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Abstract

Extensibility leads to better designed and more reusable software. Traditionally,
implementors have built extensible C++ software using ad hoc mechanisms built from
scratch. This paper identifies specific characteristics that constitute extensible software. A
framework for building extensible C++ libraries has been defined and constructed on AlX
3.2. Finally, the paper gives guidelines for implementors of extensible software through a dis-
cussion of an on-going application of the framework.

1. Introduction

A critical problem in designing software libraries is the difficulty of predicting possible future
uses. Designers of C++ class libraries attempt to avoid this probleieskgning inimplementa-
tion choices. However, basing libraries on most probable uses and using run-time checks to select
an implementation cannot accommodate unforseen future uses. Nowhere is this problem more
acute than in the construction of system services to handle mobility or workstation clustering.
Three examples are presented below.

Consider a library for managing information access in a mobile computing environment [Ban-
erji, 93a]. The caching behavior and access mechanisms are critical to the performance of such a
system. Optimum caching performance is highly dependant on usage patterns which can neither be
accurately predicted at design time nor reasonably calculated at run-time. Rather, performance will
improve if the implementation can respond to client-provided run-time control directives. Run-
time client control over the implementation, or just the ability of a client to provide usage hints,
could better optimize performance.

In a clustered workstation environment [Banerji, 93b], on-line updating of software is desir-
able. Ideally, a new implementation could be added to running software without disturbing exist-
ing applications. This implies the ability of a client to dynamically replace or add implementations
of either member functions or even entire classes.

Finally, suppose that a large company has developed a class library to manage its critical cor-
porate data. The library includes mechanisms to handle all inquires in use at the time of its cre-
ation. Later, after the developers have moved on to other projects, a new need arises. If this need
cannot be handled by the existing library, either the developers must return to this project or new
programmers must wade through the original source code. If the library were extensible, new func-
tionality could be added without reference to the original code or its developers.

Although the situations presented above may seem far fetched, they are real problems in



mobile computing, clustered computing and management of object library management [Banerji,
94]. Moreover, these problems have counterparts in system and application software for stand-
alone workstations [Krueger, 93]. As discussed below, some solutions have been suggested in the
past. However, many of these solutions are ad hoc and lacked the genericity needed to construct
extensible class libraries for other application domains. This paper addresses genericity by dis-
cussing the design, implementation and usefi@draeworkthat allows C++ class library designers

to build extensibility into their subsystems.

This framework has various specializable and easily replaceable components. In addition, cer-
tain programming guidelines that aid in gluing together the components of an extensible library are
discussed. The existing libraries for this framework and sample test cases have been built for AIX
3.2 running on IBM RS/6000s. A custom port of the AT&T cfront 3.01 was used to build the com-
ponents.

The next section discusses extensibility and its implications. The terms and technologies per-
taining to the framework implementation are then detailed. Related work is discussed in the subse-
guent section. Section 4 lays out the overall structure of the framework as well as the details of the
design principles. Section 5 discusses the programming guidelines that implementors need to fol-
low and presents a concrete example. Section 6 describes the user's view of software, built using
this technology. The paper ends with a summary of its contributions.

2. What Extensibility really means

This section attempts to demystify the tertensibility In order to do this, it is necessary to
list the features that usually characterize extensible software. The identification of such features
leads to a better understanding of the techniques and mechanisms necessary to support extensibil-

ity.

Extensibility implies different things to different people. Instead of using some preconceived
notion of this software property, we choose to define the essential features of extensible software.
Some of these features are obvious, while others are not. The features are:

» Separation of interface from implementation is necessary to ensure that the visible func-

tionality of a software library is not cluttered with non-relevant implementation details. Such

a feature is considered good practice, since it allows for implementation changes with little or

no client-code recompilation. Furthermore, it is a fundamental requirement for supporting

other features of extensible software.

» Tunableimplementations allow design decisions to be based upon actual run-time data.

Best case scenario implementations are replaced by designs that can act upon client-provided
hints and directives. Thus, application-dependant usage information, which can never be pre-
dicted at design time, may be used by clients to fine-tune software implementations. This fea-
ture may appear to conflict with interface-implementation separation. However, as discussed
later, it is possible to simultaneously support such conflicting features.

