AQ,‘,_ A Lock-Free Wait-Free Hash Table

SYSTEMYS

UNSHACKLE THE
POWER OF JAVA

NETWORK ATTACHED PROCESSING
FROM AZUL SYSTEMS

Dr. CIiff Click
Distinguished Engineer

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Hash Tables

* Constant-Time Key-Value Mapping
« Fast arbitrary function
* Extendable, defined at runtime

» Used for symbol tables, DB caching, network
access, url caching, web content, etc

* Crucial for Large Business Applications
> 1MLOC

* Used in Very heavily multi-threaded apps
> 1000 threads

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Popular Java Implementations

e Java's HashTable
Single threaded; scaling bottleneck

 HashMap
Faster but NOT multi-thread safe

e java.util.concurrent.HashMap
Striped internal locks; 16-way the default

* Azul, IBM, Sun sell machines >100cpus
e Azul has customers using all cpus in same app
 Becomes a scaling bottleneck!

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
M EMS

NETWORK ATTACHED PROCESSING FROM AZUL SYST

A Wait-Free (Lock-Free) Hash Table

* No locks, even during table resize
No CAS spin-loops

* Requires CAS, LL/SC or other atomic-update

» Wait-free property requires CAS not fail spuriously
Or at least limited to finite spurious failures
Reason for failure dictates next action

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

A Faster Hash Table

* Tied with j.u.c for 99% reads < 32 cpus

« Faster with more cpus (3.5x faster)
Even with high striping levels
j.u.c with 1024 stripes still 2x slower

* Much faster for 95% reads (20x faster)

e Scales well up to 768 cpus, 75% reads
Approaches hardware bandwidth limits

e Scales up to 400 cpus, 50% reads

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Agenda

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

 Performance
e Q&A

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Some “Uninteresting” Details

* Hashtable: A collection of Key/Value Pairs
* Works with any collection

e Scaling, locking, bottlenecks of the collection
management responsibility of that collection

* Must be fast or O(1) effects kill you
 Must be cache-aware

* |'ll present a sample Java solution
But other solutions can work, make sense

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
M EMS

NETWORK ATTACHED PROCESSING FROM AZUL SYST

“Uninteresting” Details

e Closed Power-of-2 Hash Table
Reprobe on collision
Stride-1 reprobe: better cache behavior

 Key & Value on same cache line

« Hash memoized
Should be same cache line as K +V
But hard to do in pure Java

* No allocation on get() or put()
* Auto-Resize

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

“Uninteresting” Details

 Example get() work:
idx = hash = key.hashCode() ;

while(true) { // reprobing loop
idx &= (size-1); // limit idx to table size
k = get key(idx); // start cache miss early
h = get hash(idx); // memoized hash
if(k == key || (h == hash && key.equals(k)))

return get val (idx);// return matching value
if(k == null) return null;

idx++; // reprobe

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

“Uninteresting” Details

e Could use prime table + MOD
Better hash spread, fewer reprobes
But MOD is 30x slower than AND

e Could use open table
put() requires allocation
Follow 'next' pointer instead of reprobe
Each 'next' is a cache miss
Lousy hash -> linked-list traversal

e Could put Key/Value/Hash on same cache line
+ Other variants possible, interesting

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Agenda

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

 Performance
e Q&A

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Ordering and Correctness

 How to show table mods correct?
put, putlfAbsent, change, delete, etc.

* Prove via: fencing, memory model, load/store
ordering, “happens-before™?

* |Instead prove* via state machine

e Define all possible {Key,Value} states
* Define Transitions, State Machine
 Show all states “legal”

A- *Warning: hand-wavy proof follows

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

State-Based Reasoning

e Define all {Key,Value} states and transitions

* Don't Care about memory ordering:
get() can read Key, Value in any order
put() can change Key, Value in any order
put() must use CAS to change Key or Value
But not double-CAS

* No fencing required for correctness!

(sometimes stronger guarantees are wanted
and will need fencing)

* Proof is simple!

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
M EMS

NETWORK ATTACHED PROCESSING FROM AZUL SYST

Valid States

A Key slot is:

— e —empty

— k — some Key, can never change again
A Value slot is:

— T — tombstone, empty
— V., V_—some Values

* A state is a {Key,Value} pair

e |nitialize all pairs to empty
— Handy to represent empty as null

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

State Machine

Partially inserted K/V
pair or deleted key

Partially inserted Standard K/V pair
K/V pair -

Reader-only state

&

AZUL
SYSTEMS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Some Things to Notice

* Once a Key is set, it never changes
No chance of returning Value for wrong Key
Means Keys leak; table fills up with dead Keys
Fix in a few slides...

