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Abstract

Among all the supervised learning algo-
rithms, back propagation (BP) is proba-
bly the most wi(l)dely used. Although nu-
merous experimental works have demon-
strated its capabilities, a deeper theoreti-
cal understanding of the algorithm is defi-
nitely needed. We present a mathematical
framework for studying back-propagation
based on the Lagrangian formalism. In
this framework, inspired by optimal con-
trol theory, back-propagation is formu-
lated as an optimization problem with non-
linear constraints. The Lagrange function
is the sum of an output objective function
and a constraint term which describes the
network dynamics.

This approach suggests many natural ex-
tensions to the basic algorithm.

It also provides an extremely simple for-
mulation (and derivation) of continuous re-
current network equations as described by
Pineda [Pineda, 1987)].

Other easily described variations involve
either additional terms in the error func-
tion, additional constraints on the set of
solutions, or transformations of the param-
eter space. An interesting kind of con-
straint is an equality constraint among the
weights, which can be implemented with
little overhead. It 18 shown that this sort
of constraint provides a way of putting a

%0 appear in “Proceedings of the 1988 connection-
1st models summer school, Carnegie-Mellon University”
D Touretzky, G. Hinton, T. Sejnowski (eds), Morgan
Kaufmann 1989.

9 Authors present address: Room 4G-332, AT&T Bell
Laboratories, Crawfords Corner Rd, Holmdel, NJ 07733.

priort knowledge into the network while re-
ducing the number of free parameters.

1 Introduction

The Back Propagation algorithm has recently
emerged as one of the most efficient learning
procedures for multi-layer networks of neuron-like
units. One of the reasons of the success of back-
propagation is its incredible simplicity. In fact,
back-propagation is little more than an extremely
judicious application of the chain rule and gradient
descent.

There are a number of ways to derive back-
propagation . The simplest derivation is the one
given in [Rumelhart et al, 1986]. An alternate
derivation has been proposed in [le Cun, 1986] that
uses local criteria attached to each unit which are
minimized locally. Various constraints can be put
on these local criteria giving several variations of
the original algorithm [le Cun, 1985; le Cun, 1986;
le Cun, 1987]. Various other derivations of Back
Propagation have also been reported earlier in dif-
ferent contexts [Parker, 1985] [Werbos, 1974]

The present paper proposes a derivation of back-
propagation based on the Lagrangian formalism.
An early version of this framework has been pre-
sented in [Fogelman-Soulié et al., 1986] (also pub-
lished in [Fogelman-Soulié et al., 1987]) and a more
extended version in [le Cun, 1987].

This formalism 1s directly inspired by optimal
control theory. There is an abundant literature on
optimal control that uses the method of Lagrange
multipliers to find the optimal values of a set of
control variables. The continuous version of this
method is called variational calculus, and its pur-
pose 18 to find a function (usually not a a set of dis-
crete values) that munimizes an objective function
subject to constraints. Variational calculus and 1its



extenstons are, in fact, the basis of most work in op-
timal control [Noton, 1965; Athans and Falb, 1966;
Bryson and Ho, 1969]. As we will see, the classical
algorithms given by this formalism closely resemble
back-propagation .

The central problem that back-propagation solves
1s the evaluation of the influence of a parameter on
a function whose computation involves several ele-
mentary steps. The solution to this problem is given
by the chain rule, but back-propagation exploits the
particular form of the functions used at each step (or
layer) to provide an elegant and local procedure.

We show below that this problem can be easily
stated using variational principles.

One of the questions addressed by optimal control
theory 1s how the state of a system at time 7" will be
modified by a change in the control variables at time
T —t. In discrete time, this problem is very similar
to the problem of back-propagation if we replace the
time index by a layer index, namely, how the output
of a network (state of the K*? layer) will be modified
by changing a weight in layer K — k. The trajectory
in the classical paradigm is analogous to the states
of the successive layers in the network.