* Multiple coexisting implementations for one particular interface allow clients to choose

an implementation that closely matches their needs. Hence, conflicting design choices may be

reflected in separate implementations, thus affording implementors the luxury of application-

specific optimizations. Clients on the other hand, are left with the responsibility of selecting

an appropriate implementation at run-time. Furthermore, this separation allows for the inde-

pendent development of different implementations of an interface. Thus, bug fixes for exist-



ing implementations can be made available as new implementations of an existing interface.
« Addition or substitution of implementations allows clients to effect major reconfigura-

tions without recompilation or even application restart. Constituent classes and member func-
tions of an implementation may be dynamically replaced. Similarly, whole new
implementations for existing interfaces could be loaded at run-time. Typically, this is used to
dynamically load new implementations of existing interfaces, in order to fix bugs or update
services.

» Dynamic addition of member functionsto interfaces allows clients to add services with-

out requiring recompilation of existing code. Usually implementations are expected to sup-
port only those public member functions that correspond to a particular interface. Should a
new implementation support additional member functions, the clients can effectively inte-
grate such services by extending the interface dynamically. Such integration does not affect
existing clients who still can use the old unextended interface.

These features of extensible software point to specific base technologies that are required to
implement them. These base technologies have been adopted by the flexibility framework,
described in this paper. These technologies, in no particular order, are:

» Explicitly separate interface and implementation hierarchies: Most well designed soft-

ware systems separate out interfaces from implementations. Typically, such separations are
performed in an adhoc manner and the interaction between interfaces and implementations is
decided on a case-by-case basis. In order to support separate implementations, it is necessary
to completely separate out interfaces and implementation hierarchies. The inter-dependence
of these hierarchies, may be minimized by ensuring that interface classes only interact with an
abstract base class representing the implementation hierarchy. All concrete implementations
of an interface inherit from this base class. However, the interface classes do not depend upon
the symbols of any specific implementation; only on those of the abstract base class.

* Run-time accessto type information: Interactions between interface and implementation
hierarchies involve passing pointers to abstract base class of the implementation hierarchy.
This is necessary to ensure that the interface classes do not depend upon any symbols avail-
able in concrete implementations. Thus, downcasting to derived class pointers is often
required. Classes that are used in the interaction between interfaces and implementations are
thus, associated with Run-Time Type Information [Lajoie, 93].

» Dynamic linking and loading: Run-time addition of implementation requires that object
modules be loaded and linked into running code. Similar facilities are necessary to enable on-
the-fly substitution of implementation classes. Whatever mechanism is used has to deal with
C++ specific problems, such as, mangled names and initialization of static constructors and
destructors. Invariably, such a mechanism is highly dependant upon the exact nature of the
dynamic linking services provided by the target operating system.

» Classabjects: Flexibility to control implementations or manipulate the member functions
that belong to an interface requires a level of indirection greater than that provided by C++.
Class objects are used to provide this indirection. As in Smalltalk [Goldberg, 89], class
objects also afford a mechanism for calling C++ constructors, based upon a given set of prop-
erties, instead of the name of the class being initialized. These objects may be associated with
interface and implementation objects to act as a run-time interpreter of some usually implicit
entity.

» Indirection in nameresolution: Dynamic addition of member functions to an existing

class interface requires that it be possible to map a given member-function call to a generic



per-class function-call dispatcher [Coplien, 91]. This technology of indirection in name reso-
lution or dynamic dispatch, already exists in many pure object-oriented languages [Ungar,
87]. However, making it available for C++ with reasonably good performance, is quite
another matter.

» Dual interfaces: If implementation details are removed from interfaces, how can clients

of extensible software fine-tune implementations? The technology of opening up implemen-
tations through dual interfaces is used. The idea of open implementations [Kiczales, 92] with
one interface to access the functionality of a subsystem and another to optionally control the
implementation, is not new. It allows clients to provide usage information and implementa-
tion directives through a second interface. The second interface or the meta interface should
be made available to clients on a need-to-know basis.

All these base technologies have existed for a while. However, we believe no one has inte-
grated them to provide an environment explicitly geared to developing extensible C++ libraries.
This work integrates these existing technologies into an easily usable form.

