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Abstract—We propose a design for a fine-grained lock-
based skiplist optimized for Graphics Processing Units (GPUs).
While GPUs are often used to accelerate streaming parallel
computations, it remains a significant challenge to efficiently
offload concurrent computations with more complicated data-
irregular access and fine-grained synchronization. Natural
building blocks for such computations would be concurrent
data structures, such as skiplists, which are widely used in
general purpose computations. Our design utilizes array-based
nodes which are accessed and updated by warp-cooperative
functions, thus taking advantage of the fact that GPUs are
most efficient when memory accesses are coalesced and ex-
ecution divergence is minimized. The proposed design has
been implemented, and measurements demonstrate improved
performance of up to 11.6x over skiplist designs for the GPU
existing today.
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I. INTRODUCTION

In recent years, GPUs have become widely available at
a low cost. Todays GPUs provide hundreds of computing
cores at high energy efficiency, with more cores added in
every generation. The introduction of specialized parallel
programming platforms such as CUDA [1] and OpenCL [2]
over the past decade have opened GPUs for general-purpose
programming (GPGPU), without need for a background in
computer graphics. Interest in GPGPU has surged in recent
years, and GPUs are used today to accelerate applications in
a wide variety of fields from deep learning [3] to database
operations [4]. However, the design and implementation of
efficient general-purpose algorithms remains a significant
challenge.

GPUs are very effective for regular-access data-parallel
computations on large datasets, often utilizing large vec-
tors or matrices. However, irregular access to memory and
control-flow divergence in applications can severely impair
performance [5], [6]. These behaviors are often exhibited by
pointer-based data structures that support dynamic updates
and accesses, which are frequently required in general pur-
pose algorithms. While many such data structures have been
developed for use on the CPU, attempts to port them directly
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to the GPU have shown that further GPU optimizations are
necessary [7], [8]. We believe that GPGPU will be able to
provide complex services for the CPU in the future, e.g., JIT
compilation and garbage collection. To achieve such tasks,
we first need to build the basic blocks, and we focus on
important data structures, in this case, the skiplist.

Skiplists are popular in concurrent algorithms, as they
offer a probabilistic alternative to balanced search trees
without costly balancing operations. They have been used
as a basis for key-value stores [9], [10] and for other data
structures such as priority queues [11]. However, classic
skiplist designs provide little locality of data and have highly
irregular access patterns, both of which are significant draw-
backs on the GPU in terms of performance. Additionally,
thread-level synchronization on the GPU is very costly,
especially when necessary between any pair of threads in
the system.

In this paper we propose GFSL, a GPU-friendly design for
a fine-grained lock-based skiplist. GFSL consists of linked
lists of array-based nodes, each of which contains several
consecutive keys. Threads in a warp access these nodes
in a coalesced fashion and cooperate in the execution of
each skiplist operation. As such, we reduce the amount
of concurrent skiplist operations to gain higher memory
coalescence and lower execution divergence, thus playing
to the strengths of the GPU.

We compare GFSL to an implementation of a lock-free
skiplist algorithm running on the GPU written by Misra and
Chaudhuri [7], which was shown to achieve a speedup over
the CPU implementation. Results show that our optimiza-
tions offer a performance boost for large key ranges. In a
range of 10M keys, our implementation offers a speedup of
6.8x-11.6x.

II. PRELIMINARIES
A. GPU And The CUDA Programming Model

This work was designed and implemented in Nvidia’s
CUDA C++ programming model [1]. CUDA provides
SPMD behavior using GPU-side functions called kernels.
Kernel code is executed in parallel on each of the threads
launched by the user. These threads are subdivided into
blocks, which are distributed amongst the GPU’s Streaming



Multiprocessors (SMs). The SMs are the computational
engines of the GPU, and execute the blocks in parallel.
When a block terminates, the SM receives and executes a
new block until all blocks have been handled.

The SMs further logically subdivide the blocks into units
called warps, which are the basic unit managed and sched-
uled by the SM. Threads in a warp share a program counter
and proceed through kernel code in lockstep (The SIMT
programming model). Warps on an SM are interleaved in
order to hide latency. In every cycle the scheduler chooses
a warp that is not stalled (e.g., due an in-process memory
transaction), and executes its next instruction. On all existing
Nvidia GPUs warps consist of 32 threads, though this may
be subject to future changes.

B. Considerations For Efficient GPU Programming

While GPUs have the potential to accelerate many kinds
of computations, they are not a good fit for every program.
GPUs are best suited for computations that can be run on
a large number of data elements in parallel. Additionally,
the high cost of data transfer must be justified by executing
sufficient operations on the GPU for each launch. We present
some well known [6] important considerations for efficient
programming in the GPU environment.

a) Synchronization: Communication between threads
residing in separate blocks is costly, as it can only be per-
formed via the slow global device memory. CUDA supports
a variety of atomic operations which can be used for syn-
chronization [12]; however, simultaneous atomic operations
by threads in a warp to the same destination are serialized,
and will cause the warp to stall until all have completed.
Thus synchronizations must be used sparingly and carefully
in order to avoid a drop in performance.

Communication between threads within the same warp is
achieved more efficiently by utilizing specialized intra-warp
operations, supported by CUDA for compute capabilities 3.0
and higher. Two such operations are _shfl (var, tId),
which returns the value of a variable held by a thread at the
specified channel within the warp, and _ballot (bool),
in which each thread offers a boolean value and receives a 32
bit word comprising a corresponding flag bit for each thread
in the warp. Such operations must be used with care, as
execution divergence causes threads not in the active branch
to return default values, possibly with unintended results.

b) Memory Coalescing: A major consideration for
improving performance is memory access optimizations [6]:
the number of global memory operations in a kernel should
be minimized and coalesced into the fewest possible transac-
tions. Each half of a warp (half-warp) issues access requests
separately, and a memory transaction is performed for every
cache line covered by the requests. Thus, if all threads in a
half-warp access values that can be coalesced into the same
cache line then only one memory transaction will occur,
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A classic skiplist structure

Figure 1.

while scattered access results in multiple serial transactions.
The warp blocks until all transactions are completed.

c) Divergence: If kernel execution causes threads in a
warp to diverge by executing different branches, all branches
will be executed one by one (serially) by the entire warp.
Threads that should not be active in the currently executed
branch will be temporarily disabled. Thus divergence within
a warp may have a negative impact on performance. Addi-
tionally, divergence can cause more serious issues in terms
of correctness. For example, spin-locks that work correctly
in CPU code may cause a deadlock on the GPU when one
thread in a warp holds the lock, but the code branch for the
spinning threads is performed before the locking thread’s
branch, causing them to spin forever.

