
COMPUTING PRACTICES 

Edgar H. Sibley 
Panel Editor 

An abstract graph module that allows for easy and secure programming of a 
great number of graph algorithms is implemented by symmetrically stored 
forward and backward adjacency lists, thus supporting edge-oriented 
traversals of general directed and undirected graphs. 

A VERSATILE DATA STRUCTURE FOR 
EDGE-ORIENTED GRAPH Al.GORlTHMS 

JiiRGEN EBERT 

It is widely accepted that graphs are a useful 
medium for modeling relevant parts of reality in 
computer programs. Graphs are rather natural 
models for road maps, electrical networks, chemical 
structure formulas, data and control flow of com- 
puter programs, state spaces of discrete games, socio- 
logical diagrams, timetables, etc. In addition, many 
discrete problems in several areas (e.g., formal lan- 
guage theory, automata theory, compiler construc- 
tion, operating-systems theory, operations research) 
can be transformed into equivalent graph problems 
and then solved using graph algorithms. 

Representation greatly influences the efficiency 
of graph algorithms. Often, linearity can only be 
achieved through appropriate storage of adjacency 
information (see, e.g., [6]). There are several differ- 
ent ways of internally representing graphs in pro- 
cedural languages, including adjacency matrices, 
sequential or linked adjacency lists, and edge lists 
(cf. [Z]). On the other hand, good and clear algorithm 
design is greatly enhanced by rather abstract graph 
representations that include operations on the graph, 
as well as control statements (e.g., for-loops) trig- 
gered by the graph. 

01987 ACMOOOI-0782/87/0600-0513 750 Using a very general type of graph definition, a 

In this article we describe an abstract module for 
graph handling that is especially suited for the edge- 
oriented paradigm of programming graph algorithms, 
and show how this module can be implemented effi- 
ciently in Algol-like languages. This graph realiza- 
tion is of the adjacency-list type and is suitable for 
directed and undirected graphs (with multiple edges 
allowed). Undirected graphs are represented as di- 
rected graphs through arbitrary assignment of direc- 
tions to every edge (and not through storage of the 
corresponding symmetric graph). This representation 
has been used successfully in a number of applica- 
tions; for instance, it has been used as a tool for 
representing the graphs in the EMS project on the 
implementation of functional languages [3]. 

GRAPHS 
There is a large variety of graph types. Depending 
on the area of application, graphs can be directed or 
undirected, weighted or unweighted, and ordered 
or unordered. Multiple edges and loops are either 
permitted or forbidden. Here, we present a graph 
representation that is suitable to all of these variants 
([l] and [5] are introductory books on graph theory; 
[Z] and [4] introduce graph algorithms). 

Iune 1987 Volume 30 Number 6 Communications of the ACM 513 



Computing Practices 

(finite) directed graph G = (V, E, (Y, w) consists of a 
finite nonempty set V of vertices, a finite set E of 
edges (with V O E = 0), and two functions (Y: E -P V 
(denoting the start vertex) and w: E + V (denoting the 
end vertex of each edge). If there is an edge e with 
vertices v = u(e) and w = w(e), then w is a successor of 
v and v is a predecessor of w. Those edges e with 
v = a(e) (“e goes out of v”) constitute the fomard star 
of v. Analogously, the backward star of v consists of 
those edges e with v = o(e) (“e goes into v”). 

On the other hand, a (finite) undirected graph 
G = (V, E, ‘P) contains only one function 
P:E+=(WCVll I JWl ~Z],assigninguptotwo 
vertices to every edge. A self-loop is an edge e with 
1 ‘P(e) 1 = 1. If v E P(e), we say v and e are incident. 
The star of a vertex v consists of those edges that are 
incident with v. The degree y(v) of v is the number of 
edges incident with v, where self-loops are counted 
twice. 

