A Truly Concurrent Semantics for the K Framework
Based on Graph Transformations

Traian Florin Serbanuta and Grigore Rosu

University “Alexandru loan Cuza” lasi
University of lllinois at Urbana-Champaign

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 1/18

The K Framework
http://k- framework.org

What is K?

A tool-supported rewrite-based framework for defining programming
language design and semantics.

Why?

@ Programming languages must have formal semantics!
@ And analysis/verification tools should build on them
o Otherwise they are adhoc and likely wrong

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 2/18

http://k-framework.org

The K Framework

Defining programming languages

Java 1.4 (Chen, CAV’06)

Scheme (Hills&Meredith, SCHEME’07)

Verilog (Meredith&Katelman, MEMOCODE’10)
C (Chucky Ellison, POPL12)

In progress: Haskell, LLVM, Javascript, . ..

Paradigmatic teaching languages (functional, object-oriented,
agents-based)

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 3/18

The K Framework

Tool support

o Efficient and interactive execution (interpreters)
@ State-space exploration (search and model-checking)
@ Deductive program verification (in progress)

Leveraging the generic tool support given by the Maude rewrite engine

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K

4/18

The K Framework

Rewriting based

@ Running configurations represented as first order terms
@ Rules specify allowed transitions between configurations
@ Semantics as a transition system

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 5/18

K rules

K configurations and rules

Running configuration <r>:é1 j E j

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 6/18

K rules

K configurations and rules

Read rule

Running configuration

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 6/18

K rules

K configurations and rules

More concurrency with K rules?

mem _
Read rule N - V
-

Running configuration

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 6/18

K rules

K configurations and rules

More concurrency with K rules!

mem _
Read rule N - V
-

Ca

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 6/18

Running configuration

K rules

Semantics Requirements

@ Conservative extension of term rewriting
@ While allowing as much concurrency as possible

(1)h(x ,»1) (2) h(x,0,y) (3)a (4) f(x)
g(x,x) 0 1 b X
h(f(a),0, 1) LD L ob. b).1,0)

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K

Graph Transformations

K rules resemble graph transformation rules
The DPO approach

Graph transformation rule (DPO)

KULe— K—KUR

K rule mem _ mem _
N—V N—V

mem _ mem _

N—V N—V

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 8/18

Graph Transformations

Concurrency and serializability in graph transformations

p1: Ly < Ky — Ry p2:lp =Ko — Ro

o1 [p2
Li [Lee——Ky [T Ka——R1 [Rz

(®)

~

I

I

I

|

|

l

U
Oc------

R

I

I

I

I

I

:

4
Te-------

Theorem (Parallelism and serializability)

IfG HLAN Hi, and G LA H- are parallel independent,i.e., only overlapping

on the read-only part, then (1) G % H (concurrency); and

(2) H4 2 Hand Ho 2H (serializability).

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 9/18

Graph Transformations

Formally capturing the concurrency of K

Given that ...
@ K rules resemble graph transformation rules
@ Graph rewriting captures concurrency with sharing of context

Capture the concurrency intended for K through graph rewriting

@ Term graph rewriting approaches seem a promising start

e Are sound and complete w.r.t. term rewriting
o Are special forms of graph transformations

@ However, term graph rewriting have 0-sharing (like term rewriting)

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 10/18

K graph rewriting

Representing terms as graphs

Term

h(X,0,1)

where X is a variable, h and X are of sort s, and 0 and 1 are integers

Jungle (hypergraph) representation Graph representation
s S
h h
/ 2\
X:s int int X:s int int
[0] 0o 1

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 11/18

K graph rewriting

K graph rules: a new kind of term graph rewriting rules

Krule p

Direct representation as a rewrite rule K2R (p)

h(x,y,1) = h(g(x, x), v,0)

Corresponding graph rewrite rule K2G(p)

S S S

h h h
T A
X:S int X:S int S int int
| S

1“2

XS

Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K 12/18

K graph rewriting

Desired level of parallelism

W: (= Ly, 1) (2): h(z,0,y) (3):

a (4): f(=z)
g(z,z) 0 1 b x
L—1 kT g Lk r Lk g Le—K—>R
Z Z Z A S U S R T
FAAY PN 12 12 1
TS5 nt s int int nt nt nt T¢9
i T PO R S
172
{)
TS int nt
¥ ¥
1
(D)+(2)+(3)+(4)
h(f(a),O,l) —— h(g(b,b),l,o)
I* *
G c J H
s s s
)) i
3 =3
‘l/_w\; . X Al/w\x .
f int int s it int f mnt int
Poood S ST PO S
y1 ()2
f s 3 z'rft nt
a b 0
Traian Florin Serbanuta and Grigore Rosu A Truly Concurrent Semantics for K

13/18

K graph rewriting

K rewriting

Definition
Let S be a K rewrite system and t be a term. Then
S , K2G(S)
t = t'" iff K2G(t) = H such that term(H) =t

Graph

Theorem (Correctness w.r.t. rewriting)

Soundness: Ift E> t then't ::g v.
Rew
R(p)

K2
Completeness: Ift == t' then't Loy
Rew K

- . p1+-+pn pr on” *
Serializability: Ift ===t thent = --- =>t’ (and thus, t = t’).
K K K Rew

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 14/18

K graph rewriting

Instead of proof

@ K term graphs are stable under concurrent applications of K rules

o If their instances only overlap on read-only part
o If they do not introduce cycles

@ Serializability based on graph rewriting serializability

@ K graph rewriting conservatively extends Jungle rewriting
e For terms without subterm sharing

@ Jungle rewriting is sound and complete w.r.t. rewriting

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 15/18

K graph rewriting

Parallel K graph rewriting can introduce cycles

(1): f(g(a).2) (2): £y h(b)
z Y
l T
Le——K—R L——K—R
P T T A A
P W A Y A U S Y o S |
f z:s f T8 f/lrxs Y:s f R f y.s‘l\f
g 9 g h, h h
i il
S S S S S S
P bl
Fg(a). h(5)) LEEL infinite term [(g(h(g(h(...)))). hla(h(g(.))))
G ! c a H
j j j
T
7 V m(y):s m(x):s i i
% h § ' ¢ h
] !]
a lt iz 2 a z

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 16/18

K graph rewriting

Subterm sharing can jeopardize soundness

(1) f(h(@),) F(h(a), h(@)) = f(h(b), h(D))

b (unsound rewriting)

Lt k—T g ¢l
s s s s s s
i i i S T

}’ \%* }’ . } \2* 14)2 1#}2 14)2
§ I 8§ a8 s @S s s S
¥ v ¥ ¥ ¥ ¥
h, h h, h, h h
1 1 1 1
5 s s s 5 s s s
¥ ¥ [¥ ¥ oy
a a a p a a a p

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 17/18

K graph rewriting

Conclusions

Results: A new formalism of term-graph rewriting
@ Sound and complete w.r.t. term rewriting
@ Capturing the intended concurrency of K rewriting

Future work
@ Investigate the cycle condition
@ Special graph representations for lists and multisets
o And re-prove the correctness for this representation

@ Tools which take advantage of this new semantics?

Traian Florin Serbanutd and Grigore Rosu A Truly Concurrent Semantics for K 18/18

	K
	K rules
	Graph Transformations
	K graph rewriting

