A Look at Intel’s Dataplane Development Kit

Dominik Scholz
Supervisors: Daniel Raumer, Florian Wohlfart
Seminar Innovative Internettechnologien und Mobilkommunikation SS 2014
Chair for Network Architectures and Services
Department of Informatics, Technische Universitat Minchen
Email: scholzd@in.tum.de

ABSTRACT

The increased performance and cost-efficiency of modern
multi-core architectures allows for packet processing imple-
mented in software instead of using dedicated hardware.
Such solutions provide large flexibility as features can be
added at any time. The drawback of such systems are bottle-
necks which appear during the processing of packets at line
rate up to 10 Gbit/s. Hence, specialized high-speed packet
processing frameworks are needed to use the full potential of
commodity hardware. Different research groups have identi-
fied several limiting factors and proposed their own solutions
by implementing custom drivers and kernel modules. We
provide a survey-like introduction to three different frame-
works: the Intel Dataplane Development Kit, netmap and
PF_RING DNA. To understand the required background of
packet processing implemented in software, we explain the
mechanisms of modern network adapters and network stacks
by reference to Unix-based operating systems. In particu-
lar, we present and compare the different techniques that
are used by those frameworks to make high-speed packet
processing feasible.

Keywords
commodity hardware, highspeed packet processing, Linux

network stack, Intel Dataplane Development Kit, netmap,
PF_RING DNA

1. INTRODUCTION

Through steady development the performance of commod-
ity hardware has been continuously increased in recent years.
Multi-core architectures have therefore become more inter-
esting to fulfil network tasks by using software packet pro-
cessing systems instead of dedicated hardware. As an exam-
ple, all Unix-based operating systems can accomplish net-
work tasks, as a full protocol stack that handles the packet
processing, is implemented. The advantages of high flexi-
bility and lowered costs are contrasted with possible higher
performance and reduced energy consumption achieved with
specialized hardware [21, 16].

Unix-based Software routers are a good example of packet
processing done using commodity hardware. Features can
be rapidly deployed, whereas dedicated hardware would con-
sume extensive development cycles before being able to be
upgraded. The RouteBricks project has shown that software
routers are in general capable of reaching the same perfor-
mance that hardware routers deliver today [22].

In order to achieve the line rate of 1 Gbit/s and 10 Gbit/s
network adapters, the problems of common packet process-

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

115

ing software have to be identified. Various research groups
[21, 22, 23] have therefore created models to determine those
limitations by running tests for different use cases. They
come to the conclusion that standard software is not capable
of reaching the maximum performance for small packet sizes.
Hence, several projects developed frameworks for high-speed
packet processing using commodity hardware [24, 25, 26].
These frameworks replace or extend conventional concepts
by implementing their own driver and kernel level improve-
ments. Some of the concepts used by these groups are ex-
plained in this paper.

Other research projects created software solutions that spe-
cialize on specific tasks like bridging or routing. One exam-
ple is Open vSwitch [27], an OpenFlow switch that can fully
replace a hardware switch. An instance of the latter is Click
modular router [28].

The remainder of this work is structured as follows: in chap-
ter 2 we provide the background for packet processing us-
ing commodity hardware. In particular, we use the Linux
network stack as an example, to highlight the arising prob-
lems with high-speed packet processing in common software
implementations. Chapter 3 presents the Intel Dataplane
Development Kit (DPDK) and explains the main concepts.
Then, chapter 4 compares the Intel DPDK with two other
packet processing frameworks, netmap and PF_RING DNA.
Chapter 5 concludes this paper.

2. PACKET PROCESSING USING
COMMODITY HARDWARE

In this chapter we give an overview of a common software im-
plementation for packet processing using commodity hard-
ware. For this purpose we use the network stack of Unix-
based operating systems as an example. We will begin with
the tasks of the network interface card (NIC) that receives
incoming packets, followed by the Linux network stack that
implements the necessary dataplane functionalities and con-
clude with the transmission of the network packet via a NIC.
An abstract view of this process is illustrated in figure 1.
The resulting performance limiting factors that can be iden-
tified during the packet processing of this implementation
conclude this chapter.

2.1 Receiving Side NIC

With the arrival of the packet at the receiving NIC (1) two
tasks have to be accomplished [2, 3]. Firstly, the packet
has to be transferred to main memory (2). Therefore the
Linux kernel uses the sk_buff structure for the internal rep-
resentation of packets. The NIC has a buffer, usually a ring

doi: 10.2313/NET-2014-08-1 15

Operating System

Applikation Applikation
O ® User Mode
4 I\
Routing Table
® Kernel Mode
)
\./@
- J
@ @ ®
Buffer Buffer
©) ® @)

E =

Ingress Network Board

Egress Network Board

Memory

Figure 1: Abstract model of the packet processing
steps in Unix-based software routers

queue called ‘ring buffer’, to store pointers to sk_buff struc-
tures (3), one for each packet reception and transmission
[3]. When receiving a packet, one of these descriptors will
be used, assuming that it is ready. This means that the de-
scriptor has to be initialized and allocated with an empty
sk_buff. To achieve this the direct memory access (DMA)
engine of the NIC is used, mapping the structure to kernel
memory space. If this was successful the packet is stored
in a sk_buff and is ready for further processing, otherwise it
will be discarded by the NIC, because no packet descriptor
was available [4].