For a directed graph G = (V, E, LY, o), the under- 
lying undirected graph H = (V, E, P) is given by 
‘P(e) = (o!(e), o(e)). Thus, all concepts and algorithms 
defined for undirected graphs can also be used for 
directed graphs through simple reference to their 
underlying undirected graphs. Thus, an edge e and a 
vertex v are incident if v = cu(e) or v = .o(e), and e is a 
self-loop if a(e) = w(e). 

With the implementation given below, the repre- 
sentation of the underlying undirected graph is iden- 
tical to the representation of the graph itself. Thus, 
algorithms that were designed for undirected graphs 
(e.g., algorithms for finding spanning trees, testing 
(bi-)connectivity) can be executed on directed 
graphs without further adaptation. 

EDGE-ORIENTED GRAPH ALGORITHMS 
The graph module described here strongly supports 
an edge-oriented way of handling graphs. This para- 
digm makes programming more secure and is at the 
same time suitable for handling graphs with multi- 
ple edges. 

The following conventions apply to edge-oriented 
programming of graph algorithms: 

(1) 

(4 

Neighborhoods of vertices are traversed by ref- 
erence to the edges incident with a given vertex. 

Edges are regarded as objects having two states. 
They may be pointing outwards (positive sign) 
or pointing inwards (negative sign). 

Thus, for processing the successors of a given vertex 
v, one must proceed as follows: 

foralledges eoutof vdo 
letwbetheother vertexof e; 
process w 

od. 

514 Communications of the ACM 

procedure DFS (v : vertex); 
LOWPT[v] := NUMBER(v] := NUM := NiJM + 1; 

for all e incident with v do 
let w be the other vertex of e; 
if NUMBER[w] = 0 then 

PARENT[w] := e; 
DFS(w); 
if LOWPT[w] 1 NUMBER [w] then 

e is bridge 
fi; 
LOWPT[v] := min (LOWPT[v], LOWPT[w]) 

else 
if NUMBER[v] L NUMBER[w] 
and e is not a tree edge then 

LOWPT[v] := rain (LOWPT[v], NUMBER[w] ) 
fi 

fi 
od; 

NUM := 0; 
for all Y in V do 

PARENT[v] := NUMBER[v] := 0 
od; 
for all v in V do 

if NUMBER] v] = 0 then 
DFS ( v) 

fi 
od. 

FIGURE 1. An Edge-Oriented Pseudocode 
Version of a Bridge Detection Algorithm 

edge procedure first-out (v : vertex) 
returns first edge going out of 11. 

edge procedure next-out (e : edge) 
returns edge following e in 
forward star of alpha(e). 

edge procedure first-in (v : vertex) 
returns first edge going into v. 

edge procedure next-in (e : edge) 
returns edge following e in 
backward star of omega(e). 

edge procedure first (v : vertex) 
returns first edge incident with v. 

edge procedure next (e : edge) 
returns edge following e in 
star of this(e). 

vertex procedure first-vertex ( ) 
returns first vertex of the graph. 

vertex procedure next-vertex (v : vertex) 
returns vertex following Y in the graph. 

edge procedure first-edge ( ) 
returns first edge of the graph. 

edge procedure next-edge (e : edge) 
returns edge following e in the graph. 

These procedures return a n i 1 value if there is no object 
to be returned. 

FIGURE 2. Traversal Procedures for the Translation 
of the Pseudocode f or-Statements 

fune 1987 Volume 30 Number 6 



Computing Practices 

The sign of the edges makes it possible to talk about 
the “other” vertex. 

Using loops over edges and giving a state to the 
edges allow a straightforward translation for for- 
loops into a combination of a whi le-loop and some 
standard function calls, since signed edges contain 
enough information to (re)enter a while-loop to 
process the next edge. This is not possible for loops 
over (e.g., successor) vertices. Furthermore, travers- 
ing neighborhoods by explicitly looking at all inci- 
dent edges clarifies the fact that successors are listed 
more than once, if multiple edges exist. (A vertex- 
oriented for-loop is often valid only for graphs 
without multiple edges.) 