C. Skiplists

Skiplists are widely-used probabalistically balanced
search structures that support expected O(logn) time for
online Insert, Delete and Search operations in ordered
collections. While balanced binary search trees offer these
results in the worst case, the localized balancing operations
required by skiplists make them easier and more efficient
to implement in a multithreaded environment [13]. Many
concurrent skiplist algorithms exist [14]-[16], though none
have yet been designed with GPU-oriented optimizations.

A skiplist consists of layers of sorted linked lists, as in
Fig. 1. The bottom level holds all elements in the collection,
and every other is a sublist of the level below, containing a
random set of keys chosen with some fixed probability piy.
Each element receives a random height upon insertion and is
linked in every level up to that height. Traversal is performed
by searching through each level from the top down, using
each lateral step in the higher levels to skip over several
keys in the bottom level.

Some skiplist properties make efficient porting to the GPU
a challenge. Skiplists have little locality of data, causing
slow uncoalesced memory access on the GPU. Skiplist
operations also present a high probability for divergence of
threads within the same warp: each thread that operates on
a different key will have a unique traversal order, potentially
causing many branches between the threads. We present a
GPU-friendly fine-grained lock-based skiplist design.

III. ALGORITHM OVERVIEW

As discussed above, GPU algorithms are most efficient
when performing coalesced memory accesses with low con-
trol flow divergence. We tune the classic skiplist structure to
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Figure 3. A chunked skiplist

these requirements by using array-based skiplist nodes and
allowing threads in a warp to cooperate in the execution of
the skiplist operations.

We tackle the problem of scattered memory accesses by
packing consecutive key-value pairs residing in the same
level into large cache-aligned skiplist nodes called chunks,
shown in Fig. 2. Chunks contain a data array, a sorted array
of key-value pairs, along with a LOCK entry and a NEXT
entry consisting of a pointer to the next chunk and a max
field holding the maximum key in the current chunk. hunks
are designed to be read efficiently in the fewest possible
memory transactions.

GFSL consists of several levels of chunked linked lists,
each containing a subset of the keys in the level below, as
seen in Fig. 3. Each chunk’s data array is sorted in rising
order, with empty entries denoted by a special o value and
grouped at the end of the array. In the upper levels the value
field of each entry in the data array points to a chunk in
the level below, and in the bottom level this field will hold
the data element associated with the corresponding key. A
key-value pair in level i+ 1 generally points to a chunk
containing the same key in level i, though it may temporarily
point to a chunk containing smaller values during Inserts and
Deletes. The first chunk in each level contains a —oo key in
the first entry with a pointer to the first chunk in the level
below, and is accessed via a pointer from the Head Array.
The last chunk in every level contains an oo value in both
its next-pointer and max fields. oo and —eo are distinct from
keys in the structure.

Threads are divided into groups called teams, which
cooperate to perform the skiplist operations. Teams can be
defined by the user to be either the size of a warp or smaller.
The number of entries in a chunk is equal to the number
of threads in a team, so that the entire chunk is read in a
single kernel instruction (executed in lockstep by the team).
Each thread in a team simultaneously reads data from the

chunk index corresponding to its place within the team (¢/d).
For a team of size N the first (N-2) threads, called DATA
threads, access the data array, while the last two access the
NEXT and LOCK values respectively. Each thread performs
computations on the value it read then cooperates with the
rest of its team to decide on the next step in the execution
via intra-warp operations.

Structure traversal is similar in spirit to traversal over a
regular skiplist. A team searching for a key k reads the first
chunk in the highest level. Each DATA thread compares k to
the key read from its entry, while the NEXT thread compares
k to the maximum field. The threads share their results and
decide simultaneously how to continue the traversal: either
a lateral step via the next pointer, or a step down to the next
level via a pointer in some DATA field. The team continues
laterally if the searched key is greater than the maximum
and steps down otherwise via the data-entry containing the
largest key smaller or equal to k. If all keys in the chunk are
greater than k then the team must backtrack to the previous
chunk in the level and step down from there.

Insert and Delete operations are likewise performed by an
entire team in tandem while ensuring the chunks remain both
internally and externally sorted. If an insertion occurs when
there is no free space in the data array a split operation
is performed: A new chunk is allocated and added to
the structure after the overflowed chunk. The data array
is divided equally between both chunks, whilst remaining
sorted. Conversely, if a deletion causes a lower bound on
the number of key-value pairs to be crossed then a merge
operation is performed: the chunk is marked as a zombie and
its values are moved to the next chunk in the level. If the
next chunk is too full this operation may cause it to be split.
Pointers are redirected after both split and merge operations
in order to ensure the upper level pointers remain accurate
and to physically remove a zombie from the structure. All
changes to the contents of the skiplist are performed under
the protection of the chunks’ locks, so at most one team can
change the contents of a chunk at any time.

GFSL contains fewer nodes and levels than the classic
skiplist. A single node in GFSL contains several keys, and
so replaces several separate nodes in the classic version.
Thus more keys can be inserted into a level before it
becomes necessary to add a pointer in the level above.
The teams process more data for every memory transaction
than a single thread does in the original algorithm, enabling
faster traversals over the structure, while also causing less
divergence within a warp.

Unlike the classic skiplist algorithm, GFSL does not
predetermine a level for every key inserted. Instead, a key
can be raised to level i+ 1 only as a result of a split, i.e.
when a new chunk is added to level i. Raising the key as a
result of insertion of new chunks and not single keys causes
the factor between levels to be tied to the number of entries
in a chunk, aiding in shorter traversals. In an ideal structure



at most one key from each chunk in level i would appear in
level i+ 1. In this paper we differentiate between py,,, the
probability a key in level i will appear in level i+ 1, and
Pchunk»> the probability a key from a chunk in i will be raised
toi+1

IV. ALGORITHM DETAILS
A. Structure Details

During the initialization stage we create the structure and
allocate an array of chunks in the device memory for a
memory pool. The structure initially consists of a single
unlocked chunk in each level, containing the —oo key and a
pointer to the chunk in the level below. The head array is
initialized to point to these chunks. Each head array pointer
is associated with a counter of the number of utilized chunks
in the level, initially 0. The counters are used to keep track
of the highest level currently used in the structure, and thus
to avoid traversal of empty levels.