The second step is to inform the kernel that a packet is
available (4). The NIC schedules a hardware interrupt and
eventually the CPU will respond by calling the interrupt
handler of the driver [3]. Since the kernel version 2.4.20 the
driver uses the New API (NAPI) [2]. The interrupt handler
adds the NIC to a so called poll list and schedules a soft
interrupt. When this interrupt gets served the CPU polls
each of the devices present in the list to get their available
packets from the ring buffer. Then, for each of these pack-
ets a function is called to start the processing through the
network stack [3].

2.2 Linux Network Stack

The network stack processes each packet layer by layer [1, 3,
4], starting with the network layer. At first, basic checks, in-
cluding integrity-verification and application of firewall rules,
are performed. If the packet is faulty it gets dropped, oth-
erwise it gets passed to the routing subsystem (6) in order
to make a decision whether the packet has to be delivered
locally to a userspace application or forwarded to another
host. This decision is being made based on the implemented
routing algorithm that finds the best match for the destina-
tion IP address of the packet in the routing table [1].

If this address equals one of the hosts locally configured ad-
dresses the packet has to be delivered locally and is handed
over to the transport layer. The Linux network stack pro-
vides a complete implementation of the TCP and UDP pro-
tocols. A more detailed description of this implementation is
given in [3]. After passing the transport layer the packet can
finally be delivered to the application. Using the socket API
[19] the data of the sk_buff gets copied to userspace. Now the

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

116

application has full access to the data of the received packet
(7a). The same way an application in userspace can pass a
packet down to the network stack in order to transmit it (8).
Here, one of the main tasks is to determine the next hop and
corresponding interface for an outgoing packet. This is ac-
complished by looking up the destination IP address in the
routing table [3]. In the case of forwarding the packet (7b),
no processing of layers beyond layer 3 is needed. On the net-
work layer the main task is to decrement the TTL header
field and, in case it reached zero, to drop the packet and
send a corresponding ICMP message [1]. Furthermore, san-
ity checks, firewall rules and fragmentation can be applied.
Afterwards the packet gets passed to the transmitting part
of the network stack, too (8).

The layer 2 processing does not differ for forwarded and lo-
cally created packets. Based on the result of the routing
lookup, the layer 2 address of the next hop has to be iden-
tified using for instance the Address Resolution Protocol.
After meeting these tasks a function of the NIC is called,
informing it to transmit the packet.

2.3 Transmitting NIC

To finally transmit a packet the transmitting NIC has to ful-
fil two tasks [3]. First of all the driver has to load the packet
descriptor, which holds the location of the sk_buff in main
memory, into the transmitting ring buffer (10). Afterwards
he tells the NIC that there are packets available and ready
to send (11). Secondly the NIC has to inform the CPU via
an interrupt that the sk_buff structure can be deallocated.

2.4 Performance Limiting Factors

The Linux network stack is designed for general purpose
networking. It is not only able to function as a router, but
also supports various protocols on different layers like IPv4
and IPv6 on the network layer or TCP and UDP on the
transport layer [3]. While this design choice is convenient
for running common applications for “normal” users up to a
rate of 1 Gbit/s, it rapidly reaches a limit when approaching
the 10 Gbit/s at which the operating system can’t handle
more packets and thus starts dropping them. The following
paragraphs list and explain some of the impediments which
are being addressed by the frameworks presented in sections
3 and 4.3 [16].

The identified bottleneck is the CPU. A CPU can only op-
erate a limited number of cycles per second. The more com-
plex the processing of a packet is, the more CPU-cycles are
consumed, which then can not be used for other packets.
This limits the number of packets per second. Therefore, in
order to achieve a higher throughput, the goal must be to
reduce the per packet CPU-cycles.

Another limiting factor is the usage of the main memory,
which can be further divided into three problems: per-packet
allocation and deallocation, complex sk_buff data structure
and multiple memory copies. The first one occurs right af-
ter the packet has been received by the NIC as described in
section 2.1. For every packet a sk_buff has to be allocated
and later on, when the packet has been passed to user-level
or has been transmitted, deallocated again. This behaviour
leads to excessive consumption of bus-cycles - that is, CPU-
cycles spent transferring data from the main memory to the
CPU - by the CPU, causing significant overhead. The sec-
ond problem arises from the effort of the network stack to be
compatible with as many protocols as possible. Therefore

doi: 10.2313/NET-2014-08-1 15

struct sk_buff {

[...]