In addition, the sign on the edges allows sufficient 
information to be kept for deferred processing, if-as 
in some search algorithms-edges are stored for later 
use in an intermediate data structure. When an edge 
is retrieved, its sign helps to deduce its provenance. 
Assigning directions (signs) to edges also helps to 
distinguish incoming from outgoing edges during un- 
directed searches in directed graphs. Furthermore it 
helps to describe the direction of edges in (undi- 
rected) cycles and/or cuts of directed graphs. 

As an example, Figure 1 shows an edge-oriented 
pseudocode version of a bridge detection algorithm 
(derivable from [6]). Note that this algorithm works 
on undirected graphs, though the input graph might 
be directed. Here, the PARENT-entries, which de- 
note a spanning tree in a multigraph, contain edges 
(instead of vertices), since there is at most one in- 
coming tree edge for every vertex. 

GRAPH OPERATIONS 
We now give the description of a module (in the 
sense of an abstract data structure) for implementing 
edge-oriented algorithms in Algol-like languages. 

if LOWPT[w] 2 NUMBER[w] then 
output (e, "is bridge") 

fi; 
LOWPT[v] := min (LOWPT[v], LOWPT[w]) 

else 

For programming a pseudostatement like the for- 
loop over the outward star from above, we use tra- 
versal functions first-out and next-out and an 
auxiliary function omega according to the following: 

if NUMBER[v] 1 NUMBER[w] 
and normal(e) <> PARENT[v] then (*) 

LOWPT[v] := min (LOWPT[v], NUMBER[w]) 
fi 

fi; 
e := next (e) 

od; 
e :=first-out (v); 
while e<>O do 

w:=omega (e); 
process w; 
e:=next-out(e) 

od. 

NUM := 0; 
v := first-vertex ( ); 
while II <> 0 do 

PARENT[v] := NUMBER[v] := 0; 
v := next-vertex (v) 

od; 

Note that this is a very straightforward way of trans- 
lating for-loops, which is made possible by the “di- 
rection” (sign) assigned to every edge value. Since 
the edges denoted by e point outward, it is possible 
to identify the “next” edge as the next one going out 
of the same start vertex. 

v := first-vertex ( ); 
while v <> 0 do 

if NUMBER(v] = 0 then 
DFS (v) 

fi; 
II := next-vertex (v) 

od. 

Figure 2 lists the traversal functions necessary for FIGURE 4. A Concrete Program for Bridge Detection, Showing 
the translation of the pseudocode for-statements. How the Procedures from Figures 2 and 3 Can Be Used 

Note that these functions assume an arbitrary but 
fixed order on all sets. For handling “signed” edges, 
some auxiliary transfer functions like those listed in 
Figure 3 are necessary. Figure 4 shows how the 
bridge detection algorithm of Figure 1 can be pro- 

vertex procedure alpha (e : edge) 
returns start vertex of e. 

vertex procedure omega (e : edge) 
returns end vertex of e. 

vertex procedure this (e : edge) 
returns start vertex of e, if e is positive, 
and end vertex, otherwise. 

vertex procedure that (e : edge) 
returns end vertex of e, if e is positive, 
and start vertex, otherwise. 

edge procedure normal (e : edge) 
returns edge e with positive direction. 

edge procedure reverse (e : edge) 
returns edge e with reversed direction. 

FIGURE 3. Auxiliary Transfer Procedures for Handling “Signed” Edges 

procedure DFS (v : vertex); 
LOWPT[v] := NUMBER[v] := NUM := NUM + 1; 
e := first (v); 
while e <> 0 do 

w := that (e); 
if NUMBER[w] = 0 then 

PARENT[w] := normal (e); 
DFS (w); 

June 1987 Volume 30 Number 6 Communications of the ACM 515 



Computing Practices 

v = 11, 2, 3, 4) 
E = (1, 2, 3, 4, 5, 61 

1 2 3 4 5 6 

a 1 1 2 3 3 2 
w 2 3 4 4 2 3 

Node: 

Next: 

First: 

FIGURE 5. A Sample Graph and Its Array Representation 

grammed using these procedures. Note that this pro- 
gram, though designed for undirected graphs, also 
handles directed graphs without any further action 
or adaptation. 