Allocations from the memory pool are performed by
incrementing a global counter and using the resulting index
as a pointer. All chunks are allocated locked with e values
in all key-data pairs, as well as in the max field. The o max
field signifies that this is the final chunk in the level.

Removal of chunks from the structure occurs only during
a merge operation. The deleting team marks a chunk as a
zombie using a special value in the lock field. The zombie
will eventually be physically removed. While zombies are
no longer considered to be in the structure they may still be
reachable until all pointers to them are redirected. Identify-
ing when a zombie is disconnected and can be reclaimed is
difficult, as it may be pointed to by multiple chunks.

Memory reclamation is a significant challenge, even on
the CPU [17]-[22], often requiring the use of complicated
code or locks, which are performance drags on the GPU. A
possible reclamation scheme would be to compact the struc-
ture between kernel launches; this is also challenging and is
left for future work. The need for reclamation in GFSL is
reduced significantly compared to Misra and Chaudhuri [7]
by the fact that chunk entries from which keys have been
removed can be reused as long as the chunk is not a zombie.

A chunk is said to enclose a key k if it is the first non-
zombie chunk in the level with a max field greater or equal
to k. If k exists in level i it will be found in its enclosing
chunk in that level. Additionally, k£ can only be inserted into
its enclosing chunk.

In this paper we consider chunks with N=32 entries. Each
entry is 8B, divided equally between key and value. The
small size of keys and values in the structure is necessary as
the GPU has a small memory capacity, and memory transfer
between the host and device is very slow. Additionally, larger
values would require either more transactions or fewer key-
value pairs read per transaction. A 32-bit value field may be
used to indicate the address of a larger object in the main
memory as in Zhang et al. [23].

Table I

NOTATIONS
K Key type. unsigned int.
v Value type. unsigned int.
KV Key-value pair in chunk. unsigned long.

CHK* Pointer to a chunk.

Special Values
tld (Thread Idx)%team; //thread’s index within its team
DSIZE N —2 - size of data array

NONE A value distinguishable from any tId
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Figure 4. Example of a team performing Contains(17).

B. Data Structure Operations

In this section we present the algorithm for the Insert,
Delete, and Contains operations in detail. Table IV-B defines
some notations. Note that in this section we use CHK* to
indicate a pointer to a chunk in global memory in order to
simplify the pseudocode. In actuality, chunks are accessed
using 32-bit indexes to the memory pool. For chunks of
size 128B this index size can cover addresses in 512GB
of memory. This is sufficient in the foreseeable future, as
modern GPUs have only a few GB of device memory.

1) Contains:

a) General Description: As Contains are typically the
most common operation called in programs using skiplists,
it is vital that the traversal be as fast as possible. A Contains
operation that must wait for a lock to be released may result
in high contention, especially in the massively multithreaded
environment of the GPU. Thus, the Contains operation is
lock-free: it never acquires a lock or waits for a lock acquired
by another operation.

A team performing a Contains operation searches for a
key k, starting from the first chunk in the highest level. The
team searches each of the upper levels in turn for the largest
key in that level that is smaller or equal to k. Once this
key is found the team reads its associated pointer, which
is used to step down to the next level. When the bottom
level is reached the team begins a lateral search for a chunk
containing k itself. A key is considered to be in the structure
if it exists in a non-zombie chunk in the bottom level.

zombies encountered during traversal are ignored by tak-
ing lateral steps until a non-zombie is found. The LOCK
thread contributes only in recognition of zombie chunks, in



all other steps decisions are made based solely on the values
read by the DATA and NEXT threads.

Consider Fig. 4, in which a team searches for key 17, as a
quick example of a Contains operation. The team begins by
reading chunk A, the first chunk in the top level. Each DATA
thread checks whether its value is a candidate for a down
step (less than or equal to 17). The NEXT thread checks
whether the maximum value in the chunk is smaller than
17, meaning a lateral step should be taken. The team uses
_ballot, which gives each thread a bitmap mirroring the
results of this computation. The threads see that Ty is the
highest thread that returned true, and retrieve the pointer
from Tpy. The entire team then steps down to chunk B, and
repeats the computation, finally stepping down into chunk E.
In chunk E each DATA thread checks whether its key is equal
to 17, while the NEXT thread continues to check whether a
lateral step should be taken. The _ballot operation shows
that 7> sees key 17, and the team concludes the operation
with a frue indication.

b) Implementation Details: Algorithm 1 shows the
Contains operation, which calls two main functions. The
searchDown function, described in Algorithm 2, handles
traversal of the upper levels. It begins with calls to the
getHeight and firstChunkAtLevel functions to re-
trieve the height and a pointer to the first chunk. Both
functions are cooperative: they utilize intra-warp operations
to share data local to each thread. Each thread reads a
separate space in the head array to see whether the level
corresponding to its t/d is in use. The team then uses
_ballot and _shfl operations to discover the highest
nonempty level and retrieve its pointer.

Algorithm 1. Contains

bool contains(K k){
CHKs pCurr = searchDown(k)
return searchLateral(k, pCurr)

}

S

In each iteration the team reads a chunk from memory
then uses the cooperative function get TidForNextStep
described below to decide what the next step should be.
There are three possibilities for the next step: a lateral step in
the same level, a step down to the lower level, or a backtrack
through the previous chunk in the same level.

Down steps are demonstrated in the example above. Lat-
eral steps occur when k is greater than the maximum key in
the chunk. In both cases, getPtrFromTid, implemented
using _shfl, is called to retrieve the pointer in the key-
value pair held by the thread with the tId chosen as the
next step. A backtrack occurs when a lateral step reaches
a chunk in which all keys are greater than k. In this case
the team must step down using the maximum key in the
previous chunk. As an example, a team searching for key
50 in Fig. 4 will take a lateral step from chunk B to chunk
C. The team will discover that all keys in C are greater

than 50, and must step down through key 46 in chunk B.
This sequence of operations is similar to the classic skiplist
traversal algorithm. To enable this step the team keeps track
of the entries read from the previous chunk in the traversal
when taking lateral steps (Line 15).

