distinguishes the case of r ≥ 3 from the case when r = 2, as for
2−graphs we have only a nonzero constant probability, but less than one, of completing the
mapping step to yield an acyclic graph

Plots of x(1− e−x)1−r, for r ∈ {3, 4, 5} are presented in Figure 3. It is possible to find
the exact formula for the point x∗ > 0 that minimizes f(x, r) = x(1−e−x)1−r. By computing
the first derivative of f(x, r) we get

df(x, r)

dx
= (1− e−x)−r [((1− r)x− 1)e−x + 1

]

.

As the first term, (1 − e−x)−r, for x > 0, is never 0 we may disregard it entirely. Thus we
are left with the equation

ex = 1 + (r − 1)x.

To solve it analytically we use Lambert’s W function, which satisfies W (z)eW (z) = z (Corless,
Gonnet, Hare & Jeffrey, 1993). Solving the equation gives

x∗r = −W

(

−1

r − 1
e−1/(r−1)

)

−
1

r − 1
.
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Figure 3: Plots of x(1− e−x)1−r for (a): r = 3, (b) r = 4 and (c) r = 5

For real z, with −1/e ≤ z ≤ 0 (which is appropriate for r ≥ 2), there are two real branches
of W (z), namely W0(z) and W−1(z). For the principal branch, which satisfies −1 ≤ W0(z),
we have W0(ze

z) = z. It follows that this branch gives us x∗r = 0 as a solution. The other
branch, satisfying W−1(z) ≤ −1, provides us with an alternative nonzero solution. As we are
not interested in the trivial (zero) solution we obtain

x∗r = −W−1

(

−1

r − 1
e−1/(r−1)

)

−
1

r − 1
.

For small values of r, r = 3, 4, 5, we have the following points (all approximations obtained
by MapleTM V, Release 2):

γ3 =
x∗3

(1− e−x∗3)2
≈ 2.45541,

γ4 =
x∗4

(1− e−x∗4)3
≈ 3.08912,

γ5 =
x∗5

(1− e−x∗5)4
≈ 3.50890.

The above points give us the following thresholds: c3 ≈ 1.22179, c4 ≈ 1.29487 and c5 ≈
1.42495. Notice that these values correspond very nicely with the experimental results
reported by Havas, Majewski, Wormald & Czech (1994), where the found constants cr were:
c3 = 1.23, c4 = 1.29 and c5 = 1.41. The theoretical threshold points for r−graphs, for
2 ≤ r ≤ 22, are plotted in Figure 4.

For r ≥ 5, using the approximation developed by Corless, Gonnet, Hare & Jeffrey (1993),
we may characterize the asymptotic behavior of x∗r , which is

x∗r ' ln(r) + ln(ln(r)) +
ln(ln(r))

ln(r)
+

2 ln(ln(r))− ln(ln(r))2

2 ln(r)2
−

1

r − 1
+O

(

1

r2

)

.

5 Discussion

The described methods represent special cases of solving a set of n linearly independent
integer congruences with a larger number of unknowns. These unknowns are the entries of
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Figure 4: Threshold points for random r−graphs, for r ∈ {2, 3, . . . , 22}

array g. We generate the set of congruences probabilistically in O(n) time. We require that
the congruences are consistent and that there exists a sequence of them such that ‘solving’ i−1
congruences by assignment of values to unknowns leaves at least one unassigned unknown
in the ith congruence. We find the congruences in our mapping step and such a solution
sequence in our independence test. It is conceivable that there are other ways to generate a
suitable set of congruences, with at least n unknowns, possibly deterministically. It may be
that memory requirements for such a method would be smaller than for the given method.
However, any space saving can only be by a constant factor, since Ω(n log n+log log u) space
is required for order preserving minimal perfect hash functions, as informally proved by Fox,
Chen, Daoud & Heath (1991); Havas & Majewski (1992). Further, it remains to be seen
whether the solution (such values for array g that the resulting function is minimal and
perfect) can then be found in linear time.

6 Conclusions

A new family of algorithms for generating minimal perfect hash functions has been developed.
The time complexity of the members of the family is shown to be O(rµ+ ν). For r > 1 this
is linear in the number of keys, which is optimal. The space complexity of constructed hash
functions is cn logn+O(r) log ν bits (or cn+O(r) words, as long as ν fits into a word). This
is also optimal. For r = 3, minimum space is required, with c ≈ 1.23.

For a large enough number of keys, r = 3 also provides the fastest member of the
family. Observe that the generated hash function allows arbitrary arrangement of the keys
in an input, which may be useful in some applications. The generated function is quickly
computable (with r = 2 providing the function evaluated most quickly). The model used
in theoretical considerations proved to be adequate, and we were able to give very sharp
estimates. Those theoretical estimates agree very well with experimental results reported by
Havas, Majewski, Wormald & Czech (1994). As indicated there, the time requirements of
the new algorithm are very low, even for very large sets.
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