
Edgar H. Sibley Panel Editor

Daniel mm. Sunday
-

A VERV FAST
SU6STRINC

SEARCH ALGORITHM

This article describes a substring search algorithm that is faster than the Boyer-
Moore algorithm. This al-

another. Often the execution of this
gorithm does nobt o?$end on

Existing Algorithms
technique in code accounts for a Let p[i] be the i-th character in the

scanning thepattern string substantial percentage of the work a pattern string p=p[O] . . . p[m-1] of
program does, and increases in the length m, and let t[j] be the j-th

in any particular order. efficiency of these search routines can character in the text string t = t[O] . .

Three variations of the significantly speed up a computer t [n -11 of length n>m. We will assume

algorithm are given that program’
that the pattern string p is located at

The substring search problem is to position kin the text string t in testing
use three daxerent pattern find all occurrences of a given pattern for a substring match. That is, p[O]

scan orders. Thgse include: string p as a substring of a larger is aligned with t[k], p[l] is aligned
string of text t. Several important with t[k+l], and p[;] is aligned with

(1) a ‘Quick Swwch”algo- algorithms have been discovered that t[k+i] up to i=m-1.

rithm; (*) a “‘~axima1 forward (SF) approach. Two of the
are more efficient than the straight- The SF algorithm is the obvious

Shift ” algorithm; and (3)
one that most programmers would

most notable algorithms, published use to code a substring search. The

an “Optimal Mismatch” over a decade ago, are the Knuth- pattern string p is aligned with the
Morris-Pratt (KMP) [3] and the extreme left of the text, at position

algorithm. Boyer-Moore (BM) [l] algorithms. k= 0, and then the pattern characters
Both the KMP and BM algorithms are scanned from left to right, p[O]
have worst-case linear-search behav- p[l]. p[m-11, testing for matches

A
fundamental technique ior, improving the quadratic SF against the corresponding text char-
used in computer science is algorithm. In practice, however, on acters. If all match, then a substring
to search for a specific sub- commonplace English text, the BM has been found. If any mismatch is
string in a larger body of algorithm is several (usually three or found, the pattern string is shifted to
text. Algorithms that do this more) times faster than the other two the right one step, incrementing k by
rank with sorting algo- that are about the same [4]. In this 1, and the pattern string is rescanned

rithms as cornerstones of software article, an improvement to the BM left to right starting again from its
methodology Substring search algo- algorithm is presented that results in leftmost position at p[O]. This SF
rithms can be used to find reference an even faster substring search algo- algorithm is easy to code. The main
keywords in documents and all rithm. This new algorithm does not drawback of using the SF algorithm
usages of some vari.able in source require that the pattern string be is that it is a quadratic algorithm with
code, to monitor input text streams scanned in any particular order. worst-case O(mn) search time. In
for certain event na:mes or prompt Three variations of the algorithm are practice, however, for each pattern
words, or to locate items in a list given that use three different pattern string position, a mismatch is usually
stored in a computer as flat text. The string scan orders. These include: (1) detected with the first character
string search technique is so funda- a “Quick Search” algorithm; (2) a tested, and the expected running
mental that most l.arge computer “Maximal Shift” algorithm; and (3) time is O(n).
programs use it in one form or an “Optimal Mismatch” algorithm. The KMP algorithm [3] improves

All three are very fast substring the SF algorithm with a worst-case
@I 1990 ACM 0001.0782/90/0800-013’2 $1.50 search algorithms. O(m+n) search time. The funda-

mental idea behind the KMP algo-
rithm is to use already-known
matches to permit shifting the pat-
tern string forward by a delta, 6, of
more than one character when a mis-
match is found. The KMP method
starts the same as the SF and scans
the pattern string in the same left to
right direction from p[O] through
p[m - 11. When a character mismatch
is found, however, between p[;] and
t[k+ i], for example, the KMP algo-
rithm shifts the pattern string right in
order to align already-matched and
scanned text with the nearest match-
ing prefix of the pattern. Addition-
ally, a different pattern character is
brought to the mismatch position,
since we already know that the cur-
rent one is a mismatch. These prefix
shifts for each mismatch position in
the pattern string can be determined
from the pattern string alone, and an
initial O(m) time is needed to pre-
compute them. After this shift of
d>=l, testing characters of the text
string then resumes at the point
where the last mismatch was found,
namely, at t[k+i] in the text string
and at p[;- d] in the pattern string
when (i-d)>=O. If (i-d)<O, p is
shifted to position (k+ i+ 1) in t. Thus,
there is no backtracking in t, result-
ing in a worst-case O(n) search time.
Nevertheless, in practice, the KMP
and SF algorithms perform about the
same [4] because the expected search
time statistics are dominated by the
event of a mismatch for the first char-
acter tested, p[O].