The helper functions called by the searchDown algo-
rithm are all cooperative. We consider get TidForNext—
Step as an example of such a function. Other cooperative
functions described in this paper are implemented in a
similar fashion. Note that _shfl and _ballot operations
are performed by the entire warp. Thus care must be taken
to only evaluate values read by the current team when using
teams smaller than warp size. In this work only one team is

run per warp, regardless the team size!.

Algorithm 2. searchDown
1 uint searchDown(K k){
2 search:
3 KV prevKv = null
4 int height = getHeight()
5 CHKx pCurr = firstChunkAtLevel(height)

while(height>0) {

8 KV currKv = pCurr—>read(tld)

9 if (isZombie(currKv)) {

10 pCurr = getPtrFromTid(NEXT, currKv)
1 continue

12 }

13 int stepTid = getTidForNextStep(k, currKv)
14 if (stepTid == NEXT) { /lateral step

15 prevKv = currKv

16 pCurr = getPtrFromTid(NEXT, currKv)
17 }

18 else if (stepTid != NONE) { /down step

19 height ——

20 prevKv = null

21 pCurr = getPtrFromTid(stepTid, currKv)
22

23 else { //backtrack

2% if(prevKv == null) goto search

25 height ——

2% pCurr = backTrack(prevKv, k)

27 }

28

29 return pCurr

0}

31

32 CHKx backTrack(KV& prevKv, K k){

33 int stepTid = getTidOfDownStep(k, prevKv)

34 CHK=« pNextStep = getPtrFromTid(stepTid, prevKv)
35 prevKv = null

36 return pNextStep

7}

In getTidForNextStep, shown in Algorithm 3, we
see an example of the _ballot operation. Each thread simul-
taneously calculates a boolean value dependent on its t Id,
k, and the key it read from the chunk. The threads then
call _ballot simultaneously to receive the results of this
calculation for each thread. The NEXT thread passes a true

'We also implemented support for two teams in the same warp perform-
ing two different operations in parallel. However, the complexity of the
code needed in order to ensure teams within a warp could not deadlock
each other caused a degradation in performance.



value to _ballot only if k is greater than the max field,
and the DATA threads pass a true value only if the key they
read is less than or equal to k. The LOCK thread always
passes a false value. Any EMPTY (eo) key value read by
a thread will result in a false value being evaluated. Thus,
the next step required by the algorithm can be decided by
taking the highest t Id that evaluated a true flag. This tId
is determined by subtracting leading zeros (clz) from the
ballot return size (32 bits). Precedence is effectively given
to threads with higher t Ids, a fact that is taken into account
during Inserts and Deletes to safeguard against traversals
considering bad chunk values. If all threads return false
then a special NONE value will be returned, signifying a
backtrack.

void getTidForNextStep(K k, KV currKv){
bool elem = (tld < DSIZE) && (currKv.key <= k)
bool next = (tld == NEXT) && (currKv.key < k)

uint bal = (__ballot(next || elem))
if (bal == 0) return NONE
return 32 — clz(bal) — 1

® N9 w B W N -

}

Searching along the bottom level is performed by the
searchLateral function presented in Algorithm 4. The
traversal is very similar to the lateral step in search-
Down, the main difference being that DATA threads evaluate
whether the key they read is equal to k. The team calls
getTidWithKey to determine the next step, and continues
to take lateral steps as long as the NEXT t Id is returned or
the current chunk is a zombie. Traversal ends when a value
other than NEXT is returned, indicating that the enclosing
chunk has been reached. The threads finally determine
whether the value returned was NONE, indicating that k was
not found, or the t Id of some DATA thread, indicating that
k was seen by that thread.

Algorithm 4. searchl ateral
bool searchLateral(K k, CHKx pCurr){
do {
KV currKv = pCurr—>read(tld)
int foundTid = getTidWithKey(k, currKv)

if (foundTid == NEXT || isZombie(currKv)) {
foundTid = NEXT
pCurr = getPtrFromTid(NEXT)

1 } while(foundTid == NEXT)
12 return foundTid = NONE
3}

c) Lock-Freedom: There exists a rare state in which
searchDown is delayed by a concurrent Delete operation
and must be restarted, making Contains lock-free. We use
Fig. 4 to illustrate this edge case. A team searching for key
70 steps from chunk A to chunk C, then stalls. A concurrent
team deletes keys 59 and 68 from the structure. When

the first team wakes, it sees a chunk containing only keys
greater than 70, and so decides to backtrack. As the previous
chunk in the new level is unknown, the team does not have
enough data to perform the backtrack. The previous chunk
in the layer above might also not hold enough information to
continue, and so the traversal is restarted. These rare restarts
do not limit system progress (they are caused by progress in
Delete operations), and have a minor effect on measurements
(they occur in less than 0.01% of Contains).

2) Insert:

a) General Description: The Insert function receives
<k,v>, the key-value pair to be inserted, and searches the
structure for k. The insertion is executed only if k is not
already in the structure. If insertion causes a chunk overflow
a split operation will occur and a new chunk will be added
to the structure, containing the top half of the values from
the chunk that was split.

The enclosing chunk in the bottom level is locked once it
is reached and found not to contain k. It remains locked until
the Insert operation is completed, including all insertions to
higher levels. This ensures there are no concurrent Insert
or Delete operations on the same key. In all upper levels
the enclosing chunk is locked before inserting the key, then
immediately unlocked to minimize contention. A key is
raised to level i+ 1 only as a result of a split in level i.
The decision whether to raise a key after a split is randomly
generated (on-device) according to pepunk-

For example, a team executing Insert(18) on the structure
in Fig. IV-Bla traverses chunks A, B and E, then locks chunk
E. The team then inserts key 18 into E. If chunk E is full
this causes E to be split. The team will then lock chunk B,
perform an insertion, then unlock chunk B. If chunk B is
full the team will perform a similar insertion into chunk A.
Otherwise the team unlocks chunk E and returns frue.

b) Implementation Details: The Insert function, pre-
sented in Algorithm 5, begins by searching for k using
the searchSlow function, and returns false if k already
exists in the structure. searchSlow performs the same
traversal as Contains, with two main differences: firstly,
searchSlow returns the traversal path. The path is made
up of the chunks through which down-steps were taken
during the traversal, and the enclosing chunk in the bottom
level. These serve as a starting point for discovering the
correct place for insertion in each level. In the example in
Section IV-B2a the path would consist of chunks A, B and
E. Secondly, when a zombie is discovered after a lateral step
the team attempts to redirect the previous chunk’s pointer to
remove the zombie from lateral traversals. The redirection is
performed lazily by calling try-lock on the previous chunk.
If the lock fails the team continues without updating. Update
of down-pointers is discussed below.