/* Transport layer header */

union

{
struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct spxhdr *spxh;
unsigned char *raw;

} b

/* Network layer header */

union

{
struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
struct ipxhdr *ipxh;
unsigned char *raw;

} nh;

[...]

Figure 2: Excerpt of the source-code of the sk _buff
structure (image from [3])

the sk_buff structure (see figure 2) contains the metadata of
several protocols, which may not be needed for the process-
ing of the packet or the application. This complexity leads
to an unnecessary large data structure, slowing down the
processing. The latter problem arises from the fact that a
packet has to traverse different stations until it reaches the
application, resulting in at least two copy operations of the
complete packet: after packet reception the data is copied
from the DMA-able memory region to the sk_buff and later
on it is copied from this buffer to the user-level application.
In [16] is shown that 63% of the CPU usage during the pro-
cessing of a 64 Byte large packet is sk_buff-related.

A third major problem is the context switching from user
mode to kernel mode and vice versa. Every time the userlevel-
application wants to receive or send a packet it has to make
a system call, causing a context switch to kernel level (and
later on back to user level). While this design improves the
resistance to system crashes as the application in user space
cannot use critical hardware functions, it consumes a huge
part of the CPU-cycles [16].

When using multiple CPUs the packet processing can be
slowed down because of so called spinlocks [17]. Those locks
are the Linux implementation of active waiting-mutexes and
appear on multiple occasions in the network stack. For ex-
ample, in order to transmit a packet two locks have to be
acquired, which protect the access to the NIC’s transmit-
ting queue [1], resulting in a bottleneck as possible parallel
processing of frames is negated.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

117

All of the mentioned design choices make the Linux network
stack a good general purpose networking solution, but not
for applications that require high-speed packet processing.
Therefore, packet processing frameworks like the ones pre-
sented in the remaining chapters of this paper implement
techniques that try to resolve most of the mentioned prob-
lems.

3. INTEL’S DATAPLANE DEVELOPMENT
KIT

Chapter 2 showed that there is indeed need for frameworks
that replace or extend the network stack to solve problems
like memory allocation per packet or context switches in or-
der to achieve the maximum performance. This chapter will
present the Dataplane Development Kit from Intel (DPDK),
first released in 2012. First an overview of the framework
is given, afterwards the main implemented libraries are ex-
plained. This includes the libraries for queue management,
memory management and packet buffers. This chapter con-
cludes with an illustration of how to use the DPDK with
user-land applications and what the inherited problems are.

3.1 Overview

The Intel Dataplane Development Kit is a framework that
provides a set of software libraries and drivers for fast packet
processing in dataplane applications on Intel architectures
[5, 6, 8]. It supports Intel processors in 32-bit or 64-bit
mode from Intel Atom to Intel Xeon generation, with or
without non-uniform memory access (NUMA), with no lim-
its to the number of cores or processors. The DPDK runs on
Linux operating systems, but completely replaces the net-
work stack, implementing a run-to-completion model: “all
resources must be allocated prior to calling data plane ap-
plications, running as execution units on logical processing
cores” [8]. Furthermore, scheduling is not supported as all
devices are accessed via polling. This reduces the overhead
produced through interrupt processing in high-speed scenar-
ios [6]. Additionally a pipeline model may be used, which
exchanges messages between different cores to perform work
in stages.

As shown in figure 3, the DPDK provides the libraries,
which are executed completely in userspace, by creating the
Environment Abstraction Layer (EAL). The EAL hides the
specifics of the available soft- and hardware and provides a
interface of library functions that can now be used by ones
application.

3.2 Libraries

The Intel DPDK provides several libraries that are opti-
mized for high performance. They fulfil basic tasks, similar
to what the Linux network stack does: allocating memory
for network packets, buffering packet descriptors in ring-like
structures and passing the packets from the NIC to the appli-
cation (and vice versa). The libraries that are necessary for
these assignments include memory, queue and buffer man-
agement, which are presented in the following sections. An
excerpt of additional features supplied by the Intel DPDK
is shown in section 3.2.4.