Since edges are signed objects, some care has to be 
taken in testing edge equality. In the line marked 
with a star (*) in Figure 4, both sides of the inequal- 
ity sign were simply normalized. 

The next section shows that all operations used 
thus far can be implemented efficiently. A great 
number of graph algorithms can be formulated 
using only the operations described here. In [Z], for 
instance, it is shown that all the generally used effi- 
cient graph algorithms can be based on the opera- 
tions described here (except for the class of all-pair- 
shortest-path algorithms, which usually use some 
kind of is-edge ( v, w)-test). 

GRAPH REPRESENTATION 
Adjacency lists are usually used to store the succes- 
sors of every vertex by means of linked lists. We 
store the predecessors, as well, to enable algorithms 
on the underlying undirected graph. Using some 
practical “tricks,” we get a storage schema, which 
implements all the operations of our graph module 
in an efficient way. 

Let G = (V, E, (Y, w) be a given directed graph with 
1 V 1 = rr and 1 E 1 = m. We number the vertices in V 
from 1 to n, and the edges in E from 1 to m. 

All concrete information about the vertices and 
edges (e.g., names, weights, lengths, markings) can 

now be stored separately in arrays of length n or m, 
respectively. (Note that this is one of the main ad- 
vantages of adjacency list representations over adja- 
cency matrices, at least when the graph is sparse.) 
Thus, values of vertices and edges have only to be 
stored once, even for undirected graphs. 

We use these numbers as names for the corre- 
sponding objects. But we take care not to confuse 
vertex i with edge i (for 1 I i 5 min (n, m)). Thus, we 
take 

vertex = 0 . . n 

edge = -m . . m 

as types, with the integer sign as the direction indi- 
cator for edges and with zero as a nil-value for 
vertices and edges. 

edge procedure first-out (v : vertex); 
e := FIRST[v]; 
while e < 0 do 

e := NEXT[e] 
od; 
return e. 

edge procedure next-out (e : edge); 
e := NEXT[abs(e)]; 
while e < 0 do 

e := NEXT[e]; 
od; 
return e. 

edge procedure first-in (v : vertex); 
e := FIRST[v]; 
while e > 0 do 

e := NEXT[e] 
od; 
return e. 

edge procedure next-in (e edge) ; 
e := NEXT[--abs(e)]; 
while e > 0 do 

e:= NEXT[e] 
od; 
return e. 

edge procedure first (v : vertex); 
return FIRST[v]; 

edge procedure next (e : edge); 
return NEXT[e]. 

vertex procedure first-vertex( ); 
returq 1. 

vertex procedure next-vertex (v : vertex); 
return if v = n then 0 else v + 1 fi. 

edge procedure first-edge ( ); 
return 1. 

edge procedure next-edge (e : edge); 
return if e'= m then 0 else e + 1 fi. 

FIGURE 6. Implementation of the Traversal Procedures 
from Figure 2, Assuming Validity of Input 

Parameters and n and m 2 1 

516 Communications of the ACM June 1987 Volume 30 Number 6 



Computing Practices 

Using an array 

NODE : array [edge] of vertex 

we can store cy(e) in NODE [-e] and w(e) in 
NODE [+e] for every edge e. This allows all edge- 
list-oriented algorithms to be used on our structure 
by accessing the array NODE alone. 