One would expect a path to be an array of pointers to
nodes in each level. However, local arrays are costly in
CUDA in terms of resources. Thus, the path is contained



in an “artificial array” consisting of a single variable (path)
per thread. The thread with tId=i holds the chunk in
level i in the path. The “array” is accessed using _shfl
operations. This limits the maximum height of the skiplist
to the team size. However, this limit was deemed sufficient,
even for teams that are smaller than warp size. For example,
chunks of size 16 hold an average of 10 keys. Thus a
structure with a maximum height of 16 can be expected
to support 10'® keys without compromising the skiplist
structure. Likewise, chunks of size 32, as shown in the
evaluation, allow for around 20°? keys. Both are far beyond
the global memory capabilities both in current GPUs and
those in the foreseeable future.

Algorithm 5
bool insert(K k, V v){

Insert

1

2 <bool found, CHKx* path> = searchSlow(k)

3 if (found) return false

4

5 bool raiseKey = false

6 CHKx pBottom = getPathFromTid(0)

7 if (linsertToLevel(0, pBottom, k, v, raiseKey)) {
8 unlockChunk(pBottom)

9 return false

10

1 v = pBottom

12

13 int level = 1

14 while((raiseKey) && (level < MAX_LEVEL)) {
15 CHK=« pEnclose = getPathFromTid(level)
16 insertToLevel(level, pEnclose, k, v, raiseKey)
17 v = pEnclose

18 unlockChunk(pEnclose)

19 level++

20 }

21 unlockChunk(pBottom)

2 return true

» }

24

25 bool insertToLevel(int level, CHKx pEnc,

2 Kk, V v, bool& raiseKey){

27 pEnc = findAndLockEnclosing(pEnc, k)

28 KV encKv = pEnc—>read(tld)

29 if (chunkContains(encKv, k)) return false

30 raiseKey = false

31 if (numKeysInChunk(encKv) < DSIZE) {

£} executelnsert(pEnc, encKv, k, v)

3 if ((level > 0) && (isLevelEmpty(level)))

34 incrementNumChunksAtLevel(level)
35

36 else {

37 <pEnc, k> = splitinsert(pEnc, encKv, k, v, level)
38 incrementNumChunksAtLevel(level)

39 raiseKey = isKeyRaised()

40

41 return true

2}

43

4 void executelnsert(CHK« pEnc, KV encKv, Kk, V v){
45 KV insertKv = getChunkValFromLeftNeighbor(encKv)
46 uint insertldx = getlnsertionldx(insertKv, k)

47 if (tld == insertldx) insertKv = pair(k,v)

48 for(inti = DSIZE—1; i >=insertldx; i ——){

49 if ((insertKv.key != EMPTY) && (tld == i))
50 pEnc—>AtomicWrite(tld, insertKv)

51 }

s}
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Figure 5. Inserting key 10 into a chunk without a split. All keys
higher than 10 are moved one entry to the right.

If £k was not found, insertToLevel (Algorithm 5,
Line 25) is «called to perform the insertion.
insertToLevel locks the enclosing chunk and
inserts k, performing a split if necessary, then returns
the locked enclosing chunk and an indication whether a
key should be raised to the next level (Lines 7, 16, and 39).
insertToLevel will return false if k was concurrently
added by another team before the lock was caught. In
lines 11-20 insertion into higher levels is handled by further
calls to insertToLevel. The value field inserted into
level i+ 1 is a pointer to the new chunk in level i (Lines 11
and 17).

findAndLockEnclosing (Line 27) is a spin-lock
that performs a lateral search in order to ensure that the
chunk being locked encloses k. If the current chunk is a
zombie or does not enclose k the team will read the next
chunk. Otherwise the function checks whether the chunk is
unlocked before the LOCK thread attempts to lock it using
CAS. The team checks whether the lock succeeded, and if
so rereads the locked chunk. If the chunk no longer encloses
k the lock will be released and the team will continue to the
next chunk.

insertToLevel calculates the number of empty en-
tries in the data array (Line 31). If there are empty entries,
executelInsert is called to physically insert <k,v>,
otherwise splitInsert is called to split the current
chunk and perform the insertion. A level’s chunk counter is
incremented every time a split occurs or a level is inserted
into for the first time.

executeInsert (Algorithm 5, Line 44) inserts
<k,v> while ensuring the chunk remains sorted. In Line 45
each thread takes the key-value pair from the previous thread
in the team using a cooperative function. Then, in Line 46
the insertion index for <k,v> in the sorted data array is
determined in another cooperative function. In Lines 48-51
every thread with a tId higher than the insertion index
writes its neighbor’s value into its own place in the data
array, thus shifting all entries greater than the new key to
the right as shown in Fig. 5. In the same lines, the thread
with the t Id equal to the insertion index inserts <k,v> into
the data array.

The insertion is performed serially, from the last DATA
index down to the insertion index. In this way we ensure
that we do not temporarily cause a key to be overwritten,
which may cause a concurrent search to miss an existing
key. All search functions polling a chunk for containment
of a certain key give precedence to higher threads, and so a
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Figure 6. Splitting a chunk. Keys 20 and 25 are moved to the

new chunk. The original chunk’s next pointer and the down-pointer
associated with key 20 in level i+ 1 are redirected to the new chunk.

key temporarily appearing twice in a chunk does not cause
search errors. The max field is never changed by such an
insertion, from the definition of an enclosing chunk.

If the chunk is already full, the team calls splitInsert
(Algorithm 6) to perform a split as shown in Fig. 6. The
preSplit function (Algorithm 6 Line 15) locks the next
chunk, removing zombies if they are encountered (Line 16),
then allocates a new chunk which is initialized to point to
the next chunk.