3.2.1 Queue Management
To manage any sort of queues the librte_ring library provides
aring structure called rte_ring, shown in figure 4. This struc-

doi: 10.2313/NET-2014-08-1 15

Intel® DPDK Libraries
Customer
Application
Customer
Application
Packet Flow Classification
—— Customer
NIC Poll Mode Library Application

Environment Abstraction Layer

Buffer Management

Queue/Ring Functions

User Space

Kernel Space

i
Linux Kernel

Figure 3: Overview of the Intel DPDK libraries and
Environment Abstraction Layer (image from [6])

BECOG0OEEE
! !

cons_head prod_head
cons_tail prod_tail

Figure 4: The rte_ring structure (image from [8])

ture has the following properties [8]: the ring uses a fixed-
size, lockless implementation following the FIFO principle,
supporting single and multi producer/consumer en- and de-
queue scenarios. Furthermore, it is able to en-/dequeue a
specified amount (bulk) or all (burst) available packets. The
ring is implemented as a table of pointers to the stored ob-
jects and uses two head and tail couples of pointers, one for
each the consumers and producers, to control the access. To
fully understand the functionality of this structure and why
it has the named properties one has to study several scenar-
ios of producer/consumer interaction, therefore the details
of a lockless ring-buffer are not shown in this paper (see [20]
and [8] for further understanding).

Compared to a normal queue, implemented using a double-
linked list of infinite size, the rte_ring has two big advan-
tages. First of all it is much faster to write to this structure
as the access is protected using lockless mechanisms [20].
Secondly, due to saving the pointer to data in a table, bulk
and burst operations cause way less cache misses. Of course
the disadvantage is the fixed size, which cannot be increased
during runtime and also costs more memory than a linked-
list as the ring always contains the maximum number of
pointers.

The rte_ring can be used for communication, for example

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

118

between applications, but also to manage the contents of
memory pools (section 3.2.2) and to store buffers of network
packets (section 3.2.3).

3.2.2 Memory Management

The EAL provides a mapping of physical memory [8]. It
creates a table of descriptors which are called rte_memseg
which each point to a contiguous portion of memory to cir-
cumvent the problem that available physical memory can
have gaps. Those segments can then be divided into mem-
ory zones (figure 5). These zones are the basic memory unit

ng: Rlng: Memory Pool: mbuf_pool
| RXRING O I TX RING O
| Memory Zone: | Memory Zone:
RG_RX_RING_O RG_TX_RING_O
Memory Segment 0 Memory Segment 1 Memory Segment N

2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB
—eeeseee
page page page page page page page page
L JL
i

)
Y
Physically contiguous Physically contiguous
memory memory

Memory Zone: MP_mbuf_pool

Figure 5: Distribution of physical memory into seg-
ments and zones for further use (image from [6])

used by any further object created from an application or
other libraries.
One of these objects is the rte_mempool provided by the -
brte_mempool library. This structure (see figure 6) is a pool
of fixed-sized objects that uses a rte_ring to store free ob-
jects and can be identified by a unique name [8].

To increase the performance, a specific padding can be

Core 0 Object caches for

mm <2t 1] B

header trailer
e

obj 0

-<

o=l (1) TN If cache empty get from ring
App B - ring COlE) ‘ l LU I ‘ if cache full move to ring Bk
App C -ring e o

— 5 obj 2

|

rte_ring: stores memory pool's free objects

mempool

Figure 6: A rte_mempool with its associated rte_ring
(image from [8])

added between objects. This ensures “that the beginning of
each object starts on a different channel and rank in memory
so that all channels are equally loaded” [8]. Examples, when
to use this optimization, include layer 3 forwarding and flow
classification of network packets, as only the first 64 bytes
are necessary to make a decision [§].

Although a lockless ring is used to control the access to
free objects, the costs may be high if multiple cores access
the ring causing a compare-and-set operation each time. To
avoid having the ring as a bottleneck, each core has an op-
tional local cache in the rte_mempool. The core has full
access to his cache of free objects, using a locking mecha-
nism. When the cache reaches full capacity or is empty it
uses a bulk operation to exchange free objects with the ring
of the rte_mempool. This way the core has fast access to the

doi: 10.2313/NET-2014-08-1 15

objects he potentially uses repeatedly and relieves the ring
structure, which then can do operations with other cores [8].

3.2.3 Network Packet Buffer Management
For any application to be able to transport network pack-
ets, the librte_mbuf library provides buffers called rte_mbuf.
These buffers are created before the actual runtime of the
application and are stored in a mempool. During runtime the
user can now use a rte_mbuf by specifying a mempool from
which it wants to take an available one. Freeing a rte_mbuf
simply means returning it back to the mempool it originated
from [§].

The size of a rte_mbuf is kept as small as possible to fit

rte_pktmbuf_pktlen(m) = rte_pktmbuf_datalen(m) + rte_pktmbuf_ 2) + te_pktmbuf)

rte_pktmbuf_mtod(m) or
m->pkt.data

m mseg2 mseg3

rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m)

m->pkt.next = mseg2

m->pkt.next = mseg3 m->pkt.next = NULL

Figure 7: One packet as chain of rte_mbufs. Every
rte_mbuf contains the same metadata, a pointer to
the next buffer and a part of the packet data (image
from [8])

in one cache line. In order to hold the information of a
larger packet, multiple rte_mbufs can be chained together.
As illustrated in figure 7, one rte_mbuf does always contain
metadata, which is “information [...] retrieved by the net-
work driver [...] to make processing easier” [8], and a part of
the data of the packet itself, including header information.
It also contains a pointer to another rte_mbuf to allow buffer
chaining.