In the continuous time case, there 1s an even more
straightforward analogy between the standard opti-
mal control formalism and continuous time recur-
rent networks like the one proposed by Almeida
[Almeida, 1987] and by Pineda [Pineda, 1987].

The purpose of computing partial derivatives of
the states with respect to the parameters in the sys-
tem 1s to minimze an objective function which mea-
sures how far the behaviour of the network is from
a desired behaviour.

Following the variational formalism of Lagrange,
Pontryagin has shown in the late 1950’s how to
formulate this problem using a single energy-like
Hamuiltonian function. The behaviour of the system
18 completely described by a single equation stating
that the Hamiltonian meets some optimality crite-
rion. An extensive treatment of Pontryagin’s mini-
mum principle can be found in [Athans and Falb,
1966]. The Pontryagin principle is an extension
of classical variational calculus to problems involv-
ing non-differentiable functions, especially when in-
equality constraints must be met by the state vari-
ables or by the control variables. It 1s closely related
to Bellman’s dynamic programming, and, in fact,
it can be derived as a lirut case of it (see [Noton,
1965] for example). For the problem of simple feed-

forward multi-layer networks, the full generality of
Pontryagin’s result, even of variational calculus, is
not needed. Only the standard Lagrange multiplier
method will be used.

Some of the applications and algorithms de-
scribed in the optimal control literature so closely
resemble back-propagation that one could credit
Pontryagin (among others) for its discovery. Al-
though the relevance of this work to automatic ma-
chine learning is not clearly mentioned in the early
literature, the results have been extensively applied
to some closely related problems such as system
identification. Most of the optimal control literature
deals with continuous time dynamical systems, how-
ever the proliferation of digital computers has lead
to discrete time versions of the methods. The use of
back-propagated variables for computing derivatives
is apparent in the classical literature, and, as we will
see, is a direct consequence of the formalism. In op-
timal control, the back-propagated vector is called
the co-state or adjoint state, and the corresponding
backward system the adjoint system [Athans and
Falb, 1966].

Since his first work on the subject, the author
has found that A. Bryson and Y.-C. Ho [Bryson
and Ho, 1969] have described the back-propagation
algorithm using Lagrange formalism. Although
their description was of course in the framework
of optimal control, not machine learning, the re-
sulting procedure 1s identical to back-propagation.
They formulate it as the the optimal control so-
lution of a “multistage system” defined as a cas-
cade of elementary systems f°, f!, f¥ (analogous
to the layers) controlled by a set of control variables
u(0), u(1), u(N — 1) (analogous to the weights) and
minimizing a performance index which depends on
the final output !. No strong assumption is made
about the dependency relation between the control
variables and the states. The derivation includes the
expression of the back-propagated gradients and the
authors suggest the use of a gradient descent tech-
nique to find the control that optimizes the perfor-
mance index. The section is judiciously concluded
by: “Such problems are called two-point boundary-
value problems, and they are sometimes rather dif-
ficult to solve, even with a high speed computer.”
[Bryson and Ho, 1969]. To the author’s knowledge,
this is the first description of back-propagation as

ltheir performance index also includes terms which
depend on the state and the control at every stage



we know it, although the idea of back-propagating
derivatives is much older, especially for continuous
time systems [Athans and Falb, 1966; Noton, 1965].

Although the theoretical foundation of back-
propagation and its first use in optimal control is
old, the (independant) discovery of its relevance to
connectionist systems and its interpretation in this
context, are recent.

2 Deriving BP using the
Hamiltonian/Lagrangian
formalism

2.1 Notations

For the sake of clarity, we will introduce the formal-
ism in a simple case. A more general formulation
will be presented afterwards. It will be assumed that
the network is composed of a number of layers con-
nected 1n a feed-forward manner. Furthermore, we
make the assumption that connections cannot skip
layers. These assumptions can be easily relaxed [le
Cun, 1987].