Conversely, the adjacency lists for every vertex z, 
are made traversable by using array indexes as links: 

FIRST : array [vertex] of edge 

NEXT : array [edge] of edge 

These arrays link all edges incident with a vertex v 
to v by using the chain of indexes starting at 
FIRST [v] , following the NEXT-entries, and ending 
with a zero-entry. The indexes are positive for edges 
going out of v and negative for edges going into v. 
Then, the nonzero entries in the FIRST/NEXT- 
arrays are the signed edges themselves, with their 
direction seen from the corresponding vertex. 
Figure 5 gives an example by showing a sample 
graph and its array representation. Figure 6 shows 
how the traversal procedures of Figure 2 can be im- 
plemented using our structure, and Figure 7 gives 
the implementation of the auxiliary functions of Fig- 
ure 3. (Note that in practical applications all gener- 
ally usable procedures should check their argu- 
ments. These checks have been skipped to simplify 
the presentation.) 

These implementations of the traversal functions 
lead to a complexity of for-loops over (for/back- 
ward) stars of a vertex v proportional to y(v). 
Equally, for-loops over V and E have a complexity 
proportional to n and m, respectively. All the imple- 
mentations of the auxiliary functions apparently use 
constant time. 

The first/next-pair of functions enumerates 
self-loops twice. If this is not wanted, first and 
next should be modified to ignore negative edge 
values e, if 

NODE [e] = NODE [-e] . 

The graph module can of course be augmented by 
additional operations, if they are needed, such as 
procedures for determining degrees, for testing the 
existence of edges, etc. Note that is-edge ( v, w) - 
tests have a complexity at least proportional to 
min (Y(V), r(W 

RECONSTRUCTION AND COMPRESSION 
The NODE-array alone (being an edge-list representa- 
tion of the graph) already contains all incidence in- 
formation. Thus, for example, for external storage, 

vertex procedure alpha (e : edge); 
return NODE[--abs(e)]. 

vertex procedure omega (e : edge); 
return NODE[abs(e)]. 

vertex procedure this (e : edge); 
return NODE[-e]. 

vertex procedure that (e : edge); 
return NODE [ e] . 

edge procedure normal (e : edge); 
return abs(e). 

edge procedure reverse (e : edge); 
return -e. 

FIGURE 7. Implementation of the Auxiliary Procedures 
from Figure 3, Assuming Validity of Input Parameters 

this array suffices. Figure a shows how the graph 
representation described in the previous section can 
be reconstructed from its NODE-array in linear time. 
This algorithm traverses the edge list in reverse or- 
der. It inserts each (positive) edge e at the front of 
the adjacency list of a(e) and inserts -e to the list 
of w(e). 

for v := 1 to n do 
FIRST[v] := 0 

od; 
for e := m downto 1 do 

NEXT[e] := FIRST[NODE[-e]] ; 
FIRST [NODE [-e] ] := e; 
NEXT[-e] := FIRST[NODE[e] I ; 
FIRST[NODE[e]] := -e 

od. 

FIGURE 8. Reconstruction of the Graph Representation 
from Its NODE-Array in Linear Time 

This algorithm is order preserving: If the NODE- 
array is compatible with all the adjacency lists, then 
the adjacency lists are reconstructed as they were 
before. On the other hand, if the NODE-array gets 
sorted (e.g., according to some weight), then all adja- 
cency lists are sorted as well-after reconstruction. 

This procedure might also be used for simplifying 
graph input to simply reading an edge list. Graph 
output can be performed by just printing the edge list 
while traversing the NODE-array. If, however, the 
NODE-array order is not compatible with the orders 
of the adjacency lists, some topological sorting has to 
be done when the graph is written to an external 

June 1987 Volume 30 Number 6 Communications of the ACM 517 



Computing Practices 

procedure test-and-mark (e : edge): 
if e <> 0 and not is-marked (e) then 

mark (e); 
if is-marked (-e) then 

enqueue (abs(e)) 
fi; 
if NODE[-e] = NODE[e] then 

test-and-mark (-e) 
fi 

fi; 

init-queue ( ); 
init-marking ( ); 
for Y := 1 to n do 

test-and-mark (FIRST[v]) 
od; 
while not is-empty-queue ( ) d6 

e := extract-front-of-queue ( ); 
output (NODEI-e], "A', NODE[e]); 
test-and-mark (NEXT[ej); 
test-and-mark (NEXT[-e]) 

od. 