This structure can easily be extended to contain other types
of information, like serving as a control buffer or for logging
reasons.

3.2.4 Further Libraries and Features

Aside from the already illustrated libraries which are needed
to allow basic networking operations, the Intel DPDK also
has further libraries and drivers that provide specialized
functionalities.

The LPM library implements a table that allows longest
prefix matching (LPM), which is an algorithm used to for-
ward packets depending on their IPv4 address [1]. The main
functions are to add or delete a rule to or from the table and
lookup an IP address using the LPM algorithm. The best
fitting entry is then returned. Based on this library an ap-
plication can be written to fulfil IPv4 forwarding tasks. The
same functionalities but for the IPv6 protocol are provided
by the LPMS6 library [8].

Another library offers similar functionalities by providing
hash functions. The hash library allows to do efficient and
fast lookups in a big set of entries using a unique key[8].
This can then be used for flow classification, that is, map-
ping a packet to the connection, called flow, it belongs to.
This is useful to match for instance TCP packets to their
connection and process all the frames together in the con-
text of this flow. A common procedure to achieve this

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

119

matching is to create a hash value of the 5-tuple of the IP-
and transport-layer headers (source and destination address,
protocol, source and destination port) [8].

The timer library provides the ability for functions to be
executed asynchronously, which can be used for example for
garbage collectors. The timer can be executed with high
precision only once or periodically. It uses an interface of
the EAL or the CPU’s Time Stamp Counter to receive a
precise time reference [8].

The DPDK also includes poll mode drivers for 1 Gbit/s and
10 Gbit/s network cards and several other emulated frame-
works like virtio or VMXNET3 adapter [8]. These provide
APIs to directly configure the device and access the receiv-
ing and transmitting queues without the need for interrupts,
comparable to the NAPI drivers.

Several more specialised libraries are also provided. See [8]
for a full list and detailed descriptions.

3.3 Using the Dataplane Development Kit

The Intel DPDK provides all its libraries by creating the
Environment Abstraction Layer (EAL) [5, 7]. The EAL has
access to low-level resources including hardware and mem-
ory space and provides a generic programming interface that
is optimized for the hardware of the system, but hides the
environment specifics from the applications and libraries.
The supplied services include the loading and launching of
applications, reserving memory space in form of memory
segments as described in section 3.2.2 and trace and debug-
ging functions for instance for the logging of events [8].
Before being able to compile an application the Intel DPDK
target environment directory, which contains all libraries
and header files, has to be created. To compile an applica-
tion two variables must be exported: RTE_ SDK pointing to
the installation directory of the DPDK and RTE_TARGET
pointing to the environment directory. The compiled pro-
gram can now be run by linking it with the EAL [7].

One has to keep in mind that the Intel DPDK only provides
a framework for basic operations that allow packet process-
ing at high speed. It does not provide any functionalities
like layer three IP forwarding, the use of firewalls or any
protocols like TCP or UDP that are fully supported by the
Linux network stack. It is the programmers responsibility
to build all the needed functionalities using the provided li-
braries. Thus, porting an application to the Intel DPDK
can be time consuming.

However, the development of applications is eased as many
example programs, illustrating the use of different libraries
or features, are provided. Furthermore, the dpdk.org-project
tracks the Intel DPDK by not only listing recent patches, but
also contributing major enhancements provided through the
community [5]. The DPDK vSwitch [9], an improved ver-
sion of OpenvSwitch, is an example of an application that
is based on the Intel DPDK and achieves significant perfor-
mance boosts [10].

4. OTHER FRAMEWORKS

As discussed in chapter 3 the Intel DPDK is a framework
to speed up packet processing by completely replacing the
network stack on Unix-based operating systems and imple-
menting different techniques like buffer pre-allocation or a
custom packet buffer. Other frameworks with similar pur-
poses have been developed over the last few years, sharing
some of the approaches used in the Intel DPDK, but also

doi: 10.2313/NET-2014-08-1 15

using different ideas. This chapter will present two selected
projects by shortly explaining the main concepts and tech-
niques, without getting into the details of their respective
implementations. Firstly, the netmap framework for fast
packet I/O will be introduced, followed by an engine called
PF_RING DNA. This chapter will conclude with a compar-
ison of the three presented packet processing frameworks.

4.1 netmap

Netmap is a framework developed at the University of Pisa
by Luigi Rizzo within “The netmap project” [11]. It is de-
signed for fast packet I/O in a safe manner, implemented as
a kernel module, thus, running completely in kernel mode.
Netmap implements techniques to resolve three problems of
packet processing: the dynamic allocation of memory per
packet, overhead produced through system calls and multi-
ple memory copies [12].