Algorithm 6. splitInsert
1 <CHKsx, K> splitinsert(CHKx pSplit, Kk, V v, int level){
2 CHKx pNew = preSplit(pSplit)
3 Kv splitKv = splitCopy(pSplit, pNew)
4
5

CHKx pInsert = insertNewData(k, v, pNew, pSplit, splitkv)

6 if (pSplit == pInsert)

7 unlockChunk(pNew)
8 else
9 unlockChunk(pSplit)

10 k = keyForNextLevel(k, pInsert, pNew, pSplit, level)
1 updateDownPtrs(level, splitkv, pNew)
12 return <plnsert, k>

3}

15 CHKx preSplit(CHKx pSplit){

16 CHKsx pNext = lockNextChunk(pSplit)
17 CHKx pNew = alloc()

18 updateNextField(pNew, pNext)

19 return pNew

0}

2 KV splitCopy(Chks pSplit, CHK* pNew){

23 KV splitKv = pSplit—>read(tld)

2% K thresh = getKeyFromTid(splitKv.key, DSIZE/2—1)

2 if (splitkv.key > thresh)

27 copyToNewChunk(pNew, splitKv)
28 if (tld == NEXT)

29 updateNextField(pSplit, pNew)

30 setMovedValsEmpty(splitKv)

31 return splitkv

2}

splitCopy (Algorithm 6 Line 22) is then called to copy
the top DSIZE/2 values to the new chunk (Lines 24-27).
Once the copy is completed the new chunk can be connected
to the structure by redirecting the next pointer of the original
chunk and setting its max value to the highest remaining
key. Both of these changes are performed with a single

atomic write by the NEXT thread (Line 29). The team can
then atomically write an empty value to each of the moved
values in the old chunk (Line 30). Again we rely on the
fact that traversals give precedence to higher t Ids to argue
that a concurrent traversal will not be adversely affected.
The updated max field ensures the NEXT thread’s value is
considered before keys that have not yet been emptied.

The split continues at Line 4 where <k, v> is inserted into
the either the old or the new chunk, depending on &’s place
the sorted array of values. If <k,v> is inserted into the new
chunk during a split in the bottom level the original chunk
will be unlocked and the new chunk will remain locked
until the end of the Insert operation, thus ensuring that the
enclosing chunk in the bottom level remains locked.

The split function determines which key will be raised
should the team decide to insert into the next level. As
raising a key indicates that a new chunk was created it would
make sense to raise the minimum key in the new chunk
(minK). However, if k > minK then we cannot raise minK
without performing a new traversal to discover the path to
it. Thus, in Line 10, the key raised from level O is chosen to
be the maximum between k and minK. In upper levels the
key raised must be the key that caused the split, as the lock
on the bottom level protects only keys in that chunk.

Finally, the team updates the down-pointers in level i + 1
to reflect the changes in level i (Line 11), by searching level
i+ 1 for the range of moved keys, then locking affected
chunks and atomically updating relevant down-pointers. In
Fig. 6, key 20 was moved in the split of level i, causing its
down pointer in level i+ 1 to be updated to point to the new
chunk. The pointers that have not yet been updated point to
legal chunks in terms of traversal, as the enclosing chunk
can be reached from them using lateral traversal.

3) Delete: The Delete operation is similar in spirit to the
Insert. It begins by searching for the key to be deleted, £,
and creating the traversal path in the same way as Insert
does. If k exists in the structure, the bottom level chunk that
encloses k is locked. After determining that k is still in the
structure, the team searches all occupied levels from the top
down, removing k in every level in which it is found. The
chunk in the bottom level remains locked until k£ has been
physically removed from all levels, concluding the Delete
operation. As in the case of Insert, this ensures that no other
team can concurrently perform updating operations on k.

Removing k from a level is divided into three cases: (1)
k can be removed without performing a merge (2) a merge
is required (3) k is situated in the final chunk in the level. A
merge is necessary if removing k will cause the number of
nonempty entries in the data array to cross a predetermined
threshold (DSIZE/3 in our implementation).

If no merge is required, the key will be removed in a
manner similar to executeInsert, though in the opposite
direction as illustrated in Fig. 7. Each thread reads the key-
value pair of its neighbor to the right with a_shfl operation.
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Figure 7. Deleting key 10 from a chunk. All keys greater than 10
are moved one entry to the left.

DATA threads with tIds equal to or higher than k’s index
atomically write their neighbors value into their own index,
overwriting the removed key. As in the case of insertion the
order of operations matters: the writes must occur from k’s
index up to the highest DATA tId so as not to cause keys
to temporarily disappear from the chunk, which could harm
concurrent traversals.

There are two cases that must be handled when deleting
k that have no equivalent in executelnsert: Firstly, if k was
the last element in the chunk the NEXT thread must update
the max field. This must occur before the deletion of the
key so that concurrent searches do not see a max value that
does not exist in the chunk. Secondly, the highest tId to
see a non-EMPTY value in its entry must make it EMPTY.

If a merge operation is deemed necessary the team locks
the next non-zombie chunk in the level, redirecting the next
pointer to unlink zombies if they are found. If the next chunk
is too full to receive the values from the current chunk it
will be split by moving the top DSIZE/2 entries into a new
chunk. The split operation is identical to the one performed
during insertions, except that no key is inserted. All values
but k are then copied into the next chunk, and the original is
marked as a zombie. Lastly, down-pointers in the level above
are redirected to unlink the zombie. The number of chunks
in the level is incremented and decremented accordingly.

Copying the keys to the next chunk is performed in a
manner similar to copying keys into a new chunk during a
split. The order of operations is such that higher indexes
are updated first, so that traversing teams (which give
precedence to higher t Ids) are not affected.

Care must be taken if k is in the last chunk in a level.
A merge operation pushes values into the next chunk,
which is impossible in this case. Thus entries are simply
removed, even if this causes the chunk to be completely
emptied. There can only be one such chunk in any level,
and subsequent inserts and merge operations can add new
values to it as necessary. The last chunk will never be marked
a zombie, ensuring that all lateral traversals eventually reach
a non-zombie chunk. If the last chunk in a level contains
only the —co key after the deletion then the chunk counter
for that level is decremented to show that the level is empty.

The reader should note that all operations in GFSL were
designed to be performed by a team in tandem, with only a
few divergent t Id-specific operations scattered throughout.
The memory layout is such that every global memory access
by a team is to memory-contingent locations. Thus we
maximize memory coalescence and reduce divergence.