3. Related Work

The need for extensibility in software has been stressed for both operating systems and lan-
guages [Kiczales, 92]. The authors of the Meta-object protocol for CLOS [Kiczales, 91] have been
instrumental in discussing open implementations and dual interfaces. Apertos (formerly Muse)
[Yokote, 92] has applied reflection and meta-object protocols to operating systems. Choices
[Campbell, 93], an object oriented operating system has done yeoman work in supporting frame-
works for dynamic code loading and stepwise refinement. Recently, Open C++ [Chiba, 93] has
used translator directives for redirecting method invocations to metaobjects to implement object
groups in a distributed system.

Many of the basic mechanisms, such as changing type interfaces on the fly, have also been dis-
cussed in previous work. These include preprocessor-generated class objects to instantiate dynam-
ically loaded subclasses [Dorward, 90] and type-set interfaces for schema manipulation in
databases [Skarra, 86]. Of course, the RTTI extensions of ANSI C++ have been discussed in great
detail [Stroustrup, 92], [Vines, 93]. Finally, it is important to note the numerous idioms mentioned
in the last few chapters of [Coplien, 91] that deal with flexibility, indirection and its effective use.

Finally, it is pertinent to mention some recent industry initiatives. Although, efforts such as
CORBA [OMG, 91] effectively separate out implementations from interfaces, they are mainly
geared towards facilitating object interactions. Thus, objects created by two different languages
can be made to cooperate as in IBM SOM [IBM, 91] or object interactions can be transparently
made to span machine boundaries. It is possible to associate some flexible properties to CORBA
compliant software through the use of meta-objects and indirections. However, very little support
is provided for structuring object systems for flexibility.

4. The Extensibility Framework

This framework represents a significant set of collaborating classes and class hierarchies, that
capture the patterns and mechanisms needed to implement extensible C++sdimciref the
components or class-hierarchies of this framework can be further specialized by using inheritance.

1. Paraphrased from [Firesmith, 1993]
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Figure 1. Components of the Framework

This allows programmers to tailor the services provided by this framework according to their spe-
cific needs. In addition to these components, there are certain programming guidelines both for
implementors who use this framework and for clitmto use the software built with this frame-
work. This section discusses the details of the various components of the framework shown in Fig-
ure 1. The next section presents how such a framework may actually be used.

— - Containment Relationship

Inheritance Relationship

Before reviewing the components of the framework, it is important to understand the three dis-
tinct relationships between the entities discussed here. The first onéenstéinee-ofrelationship
between a class and its object instance. The former is represented only in the C++ source while the
latter also has a run-time representation. The second mieigancewhich applies to both inter-
faces (subtyping) as well as objects (implementation). The third relationship is more subtle: that
between an object and its metaobject. The latter provides a run-time representation of some of the
implementation aspects of the former. Since a metaobject makes an otherwise implicit aspect
explicit, it is said toreify that aspect. For simplicity, a metaobject that reifies a class will be
referred to as alass object

Figure 1 shows the various component hierarchies of the extensibility framework. There are
three kinds of components - those that are incorporated into class-objects, those that are part of
every object and those that realize some helper services. Typically, as mentioned below, the
BaseMeta component is part of every class object. On the other hand, RTTI is part of every object.
The Marshall/lUnmarshall component and the ImplSpec component facilitate interactions between
interfaces and implementations. The components in Figure 1 are:

» CLASS, a base class from which every other framework class inherits, is a place-holder

which ensures the safety of type-casts.

» RTTI, the set of Type_info and typeid classes that implement ANSI compliant run-time

type information for appropriately instrumented classes.

1. Henceforth, “implementor” refers to programmers who use the framework directly to build soft-
ware and “client” refers to those who use the software developed in this manner.



* ImplSpec, a set of classes, that allow flexible specification of implementation characteris-
tics and are especially useful in cases where the name of the target class is unknown.

* Implem_Repository, a repository that maintains information about available implementa-
tions, their class objects and their chracteristics.

» Marshall/lUnmarshall, an extensible class hierarchy that allows clients to specialize the
marshalling of parameters.

* Meta, a base class for class objects, that maintains the implementation repository and pro-
vides an indirection mechanism for constructor calls, when the exact name of the target class
is unknown at compile-time.

* Loader, a front-end class that provides a user-friendly interface to run-time linking and
loading facilities.

* NameMap, a repository that maps function keys and parameter type-tags to a target
generic function.