The data structures of the netmap architecture reside in the
same memory region (illustrated in figure 8) which is shared
by all user processes. This makes the forwarding of packets

g netmap_if netmap rings N nNIC ring
num_rings ¥ ring_size f_phy_addr
z fs (1 M| cur len
ring ofs -
avail d

r flags
buf_ofs
flags | len | index]

_ Shared memory region

/

Figure 8: The structures of the netmap architecture
(image from [12])

between different interfaces possible without a single copy
operation. Furthermore, netmap uses its own lightweight
representation of packet buffers [12]. Those pkt buf-
structures are fixed-sized and are preallocated before the
actual packet processing begins. Each packet buffer is ref-
erenced by the ring of the corresponding NIC. Addition-
ally, netmap rings are used to keep references to the buffers.
This is a circular queue that uses an array to store the in-
dices and other information of the packets. The last data
structure, called netmap_if, contains important information,
like the number of rings, about an interface. To reduce
per-packet processing costs, netmap provides batching tech-
niques. Also, a method called parallel direct paths is utilized
to solve the problem of serialization during the access of traf-
fic [16]. Basically, a direct path from a receiving or trans-
mitting queue of the NIC to the application in user space
is constructed and being assigned to only one core. This
supports Receive Side Scaling (RSS) [18], a technique to
distribute incoming network traffic to multiple CPUs. RSS
is supported by many network cards as it “relieve[s] bottle-
necks in receive interrupt processing caused by overloading
a single CPU” [18].

Despite using shared memory regions and keeping the struc-
tures in kernel context, a misbehaving user application can-

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

120

not cause the kernel to crash [12]. However, processes can
corrupt each others netmap rings and packet buffers. A pos-
sible solution for this problem is to distribute each ring to a
separate memory region.

The netmap framework supports a wide range of soft- and
hardware. Initially it was developed for FreeBSD operat-
ing systems, but a Linux-version has been completed [11].
With regard to NICs, 10 Gbit/s adapters using ixgbe-driver
or 1 Gbit/s adapters from Intel, RealTek and nVidia are sup-
ported. We found no documented restrictions for the usage
of CPUs from different manufacturers [16].

Netmap uses standard system calls like pol11() or select()
for synchronization and other purposes [12]. While this re-
duces the probability of the system to crash, the perfor-
mance may be reduced by additional context switches as
described in section 2.4.

To ease the employment of netmap, a library that maps libp-
cap calls into netmap calls is provided. Furthermore, some
functionalities like TP-forwarding are already implemented
[16]. Notable examples of applications that added support
for netmap are Click [28] and VALE [29].

4.2 PF_RING (DNA)

PF_RING is a network socket for capturing, filtering and
analysing packets at high-speed, developed by ntop [14]. It
is a kernel module that has the structure shown in figure 9.
PF_RING uses the Linux NAPI drivers to poll packets from

Application

PF_RING £
Polling mmap Userland
\ Kernel
\ : PF_RING
S
Circular ;

Buffer :-_
NAPI
Tl Polling

Device Driver

Figure 9: Vanilla PF_RING (image from [14])

the NIC and copy them into the PF_RING circular buffer.
Using another polling mechanism the application in user-
mode can read the packets from this ring. While two polling
operations lead to increased CPU cycles spend per packet,
the advantage lies in that “PF_RING can distribute pack-
ets to multiple rings, hence multiple applications, simulta-
neously” [14]. Furthermore, PF_RING implements memory
pre-allocation for packet buffers, creation of parallel direct
paths and memory mapping techniques [16].

A special feature comes with the PF_RING Direct NIC Ac-
cess module [15]. This is a special driver to directly map
NIC memory and registers to userspace, resulting in no copy
operations besides the initial DMA transfer that is done
by the NIC at packet arrival. Therefore, no interaction of
the kernel takes place, apart from the polling operation of
the application that gets the packets from the NIC memory
and stores them into preallocated packet buffers in

doi: 10.2313/NET-2014-08-1 15

Application
Application :
Polling DMA Userland
\ Kernel
\’ . CommodiyNc
Ne ;
Memory . .-"i_
Map Y NICNPU
s ;
Device Driver

Figure 10: PF_RING Direct NIC Access driver (im-
age from [14])

user space [13]. This behaviour is demonstrated in
figure 10. While this allows for pure speed as the CPU only
has to do one polling operation, it has the drawback that
only one application at a time can access the DMA ring,
thus, read packets from the ring. Furthermore, if the appli-
cation misbehaves while accessing the memory and registers
of the NIC, the whole system might crash [16].

