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Abstract
We present a set-associative page cache for scalable

parallelism of IOPS in multicore systems. The design
eliminates lock contention and hardware cache misses
by partitioning the global cache into many independent
page sets, each requiring a small amount of metadata
that fits in few processor cache lines. We extend this
design with message passing among processors in a non-
uniform memory architecture (NUMA). We evaluate the
set-associative cache on 12-core processors and a 48-
core NUMA to show that it realizes the scalable IOPS of
direct I/O (no caching) and matches the cache hits rates
of Linux’s page cache. Set-associative caching maintains
IOPS at scale in contrast to Linux for which IOPS crash
beyond eight parallel threads.

1 Introduction

Recent hardware advances have produced multicore sys-
tems that exceed one million IOPS with an extreme
amount of parallelism in both the threads initiating I/Os
and the devices servicing requests. Such systems trans-
form cloud data services, specifically, key/value stores
and NoSQL databases that require a large number of
index lookups that fetch small amounts of data. Ran-
dom I/O becomes the critical performance factor [17].
Whereas index lookups have locality—most NoSQL sys-
tems support range queries [5, 16]—the dominant work-
load consists of scaling concurrent key lookups to an ar-
bitrarily large number of users. Amazon CTO Voegels
promotes SSD integration as the differentiating factor for
the DynamoDB NoSQL platform [20].

However, operating system page caches bottleneck
IOPS well below 1M and performance degrades with
multicore parallelism. This reflects that page caches
were designed for magnetic disk; an array of 20 disks
provides only 4000 IOPS. Performance problems stem
from CPU cache misses to shared data structures and

random IOPS latency granularity
ioDrive Octal [7] 1,300,000 45µs 512B

OCZ Vertex 4 [18] 120,000 20µs 512B
DDR3-1333 7,300,000 15ns 128B

Table 1: The performance of SSDs and SDRAM. IOPS
are measured with 512-byte random accesses.

lock contention that arises when implementing the global
notion of recency common to modern page caching algo-
rithms [1, 10, 11, 15]. One possible solution uses direct
I/O to eliminate cache management overhead. Doing so
provides scalable parallel throughput, but gives up on the
benefits of caching in their entirety.

We believe that memory caching can benefit a sys-
tem with very high IOPS. Even though high-end NAND
flash memory delivers millions of IOPS, it is slower than
DRAM in both throughput and latency (Table 1). SSDs
also require larger accesses than DRAM. The smallest
read on SSDs is 512 bytes to 4096 bytes and it is the
CPU cache line size on DRAM, usually 128 bytes. The
large performance gap between SSDs and DRAM man-
dates memory caching.

We redesign the page cache for parallel access, elim-
inating all list and tree structures and declustering locks
to reduce contention. The goal of this redesign is to
provide performance equivalent to direct I/O for random
read workloads and to preserve the performance benefits
of caching when workloads exhibit page reuse.

We implement a set-associative cache based on hash-
ing page addresses to small page sets that are managed
independently. Threads on different cores accessing dif-
ferent sets have no lock contention or memory interfer-
ence. Set associative caches have long been used in pro-
cessors as a compromise between the amount of hard-
ware needed to implement a fully associative cache and
the conflicts that arise from direct mapped caches [9].
Using them in a page cache creates a different tradeoff,



we improve parallel performance at the cost of a small
amount of cache hit rate: associative caches approximate
global recency, but the approximation is imperfect [19].

We extend our design to non-uniform memory archi-
tectures (NUMA) by partitioning the cache by proces-
sor and using a message passing protocol between parti-
tions. Treating processors as the nodes of a distributed
system [3] avoids the contention and delays associated
with remote memory accesses.

On random I/O benchmarks, our set-associative page
cache realizes 95% of the IOPS of direct I/O, saturates
memory bandwidth, and scales up to the 48 cores on our
test machine. In contrast, buffered I/O in the Linux page
cache shows a IOPS collapse beyond 6 cores and never
achieves more than half the performance of direct I/O.

Our work is preliminary in that we do not (yet) have an
in-kernel implementation of the set-associative cache.

2 Related Work

The scalability of the Linux kernel to multicore has gar-
nered a lot of academic and open-source interest recently.
Gough et al. [8] showed that respecting memory and in-
terrupt locality improves many basic kernel operations.
Many of these ideas were adopted upstream, including
the scalable direct I/O to which we compare. A team
at MIT [4], conducted a comprehensive survey of Linux
kernel scalability issues for multicore, concluding that
traditional OS designs have the potential for good paral-
lel performance. Related to our work, but more specific,
they found a locking bottleneck in the use of lseek()
by PostGres.

