
A Lock-Free Wait-Free Hash Table

Dr. Cliff Click
Distinguished Engineer

• Constant-Time Key-Value Mapping
• Fast arbitrary function
• Extendable, defined at runtime
• Used for symbol tables, DB caching, network

access, url caching, web content, etc
• Crucial for Large Business Applications

─ > 1MLOC
• Used in Very heavily multi-threaded apps

─ > 1000 threads

Hash Tables

Popular Java Implementations

• Java's HashTable
─ Single threaded; scaling bottleneck

• HashMap
─ Faster but NOT multi-thread safe

• java.util.concurrent.HashMap
─ Striped internal locks; 16-way the default

• Azul, IBM, Sun sell machines >100cpus
• Azul has customers using all cpus in same app
• Becomes a scaling bottleneck!

A Wait-Free (Lock-Free) Hash Table

• No locks, even during table resize
─ No CAS spin-loops

• Requires CAS, LL/SC or other atomic-update
• Wait-free property requires CAS not fail spuriously

─ Or at least limited to finite spurious failures
─ Reason for failure dictates next action

• Tied with j.u.c for 99% reads < 32 cpus
• Faster with more cpus (3.5x faster)

─ Even with high striping levels
─ j.u.c with 1024 stripes still 2x slower

• Much faster for 95% reads (20x faster)
• Scales well up to 768 cpus, 75% reads

─ Approaches hardware bandwidth limits
• Scales up to 400 cpus, 50% reads

A Faster Hash Table

Agenda

• Motivation
• “Uninteresting” Hash Table Details
• State-Based Reasoning
• Resize
• Performance
• Q&A

Some “Uninteresting” Details

• Hashtable: A collection of Key/Value Pairs
• Works with any collection
• Scaling, locking, bottlenecks of the collection

management responsibility of that collection
• Must be fast or O(1) effects kill you
• Must be cache-aware
• I'll present a sample Java solution

─ But other solutions can work, make sense

“Uninteresting” Details

• Closed Power-of-2 Hash Table
─ Reprobe on collision
─ Stride-1 reprobe: better cache behavior

• Key & Value on same cache line
• Hash memoized

─ Should be same cache line as K + V
─ But hard to do in pure Java

• No allocation on get() or put()
• Auto-Resize

“Uninteresting” Details

• Example get() work:
idx = hash = key.hashCode();
while(true) { // reprobing loop
 idx &= (size-1); // limit idx to table size
 k = get_key(idx); // start cache miss early
 h = get_hash(idx); // memoized hash
 if(k == key || (h == hash && key.equals(k)))
 return get_val(idx);// return matching value
 if(k == null) return null;
 idx++; // reprobe
}

“Uninteresting” Details

• Could use prime table + MOD
─ Better hash spread, fewer reprobes
─ But MOD is 30x slower than AND

• Could use open table
─ put() requires allocation
─ Follow 'next' pointer instead of reprobe
─ Each 'next' is a cache miss
─ Lousy hash -> linked-list traversal

• Could put Key/Value/Hash on same cache line
• Other variants possible, interesting

Agenda

• Motivation
• “Uninteresting” Hash Table Details
• State-Based Reasoning
• Resize
• Performance
• Q&A

Ordering and Correctness

• How to show table mods correct?
─ put, putIfAbsent, change, delete, etc.

• Prove via: fencing, memory model, load/store
ordering, “happens-before”?

• Instead prove* via state machine
• Define all possible {Key,Value} states
• Define Transitions, State Machine
• Show all states “legal”

*Warning: hand-wavy proof follows

State-Based Reasoning

• Define all {Key,Value} states and transitions
• Don't Care about memory ordering:

─ get() can read Key, Value in any order
─ put() can change Key, Value in any order
─ put() must use CAS to change Key or Value

─ But not double-CAS
• No fencing required for correctness!

─ (sometimes stronger guarantees are wanted
and will need fencing)

• Proof is simple!