FIGURE 9. A Linear-Time Algorithm for Compressing 
the Graph Structure into an Edge-List 

medium. Otherwise, the original order on the stars 
cannot be reconstructed. (This incompatibility might 
occur, for instance, if the graph was constructed 
dynamically using the procedures presented in the 
next section.) 

Figure 9 gives a linear time algorithm for com- 
pressing the graph structure into an edge list. But 
here tie need some (linear) additional work space 
for queueing (up to m) normalized edges, and mark- 
ing (up to 2~2) signed edges. This algorithm prints an 
edge e only if its predecessors in the adjacency list of 
cu(e) as well as w(e) have all been printed. To decide 
this property, a marking of e and -e is used. A 
queue helps to keep track of all printable edges. This 
algorithm fails (by not printing all edges) if there is 
no NODE-array ordering that is compatible with the 
adjacency-list ordering. 

DYNAMIC GRAPHS 
Many applications use graphs whose size and struc- 
ture change during execution. This implies a need 
for procedures to create and delete vertices and 
edges. The representation presented in this article 
can easily be extended for graphs with a (moder- 
ately) varying number of vertices and/or edges, as 
long as a maximum number (NMAX/MMAX) can be 
given for both. Figure 10 gives the procedures neces- 
sary for handling dynamic graphs. 

vertex procedure create-vertex ( ); 
returns a new vertex. 

procedure delete-vertex (v : vertex); 
deletes vertex v. 

edge procedure create-edge (v, W : vertex); 
returns a new edge. 

procedure delete-edge (e : edge); 
deletes edge e. 

To implement dynamic graphs, we link all unused FIGURE 10. Creation and Deletion Procedures 
(nonnegative) entries in the FIRST/NEXT arrays. for Handling Dynamic Graphs 

Using the zero-entries in these arrays (which are 
unused up to now) as a start pointer, we can link the 
unused entries together following a stack ‘discipline. 
To distinguish used from unused entries, we add a 
large value LARGE (preferably MMAX) to the link val- 
ues in FIRST and NEXT, if we use them for chaining 
unused entries. 

In this case the graph should be initialized as an 
empty graph using the following procedure: 

procedureinit ( ); 
forv:=OtoNMAXdo 

FIRST [ v] := v+ 1 + LARGE 
od; 

fore:=OtoMMAXdo 
NEXT[-e] := 0; 
NEXT [e] :=e+ 1 +LARGE 

od; 
n .=* .= 0 . . . 

(In this case the procedures for traversing -the vertex 
and edge sets have to be adapted.) 

It is even possible to keep track of the order in 
which the edges are added to the vertices by using 
an additional array 

LAST : array[vertex] of edcle 

to keep the last edge entry for every vertex. (This 
applies to forward and backward stars as well as to 
(undirected) stars.) In this case all loops varying over 
adjacency sets traverse these sets in the order of 
edge creation. This leads to ordered graphs, where 
the edges incident with every vertex are linearly or- 
dered. Figure 11 shows how the creation/deletion 
procedures are implemented; two auxiliary proce- 
dures are given in Figure 12. 

The create procedures use constant time. The 
complexity of delete-vertex is proportional to 
y(v). The delete-edge(e) procedure uses time 
proportional to y(cY(e)) + -y(w(e)). It could be made 
constant time by using double chains on edges, but 
this does not seem worthwhile. 

518 Commu?rications of the ACM June 1987 Volume 30 Number 6 



vertex procedure create-vertex ( ); 
II := FIRST[O] - LARGE; 
FIRST[O] := FIRST[v]; 
FIRST[v] := LAST[v] := 
n := n+ 1; 

return v. 