We use the following notation. The layers are in-
dexed from 0 to N. Layer 0 is the input layer and
layer NV is the output layer. The state of layer k for
pattern p is denoted X, (k), and the global state of
the network for pattern p is denoted by X,. X, 1s
sumply composed of all the X, (k)’s concatenated to-
gether. We denote by X the vector composed of all
the X, concatenated together for p=1... P. Layer
k — 1 is connected to layer k through a connection
matrix W (k). The vector of total input to units in
layer k (weighted sums) is denoted Ap(k), its value
is given by:

Ap(k) = W(k)Xp(k - 1)
The equation of forward propagation is simply:

Xp(k) = F(W(k)Xp(k —1)) =

Fi(Ap(k)) VEk e [1,N]

Xp(0) 18 defined to be the external input vector I,.
F} denotes the non-linear transformation associated
with layer k. The components of Fj will typically
be sigmoid functions.

The vector of desired outputs 1s noted D, and has
the same dimension as the ouput layer X,(N)

2.2 BP as a constrained
minimization problem

In this section, we show that back-propagation can
be view as a constrained minimization problem in-
volving not only the weights W, but also the state
of the network X as the problem variables. The La-
grange function 2 corresponding to the problem is
the sum an objective function (usually the squared
output error) and a constraint term multiplied by
Lagrange multipliers denoted By(k). The constraint
term describes the structure of the network, i.e. the
dependency relations among the X(i). The La-
grange function (LF) for a single pattern p (called
local Lagrange function) has the following form

Ly(W, Xp, Bp) = C(Xp(N))+

N
> By (k)T (Xp (k) — FIW (k) X,(k - 1)])
k=1
and the full LF for the current pattern ensemble is:

P
L(W,X,B) =) Ly(W, X,, Bp)
p=1

where P is the number of training examples. If the
objective function C is defined to be the squared
output error, the local LF becomes:

Ly(W,X,B) = (Dp — XP(N))T(DP - Xp(N))+

N
3" By (k)T (Xp(k) ~ FIW (k) Xp(k—1)]) (1)
k=1

As stated above, L 1s the sum of two terms. The
first term is just the squared output error, i.e the
square norm of the difference between the desired
output Dp and the actual output X,(N). In the
general case, the objective function need not have
this form, and it can incorporate other terms de-
pending on any state variables, weights, etc ..,
anywhere in the network. The second term is the
sum of N terms, one for each layer, which are in-
terpreted as constraints. If the constraints are met,
all these terms are zero. Each term is the dot prod-
uct of a Lagrange multiplier vector B(k) and a con-
straint term. When the constraint is fulfilled, the
constraint term is zero, yielding:

X(k)= FIW(k)X(k—1)] Vk € [1,N]

%the Lagrange function described here has no relation
with the Lagrangian as defined by physicists



We recognize the forward propagation equation
given in the previous section. Thus, the constraint
term just defines the network forward dynamics, i.e.
the dependencies between X and W, and among the
X(k)’s. As it will be shown later, the Lagrange mul-
tipliers B take account of the backward dynamics.
Again, the forward dynamics equation does not need
to have this particular form, it could be any differ-
entiable function of X, W, and eventually k. The
problem is to find a sequence W(1), W(2)... W(N)
which minimizes the objective function C while sat-

isfying the constraints. It is easy to show [Bryson
and Ho, 1969] that

VL(W,X,B)=0

is a necessary condition which defines a local mini-
mum of the performance function C with respect to
the weights while meeting the constraints 3. This
single equation totally describes the behaviour of
the network. The condition can be split into three
subconditions:

dL(W,X,B) _
— o5 " @
dL(W,X,B) _
—ox " ®)
dL(W,X,B) _
—aw =" ()

Each of these conditions can be further decomposed
mnto N conditions corresponding to each layer.
Each subcondition, when developed, yields one
of the three passes of back-propagation . The first
subcondition gives the forward propagation pass,
the second one gives the backward propagation pass
(the gradients). The third subcondition does not
give a direct way to compute W but 1t does give the
optimality condition that must be fulfilled.

