
A few experiments with the
Cache Allocation Technology

Pawel Szostek
HTCCC,15.02

The caches: a refresher

● Modern computer architectures use caches to
speed-up memory accesses,

● Caches store data for a later use. They only
“work”, if the data is reused (for a streaming
app. it doesn’t give any advantage)

● Modern x86 machines use 3 levels of cache -
L1D, L1I, L2 and L3

● L3 cache (also called LLC) is shared between all
the cores inside a socket

● L1, L2 and L3 caches are inclusive
● A process running on a single core can use the

whole L3 cache from all the cores on the same
socket

img source: Intel

What is Cache Allocation Technology?
● Long story short: it’s for splitting L3 cache into parts and separating them from

each other
● Allows defining allocation classes and assigning them to cores,
● Provides a way to specify at runtime which part of cache can be evicted

when bringing new cache lines from the main memory
● Together with pinning (or cgroups in the future) minimizes cache pollution
● Is available on some Haswell SKUs (E5-25x8v3)

What is Cache Monitoring Technology?
● Is bundled with CAT
● Allows monitoring L3 cache allocation per core and process

Possible allocation scenarios

M1 M2 M3 M4 M5 M6 M7 M8

COS1 50%

COS2 25%

COS3 12.5%

COS4 12.5%

M1 M2 M3 M4 M5 M6 M7 M8

COS1 100%

COS2 50%

COS3 25%

COS4 12.5%

Isolated
bitmasks

Overlapped
bitmasks

Priorities inversion

Without CAT

With CAT

Setting things up

[root@olhswep28 working-dir]# pqos -s
BRAND Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz
L3CA COS definitions for Socket 0:
 L3CA COS0 => MASK 0xfffff
 L3CA COS1 => MASK 0x00fff
 L3CA COS2 => MASK 0x000ff
 L3CA COS3 => MASK 0x0000f
L3CA COS definitions for Socket 1:
 L3CA COS0 => MASK 0xfffff
 L3CA COS1 => MASK 0x00fff
 L3CA COS2 => MASK 0x000ff
 L3CA COS3 => MASK 0x0000f
Core information for socket 0:
 Core 0 => COS0, RMID0
 Core 1 => COS1, RMID0
 Core 2 => COS2, RMID0
….

Using top-like cache monitoring

TIME 2016-02-15 05:38:42
SOCKET CORE RMID LLC[KB]
 0 0 47 384.0
 0 1 46 240.0
 0 2 45 12960.0
 0 3 44 0.0
 0 4 43 0.0
 0 5 42 48.0
 0 6 41 0.0
 0 7 40 0.0
 0 8 39 0.0
 0 9 38 96.0
 0 10 37 96.0

Support for CMT in Linux perf

[root@olhswep28 working-dir]# NEVTS=400 perf stat -e
intel_cqm/llc_occupancy/ ParFullCMS4 bench1.g4 1>/dev/null

 Performance counter stats for 'ParFullCMS4 bench1.g4':

 5652480.00 Bytes intel_cqm/llc_occupancy/

 150.010743271 seconds time elapsed

Experiments with handcrafted workloads by Intel

Test scenario:
● Workload #1

traverses a linked
list of size N with a
random memory
layout. It’s the hi-
priority guy.

● Workload #2 copies
128MB of memory
forth and back. It’s
a lo-priority guy.

source: software.intel.com/en-us/articles/using-hardware-features-in-intel-architecture-to-achieve-high-performance-in-nfv

No streaming vs one streaming thread

One streaming thread, without and with CAT

Many streaming threads, without and with CAT

Many streaming threads, without and with CAT, interrupted

Experiments with the high level trigger software

● I tried to run many HLT instances and split them into groups wrt. the cache
allocation, so that they don’t disturb each other

● None of the experiments yielded a better solution than the baseline (no CAT)

Side experiment: limiting HLT’s cache

A few conclusions

● I tried to mix HLT and simulation (ParFullCMS), but there was no gain from
CAT

● Makes a lot of sense to apply it to VMs for a better separation
● Might give extra computing power for opportunistic computation (like it did for

Google), but requires finding a proper setup. One have to reconcile with a
performance penalty for the hi-priority app

● Might also work for low latency apps to make sure that nothing ever sweeps
away its code.

