
Thread Scheduling

1

Roadmap for This Lecture

Overview

Priorities

Scheduling States

Scheduling Data Structures

Quantum

Scheduling Scenarios

Priority Adjustments (boosts and decays)

Multiprocessor Scheduling

Lab Demo

2

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes/threads that complete
their execution per time unit

Turnaround time – amount of time to execute a
particular process/thread

Waiting time – amount of time a process/thread has
been waiting in the ready queue

Response time – amount of time it takes from when
a request was submitted until the first response is
produced, not output (i.e.; the hourglass)

3

Overview of Scheduling

Priority-driven, preemptive scheduling system

Highest-priority runnable thread always runs

Thread runs for time amount of quantum

No single scheduler – event-based scheduling code
spread across the kernel

Dispatcher routines triggered by the following events:

Thread becomes ready for execution

Thread leaves running state (quantum expires, wait state)

Thread‘s priority changes (system call/Windows change
priority)

Processor affinity of a running thread changes

Selecting a thread causes a context switch

4

Priority Levels

32 priority levels: 0 thru 31

Threads within same priority are scheduled

following the Round-Robin policy

Non-Real-time Priorities (1-15) are adjusted

dynamically – hence called “dynamic” range

Priority elevation as response to certain I/O and

dispatch events

Quantum boosting to optimize responsiveness

Real-time priorities (16-31) are assigned

statically to threads

5

Thread Priority Levels

16 “real-time” levels

15 variable levels

Used by zero page thread

Used by idle thread(s)

31

16

 0

 i

15

 1

6

Scheduling
Multiple threads may be ready to run

“Who gets to use the CPU?”

From Windows API point of view:

Processes are given a priority class upon creation

Idle, Below Normal, Normal, Above Normal, High, Real-time

Threads have a relative priority within the class

Idle, Lowest, Below_Normal, Normal, Above_Normal, Highest, and
Time_Critical

Base priority: a function of priority class and relative priority

From the kernel’s view:

Threads have priorities
0 through 31

Threads are scheduled,
not processes

Process priority class is not used
to make scheduling decisions

Windows Scheduling-related APIs:

Get/SetPriorityClass

Get/SetThreadPriority

Get/SetProcessAffinityMask

SetThreadAffinityMask

SetThreadIdealProcessor

Suspend/ResumeThread

7

Mapping Win API Priority Levels to

Kernel Priority Levels

 Process Priority Classes

Realtime

High

Above

Normal

Normal

Below

Normal

Idle

T
h

re
a

d

R
e
la

ti
v
e
 P

ri
o

ri
ty

 Time-critical 31 15 15 15 15 15

Highest 26 15 12 10 8 6

Above-normal 25 14 11 9 7 5

Normal 24 13 10 8 6 4

Below-normal 23 12 9 7 5 3

Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Table shows base priorities (“current” thread priority may be higher if
base is < 15, since it’s in the “dynamic range”)

Many utilities (such as Process Viewer) show the “current priority” of
threads rather than the base (Performance Monitor can show both)

Drivers can set to any value with KeSetPriorityThread

Process base priority default to middle of priority range

8

Special Thread Priorities

Idle threads -- one per CPU

When no threads want to run, Idle thread “runs”

Not a real priority level - appears to have priority zero, but actually runs “below”

priority 0, i.e., priority i

Provides CPU idle time accounting (unused clock ticks are charged to the idle

thread)

Loop:

Calls HAL to allow for power management

Processes DPC list

Dispatches a thread if selected

in certain cases, scans per-CPU ready queues for next thread

Zero page thread -- one per Windows system

Zeroes pages of memory in anticipation of “demand zero” page faults

Runs at priority zero (lower than any reachable from Windows)

Part of the “System” process (not a complete process)

9

Thread Scheduling Priorities vs.

Interrupt Request Levels (IRQLs)

Passive_Level

APC

Dispatch/DPC

Device 1

.

.

.