• A Key slot is:
─ e – empty
─ k – some Key; can never change again

• A Value slot is:
─ T – tombstone, empty
─ V

1
, V

2
– some Values

• A state is a {Key,Value} pair
• Initialize all pairs to empty

─ Handy to represent empty as null

Valid States

State Machine

{e,T}

Empty

{k,T}

{e,V
1
}

Partially inserted
K/V pair -
Reader-only state

{k,V
x
}

Standard K/V pair

insert

de
le

teinsert

change

insert

Partially inserted K/V
pair or deleted key

Some Things to Notice

• Once a Key is set, it never changes
─ No chance of returning Value for wrong Key
─ Means Keys leak; table fills up with dead Keys

─ Fix in a few slides...
• No ordering guarantees provided!

─ Bring Your Own Ordering/Synchronization
• Weird {e,V} state meaningful but uninteresting

─ Means reader got an empty key and so missed
─ But possibly prefetched wrong Value

Some Things to Notice

• There is no machine-wide coherent State!
• Nobody guaranteed to read the same State

─ Except on the same CPU with no other writers
• No need for it either
• Consider degenerate case of a single Key
• Same guarantees as:

─ single shared global variable
─ many readers & writers, no synchronization
─ i.e., darned little

A Slightly Stronger Guarantee

• Probably want “happens-before” on Values
─ java.util.concurrent provides this

• Similar to declaring that shared global 'volatile'
• Things written into a Value before put()

─ Are guaranteed to be seen after a get()
• Requires st/st fence before CAS'ing Value

─ “free” on Sparc, X86
• Requires ld/ld fence after loading Value

─ “free” on Azul

Agenda

• Motivation
• “Uninteresting” Hash Table Details
• State-Based Reasoning
• Resize
• Performance
• Q&A

Resizing The Table

• Need to resize if table gets full
• Or just re-probing too often
• Resize copies live K/V pairs

─ Doubles as cleanup of dead Keys
─ Resize (“cleanse”) after any delete
─ Throttled, once per GC cycle is plenty often

• Alas, need fencing, 'happens before'
• Hard bit for concurrent resize & put():

─ Must not drop the last update to old table

Resizing

• Expand State Machine
• Side-effect: mid-resize is a valid State
• Means resize is:

─ Concurrent – readers can help, or just read&go
─ Parallel – all can help
─ Incremental – partial copy is OK

• Pay an extra indirection while resize in progress
─ So want to finish the job eventually

• Stacked partial resizes OK, expected

New Valid States

• A Key slot is:
─ e – empty
─ k – some unchanging Key

• A Value slot is:
─ T – tombstone/empty
─ V

x
– some Values

─ S – sentinel, not any valid Value
─ T',V' – primed versions of T & V

─ Old things copied into the new table
─ “2-phase commit”

State Machine

{e,T}

Empty {k,T}

{e,V
1
}

Partially inserted
K/V pair

{k,V
x
}

Standard K/V pair

insert

de
le

te

insert

change

insert

Deleted key

{K,V} in new tablecopy

{k,S}

kill

kill
{e,S}

check new table

Resizing

• Copying K/V pairs is independent of get/put
• Many heuristics to choose from:

─ All touching threads, only writers, unrelated
background thread(s), etc

• get() works on the old table
─ Unless see a sentinel

• put() or other mod must use new table
• Must check for new table every time

─ Late writes to old table 'happens before' resize

Resizing – put(K,V) while copy

• put() in new table, same as before
• Old Value will be overwritten, no need to read
• Fence!
• Store (not CAS) 'S' into old table

─ Stomps over old table
─ No longer care for what was there

• State Machine may help you visualize...
• New State includes both tables:

─ {Key, OldVal, NewVal}

State Machine: put(K,V) while copy

{k,?,?}

deleted
OR alive

CAS V into new

{k,?,V}

live Stomp S into old

{k,S,V}

K,V in new table
S in old table

Fence

Resizing – Normal Copy
• 'get()' thread or helper thread
• Must be sure to copy late-arriving old-table write
• Attempt to copy atomically

─ May fail & copy does not make progress
─ But old, new tables not damaged

• Prime allows 2-phase commit
─ Prime'd values copied from old
─ Non-prime is recent put()

─ “happens after” any prime'd value
• State Machine again...