Most closely related to our work is Nb-GCLOCK [13],
which uses a lock-free hash table as an index and man-
ages pages in a global page buffer in a lock-free fashion.
Nb-GCLOCK removes locking overheads, but preserves
a global cache that will incur processor cache faults dur-
ing parallel accesses. Our design may benefit from a
lock-free implementation within page sets and we will
explore this design in future work.

Read-copy-update (RCU) [14] optimizations allow
parallel reads with low overhead to data in caches. RCU
has been adopted in the Linux page cache and dcache.
RCU improves the number of page reads from cache con-
tents. In contrast, we focus on the scalability of updating
contents of the cache. The RCU work removed a bottle-
neck and revealed scalability problems with cache IOPS.

Our work was inspired by theoretical results that
showed that caches with restricted associativity can ap-
proximate LRU [19] and set-associativity has long been
used in processor caches [9].

Multicore processors partition L2 and L3 caches, allo-
cating cache space to thread groups so the threads do not
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Figure 1: The organization of the set-associative cache

interfere. Lin et al. [12] summarize many different tech-
niques and instrument performance benefits. This work
is superficially similar: it prevents interference among
parallel tasks. However, partitioning memory for appli-
cations is very different than our goal of a global shared
cache accessible to all cores.

3 A Set-Associative Page Cache

The emergence of SSDs has introduced a new perfor-
mance bottleneck into page caching: managing the high
churn or page turnover associated with the large num-
ber of IOPS supported by these devices. Previous efforts
to parallelize the Linux page cache focused on parallel
read throughput from pages already in the cache. For
example, read-copy-update (RCU) [14] provides low-
overhead wait free reads from multiple threads. This sup-
ports high-throughput to in-memory pages, but does not
help address high page turnover.

Cache management overheads associated with adding
and evicting pages in the cache limit the number of IOPS
that Linux can perform. The problem lies not just in lock
contention, but delays from the L1-L3 cache misses to
locking data structures. This limits scalability for as few
as six concurrent threads.

We redesign the page cache to eliminate lock and
memory contention among parallel threads by using set-
associativity. The page cache consists of many small
sets of pages (Figure 1); empirically, we found that eight
pages per set performs best. A hash function maps each
logical page to a set in which it can occupy any physical
page frame.

We manage each set of pages independently using a
single lock and no lists. For each page set, we retain
a small amount of metadata to describe the page loca-
tions. We also keep one byte of frequency information
per page. If a set is not full, a new page is added to the
first unoccupied position. Otherwise the least frequently
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used clean page is evicted. When a frequency counter
overflows, we halve all counters in the set using a bit-
shift. We capture some recency information by keeping
frequency counts for the most recently seen non-resident
(NR) pages. Thus, pages that have been evicted can be
reinstated with higher priority.

Small page sets keeps metadata (counters and occu-
pancy) in one or few cache lines and minimizes CPU
cache misses. The total metadata for eight pages is 208
bytes without non-resident pages enabled. This and the
metadata for 37 non-resident pages fits within 4 128-byte
cache lines.

Currently, the treatment of page writes is unmodified
from Linux. Dirty pages are scheduled for background
writing. Eliminating lock contention on the write path is
a separate optimization challenge. When no clean pages
are available in a set, synchronous writes are needed to
free physical pages. This problem exists already in Linux
when the system hits dirty page limits [2].

We extend the set associative design to non-uniform
memory (NUMA-SA) with a message passing proto-
col. Message passing follows recent operating system re-
designs that treats multiple processors (or cores) as a dis-
tributed system [3]. We split that global cache into parti-
tions, assigning one partition to each processor die with
6 cores. We use a hash function to distribute requests to
dies and use message passing to access page sets man-
aged on remote partitions. Message passing is imple-
mented with a memory copy to a message queue. Mes-
sage queues are the only data structures shared among
processors. Our design uses a worker thread on each core
to serve remote requests. We bundle multiple requests
into a message to amortize overheads. Each request con-
tains the pointer to the memory to which requested data
should be written. When requested data is ready, it will
be written to the destination memory directly and a reply
is sent back to notify the initiator thread. We also bundle
multiple replies in the same fashion as requests.

The programming interface of the NUMA-SA design
is similar to AIO in Linux (Figure 2). It accepts an ar-
ray of requests. When the maximal number of requests
are sent, the application has to wait for replies. Once
replies arrive, the callback function specified by the user
application will be called. This interface allows us to po-
tentially reduce the number of system calls as user appli-
cations can send hundreds of requests in one call. They
are encouraged to do so, because more requests can be
bundled in a message.