PF_RING and all its modules are available for Linux kernels
2.6.32 and newer and support various 1 Gbit/s and 10 Gbit/s
NICs from Intel. A wrapping of the PF_RING API that is
similar to the libpcap library is also provided to allow flex-
ibility and ease of use. On top of that, various sample pro-
grams for traffic monitoring, capturing and other purposes
exist. One example is pfsend, a high-speed traffic generator.

4.3 Comparison: Intel DPDK, netmap and
PF_RING DNA

The three presented frameworks show that different
approaches to high speed packet processing can be consid-
ered. This begins with the decision whether to fully shift the
processing to user space like it the Intel DPDK implements
or use kernel modules instead. However, all frameworks tend
to implement similar techniques in order to solve certain core
problems which can be identified for example by having a
closer look at the Linux network stack. A summary of those
is given in table 1. All of the presented frameworks use their
own structure to store the network packets. However, unlike
the Linux network stack, they don’t differentiate between
packet data and several layers of headers, hence, reducing
overhead caused by additional metadata. Packet buffers are
always preallocated during start-up of the runtime and later
on re-used, whereas the access to them is controlled using
a ring structure. To reduce copy operations, memory map-
ping techniques are used, whereby PF_RING DNA brings
it a step further in granting the application full access to
the NIC’s memory and registers. Unfortunately this comes
at the cost of being prone to errors which may result in
system crashes. As high reliability can be of great impor-
tance, one has to be particularly careful in the development
of an application. Receive Side Scaling is supported by all
three frameworks by creating parallel direct paths, allowing
to distribute the load over all cores. One disadvantage that
is difficult to get around, is the inability of PF_RING DNA

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

121

DPDK netmap PF_RING DNA

Memory
pre-allocation v v v

Custom network

buffer structure v v v
Memory mapping v v v
Batch processing v 4 X

Parallel direct paths v v v
Not prone to
architecture-related
system crashes v 4 X
Use of standard
system calls X v X

Table 1: Implemented techniques and features of
different frameworks (table from [16], modified)

for batch processing of packets. If this feature is vital for
an application to achieve high performance, one is advised
to use another framework instead. The same holds true for
netmap, as common system calls are used, that may lead to
reduced performance caused by excessive context switching.
One general problem of packet processing frameworks is that
they are often limited to specific hardware and operating
systems. Only if the required CPUs and NICs are present,
specialised frameworks like the Intel DPDK or PF_RING
(DNA) can be used, whereas netmap supports a broader
range. Furthermore, all frameworks provide a different, yet
libpcap-like, programming interface. Also, one has to keep
in mind that only basic packet processing functions are de-
livered, whereas the user has to port any application to the
chosen framework first. Example programs or libraries that
provide additional functionalities are either provided by the
developers themselves or have been created by communities
over the past few years. Hence, one should look out for sim-
ilar programs before writing an application from scratch.
As we found no work that tested the Intel DPDK, netmap
and PF_RING DNA under same conditions, it is hard to
compare the three frameworks regarding their achieved per-
formance. However, tests from Intel using the Intel DPDK
[6], [12] using netmap and [16] using PF_RING DNA (and
several other packet processing frameworks) show that they
are able to achieve the line rate of 10 Gbit/s even with 64
byte packets. Of course, this depends on the used hardware
and can be different for other applications and use cases.
To determine which framework is suited best for which ap-
plication, generalized tests under equivalent conditions (for
instance equal hardware) have to be made.

S. CONCLUSION

In this paper we described the problems of high-speed packet
processing using modern commodity hardware. Using the
Linux network stack as an example, several performance
limiting factors have been identified. The basic function-
alities of the Intel Dataplane Development Kit have been
explained in detail. Furthermore, this framework has been
compared with two other projects, netmap and PF_RING
DNA, to illustrate some techniques that solve the described
problems.

Commodity hardware is a valid alternative to packet pro-
cessing using dedicated hardware as the software is always
configurable to suit the current problem in the best possi-

doi: 10.2313/NET-2014-08-1 15

ble way. Several solutions have been created over the past
few years to achieve the best performance that the hard-
ware allows. While the presented frameworks differ in their
respective implementations, they all try to resolve the core
problems of existing, widely distributed packet processing
solutions: per-packet allocation and deallocation, multiple
memory copies, restrictions to parallel processing through
locking mechanisms and context switching.

One has to keep in mind, that such frameworks are not de-
signed to fulfil everyday general purpose networking tasks.
Widely distributed and established solutions like the Linux
network stack will retain the upper hand in those scenar-
ios, as they support for instance a broad range of protocols.
When it comes to high performance packet processing, the
Intel DPDK, netmap and PF_RING DNA have the clear
advantage. They are all capable of reaching the line rate
of 10 Gbit/s for a specific task. The first applications like
the DPDK vSwitch or VALE are becoming more and more
popular as they function reliable at high speed.