0; 

procedure delete-vertex (v : vertex); 
while FIRST[v] <> 0 do 

delete-edge (FIRST [ v] ) 
od; 
FIRST[v] := FIRST[O]; 
FIRST[O] := " + LARGE; 
n := n - 1. 

edge procedure create-edge (v, w : vertex); 
e := NEXT[O] - LARGE; 
NEXT[O] := NEXT[e]; 
NEXT[e] := 0; 
In := In + 1; 

create-entry (Y, e) ; 
create-entry (w, -e) ; 
return e. 

procedure delete-edge (e : edge); 
e := abs (e); 
delete-entry (NODE [-e] , e) ; 
delete-entry (NODE[e], -e); 
NODE [-e] := NODE[e] := NEXT[-e] := 0; 
NEXT [e] := NEXT[O] ; 
NEXTlO] := e + LARGE; 
In :=m- 1. 

FIGURE 11. Implementation of the Creation and Deletion 
Procedures, Assuming Validity if Input Parameters 

and without Checking Overflow Conditions 

procedure create-entry (v : vertex, e : edge); 
= 0 then 

.= e 
if FIRST[v] 

FIRST[v] 
else 

NEXT[LAST 
fi; 

[VI] := e 

LAST[v] := e; 
NODE[-e] := v. 

procedure delete-entry (v : vertex, e : edge); 
if FIRST [v] = e then 

FIRST[v] := NEXT[e]; 
if LAST [v] = e then 

LAST[v] := 0 
fi 

else 
i := FIRST[v]; 
while NEXT[i] <> e do 

i := NEXT[i] 
od; 
NEXT[i] := NEXT[e]; 
if LAST [v] = e then 

LAST[v] := i 
fi 

fi. 

FIGURE 12. Auxiliary Creation and Deletion Procedures 

Computing Practices 

CONCLUSION 
Following the paradigm of edge orientation, our 
software module for general graphs and their imple- 
mentation on von Neumann machines allows for 
easy and secure programming of a great number of 
graph algorithms, since traversal of forward and 
backward stars as well as edge enumeration is par- 
ticularly easy. Since there is no distinction between 
a directed graph and its underlying undirected 
graph, our module allows a very straightforward 
transliteration of published algorithms into concrete 
programming code. 

The module has successfully been used in various 
applications. A version written in the C language is 
one of the basic cornerstones of the EMS system for 
the implementation of functional languages by 
graphs. 

REFERENCES 
1. Berge. C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973. 

A textbook on graph theory. 
2. Ebert. J. Effiziente Graphenalgorithmen. Aula, Wiesbaden. West Ger- 

many. 1981. A textbook on graph algorithms and their implementa- 
tion in Algal-like languages using abstract data and refinements. 

3. Ebert, J. Implementing a functional language on a vom Neumann 
computer. Tech. Rep. 3/&i, EWH Koblenz, Fachbericht Informatik, 
Mar. 1985. A report on an implementation technique for functional 
languages using attributed and ordered directed graphs. 

4. Even, S. Graph Algorithms. Pitman, Marshfield, Mass., 1979. A text- 
book on graph theory featuring algorithms. 

5. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969. 
A textbook on graph theory. 

6. Tarjan, R.E. Depth-first search and linear graph algorithms. SIAM J. 
Comput. I, 2 (1972). 146-160. A fundamental paper showing that 
some connectivity problems are solvable in linear time using depth- 
first search on adjacency-list representations of graphs. 

CR Categories and Subject Descriptors: E.1 [Data]: Data Structures- 
arrays: graphs; lists; E.2 [Data]: Data Storage Representations-contiguous 
representafions; linked representations: F.2.2 [Analysis of Algorithms and 
Problem Complexity]: Nonnumerical Algorithms and Problems-compu- 
tations on discrete structures; G.2.2 [Discrete Mathematics]: Graph The- 
ory-graph algorithms 

General Terms: Algorithms 
Additional Key Words and Phrases: Edge-oriented algorithms, graph 

traversal 

Received 6/86; accepted U/86 

Author’s Present Address: Jiirgen Ebert. EHW Koblenz, Informatik, 
Rheinau 3-4, 5400 Koblenz, West Germany. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

June 1987 Volume 30 Number 6 Communications of the ACM 519 