2.2.1 The first subcondition

Equation 2 can be decomposed into N times P
elementary conditions

OL(W, X, B)
9By (k)
It 1s obvious that
OL(W,X,B) _ OLy(W,X,, By)
0By(k) —  0By(k)
since for any local LF Lg, ¢ # p does not depend on
B,.

3the sufficient condition also states that the Hessian
of L with respect to W must be positive semi-definite

Vk,p € [1, N][1, P]

The condition simply yields
Xp(k) = F[W(k)X,(k - 1)]
which is the forward dynamics equation.

2.2.2 The second condition

Equation 3 will be also decomposed into N times
P subconditions, but the condition corresponding to
the last layer (k = N) will be of a different nature.

For k = N we have

0L(W Xp. Bp) _ o wpepu, P

Vk,p € [1, N][1, P

%, (N)
and for k € [1, N — 1] we have

dL, (W, X,,B,)

Z P\ > PRI Yk 1,N-1][1,P

Note that there is no condition on X (0) since X(0)
is the input vector. It is not considered as a variable
of the system but rather as a boundary condition.
The first subcondition (for ¥ = N) immediately
gives a boundary condition on B, i.e. the value of
B(N)
By(N) = 2(D, - Xp(N)) (5)
When k is different from N, the subcondition
gives

Bp(k) = WT (k + 1)V F (Ap(k + 1)) Bp(k + 1) (6)
In this equation, the term
VFk(Ak(k + 1))

is the Jacobian matrix of Fj at point Ap(k+1). For
a standard back-propagation network, this matrix
will be diagonal and its i** diagonal term will be
given by

VFk(Ap(k + 1)), = f,(atp(k + 1))

where f is the sigmoid function and a,p(k + 1) the
it component of A, (k + 1).

We can simplify the notation by transforming
equations 5 and 6 through the following change of
variable

Yp(k) = VFk(Ap(k))Bp(k)
The two equations are then transformed into
Yo (N) = 2VFN(Ap(N))(Dp — Xp(N))  (7)
Y (k) = VEL (A (k)W (k + DY (k +1)
Vk € [0,n — 1] (8)
As is now apparent, these equations describe the

backward dynamcs. Equation 7 is a boundary con-
dition on the gradient variables Y while equation 8



gives the usual method for computing Y’s by back-
ward propagation. The Lagrange multipliers may
be recognized as the back-propagated gradients. In
optimal control theory, B(k) is called the influence
Sfunction and also called costate of the system, or the
adjoint state. The corresponding backward system
is called the adjoint system [Athans and Falb, 1966].

2.2.3 The third condition

The third condition, unfortunately, does not give
a direct method for computing W, but it gives a con-
dition that W should satisfy. As usual, equation 4
gives N subconditions

dL(W, X, B)

W =0 VkELN]

yielding
P
Y VL (Ap(k)Bp(k)XT(k~1)=0 Vk € [1,N]

p=1

we can apply the same change of variable as previ-
ously, substituting ¥ for B

P
> Y (k)XT(k—1)=0 Vk€[1,N]

p=1

this condition states that W is a stationary point
of L, i.e a local minimum, maximum, or a saddle
point. Our problem is, of course, to find a minimum
of the output cost function with respect to W, and
this can be shown to be equivalent to finding a min-
imum of L while satisfying the first two subcondi-
tions. The easiest and most common method to do
so is the method of steepest descent. As stated be-
fore, the problem to be solved is a two point bound-
ary value problem, for which no magical solution
exists. A steepest descent procedure has the follow-
ing form

dL(W, X, B)

Wk — W) -2 =503

where A is the step size. After algebraic refinement,
this equation gives

P
W(k) — W(k)+ 2D Yp(b)X](k—1) (9)
p=1

We recognize the usual weight update formula of the
classical back-propagation algorithm.