» Digpatch, a class hierarchy that maintains the NameMap and handles the mapping of
dynamically loaded interfaces to per-class generic functions.

» BaseMeta, a class that aggregates the properties of Meta, Loader and Dispatch class hier-
archies, thus forming a direct parent to all class objects for concrete implementations.

Each of these components is actually a class hierarchy that can be specialized to get the precise
functionality desired. Implementors incorporate elements of these class hierarchies to effect exten-
sible software. Although, implementors and clients only see these components, the actual realiza-
tion of the framework uses a few libraries to effectively implement some services. There are
primarily two such libraries - the run-time linking library for AIX and the library that implements
RTTI. These libraries acts as implementations tools for this framework. The next few subsections
discuss some of the basic elements shown in the figure. The section ends with a brief description of
the implementation tools or libraries used by this framework.

4.1. Identification of Different Implementations

As mentioned before, a particular interface may be supported by any number of diferent
implementations. Hence there must be a mechanism to identify these different implementations.
Since, it is possible that implementations may be loaded at run-time, names of implementation
classes cannot be used for such a purpose. Insteashptigec hierarchy provides the mecha-
nism necessary to identify some particular characteristics of an implementati®pec , as
shown belowgdefines a common protocol for comparison of implementation characteristics. Subclasses
of the classmplSpec , may use any characteristic such as the implementation-name to identify imple-
mentations, but have to support the comparison protocol definedplspec . Thus, typically every
piece of extensible software defines its own subclasspi$pec in order to distinguish between differ-
ent implementations.

/I The following class def ines the common comparison protocol, to be supp
/I ported by all characterizations of implementations. Different exten

/I sible software libraries may characterize implementations differ

/I ently.Some may do it through implementation-name strings, while oth

/I ers may use integer constants.

class ImplSpec : virtual public CLASS // CLASS is a global base, associ
/I ated with properties, common to all objects of an extensible library.

public : // some operations have been omitted for brevity



ImplSpec(const char *); // all characterizations are f inally
/I converted into strings, for simplicity.
virtual ~ImplSpec() ; // destructor
/I The comparison protocol follows
virtual int operator == (ImplSpec &) ;
virtual int operator == (ImplSpec *) ;
virtual int operator != (ImplSpec &) ;
virtual int operator != (ImplSpec &) ;
... other comparison operators ...
private : /I mainly responsible for maintaining pointer to a
/I global repository, which catalogs all available
/I implementation characteristics.
impl_map_t *table; // implementation repository front-end
...other private data...
}; // Base class of the Implementation Specif ication hierarchy

4.2. Indirection as an Architectural Tool

The key to building extensibility is indirection. For example, in C++ virtual functions provide
a level of indirection that allows a call of the fobase object_ptr->foo() to be dynamically
resolved to the functiofeo , in an appropriate derived class object. However the semantics of C++
limits the target of the resolution to be a similarly named function within the class hierarchy. If
static type-safety were not a concern, another level of indirection could have removed the shackles
of a fixed resolution mechanism. Thus, it is very important to figure out exactly where an indirec-
tion should be added and what may be gained from adding it. Based on this, the framework adds
the following indirections:

* Indirection in constructor calling

* Indirection in name-resolution during function-dispatch

» Indirection in marshalling/unmarshalling parameters

4.3. Constructor Calling

Constructors for dynamically loaded classes need to be called indirectly, since class-name-
based constructor calls would cause unresolved externals during compilation. Tivetelamsd
Implem_Repository ~ cooperate to provide this indirection. All classes which need this degree of
flexibility are associated with a class object, that is a specializatigat@f Meta in turn contains
a pointer to a globally available instancenaflem_repository , as in
class Meta: public CLASS {

public: // ignore constructors and destructors

/*
In the following code ImplSpec is used to specify some characteristic of
the implementation. In the simplest case, it may simply be a string con-
taining the name of a class.
*/

virtual void register_class_object(ImplSpec *,...);

I function that allows addition of the class-object

I of a subclass ! to the repository.

virtual void unregister_class_object(ImplSpec *,...);

1. Subclass here refers to the subclass of the class that the class that Meta is associated with. This, if
foo is associated witfboMeta , a specialization dfleta, then the subclass here refers to
childof foo , a class derived froifioo .