State Machine: Copy One Pair

{k,V
1
,?}

alive

CAS V
1
 into new

{k,V
1
,V'

1
}

partial
copy

CAS S into old {k,S,V'
1
}

K,V' in new table
S in old table

{k,V
1
,V

?
}

CAS into new fails

Either put or other copy
already in progress

CAS S into old fails

{k,S,V
1
}

CAS: Strip prime

copy
complete

Fence

Some Things to Notice

• Old value could be V or T
─ or V' or T' (if nested resize in progress)
─ For old T, just CAS tombstone to S
─ no need to insert tombstone in new table

• Skip copy if new Value is not prime'd
─ Means recent put() overwrote any old Value

• If CAS into new fails
─ Means either put() or other copy in progress
─ So this copy can quit

Agenda

• Motivation
• “Uninteresting” Hash Table Details
• State-Based Reasoning
• Resize
• Performance
• Q&A

99% Reads

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

99% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB
S002CO
S002NB

Threads

M
-O

ps

99% Reads

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

99% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB

Threads

M
-O

ps

99% Reads

0 100 200 300 400
0

250

500

750

1000

99% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

99% Reads

0 200 400 600 800
0

250

500

750

1000

99% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

95% Reads

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

95% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB
S002CO
S002NB

Threads

M
-O

ps

95% Reads

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

95% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB

Threads

M
-O

ps

95% Reads

0 100 200 300 400
0

250

500

750

1000

95% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

95% Reads

0 200 400 600 800
0

250

500

750

1000

95% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

90% Reads

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

90% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB
S002CO
S002NB

Threads

M
-O

ps

90% Reads

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

90% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB

Threads

M
-O

ps

90% Reads

0 100 200 300 400
0

250

500

750

1000

90% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

90% Reads

0 200 400 600 800
0

250

500

750

1000

90% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

75% Reads

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

75% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB
S002CO
S002NB

Threads

M
-O

ps

75% Reads

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

75% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB

Threads

M
-O

ps

75% Reads

0 100 200 300 400
0

250

500

750

1000

75% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

75% Reads

0 200 400 600 800
0

250

500

750

1000

75% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

Summary

• A faster lock-free wait-free HashTable
• Faster for more CPUs
• Much faster for higher table modification rate
• State-Based Reasoning:

─ No ordering, no JMM, no fencing
• Seems applicable to other data structures as well

─ Have a concurrent j.u.Vector in the works

http://www.azulsystems.com/events/stanford_2007/index.htm

Thank you.
cliffc@acm.org

“Uninteresting” Resizing Control

• Each old slot copied exactly once
• Update with CAS to indicate copy
• Still need efficient worklist control

─ Chunk K/V pairs to copy
─ CAS out work chunks

• Wait-Free: no CAS loops
─ Try CAS a few times, then quit helping
─ And proceed with other work
─ Since CAS failed, other threads are copying

Wait-Free

• Requires “no spurious failure” CAS
• No CAS spin-loops

─ Lest you wait forever for success
• Try CAS once

─ If fails – must be contention
─ i.e., Another racing writer is writing
─ Allow other writer to win

• “As If” this write succeeded but was immediately
overwritten by another racing writer

Obstruction-Free

• Obstruction-Free: no thread stalled forever
• Resize may stall:

─ Copy in-progress slows down table by O(1)
─ Throbbing in old table can prevent copy
─ But only for put's started before resize started
─ Limited by #threads doing a “late put()”

50% Reads

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

50% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB
S002CO
S002NB

Threads

M
-O

ps

50% Reads

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

50% Reads

A768CO
A768NB
A384CO
A384NB
N032CO
N032NB
X004CO
X004NB

Threads

M
-O

ps

50% Reads

0 100 200 300 400
0

250

500

750

1000

50% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

50% Reads

0 200 400 600 800
0

250

500

750

1000

50% Reads

A768CO
A768NB
A384CO
A384NB

Threads

M
-O

ps