2.2.4 Summary of the results

The combined results are summarized by these
three equations which are respectively the forward
pass, the backward pass and the weight updates

Xp(k) = B [W(k)X,(k—1)]  Vk,p€[l,N][1,P]
Yy (k) = VE(Ap(R)WT (k + 1)Y,(k + 1)
Vk,p € [0,n —1](1, P]

P
W(k) — W(k)+A D _Yp(k)X, (k—1) Vke€[1,N]

p=1
with the two boundary conditions
Xp(0) =1

Y, (N) =2 VFNn(Ap(N)) (Dp — Xp(N))

This is exactly the back-propagation algorithm.
There are several related ways to derive this result,
for example, Bryson and Ho [Bryson and Ho, 1969]
define a Hamiltonian function

Hy(k) = By(k)T FIW (k) Xp(k — 1)]

and point out the relations between this quantity
and the classical Hamiltonian of a physical system.

It should be emphasized that the formalism can
be easily modified to incorporate connections that
can skip layers, recurrent networks, weight decay,
and other extensions [le Cun, 1987].

3 A few extensions

Several generalizations and extensions of this for-
malism can be devised, which concern iterative net-
works, networks with equality constraints between
weights...[le Cun, 1987]. Still others can be inspired
by the optimal control literature.

Some particularly interesting variations will be
described here.

3.1 Transforming the parameter
space

Back-propagation is often considered as a search for
a minimum of the cost function in weight space, how-
ever, in some cases it is interesting to consider the
weights not as elementary variables, but as func-
tions which depend on a set of elementary variables
U. A good example 1s when the designer wants to
put a prior: knowledge about the task into the net-
work. For example, equality constraints between
weights can be enforced to make the network re-
sponse invariant under certain transformations of



the input vector. Another example is when the
weight space is ill-conditioned or too complicated
to search. Then appropriate transformations can
be applied to improve its geometrical properties and
accelerate learning,.

The weight matrix W is now considered to be a
function of a set of variables collectively designated
as an r dimensional vector /. The local Lagrange
function becomes:

Lp(U, Xp, Bp) = C(Xp(N))+

N
> Bp()T (Xp(k) = FIW (U, k)X, (k ~ 1)])
k=1
The network obeys the same optimality condition
as 1n the previous section:

VL(U,X,B) =0

A treatment similar to the previous section can be
developed, except for the third subcondition which

i1s now: LU, X, B)
—a’U—’- =0 (10)
After refinement, this equation yields:
0L  Ow,,(k)
Uy — Uy + A !
d % ; Ow,,(k) Ou,
or
Ow,, (k)
Ug — ug+ A Uzky,(k)z_,(k -1) ou,

The summation over three indices 1,5 and k can be
time-consuming if an u, influences many wy, (k), but
1n practice the interactions between u’s and w’s will
be local.

An interesting special case is when several weights
share a single parameter u; this provides a way
of implementing equality constraints between the
weights with very little overhead. The derivative
with respect to a particular u is simply the sum of
the derivatives with respect to the w’s that share it.
This particular kind of equality constraint can be
used to describe “time unfolded” iterative networks
described in [Rumelhart et al., 1986].

3.2 Continuous time recurrent
networks

Almeida and Pineda [Almeida, 1987] [Pineda, 1987]
recently described a model of a recurrent back-
propagation network governed by continuous time
differential equations of the form:

o) = FWX() - X()

Where 7 is a time constant. It should be empha-
sized that the following calculations can be per-
formed with a more general equations where F is
not a function of the product WX, but a function
of W and X separately. Also, 7, could be a positive
definite diagonal matrix instead of a scalar.

Pineda and Almeida have shown that when the
system has reached a fixed point, it is possible to
compute the derivatives of this fixed point with re-
spect to the weights. This vector of derivatives is
identified as the fixed point of another differential
equation.

We will show that his result can be obtained ex-
tremely easily using variational principles.