Device n

Clock

Interprocessor Interrupt

Power fail

High

Hardware

interrupts

IRQLs (x86)

Software

interrupts
0

1

2

30

29

28

31

Thread

priorities

0-31

10

Thread States & Transitions

Deferred

ready (7)
Running (2)

Waiting (5)

Gate waiting(8)

Ready = thread eligible to be scheduled to run

Deferred ready = thread selected to run but not scheduled

Standby = thread is selected to run on CPU (one per processor)

voluntary

switch

preemption,

quantum end

Init (0)

Terminate (4)

Transition (6)

wait resolved

but kernel

stack paged out

Standby (3)
preempt

Ready (1)

11

Thread Scheduling

Priority driven, preemptive

32 queues (FIFO lists) of “ready” threads

UP: highest priority thread always runs

MP: One of the highest priority runnable thread will be running

somewhere

No attempt to share processor(s) “fairly” among processes, only

among threads

Time-sliced, round-robin within a priority level

Event-driven; no guaranteed execution period before

preemption

When a thread becomes Ready, it either runs immediately or is

inserted at the tail of the Ready queue for its current priority

12

Thread Scheduling

No centralized scheduler!

i.e. there is no always-instantiated routine called “the scheduler”

The “code that does scheduling” is not a thread

Scheduling routines are simply called whenever events occur that
change the Ready state of a thread

Things that cause scheduling events include:

interval timer interrupts (for quantum end)

interval timer interrupts (for timed wait completion)

other hardware interrupts (for I/O wait completion)

one thread changes the state of a waitable object upon which other
thread(s) are waiting

a thread waits on one or more dispatcher objects

a thread priority is changed

Kernel maintains dispatcher database

Threads waiting to execute

Which processors executing which threads

13

Dispatcher Database

0

Process

Thread 1 Thread 2 Thread 3 Thread 4

31

CPU 0 Ready Queues

Ready Summary

31 0

Process

0

31

CPU 1 Ready Queues

Ready Summary

31 0

Deferred Ready Queue Deferred Ready Queue

Bit mask for non-empty

ready queues

14

Quantum Details

Amount of time a thread gets to run before Windows checks for
rescheduling

Quantum internally stored as “3 * number of clock ticks”

Default quantum is 3 x 2 = 6 on Vista, 3 x 12 = 36 on Server

Process and thread objects have a Quantum field

Process quantum is simply used to initialize thread quantum for all threads in
the process

Thread  Quantum field is decremented by 3 on every clock tick

Quantum decremented by 1 when you come out of a wait

So that threads that get boosted after I/O completion won't keep running and
never experiencing quantum end

Prevents I/O bound threads from getting unfair preference over CPU bound
threads

15

Quantum Details

When ThreadQuantum reaches zero
(or less than zero):

you’ve experienced quantum end

waiting threads at same priority  context switch

Thread  Quantum = Process  Quantum; //restore quantum

for dynamic-priority threads, this is the only thing that restores the
quantum

for real-time threads, quantum is also restored upon preemption

Interval timer interrupts:

are not charged to the current thread’s time

16

Quantum Boosting

(favoring foreground applications)
Window brought into foreground

All threads in the same process: quantum x 3, e.g. 6

clock ticks

More responsiveness to foreground applications

Quantum boosting does not happen on Server

Quantum on Server is always 12 ticks

17

Quantum Selection

Windows can choose short or long quantums (e.g. for

Terminal Servers)

Screen snapshot from:

System properties | Advanced | Performance settings | Advanced

18

Quantum Control

Finer grained quantum control can be achieved by modifying
 HKLM\System\CurrentControlSet\Control
 \PriorityControl\Win32PrioritySeparation

6 bit value

Short vs. Long
 0,3 default (short for Vista, long for Server)
 1 long
 2 short

Variable vs. Fixed
 0,3 default (yes for Vista, no for Server)
 1 yes
 2 no

Quantum Boost
 0 fixed (overrides above setting)
 1 double quantum of foreground threads
 2,3 triple quantum of foreground threads