C. Some Words on Correctness

In this subsection we briefly mention a couple of major
invariants used by our algorithm. One important promise is
that a traversal will always reach the enclosing chunk of
the key it is searching for (k) by taking only down and right
steps. Our main concern when taking a step is that we never
read a chunk to the right of k’s enclosing chunk. Down-steps
will never cause a bypass of k’s enclosing chunk in the level
below because keys can only be moved as part of split and
merge operations, and then only to the right of their original
chunk. A second important invariant is that the max field of
a chunk can only decrease from the moment it is allocated,
which is important in ensuring that teams taking lateral steps
do not miss the enclosing chunk of a key. This means that
once a key is placed in the data array of some chunk ch a
larger key will never be inserted into any chunk to the left of
ch. This continues to be true even if the key is later deleted
from ch, or if ch becomes a zombie. Thus a lateral step will
always reach either the enclosing chunk or a chunk to the
left of the enclosing.

V. MEASUREMENTS/RESULTS

We evaluated GFSL compared to the skiplist algorithm
ported to the GPU by Misra and Chaudhuri [7]. The code
for their implementation is available online [24]. In the
remainder of this section we refer to their implementation
as “M&C”.

Both GFSL and M&C were evaluated on a GM204
GeForce GTX 970 (Maxwell architecture) GPU. We use the
latest CUDA driver version 7.5 supporting compute capabil-
ities 5.2. GTX 970 has 13 active streaming multiprocessors
and a total of 1,664 cores. The device memory capacity is 4
GB GDDRS. The L2 Cache size is 1.75 MB. The core and
memory clocks are 1050MHz and 1750MHz respectively.
The operating system is 64-bit Ubuntu Server 14.04 with
Linux kernel version 3.13.0-88-generic.

A. Experimental Setup

In this paper we observed four aspects that impact per-
formance. The first is the structure size, which effects the
traversal length and the amount of nodes that the GPU can
hold in cache. The second is the percentage of updates and
searches performed, as update operations are slower than
searches. The third is GPU-specific configurations, such as
the number of threads launched, their division into blocks,
the number of operations performed by each team/thread,
and, for GFSL, team/chunk size. The last is the value of
Pkey for M&C and ppyni for GFSL. We choose to focus on
the first two as they are more universal to all GPUs, while
we optimized the last two to fit our current setup. While the
rest of this chapter will be devoted to exploring the first two
parameters, we will first discuss the latter.

In GFSL we use teams of 32 threads and chunks of size
256B with 32 8B key-value pairs. We set a limit on the



Table II
EFFECTS ON GFSL OF LIMITING WARPS LAUNCHED PER BLOCK

Warps per Block 8 16 24 32
Occupancy/ 36.7%/ | 48.8%/ | 73%/ | 95.8%/
Theoretical 37.5% | 50% 75% 100%
Registers 79 64 40 32
Active Blocks 3 2 2 2
Throughput (MOPS)! 58.9 65.7 62.5 | 529

! Throughput for operation mixture [10,10,80], range 1M

number of threads that can run in parallel, thus ensuring
each thread receives more local resources, e.g. registers.
Specifically, we launch 16 warps per block (512 threads) out
of a possible 32. Under this limit GFSL launches 2 blocks
per SM with 64 registers per thread, giving an occupancy of
around 48.8% out of a theoretical 50% In this way we do
not utilize the maximum possible parallelism supported by
the hardware, but reach better results as there is less local
memory “spillover”.

Table II shows the effects on throughput, SM occupancy,
register-per-thread allocation on GFSL, and active blocks
per SM as a function of the number of warps launched per
block. The throughput example shows that there is a tradeoff
between the amount of concurrency (total threads launched)
and the available local registers.

We tested M&C under several different configurations,
varying the value of py.,, the number of warps, and the
number of operations per thread. For the Contains-only test
some configurations of M&C showed up to 24% better
performance in low ranges than those shown in this paper.
However, the Contains-only tests had unstable performance
and very large confidence intervals. Thus, we chose the
configuration that yielded the best results on average. M&C
is configured to run 16 warps per block, with a single
operation executed by each thread. This correlates to the
best configuration described in the original paper.

The value of piey/penunk influences both the number of
layers traversed and the number of keys/nodes in each level.
We tested different values for each, and used those that gave
the best results. GFSL uses pcuunk =~ 1, (each chunk has one
key on average leading to it from the level above). This
effectively results in py., = 0.05, as there are 20 entries per
chunk on average. M&C uses py., = 0.5.

We evaluate both skiplist implementations with several
different operation mixtures. Mixtures are represented as
tuples [i,d,c] signifying a set of random operations with
a probability of i% Inserts, d% Deletes, and c% Contains.
The mixtures presented are [1,1,98], [5,5,90], [10,10,80]
and [20,20,60], each evaluated by running 10M operations
in varying key ranges between 10K and 100M. We also
present benchmarks for each operation type (Insert, Delete,
Contains) alone in the same key ranges. As above, Contains
is tested with 10M operations. The number of operations in
the Insert and Delete tests is equal to the key range, i.e. for a
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Figure 8. Ratio between GFSL and M&C as a function of the key range.

range of 100K keys, 100K operations were performed. This
is in order not to oversaturate small structures.

The input to the CUDA test kernels for both implemen-
tations is an array of operations. Each entry in the array in
GFSL consists of the operation type and a key. The array in
M&C consists of an operation indication, key, and a value
indicating level to which each key should be inserted. In
both cases Insert operations use NULL as the value to be
inserted. The operation type and keys for each entry are
generated using uniform random functions, according to the
configurations of the specific test. The initial structure on
which the mixed-operation tests are performed contains a
random set of keys, exactly half the size of the key range.
Similarly, the initial structure for the Contains-only and
Delete-only tests contains all of the keys in each range,
inserted in a random order. The initial structure for the
Inserts-only test is empty. Thus there is a direct correlation
in our tests between the size of the range and the structures
overall size. We run each experiment ten times and present
the mean values along with 95% confidence intervals.

B. Performance Results

Fig. 8 shows the speedup of GFSL over M&C. GFSL
is slower than M&C by up to 47% in the 10K range, up
to 10% in the 30K range, then outperforms them by 27%
to 1064% in the higher ranges. In Fig. 9 we present the
actual throughput results of the tests. The figure shows that
GFSL’s peformance does not change drastically as the range
increases, in contrast to M&C which melts down quickly as
the range, and so the structure size, grows. This is the root
cause of the rising ratio in the previous graph.