/I removes the entry for class-object of a sub-class
Il from the repository.
virtual CLASS *instantiate(ImplSpec *);
/I an indirect constructor called with some form of a
/I of a specif ication of which particular subclass
// needs to be instantiated.
private:
static Implem_Repository *repository;
h /I specification of the Meta class.

Typically, dynamically loaded code is in the form of a subclass of an existing base class.
Assuming that the base class and the subclass are associated with class-objects derived from Meta,
then the sub-class automatically registers its class-object with the super-class repository. Thus, if
foo andfooMeta are respectively the superclass and its associated class objelgitdandoo
and childof_fooMeta are the derived class and its associated class object, then the following
happens during static initialization:

childof_fooMeta childof_foo::meta = new childof_fooMeta;

This call to the constructor ofiildof_fooMeta causes it to register itself witboMeta , as
the class object fatildof foo . At this point, instantiation requests foildof foo ~ when sent
to fooMeta , are automatically forwarded to thiestantiate in childof_fooMeta . This
instantiate function, in turn calls the constructor diildof foo . If there are additional
parameters that need to be passed to the constructaidof foo , then the code gets a more
complicated, but the principle remains the same.

4.4. Name Resolution and Function Dispatch

Quite often, a subclass with an additional non-inherited member function, needs to be dynam-
ically loaded. This implies that the supported interface is extended by the addition of this subclass
and clients using this new subclass should be able to access this new member function. Since, in
C++, a named function call always gets resolved to a similarly named function, an extra level of
indirection is needed. In this case, the name resolution mechanism during function-dispatch needs
to be extended. This indirection is provided by the clasispsatch andNameMap These classes
are quite similar to the two classes discussed above. Instead of the finsttiaiate , the
functiongeneric_func  of the following form is used.

CLASS *generic_func(int function_key, CLASS *,...);

The dispatch object of the loaded subclass, in a manner similar to the one shown above, regis-
ters itself with theNameMapof the superclass dispatch object. This ensures that when a client
directs an extended call to the newly loaded subclass, the generic function of the dispatch object of
the subclass is ultimately called. The generic function then calls the appropriate function in the
subclass.

4.5. Marshalling and Unmarshalling

For distributed systems, which form a large part of our research focus, the client and the
implementation of the member function may be separated by machine boundaries.This typically
requires marshalling and unmarshalling of parameters. However, factors such as relative align-
ments of the target and source architectures and the kind of communication links available may
have a tremendous impact on the way marshalling and unmarshalling is done. In order to ensure



that best possible performance is guaranteed, a slightly different form of the generic function is
used.
Marshalled_Parm *generic_func(int, Marshalled_Parm *);

In this case, the clasgarshalled_parm is an implementor specialized class that allows cus-
tom parameter marshalling and unmarshalling schensese architectural components are
aided in great part by two major implementation tools that are discussed below.

4.6. Implementation Tools

The dynamic linking and loading tool consists of a code loading library anaber class.
The code-loading library, dynamically links in and loads C++ libraries into running programs. At
present, it only supports the XCOFF file format of AIX 3.2. The interface supported by the library
mimics the SUNOS run-time linker calls dfbpen, disym and diclose . In order to be
dynamically linkable, the set of object modules pertaining to the loaded subclass are archived into
a custom shared library. Initially, the appropriate object modules of the subclass and its class
objects are linked into a single object module with all outstanding externals unresolved. This
object module is passed througtunch [USL, 92], to create a list of static constructors and
destructors. A set of entry-points are created to enable calling these destructors and cohstructors
Finally, a shared library that archives the single object module, the static initializers and the gener-
ated entry-points, is created. As is obvious, the compiler driver of AT&dat  had to be
changed somewhat to support this process.

During the call tallopen, all unresolved externals within this library are bound to the appro-
priate symbols of the running client program. Blopen anddiclose calls also ensure that the
entry-points for calling static constructors and destructors, get called automatically.