4 Evaluation

We evaluate the effectiveness of set associative caching
in several dimensions: matching the IOPS of direct I/O
(no caching); approximating the cache hit rate of the

typedef ssize_t (*reply_callback_t ) (io_reply *) ;
struct io_request
{

char *buf ;
off_t offset ;
ssize_t s i z e : 3 2 ;
int access_method : 1 ;
int thread_id : 3 1 ;

} ;

struct io_reply
{

char *buf ;
off_t offset ;
ssize_t s i z e : 3 2 ;
int success : 1 ;
int status : 1 6 ;
int access_method : 1 ;

} ;

ssize_t access (io_request *requests , int num ) ;
void wait_replies (int max_replies , reply_callback_t←↩

func ) ;

Figure 2: Programming interface to NUMA-SA.

ClockPRO approximation [10] implemented in the Linux
page cache; and, overall performance on a trace derived
from the YCSB [6] cloud benchmark. IOPS always
refers to IO accesses to storage devices, not to the num-
ber of requests to the page cache.

The preliminary nature of this work constrains our ex-
perimental methods. We perform IOPS experiments us-
ing a RAMDISK so that memory throughput and page
cache overheads limit performance. Experiments on
a system using SSDs would be preferable. Also, we
have only implemented set-associative caching in user
space. Thus, set associative caching does not incur sys-
tem call overheads, such as context switching and param-
eter checks, for cache hits as does the Linux page cache.
Again, this is imperfect, but system call overhead never
exceed 10% in our experiments.

We conduct all experiments on a non-uniform mem-
ory architecture (NUMA) machine with 4 AMD Opteron
6172 CPUs and 512GB memory. Each AMD Opteron
6172 has 2 dies and each die integrates 6 cores. We
choose Linux kernel v3.2.0 because this version makes
direct I/O reads scalable. We also use the XFS file sys-
tem for its superior parallel performance to ext3 and ext4.
Direct I/O writes on XFS or any other file systems do
not scale with multicore. Thus, our experiments study
read performance. We also disable the kernel filesys-
tem notification because it needs to access the directory-
entry cache (dcache) and grab spin locks on dentries,
which slows down read operations by more than 20% in 8
threads. We read data from a 40GB file on a RAMDISK.
When accessing a page, we read the first 128 bytes. This
loads the page into cache, but copies a small amount of
data into user space to minimize overhead.
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Figure 3: Random reads in a single processor.
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Figure 4: Percentage of runtime spent waiting on the spin
lock in the Linux page cache.

4.1 Random I/O
We conduct a random I/O microbenchmark in order to
evaluate the overhead of cache management. We read
the entire RAMDISK (40 GB) uniformly at random and
measure the read throughput. Random I/O means that
there are essentially no cache hits and throughput is gov-
erned by IOPS alone.

The set-associative cache (SA-cache) and direct I/O
provide good scalability. Figure 3 shows the results for
all cores in a single AMD 6217 processor with two dies
and twelve cores. Limiting the experiment to a single
processor avoids second-order affects from non-uniform
memory accesses. At 6 cores, the worst case, the set-
associative cache management incurs 10% overhead and
it realizes only 4% overhead at 12 cores.

In contrast, buffered reads in the Linux page cache dis-
play a throughput collapse beyond 6 threads. When us-
ing the whole processor, they realize less that 40% of the
throughput from direct I/O. Lock contention accounts for
much of the loss. Figure 4 show that 50% of the runtime
is spent waiting on the spin lock that protects the cache
search tree.
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Figure 5: Random reads on a 48-core NUMA.

Our next experiment extends this microbenchmark to
reading 40GB of data uniformly at random across all 48
cores in order to explore page caching in NUMA (Fig-
ure 5). NUMA experiments shows further limitations of
the Linux page cache. IOPS starts to collapse at just 4
threads for a peak performance of 346K IOPS. When
using the whole machine, it drops to only 82K IOPS.
Both direct I/O and the set-associative cache (SA-cache)
maintain about 1M IOPS up to 48 cores. NUMA in-
troduces a slight decrease in IOPS with scale because
the RAMDISK is allocated in the memory of a single
CPU. As the number of threads increases, there are re-
mote memory references.