However, packet processing frameworks like the Intel Data-
plane Development Kit or PF_RING only support selected
hard- and software. Furthermore, new problems arise for
the end-user that has to write an application, as all frame-
works provide different APIs. As some of those projects
have dedicated communities like dpdk.org, the problem of
porting applications to a specific framework can be eased
significantly. Therefore, packet processing frameworks and
commodity hardware are the way to go for the future, be-
cause hardware is constantly evolving, allowing for increased
performance. The same trend must be maintained by the re-
spective sophisticated software to become widely distributed
and, thus, the de facto standard for packet processing.

6. REFERENCES
[1] C. Benvenuti: Understanding Linuz Network
Internals, O’Reilly Media, Inc., Volume 1, 2005
[2] R. Rosen: Linuz Kernel Networking: Implementation
and Theory, Apress, Volume 1, 2013
[3] M. Rio et al.: A Map of the Networking Code in Linuz
Kernel 2.4.20, in: Technical Report DataTAG-2004-1,
March 2004
[4] W. Wu et al.: The Performance Analysis of Linuzx
Networking - Packet Receiving, in: International
Journal of Computer Communications, 30(5), pages
1044-1057, 2007
[5] Intel DPDK: Data Plane Development Kit Project
Page, http://www.dpdk.org, last visited: June 2014
[6] Intel DPDK: Packet Processing on Intel Architecture,
Presentation slides, 2012
[7] Intel DPDK: Getting Started Guide, January 2014
[8] Intel DPDK: Programmers Guide, January 2014
[9] Intel Open Source Technology Center: Packet
Processing, https://01.org/packet-processing, last
visited: July 2014
[10] Intel Open Source Technology Center: Packet
Processing - Intel DPDK vSwitch,
https://01.org/packet-processing/intel},C2/,AE~
onp-servers, last visited: July
2014
[11] The netmap Project,
http://info.iet.unipi.it/"luigi/netmap/, last
visited: July 2014

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

122

[12] L. Rizzo: netmap:a novel framework for fast packet
I/0, in: Proceedings of the 2012 USENIX Annual
Technical Conference, pages 101-112, 2012

[13] L. Deri: Modern packet capture and analysis:
Multi-core, multi-gigabit, and beyond, in: the 11th
IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2009

[14] ntop: PF_RING Project Page,
http://www.ntop.org/products/pf_ring/, last
visited 10.06.2014

[15] ntop: PF_RING DNA Project Page,
http://www.ntop.org/products/pf_ring/dna/, last
visited: June 2014

[16] J. Garcia-Dorado et al.: High-Performance Network
Traffic Processing Systems Using Commodity
Hardware, in: Data Traffic Monitoring and Analysis,
Springer Verlag, pages 3-27, 2013

[17] Wikipedia: spin-lock, http://goo.gl/f1Dghx, last
visited: June 2014

[18] Red Hat Enterprise Linux 6: Performance Tuning
Guide, Chapter 8.6 Receive-Side Scaling (RSS),
http://goo.gl/qhGQYT, last visited July 2014

[19] Linuxz man page: socket,
http://linux.die.net/man/7/socket, last visited:
July 2014

[20] lwn.net A lockless ring-buffer,
http://lwn.net/Articles/340400/, last visited:
June 2014

[21] G. Carle et al.: Measurement and Simulation of
High-Performance Packet Processing in Software
Routers, in: Proceedings of Leistungs-,
Zuverlassigkeits- und Verlésslichkeitsbewertung von
Kommunikationsnetzen und Verteilten Systemen, 7.
GI/ITG-Workshop MMBnet 2013, Hamburg,
Germany, September 2013

[22] M. Dobrescu at al.: RouteBricks: Ezploiting
Parallelism To Scale Software Routers, in: Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 15-28, October 2009

[23] R. Bolla et al.: Linuz Software Router: Data Plane
Optimization and Performance Evaluation, in: Journal
of Networks, 2(3), pages 6-17, 2007

[24] S. Han et al.: PacketShader: a GPU-accelerated
software router, in: ACM SIGCOMM Computer
Communication Review, 40(4), pages 195-206, 2010

[25] F. Fusco: High speed network traffic analysis with
commodity multi-core systems, in: Proceedings of
ACM Internet Measurement Conference, pages
218-224, 2010

[26] N. Bonelli: On multi-gigabit packet capturing with
multi-core commodity hardware, in: Proceedings of
Passive and Active Measurement Conference, pages
64-73, 2012

[27] Open vSwitch, http://openvswitch.org/, last visited:
June 2014

[28] R. Morris et al.: The Click modular router, in: ACM
Transactions on Computer Systems (TOCS), 18(3),
pages 263-297, 2000

[29] L. Rizzo and G. Lettieri: VALE, a switched ethernet
for virtual machines, in: CoNEXT, pages 61-72, 2012.

doi: 10.2313/NET-2014-08-1 15