* No ordering guarantees provided!
Bring Your Own Ordering/Synchronization

* Weird {e,V} state meaningful but uninteresting
Means reader got an empty key and so missed
But possibly prefetched wrong Value

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Some Things to Notice

 There is no machine-wide coherent State!

 Nobody guaranteed to read the same State
Except on the same CPU with no other writers

* No need for it either
» Consider degenerate case of a single Key

 Same guarantees as:
single shared global variable
many readers & writers, no synchronization
l.e., darned little

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

A Slightly Stronger Guarantee

* Probably want “happens-before” on Values
java.util.concurrent provides this

e Similar to declaring that shared global 'volatile'

* Things written into a Value before put()
Are guaranteed to be seen after a get()

* Requires st/st fence before CAS'ing Value
“free” on Sparc, X86

 Requires Id/Id fence after loading Value
“free” on Azul

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Agenda

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

 Performance
e Q&A

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Resizing The Table

* Need to resize if table gets full
* Or just re-probing too often

* Resize copies live K/V pairs
Doubles as cleanup of dead Keys
Resize (“cleanse”) after any delete
Throttled, once per GC cycle is plenty often

* Alas, need fencing, 'happens before'

* Hard bit for concurrent resize & put():
Must not drop the last update to old table

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Resizing

 Expand State Machine
e Side-effect: mid-resize is a valid State

 Means resize is:
Concurrent — readers can help, or just read&go
Parallel — all can help
Incremental — partial copy is OK

e Pay an extra indirection while resize in progress
So want to finish the job eventually

« Stacked partial resizes OK, expected

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
M EMS

NETWORK ATTACHED PROCESSING FROM AZUL SYST

New Valid States

A Key slot is:

— e —empty

— k — some unchanging Key
A Value slot is:

— T — tombstone/empty
— V. — some Values

— S — sentinel, not any valid Value

— T, V'—primed versions of T & V
— Old things copied into the new table
— “2-phase commit”

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

check new table

State Machine

opy {K,V}in new table

chan

Partially inserted Standard K/V pair
K/V pair

&

AZUL
SYSTEMS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Resizing

* Copying K/V pairs is independent of get/put

 Many heuristics to choose from:

All touching threads, only writers, unrelated
background thread(s), etc

e get() works on the old table
Unless see a sentinel

e put() or other mod must use new table

* Must check for new table every time
Late writes to old table 'happens before' resize

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Resizing — put(K,V) while copy

* put() in new table, same as before
* Old Value will be overwritten, no need to read
 Fence!

» Store (not CAS) 'S' into old table
Stomps over old table
No longer care for what was there

e State Machine may help you visualize...

* New State includes both tables:
{Key, OldVal, NewVal}

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

State Machine: put(K,V) while copy

deletgd CAS V into new
OR alive

9oU9]

live Into old

- e

K,V in new table
S in old table

Stomp

AZUL
SYSTEMS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Resizing — Normal Copy

 'get()' thread or helper thread
 Must be sure to copy late-arriving old-table write

* Attempt to copy atomically
May fail & copy does not make progress
But old, new tables not damaged

* Prime allows 2-phase commit
Prime'd values copied from old
Non-prime is recent put()
“happens after” any prime'd value

« State Machine again...

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

State Machine: Copy One Pair

alive‘IIIIII')

CAS into new fails

into old fails

partial K,V'in new table
copy S in old table

CAS: Strip prime

Either put or other copy
already in progress

9oU94

copy

complete
&

AZUL
SYSTEMS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Some Things to Notice

* Old value could be Vor T
or V' or T' (if nested resize in progress)
Forold T, just CAS tombstone to S
no need to insert tombstone in new table

« Skip copy if new Value is not prime'd
Means recent put() overwrote any old Value

 If CAS into new fails
Means either put() or other copy in progress
So this copy can quit

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Agenda

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

e Performance
e Q&A

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

99% Reads

99% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB
S002CO
S002NB

4 B X XAV > 49

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

99% Reads

99% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB

M-Ops

I I I I I |
0O 4 8 12 16 20 24 28 32
Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

99% Reads

99% Reads

1000
750 ¢ A768CO
v A768NB
o A A384CO
Q > A384NB
S 500 7
=

250

0 100 200 300 400
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

99% Reads

99% Reads

1000
750 ¢ A768CO
v A768NB
o A A384CO
o > A384NB
Cl) 500
=
/f&:‘“
000%0050000004.000 %000
250
0
0 200 400 600 800

Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

95% Reads

95% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB
S002CO
S002NB

4 O 0B X X AV > 4 ¢

Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

95% Reads

95% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB

BHE X X AV > 4 ¢

0" | | | | |
0 4 8 12 16 20 24 28 32
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

95% Reads

95% Reads

1000
750 ¢ A768CO
v A768NB
Q. > A384NB
C') 500
=
250

0 100 200 300 400
Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

95% Reads

95% Reads

1000
750 ¢ A768CO
v A768NB
A A384CO

M-Ops

M > A384NB
500 "V

250

0 200 400 600 800
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

90% Reads

90% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB
S002CO
S002NB

4 O 0B X X AV > 4 ¢

Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

90% Reads

90% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
NO32NB
X004CO
X004NB

BHE X X AV > 4 ¢

0" | | | | |
0 4 8 12 16 20 24 28 32
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

90% Reads

90% Reads

1000
750 ¢ A768CO
v A768NB
Q. > A384NB
C') 500
=
250

0 100 200 300 400
Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

90% Reads

90% Reads

1000
750 ¢ A768CO
v A768NB
o > A384NB
C') 500
=
250
o0 & | | | |
0 200 400 600 800

Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

75% Reads

75% Reads

70

60
+ A768CO
50 v A768NB
Q 40 > A384NB
C.) < N032CO
= 30 4 NO32NB
% X004CO
m X004NB
& S002CO
v S002NB

Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

75% Reads

75% Reads

70

60
¢ A768CO

50 v A768NB
A A384CO
> A384NB
< NO32CO
» NO32NB
X X004CO
m X004NB

0 | | | | | |

\ |
0O 4 8 12 16 20 24 28 32
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

75% Reads

75% Reads

1000

750 ¢ A768CO

v A768NB

Q. > A384NB
C') 500

=
250
0
0 100 200 300 400

Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

75% Reads

75% Reads

1000

750 ¢ A768CO

v A768NB

o > A384NB
C') 500

=
250
0 | |
0 200 400 600 800

Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

Summary

* A faster lock-free wait-free HashTable
e Faster for more CPUs
* Much faster for higher table modification rate

« State-Based Reasoning:
No ordering, no JMM, no fencing

 Seems applicable to other data structures as well
Have a concurrent j.u.Vector in the works

http://www.azulsystems.com/events/stanford 2007/index.htm

SSSSSSSS

UNSHACKLE THE
POWER OF JAVA

NETWORK ATTACHED PROCESSING
FROM AZUL SYSTEMS

Thank you.
cliffc@acm.org

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

“Uninteresting” Resizing Control

e Each old slot copied exactly once
* Update with CAS to indicate copy

o Still need efficient worklist control
Chunk K/V pairs to copy
CAS out work chunks

 Wait-Free: no CAS loops
Try CAS a few times, then quit helping
And proceed with other work
Since CAS failed, other threads are copying

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
s

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEM:.

Walit-Free

* Requires “no spurious failure” CAS
* No CAS spin-loops
Lest you wait forever for success
 Try CAS once
If fails — must be contention
l.e., Another racing writer is writing
Allow other writer to win

* “As If” this write succeeded but was immediately
overwritten by another racing writer

SSSSSSSS

UNSHACKLE THE POWER OF JAVA
M EMS

NETWORK ATTACHED PROCESSING FROM AZUL SYST

Obstruction-Free

e Obstruction-Free: no thread stalled forever

* Resize may stall:
Copy in-progress slows down table by O(1)
Throbbing in old table can prevent copy
But only for put's started before resize started
Limited by #threads doing a “late put()”

SSSSSSSS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

50% Reads

50% Reads

70

60
e A768CO
50 v A768NB
Q 40 > A384NB
C.) < N032CO
= 30 4 NO32NB
x X004CO
m X004NB
20 & S002CO
v S002NB

Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA

NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

50% Reads

50% Reads

70

60
¢ A768CO

50 v A768NB
A A384CO
> A384NB
< NO32CO
» NO32NB
X X004CO
m X004NB

0 | | | | | |

\ |
0O 4 8 12 16 20 24 28 32
Threads

AZUL

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

50% Reads

50% Reads

1000

750 ¢ A768CO

v A768NB

Q. > A384NB
C') 500

=
250
0
0 100 200 300 400

Threads

o

SYSTEMS

UNSHACKLE THE POWER OF JAVA
NETWORK ATTACHED PROCESSING FROM AZUL SYSTEMS

50% Reads

50% Reads

1000

750 ¢ A768CO

v A768NB

Q. > A384NB
C') 500

=
250
0
0 200 400 600 800

Threads

AZUL

SYSTEMS