Short vs. Long Quantum Boost Variable vs. Fixed

0 2 4

19

Controlling Quantum with Jobs

If a process is a member
of a job, quantum can be
adjusted by setting the
“Scheduling Class”

Only applies if process is
higher than Idle priority
class

Only applies if system
running with fixed
quantums (the default on
Servers)

Values are 0-9

5 is default

Scheduling

class

Quantum units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 60

20

Scheduling Scenarios (I)

Preemption

A thread becomes Ready at a higher priority than the running
thread

Lower-priority Running thread is preempted

Preempted thread goes back to head of its Ready queue

action: pick lowest priority thread to preempt

Voluntary switch

Waiting on a dispatcher object

Termination

Explicit lowering of priority

action: scan for next Ready thread (starting at your priority &
down)

Scheduling Scenarios (II)

Quantum end

Priority is decremented unless already at thread base priority

Thread goes to tail of ready queue for its new priority

May continue running if no equal or higher-priority threads are
Ready

action: pick next thread at same priority level

Termination

Thread finishes running: returned from main() or killed

Moves from running state to terminated state

No more handles on the thread object:

action: thread and assoc. structures de-allocated

21

22

Preemption is strictly event-driven

does not wait for the next clock tick

no guaranteed execution period before preemption

threads in kernel mode may be preempted (unless they raise IRQL to >= 2)

A preempted thread goes back to the head of its ready queue

Scheduling Scenarios

Preemption

18

17

16

15

14

13

Running Ready

from Wait state priority

23

If newly-ready thread is not of higher priority than the running thread…

…it is put at the tail of the ready queue for its current priority

If priority >=14 quantum is reset (t.b.d.)

If priority <14 and you’re about to be boosted and didn’t already have a

boost, quantum is set to process quantum - 1

Scheduling Scenarios

Ready after Wait Resolution

18

17

16

15

14

13

Running Ready

from Wait state

priority

24

Scheduling Scenarios

Voluntary Switch

When the running thread gives up the CPU…

…Schedule the thread at the head of the next non-empty “ready” queue

to Waiting state

18

17

16

15

14

13

Running Ready

priority

25

Scheduling Scenarios

Quantum End
When the running thread exhausts its CPU quantum, it goes to the end
of its ready queue

Applies to both real-time and dynamic priority threads, user and kernel
mode

Quantums can be disabled for a thread by a kernel function

Default quantum on Windows is 2 quantum units, 12 on Server

standard clock tick is 10 msec; might be 15 msec on some MP Pentium systems

if no other ready threads at that priority, same thread continues running
(just gets new quantum)

if running at boosted priority, priority decays by one at quantum end
(described later)

Running Ready
18

17

16

15

14

13

priority

26

Priority Adjustments

Dynamic priority adjustments (boost and decay) are applied to threads in
“dynamic” classes

Threads with base priorities 1-15

Disable if desired with SetThreadPriorityBoost or SetProcessPriorityBoost

Seven cases:

I/O completion

Wait completion on events or semaphores

When a thread has been waiting for an executive resource for too long

When threads in the foreground process complete a wait

When GUI threads wake up for windows input

For CPU starvation avoidance

Multimedia playback by Multimedia Class Scheduler Service (MMCSS)

No automatic adjustments in “real-time” class (16 or above)

“Real time” here really means “system won’t change the relative priorities of
your real-time threads”

Hence, scheduling is predictable with respect to other “real-time” threads (but
not for absolute latency)

27

Priority Boosting:

After I/O Completion
To favor I/O intense threads:

After an I/O: specified by device driver

IoCompleteRequest(Irp, PriorityBoost)

Applied to current priority (not base priority)

After boost, run for one quantum

Decays one priority level and continue until base priority level

Common boost values (see NTDDK.H)

1: disk, CD-ROM, parallel, Video

2: serial, network, named pipe, mailslot

6: keyboard or mouse

8: sound

28

Priority

Base

Priority
Run Wait Run

Preempt

(before

quantum

end)
Run

Priority decay

at quantum end

Boost

upon

wait

complete

Round-robin at

base priority

quantum

Time

Priority Boost and Decay
Behavior of these boosts:

Applied to thread’s current priority

will not take you above priority 15

After a boost, you get one quantum

Then decays 1 level,
runs another quantum

Five second wait (to avoid deadlock)

At the end of wait:

Acquire dispatcher lock

Boost owning thread

Wait again

Boosting operation:

Applied to base priority (not current priority)

Raise priority to 14

Only applied if pri < waiting thread and < 14

Quantum reset : can run a full quantum

29

Priority Boosting:

Waiting on Executive Resources

KiUnwaitThread boost current priority by

PsPrioritySeparation

Improve responsiveness of interactive apps

Applies to all windows systems

Can’t disable this boost

30

Priority Boosting:

Foreground Threads after Wait

31

12

4

7

Wait

Run

Ready

Priority Boosting:

CPU Starvation Avoidance
Balance Set Manager system thread looks for “starved”
threads

Balance set manager is a thread running at priority 16

Wakes up once per second and examines Ready queues

Looks for threads that have been Ready for 300 clock ticks

(approximate 4 seconds on a 10ms clock)

Attempts to resolve “priority inversions” (see figure)

Priority is boosted to 15

Set quantum to 4

At quantum end, decays directly to base priority (no gradual

decay) and normal quantum

Scans up to 16 Ready threads per priority level each pass

Boosts up to 10 Ready threads per pass

Like all priority boosts, does not apply in the real-time range

(priority 16 and above)

In cri. sec

Shared

resource

32

Multiprocessor Scheduling

Threads can run on any CPU, unless specified otherwise

Tries to keep threads on same CPU (“soft affinity”)

Setting of which CPUs a thread will run on is called “hard

affinity”

Fully distributed (no “master processor”)

Any processor can interrupt another processor to schedule a

thread

Dispatcher database:

Ready queues

Ready summary

Active processor mask: one bit for each usable processor

Idle summary: one bit for each idle processor

33

Multiprocessor Enhancements

Threads always go into the ready queue of their ideal processor

Instead of locking the dispatcher database to look for a candidate to

run, per-CPU ready queue is checked first (first grabs PRCB

spinlock) (PRCB = Processor Control Block)

If a thread has been selected to run on the CPU, does the context

swap

Else begins scan of other CPU’s ready queues looking for a thread

to run

This scan is done OUTSIDE the dispatcher lock

Just acquires CPU PRCB lock

Dispatcher lock still acquired to change system-wide state of a

synchronization objects (mutexes, events and semaphores) and

their waiting queues

Bottom line: dispatcher lock is now held for a MUCH shorter time

34

Functions to change:

SetThreadAffinityMask,

SetProcessAffinityMask,

SetInformationJobObject

Tools to change:

Task Manager or Process

Explorer

Right click on process

and choose “Set

Affinity”

Psexec -a

Hard Affinity

Affinity is a bit mask where each bit corresponds to a CPU number

Hard Affinity specifies where a thread is permitted to run

Defaults to all CPUs

Thread affinity mask must be subset of process affinity mask, which in turn

must be a subset of the active processor mask

35

Hard Affinity

Can also set an image affinity mask during compilation

Search “Portable Executable and Common Object File Format Specification”

Can also set “uniprocessor only” flag at compile time

sets affinity mask to one processor

System chooses 1 CPU for the process

Go round robin at each process creation

Useful as temporary workaround for multithreaded synchronization bugs that

appear on MP systems

NOTE: Setting hard affinity can lead to threads’ getting less CPU time than

they normally would

More applicable to large MP systems running dedicated server apps

Also, OS may in some cases run your thread on CPUs other than your hard

affinity setting (flushing DPCs, setting system time)

Thread “system affinity” vs “user affinity”

36

Soft Processor Affinity

Every thread has an “ideal processor”

System selects ideal processor for first thread in process (round robin across CPUs)