TheLoader class, in turn provides a simplistic interface that hides some of the complexity of
dlopen. Furthermore, this class implements an automatic lookup of certain directories to locate the
requested loadable library. The main interface function of this class is:

int add_impl(char *BaseClassName, char *LoadTargetCharacteristic);

The RTTI tool is a Iibrary-versiémf the ANSI-C++ language extension. The Type_Info and
typeid classes are closely based upon the implementation detailed by Bjarne Stousroup [Strous-
troup, 91]. An extensive set of macros have been added that ease the chore of instrumenting
classes. For example, the declaration of a class needs to include a line of the form:

RTTI_SCAFFOLDING_DECL(NAME_OF_CLASS)

The definition of the class needs to include a macro of the form:
RTTI_SCAFFOLDING_IMPL1(NAME_OF_CLASS, NAME_OF PARENT_CLASS)

The macros for handling template classes are equally easy to use. A set of macros have been
provided to automate narrowing of classes, in the presence of virtual inheritance. The set of RTTI
classes themselves may be easily specialized as per the requirements of the ANSI standard.

1. Marshalling/Unmarshalling is not discussed in detail, since it is only of interest in case of distrib-
uted computing.

2. These correspond tenain and__dtors in the USLIibC.a , except that they have different
names.

3. It is available for ftp from invaders.dcrl.nd.edu:/pub/software/rtti.tar
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5. Implementor’s view

Having discussed the internal design of the framework components, this section sheds light on
the overall structure of extensible software, that may be constructed using this framework. One of
the target subsystems, currently under construction is an implementation of a user-level communi-
cation protocol library. The idea is to provide a dynamic object-oriented framework for building
communication protocols, a problem similar to that addressed by x-kernel [Peterson, 90]. The lay-

out of the hierarchies that constitute the framework is shown in Fig 2.




Figure 2, clearly shows two hierarchies - the implementation hierarchy and the interface hier-
archy. On the interface side, there are two main objects - one representing the primary interface of
network protocols and the other, an interface for controlling implementations. Each of these
objects are associated with class-specific meta-objects that provide facilities such as function dis-
patch. One the implementation side, all concrete implementations inherit from a single base class.
Again, the base class of the implementation as well as concrete realizations that inherit from this
base class, are all associated with class-specific meta-objects. The functionality of the meta-objects
on the implementation side is slightly different from those on the interface side. As can be clearly
seen from the figure, only a single arrow crosses the interface-implementation barrier. This arrow
represents a polymorphic pointer to the implementation tree. All interactions with implementa-
tions are exacted through this polymorphic pointer. Two final points need to be made about the fig-
ure. Although not shown, all classes in the subsystem inherit directly or indirectly from the class
CLASS Concrete implementations, that is subclasses of the implementation base as well as any
associated meta-objects, may be attached to the implementation hierarchy at run-time through the
dynamic loading services.

The main interface of the communication protocol library is provided by therectassol
It actually provides two interfaces, the first one related to the basic functionality and the second
one for manipulation of the implementation, or a meta-interface which is reified by an object of
classProtocol2ndint
class Protocol: public ProtocolBase {
public:
/I constructors and destructors
/I open a passive session
virtual Protocol &0OpenSession(...);
/I open an active session
virtual Protocol &0penSessionEnable(...);
/I passes certain calls to the second interface.
Protocol2ndint operator->();

/* member functions for comm. protocols. */

/I macro that generates RTTI scaffolding
RTTI_SCAFFOLDING_DECL(Protocol)
/I pointer to class object that controls
/I the behavioral metacomputation...
static ProtocolMeta *meta;

private:
/I Pointer to the optional second interface
Protocol2ndint *Secondinterface;

}; Il specif ication for the Protocol Interface

As can be seen in the code fragment above, apart from providing support for the functionality
provided by a regular communication protocol, the class contains pointers to two other entries - a
second interface objeaind a meta-object. Typically, the member functionBretbcol just pass
on the calls to appropriate member functions ofFRiwgocol2ndint class. The meta-objects,
build upon the various components of the framework, and are discussed in the next subsection.

An object of the clasBrotocol2ndint implements the second interface. For a communica-
tion protocol the dual interface allows users to provide such directives as window-sizes, distribu-



tion of small communication buffers vs. large communication buffers etc. These features are
similar to those offered by the unstructured ioctl system call. In addition, the client gets to choose
which particular implementation of the protocol he/she would like to use. This information is spec-
ified in the form a ImplSpec class, which allows various kinds of implementation options to be
specified.
class Protocol2ndint: public ProtocolBase 1y
public:

// ignore constructors and destructors...

void set_impl(ImplSpec *,...);

I/l choose a particular implementation - such as TCP.

void set_window_size(int);

/I set the window size.