To reduce the effect of remote memory references, we
partition the RAMDISK evenly across all 4 CPUs into
8 partitions, one for each die. It emulates the parallel
I/O channels from each processor to storage. In our tar-
get hardware, a processor accesses a device directly, and
no inter-processor communication is needed. Direct I/O
on the partition RAMDISK (DIO-part) relieves the mem-
ory bottleneck and more than triples the aggregate IOPS
at 48 cores to 3703K IOPS. The set-associative cache
on the partitioned RAMDISK (SA-part) does not scale
well beyond a single processor. Remote memory refer-
ences limit the throughput to 1929K IOPS. However, our
NUMA-SA design, which partitions the cache and uses
message passing among partitions, improves locality and
tracks the the scalable performance of direct IO to all 48
cores for 3610K IOPS.

4.2 Cache Effectiveness
The next experiments examine how well a set-associative
cache preserves the hit rate of global caching. We com-
pare set-associative cache against the ClockPro approx-
imation used in the Linux kernel using workload from
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Figure 6: Cache hit rate as a function of cache size.

the Yahoo! Cloud Serving Benchmark (YCSB) [6]. We
extract a workload by inserting 30 millions items into
MemcacheDB and performing 30 million lookups ac-
cording to YCSB’s user-profile cache workload, a read-
only Zipfian generator. The workload has 39,188,480
reads from 5,748,822 pages. We reverse-engineered the
Linux kernel and re-implemented its ClockPro approx-
imation (without non-resident pages) in user space so
that we could control exactly the cache space available
to the algorithm. The Linux kernel implementation dy-
namically allocates cache and can only be controlled at a
coarse granularity.

Figure 6 shows that the set-associative cache manag-
ing each set with LFU (SA-LFU) realizes a cache hit
rate similar to ClockPro. We find that managing page
sets with frequency outperforms recency (SA-LRU), be-
cause the page sets are small and susceptible to being
flushed. Adding non-resident pages (SA-NRLFU) cap-
tures more history information and provides the best per-
formance. Outperforming ClockPro was quite surpris-
ing and, likely, reflects that YCSB does not create work-
load shifts so that frequency information never gets stale.
Specific eviction policies require more detailed study.

YCSB and the key/value workloads that it generates
have less locality than traditional file systems. All tech-
niques converge on about a 60% hit rate. Lower cache hit
rates underscore the importance of IOPS in cloud work-
loads.

4.3 Cloud Benchmarks

We execute the same MemcacheDB workload on our
user-space set associative cache and the Linux page
cache to characterize overall performance (figure 6). Un-
like previous experiments, this measures the application
throughput, rather than the IOPS into the cache. We re-
strict cache sizes to 2GB; we can only constrain Linux
approximately by occupying memory with other data,
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Figure 7: Aggregate performance for a MemcacheDB-
derived YCSB workload.

but the hit rate matched the previous experiment. Con-
sistent with Figure 6, the Linux page cache and the set-
associative cache get about a 60% cache hit rate.

For a single thread, set-associative only performs a lit-
tle bit better. This mostly reflects the simple design of
the set-associative cache, with small data structures that
incur few cache misses. Some of the benefit comes from
our user space implementation, which avoids the kernel
overhead on cache hits.

At 12 threads, the set associative cache more than dou-
bles the throughput of the Linux page cache, because it
has very low lock contention and fewer processor cache
misses.

5 Discussion and Future Work

Hardware developments have driven parallelism that
mandates operating system modifications to achieve
scalable performance [3, 4]. The problem is particularly
acute in the page cache: in addition to parallel I/O from
multiple cores to the cache, SSDs have increased the
number of IOPS from the cache to storage by orders of
magnitude. We address scalability for multicore with a
set-associative cache that minimizes lock contention dur-
ing parallel access and uses compact metadata with no
lists or trees to reduce memory overhead. We extend this
design to NUMA by partitioning the cache by proces-
sor and using message passing to avoid remote memory
access. The outcome is a system that tracks the scalable
performance of direct I/O (no caching) for up to 48 cores,
while preserving the hit rates of the Linux page cache.

Several aspects of this work require refinement. A ker-
nel implementation (in progress) will allow for a direct
comparison of the set associative cache with the Linux
page cache. Also, an evaluation on a scalable I/O sub-
system using an array of SSDs would better demonstrate
the importance of page cache IOPS.
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Many challenges persist in system design. The current
implementation has static limits on both the number of
page sets and the number of nodes in the message pass-
ing protocol. Memory management and fault tolerance
require dynamic sizing of both, perhaps with extendible
or linear hashing or peer-to-peer data structures. Simi-
larly, dynamic load balancing among processors will be
necessary to deal with heterogeneous processor load and
memory availability. Finally, scalable writes loom as a
different, but equally important, performance concern.
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