A fixed point of the system is characterized by

X o

dt

which is equivalent to
X-FWX)=0

We define the Hamiltonian H of the system as the
sum of the objective function C which depends on
the state X, and of a constraint term characterizing
a fixed point:

H=C(X)+ BT[X - F(WX)]

where B is a vector of undetermined Lagrange mul-
tipliers. The question is now: what is the deriva-
tive of C with respect to W while staying at a fizred
point? In other words, what is the variation of H
caused by a variation of W while maintaining con-
straint satisfaction? The variation of H correspond-
ing to a variation of W is given by:
OH OH

where 86X is the variation of X caused by the vari-
ation of W. This equation becomes 4

79X — F(WX))
0X

6H=(g—§-+3 Yo X+

oc (X — F(WX))

Gw +8 W
now, it is difficult to compute the variation of X,
denoted byéX, caused by the variation of W, de-
noted by éW, and in fact, we would like that the
result does not depend on §X. So we choose B such

Yit%

*note that the derivative of a scalar function w.r.t a
vector is a line vector



that the coefficient of §X vanishes. The Lagrange
multiplier B then should satisfy

0C | prd(X = F(4)) _

ax T X
using the notation A = WX. We then obtain
ocC T 6F
- =0
BX +B° (I W)
or
ocT TaFT _
ax *P-W g B=0

this equation must be solved for B. Since it is a lin-
ear system, a large variety of methods can be used.
As suggested by Pineda, we can interpret the equa-
tion as characterizing the fixed point of a dynamical
systemn described by a differential equation of the
form
- = )TB oy
dt X

As in the case of feedforwa.rd network, it is conve-
nient to apply the change of variable:

()T

By multiplying both sides of the previous equation
by -g—ii and substituting, we obtain:

dy OF acT
T Y+6A( ax )
This is the Pineda-Almeida equation for computing
the gradients of the fixed point with respect to the
weights. As in the feed-forward case, the Lagrange
multipliers can be interpreted as the negative gradi-
ents °. Now that B has been computed so that the
coeflicient of § X vanishes, the expression of §H is
greatly simplified:

dB _ . WT(

wTy —

0H
6H = B—V—V—éW

or
73X = FWX))
aw
Hence, if B (and Y) are computed as prescribed
above, the total derivative of H with respect to W
is simply:
dH oc s BTa(X - F(WX))
~w ow

"’note that the equations of motion that we use for
X and B are equivalent to the classical Hamiltonian
equations of motion: %% = —% and %% == %. Here
B Plays to role of the momentum in classical mechanics.

6H=(%€—+B )6W

Since the system is assumed to be at a fixed point X,
the constraint is satisfied and the constraint term
in the Hamiltonian vanishes. Therefore, the total
derivatives of H and C with respect to W are equal.
We obtain the main result:

dac _?_C_ 4 BT (X - F(WX))
dw ~ oW ow
If C is not a direct function of W, as is usually the
case 8, this expression reduces to
40 _ rO(X = F(WX))
aw =~ ow

The expression of is finally obtained

dC

eI
dw,, Y]

We are now able to apply a gradient descent proce-
dure to minimize C

Wiy +— Wiy + AYT;

or a continuous version of it

4 Conclusion

The theoretical formalism described in this paper
seems to be well suited to the description of many
different variations of back-propagation . The pa-
per only explores a few of them. Considering the
amount of available literature in optimal control
theory, it seems that we have only scratched the
surface of the range of possible applications. The
method described here not only provides a clean
way of deriving back-propagation like procedures,
but also greatly simplifies the derivations.

From a historical point of view, back-propagation
had been used in the field of optimal control long
before its application to connectionist systems has
been (independently) proposed. Nevertheless, the
interpretation of back-propagation in the context of
connectionist systems, as well as most related con-
cepts are recent, and the historical and scientific im-
portance of [Rumelhart et al., 1986] should not be
overlooked. The concepts are new, if not the algo-
rithm.

8for example, C could incorporate a “weight decay”
term, 1n this case g_cﬁ would not be zero
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