/* other functions to support an open implementation*/

/* If necessary, member functions to handle forwarded
calls from the Protocol class. */

static Protocol2ndintfMeta *meta;

/I class object that allows behavioral manipulation

RTTI_SCAFFOLDING_DECL(Protocol2ndint);
private:

ProtocollmplSpec *implem_type;

/I identif ies which particular implementation was

I/l chosen, e.g.: TCP or UDP.

ProtimplBase *implementation; // the implementation
}; I/ specif ication of the dual interface.

As can be seen from Figure 2, the only symbols from the implementation hierarchy that are
visible to the interface hierarchy, are those of the class ProtimplBase - the root of the Implementa-
tion hierarchy. ProtimplBase has two main functions. Firstly, it acts as an abstract placeholder,
from which any number of prototype implementations may inherit. This ensures that dynamically
loaded subclasses of ProtolmplBase are used in a type-safe manner. Secondly, ProtimplBase
through its meta-object manages the extensible properties of the real prototype implementations.
With the help of the Implem_repository and the BaseMeta classes, it provides the services neces-
sary to afford run-time extensibility. The message protocol between the two hierarchies is that sup-
ported by the member functions of ProtimplBase and the meta-object of ProtimplBase i.e.:
ProtimplBaseMeta.The well-specified nature of the interaction between the two hierarchies,
ensures that multiple implementations can co-exist.

class ProtimplBase: public CLASS {
public: // ignore constructors and destructors
/I some communication protocol pertinent functions
void openSession(...);
void openSessionEnable(...);

/* some communication related member functions */

ProtocolimplBaseMeta *operator->();

1. The class ProtocolBase simply encapsulates, the shared characteristics of the Protocol2ndint and
Protocol classes, and thus forms a placeholder for structuring the interface hierarchy.



I/ returns pointer to the implementation meta-object
private:

ProtocollmplBaseMeta *meta; // the meta-object
}; Il specif ication of the root of the Impl. hierarchy

5.1. An Implementor’'s Manual

Having shed some light on the overall structure of software that uses the extensibility frame-
work, it is time to specify the exact steps that a programmer must take to be implement such soft-
ware. For most of the implementation steps that need to interact with the framework, template files
are used to guide the implementor. Generic makefiles make the task of building these executables,
even simpler. Finally, it must be mentioned that certain conventions need to be followed while
naming shared libraries of interfaces and loadable implementations. These conventions, not men-
tioned here, allow the dynamic loading facility to easily find a shared library that matches a certain
implementation characteristic. The steps themselves are:

Step 1. Create a primary interface and a secondary interface class for the software library

that needs to be constructed.

Step 2. Create a base class for the implementation hierarchy, which essentially handles
the sum of all the member functions represented in the two classes from Stepl.
The definitions of these member functions may be kept empty.

Step 3. Associate each of these classes with meta-objects or class-objects, based on sim-
ple name substitution of available template classes. The instantiate function of the
meta-objects on the implementation side must be updated to match the actual con-
structors supported by the primary interface.

Step 4. Declare a few standard static objects that allow for automatic creation of instances
of the meta-objects for both the implementation and interface objects. The decla-
ration of these static objects is facilitated through easy-to-use macros.

Step 5. Update available generic makefiles to use the actual file names used for this par-
ticular software library.

Step 6. Use the makefiles from Step 5 to create shared libraries containing the interface
hierarchy, the base of the implementation and associated meta-objects. Thus, a
binary form of the interface provided by the software library is now available. At
this point, an implementation must be created.

Step 7. Design and create an implementation that supports at least all the member func-
tions provided by the base class of step 2. If no extra member functions are to be
supported, jump to Step 11.

Step 8. Create an implementation-specific dispatcher, based upon available templates.
This dispatcher is called by generic_func, when the new member function is
called by a client.

Step 9. Create a header file that defines macros to map this new function call to a call to
generic_func . This header file can also be set up using available template
header files.

Step 10. At this point create the required meta-object for this implementation and declare
the requisite static objects, as in Step 4.

Step 11. Use generic makefiles, and create an implementation-specific makefile. Ensure
that naming standards for implementation libraries are followed.

Step 12.  Finally, place the shared library created in Step 12, in an appropriately named



directory, following certain naming conventions.