Next thread gets next CPU relative to the process seed

Can override with:

SetThreadIdealProcessor (

 HANDLE hThread, // handle to the thread to be changed

 DWORD dwIdealProcessor); // processor number

Hard affinity changes update ideal processor settings

Used in selecting where a thread runs next (see next slides)

For Hyperthreaded systems: first logical processor on the next physical processor

For NUMA systems: ideal node is chosen for a new process, ideal processor from ideal
node assigned to the thread in this process

37

Choosing a CPU for a Ready

Thread
When a thread becomes ready to run (e.g. its wait completes, or it is just

beginning execution), need to choose a processor for it to run on

First, it sees if any processors are idle that are in the thread’s hard affinity

mask:

If its “ideal processor” is idle, it runs there

Else, if the previous processor it ran on is idle, it runs there

Else if the current processor is idle, it runs there

Else it picks the highest numbered idle processor in the thread’s affinity mask

If no processors are idle:

If the ideal processor is in the thread’s affinity mask, it selects that

Else if the the last processor is in the thread’s affinity mask, it selects that

Else it picks the highest numbered processor in the thread’s affinity mask

Finally, it compares the priority of the new thread with the priority of the

thread running on the processor it selected (if any) to determine whether or

not to perform a preemption

38

Selecting a Thread to Run on a

CPU
System needs to choose a thread to run on a specific CPU at:

At quantum end

When a thread enters a wait state

When a thread removes its current processor from its hard affinity mask

When a thread exits

Starting with the first thread in the highest priority non-empty ready queue, it

scans the queue for the first thread that has the current processor in its hard

affinity mask and:

Ran last on the current processor, or

Has its ideal processor equal to the current processor, or

Has been in its Ready queue for 3 or more clock ticks, or

Has a priority >=24

If it cannot find such a candidate, it selects the highest priority thread that can

run on the current CPU (whose hard affinity includes the current CPU)

Note: this may mean going to a lower priority ready queue to find a candidate

Lab Demo

Watching Foreground Priority Boosts and

Decays

“Listening” to MMCSS Priority Boosting

39

Lab: 2013-10-11

Lab

Tchar.h

Tlhelp32.h

Traverse Processes (Simple & MSDN)

How to Terminate a Process using PID

Tchar.h

To simplify the transporting of code for

international use, the Microsoft run-time library

provides Microsoft-specific generic-text

mappings for many data types, routines, and

other objects. You can use these mappings,

which are defined in Tchar.h, to write generic

code that can be compiled for single-byte,

multibyte, or Unicode character sets,

depending on a manifest constant that you

define by using a #define statement. Generic-

text mappings are Microsoft extensions that are

not ANSI compatible.

Tchar.h

By using the Tchar.h, you can build single-byte,

Multibyte Character Set (MBCS), and Unicode

applications from the same sources. Tchar.h

defines macros (which have the prefix_tcs) that,

with the correct preprocessor definitions, map

to str, _mbs, or wcs functions, as appropriate.

To build MBCS, define the symbol _MBCS. To

build Unicode, define the symbol _UNICODE.

To build a single-byte application, define neither

(the default). By default, _MBCS is defined for

MFC applications.

Tlhelp32.h

Tool Help Functions

Used for create tools for windows

45

Further Reading

Mark E. Russinovich et al., Windows Internals, 5th Edition, Microsoft

Press, 2009.

Chapter 5 - Processes, Thread, and Jobs

(from pp. 391)

Thread Scheduling (from pp. 391)

46

Source Code References

Windows Research Kernel sources

\base\ntos\ke\i386, \base\ntos\ke\amd64:

Ctxswap.asm – Context Swap

Clockint.asm – Clock Interrupt Handler

\base\ntos\ke

procobj.c - Process object

thredobj.c, thredsup.c – Thread object

Idsched.c – Idle scheduler

Wait.c – quantum management, wait resolution

Waitsup.c – dispatcher exit (deferred ready queue)

\base\ntos\inc\ke.h – structure/type definitions