The main advantage of GFSL is the usage of coalesced
reads, which optimizes accesses to the global memory. In
the smaller range (10K), the entire structure fits into the L2
cache in both implementations, which significantly reduces
the benefits of the coalesced reads as L2 access is much
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faster than global memory access. However, in larger key
ranges, M&C requires frequent uncoalesced accesses to the
global memory that causes a sharp degradation in perfor-
mance. GFSL does not suffer from this fast degradation.
For example, comparing the key ranges 1M and 10M (a
10x larger structure) in the mixed-ops test, the performance
of M&C is reduced by 68%-75%, whilst the performance of
GFSL is reduced by up to 8%.

In addition to the key range, the performance is also
impacted by the operation distribution. For the 10K range,
M&C is faster than GFSL by 15%-47% when the percentage
of Contains operations is high (Fig. 9a-9c), and slower
by 8% when the percentage of Inserts and Deletes grows
(Fig. 9d). The impact of the distribution is less than the
impact of the key range, as GFSL’s performance is closer
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to M&C'’s in the 30K range then quickly outperforms them
in larger key ranges for all mixed distributions.

Looking at GFSL, we see a dip in performance in each of
the mixed-ops tests. This dip occurs in small ranges when the
number of update operations is small, and in larger ranges
as the percentage of update operations grows (e.g. 300K for
[20,20,60]). Smaller key ranges express a tradeoff between
faster traversal and higher contention. Small structures allow
faster traversals, both because more of the structure can
reside in the cache and because fewer steps are required
in traversals. However, when operations are generated from
a smaller range of keys there is more chance for contention.
The performance dip occurs when the benefit of small
structure size cannot cover the loss from contention. As more
updates are performed the dip occurs in larger key ranges,



for which the structure is large enough not to benefit as much
from faster traversals, but is small enough to still suffer from
contention. This trend is reinforced in Fig. 10a, which shows
the results of the Contains test. In this case there are no
updates, thus no contention and no dips in performance.

M&C’s implementation was measured up to the 10M
range in the mixed-ops tests, and up to the 3M range in
the single-op-type tests, as it runs out of memory for larger
structures. In contrast, GFSL’s compact layout and partial
reuse of chunks allow it to run up to the range of 100M.

GFSL outperforms M&C for all single-op-type tests, as
seen in Fig. 10. GFSL’s Contains operation is faster than
M&C by up to 4.4x in the large key ranges, and up to 2.9x
in the low key ranges (Fig. 10a). M&C show surprisingly
low performance in small key ranges in the Contains test,
especially when considering the trends in the mixed-ops tests
with few update operations; we were unable to determine
the cause of the low performance. Fig. 10b and Fig. 10c
show the performance of Insert-only and Delete only execu-
tions respectively. Both graphs show higher performance for
GFSL in all ranges, between 3.5x-9.1x for Insert operations
and between 3.5x-12.6x for Deletes.

VI. RELATED WORK

While relatively little research has gone into designing
general purpose data structures optimized for the GPU, some
have been developed.

Hong et al. [25] showed that graph algorithms can be
greatly accelerated on the GPU by designing a structure that
emphasizes memory coalescing and warp-level cooperative
execution. More recently, Zhang et al. [23] used similar
techniques in their implementation of MegKYV, an in-memory
key-value storage system; in the context of a a GPU-friendly
cuckoo hash table. MegaKV provided a speedup of 1.4-2.8
over the CPU implementation of the general algorithm.

Other hash tables have been designed and/or implemented
on the GPU [26]-[30]. Bordawekar [27] proposed multi-
level bounded linear probing, improving locality by using
multiple levels of hash tables that reduce the number of
lookups. Alcantara et al. [26] developed a cuckoo hashing
scheme that achieves fast construction on the GPU and
ensures lookup succeeds within at most 4 steps. Another
cuckoo hashing scheme, [28], uses Collaborative Lanes, a
method enabling threads in a warp to take on new tasks and
so battle warp under-utilization.

Misra and Chaudhuri [7] tested the speedup of several
known lock-free data structure algorithms ported to the
GPU, in comparison with the CPU. Their results indicate
that while a speedup is achieved on the GPU, increasing the
dataset size and number of operations significantly reduces
the GPU’s advantage, especially in the case of more complex
data structures such as skiplists and priority queues. Ceder-
man et al. [8] performed similar experimentation on a variety
of known lock-based and lock-free queue implementations,

concluding that GPU-oriented optimization would benefit
performance. In this work we show that a GPU-friendly
design can perform significantly better.

Simpler data structures such as queues [31] and linked-
lists [32] have been developed for the GPU. Some graph-
based algorithms have also been sped up using GPU-
optimized implementations [33]-[35].

Search trees geared towards graphics applications have
also been GPU-optimized to good effect [36]-[38]. However,
such structures typically distinguish between a construction
phase in which elements are inserted, and a use phase in
which elements are searched (but are never modified). They
do not allow an intermix of these phases and so are not a
good fit for general purpose applications.

Condensing data into contiguous areas of memory is a
well-known technique for accelerating data structure opera-
tions in vector SIMD architectures. Several such structures
have been designed such as binary search trees [39], b+-
trees [40]-[42], and hash tables [43]. Sprenger et al. [44]
designed a cache conscious skiplist with index levels in
memory contiguous arrays and a linked list in the bottom
level. The index levels are rebuilt periodically.

Braginsky and Petrank developed a locality-conscious
linked list [45] and B+tree [46] for use in storage systems.
A chunk based node design was proposed for the linked list
and later used in the B+ tree implementation. As the cache-
alignment requirement for efficient GPU programming can
be compared to requirements for page-conscious systems the
possibility of developing such structures to GPU programs
is an interesting research question.

VII. CONCLUSION

We presented GFSL, a GPU-friendly algorithm for the
skiplist data structure which utilizes chunked skiplist nodes
and warp-cooperative functions to improve performance on
the GPU. We demonstrated the importance of designing
such specialized algorithms when attempting to execute non-
streaming applications on a GPU by presenting a skiplist
design that outperforms a straightforward porting of the CPU
implementation to the GPU. We implemented our design on
a GeForce GTX 970 Nvidia GPU (Maxwell architecture),
and the results show a significant speedup of up to 11.6x
over previous implementations for substantial key ranges.
We believe that similar design considerations can be used to
aid in efficient porting of other irregular-access concurrent
data structures to the GPU environment.
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