As mentioned, the objects in the interface hierarchy, the root of the implementation hierarchy
and a meta-object that controls the implementation hierarchy root are archived into a shared
library. A client program can then link in the shared library corresponding to the interface, that he/
she needs to use. An implementor creates a new implementation, creates a loadable shared library
that inherits from the implementation base class. This loadable library, can be automatically loaded
at the request of the client (as discussed in Section 6). Similarly, any number of new implementa-
tions may be created and loaded.

6. Client's View

A typical client of extensible software, thus engineered may want to use the interfaces pro-
vided for three particular purposes:
» Use the direct functionality of the interface e.g.: OpenSession
* Use the second interface to control the implementation e.g.: set_window_size
» Use the meta-functionality to load new implementations of the interface.

The following piece of code demonstrates this for the protocol class, discussed above. Initially,
a client programmer allocates a protocol object and selects the implementation to be used. For
example, in this case the programmer decides to use the UDP implementation of the protocol.
After setting the implementation, the programmer may use the UDP implementation as desired. At
this point, for some hypothetical and fictitious reason, the programmer decides to use TCP, instead
of UDP. Assuming, that the TCP implementation is not pre-loaded, the programmer asks for it to
be loaded through thaid_impl call. Subsequently, the TCP implementation is selected and the
TCP protocol realization is ready for use. Finally, just as a demonstration sample, the programmer
chooses to change the sliding window size used by the TCP realization. This is achieved through
the smart-pointer which provides access to the secondary interface. It is perhaps important to men-
tion that the following code is meant to demonstrate the use of flexibility and not necessarily to
present semantically correct use of the TCP protocol.

Il Allocate a protocol object - the default implementation is

I/l used - there may or may not be a default implementation.
Protocol *obj = new Protocaol;

/I Actually set the implementation to be used to be udp
(*obj)->set_impl(“UDP™);
[*the pointer operator is used to get at the second-interface*/

/I Use the functionality of the protocol object now.
obj->OpenSession(...);
... I* some code here */...

/I At this point the client decides to add the tcp implementation
/I to the running program. It calls the interface provided by

/I the loader class, thru the meta pointer in the Protocol class.
obj->meta->add_impl(“ProtimplBase”,"TCP");

/I Now the object may change the implementation type
(*obj)->set_impl(“TCP");

/I Now, the object can be called regularly, as in..



(*obj)->set_window_size(...);

Occasionally, the client may want to load an implementation that extends the prescribed inter-
face. Let us assume that the TCP implementation is being used. At this point the programmer
decides to use MobileTCP, a realization of TCP that supports mobility of connections. This extra
functionality is supported by an additional member functi@nateconn . One possible mecha-
nism would be to create an new interface and use it to access the new implementation. However,
sometimes recompilation of interface classes is not an option. In such cases, the programmer may
dynamically extend the interface of the class, as shown below. The steps to be taken are as follows:

/I Assumes that the appropriate header f iles for MobileTCP are actu
/I ally pulled in by the client programmer.

Protocol *obj = new Protocaol;

/I Add the new implementation f irst
obj->meta->add_impl(“ProtimpIBase”, “MobileTCP");

/I Add the interface to the interface hierarchy - here the name of

/l the function to be added is “migrateconn”
obj->meta->add_intf(“ProtimplBase”, “MobileTCP”, “migrateconn”);
/I At this point migrateconn is ready for use.

obj->migrateconn(...) ;

At this point, other clients may directly call the migrateconn function, as long as they are using
the Mobile TCP implementation. Existing clients do not need to recompile any code. However,
new clients that intend to use this new function must pull in the header files specific to this
extended interface, so that a call to migrateconn, automatically gets expanded into a call to gener-
ic_func. It is expected that this kind of extensibility will not be used very often.

7. Conclusion

The framework described here, represents a critical step in structuring extensible software. In
addition to identifying the specific characteristics of extensible software, it provides a good set of
tools for dynamic flexibility. Its services are geared towards the construction of more reusable and
better designed software. Perhaps more importantly, it is a key step towards developing class
libraries that can be tailored without access to source code.

8. Availability

The extensibility framework is not yet available for general distribution. Please contact the pri-
mary author at axb@cse.nd.edu, for latest availability information.
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