The BM algorithm [l] changes the
direction of scanning the pattern
string by testing the last character of
it first and then proceeding right to
left through the pattern string,
p[m-l] p[m-21.. .p[O], in testing
for matches with the text. Similar to
KMP, when a mismatch is found, at
p[m - i], for instance, the information
gained from known matches is used
to shift the pattern right as much as
possible. The shifts are generally
larger than those for the KMP algo-
rithm. For the mismatching charac-
ter in the text string, t[k+m-i], the
BM algorithm uses a precomputed
table to find the index of its first left-
ward occurrence from the end of the

3atter-n string. If this occurs to the left
If the position of the mismatch, then
:he difference is defined to be 61 for
:hat position in the pattern string.
Since most often, the last character of
3, p[m-11, gives a mismatch, 61 is
Tenerally positive. For reasonably
short patterns, the expected value of
61 is almost (m-1). Using the BM 61
for the pattern shift after a mismatch
yields a substring search algorithm
that is usually better than three times
as fast as those of the SF or KMP in
practice [4]. This improved algo-
rithm, however, has a worst-case
O(mn) search time. By further incor-
porating the KMP idea to compute
a 62 and using the maximum of 61
and dz for the actual d shift used, one
gets an O(m+n) algorithm. This sec-
ond shift value is computed by taking
the already-matched suffix of p to the
right of the first mismatched charac-
ter and by finding the next leftward
occurrence of it in p. Additionally, the
character at the mismatch position
must be different from the current
one. Like 61, d2 is precomputed as
a function of the position in p where
a mismatch first occurs, and both
dr and 62 can be precomputed in
O(m) time.

An improved AlgorCthm
One can recode the intent of the 61 of
the BM technique. First, note that
the pattern string always shifts right
by at least one character. Hence, the
character in the text string im-
mediately past the end of the pattern
string, namely t[k+m], must be in-
volved in testing for a substring
match at the next position of the pat-
tern string. Thus, a new Ar can be
computed to be the index of the first
leftward occurrence of this character
from the end of the text string. As
with the BM dt, this index can be
precomputed as a function of the text
string alphabet, for instance, in a
table TDl[c], whose value for any
character c of the alphabet is its left-
ward index from the end of p (so that
the last character of p has index 1).
Then,

81 =TDl[t[k+m]].

Whenever a mismatch is found,

this value of 81 is the amount of shift
p to the right. This either aligns that
character in p with the text character
t[k+m], or, when that character does
not occur in p, shifts p right past it to
text position (k+m+ 1). Note that this
81 is computed as an absolute pattern
shift and is not defined relative to the
position in p of the last mismatch.
Using this 81 instead of the BM 61
has the following advantages:

(1) Al>=1 always, and so it can be
used by itself to simply and
quickly code a fast, practical
algorithm. The BM dl, however,
is sometimes < =O, in which
case either a shift of just 1 or d2
is used.

(2) In practice, one expects that
Al>= 61 +l. Also, whenever the
last character of the pattern string
matches the text character, then
one expects that Al>= 6 + 2, and
so on. Thus using Al results in a
faster algorithm than that of BM.
This is mostly true for short
pattern strings, and the effect
of this increase in speed decreases
as the pattern string gets longer.

(3) 81 does NOT depend on the
order in which the pattern string
p is scanned. This is because it is
defined relative to a text string
character that lies outside the
current comparison range of the
pattern string. The BM 61, how-
ever, depends strongly on the
right to left pattern string scan
order for its definition and effi-
cient usage.

This last point is important, for it
means that the pattern string p may be
scanned in any order at all. One could
scan it forward, backward, or use any
other ordering of the subindices of
the pattern string. Let an index
ordering be represented as an integer
array I[]={I[O], ., I[m-11) that
is a permutation of (0, . . , m-l>.
Then, I[1.1 is the location in the pat-
tern string of thej-th scan element,
and p[I[j]] is the character of the
pattern string at that location, for
eachj=O. (m-1).

For any specific order of scanning
a pattern string, one can define a AP
shift that is similar to the KMP d or

CCYMUNICATICWS OFT",! ACM/August 1990/W 33. No.8 133

-

[first initialize TDZC] fortheminimummatchingshiftj
TD2[0]:= 1; [nomatchj
lshift:= 1;
forj:=lto(m-1)
dobegintscanfurtherleftwardforfirstmatchingshift

lshift:=matchshift(j,lshift);
TD2[j]:=lshift;

end;

[nextgetcorrectshiftwithcurrentcharmismatch
forj:= Oto (m-l)
do begin

gotshift:= false;
lshift:= TD2[j]; f get initialmatching shift)
while (gotshift= false) and(lshift<m)
dobegin [alreadyhave amatching shift)

[alsorequirecurrentcharmustnotmatch)
i:= (I[j] -1shift);
if (i< 0) or (p[I[j]]<>p[i])
thengotshift:=true
elsebegin [getnextmatchingshiftj

lshift:= lshift+l;
lshift:= matchshift(j,lshift);

end;
end;
TD2[j]:= lshift; [set final shift)

end;

ArgorliChrim (2)

[Search for apatternintextj
gotmatch := false;
k 0; :=
while (gotmatch= false) and (k+m<= n) [enough text is still left]
dobegin

j:=O; {j scans the ordered pattern]
while(j <m) and(p[I[j]] =text[k+I[j I]>

doj :=j+l;
if (j =m) (allpatterncharsmatchedj
then gotmatch :=true
elsebegin{ shift pattern]

delta1 :=TDl[text[k+m]];
delta2 :=TD2[j 1;
k := k+max (deltal, delta2);

end;
end;
if (gotmatch=true)
thenSearch:=k {patternmatchfoundattextlocationk
elseSearch := (-1) [nopatternmatch found intextj

134 August 1990/W 33. N~.~ICOYYUWICITIOWSOFTRE~~.CLI

SUBSTRING SEARCH

the BM d2. Then, for the substring and TD2[] for it, the new substring creates new algorithmic possibilities.
search algorithm, one uses a A pat- search algorithm (Algorithm (2)) is Three different variations based on
tern shift that is the maximum of 61 easy to code. three different scan orderings are
and AZ. Like the BM d2, this new 82 Similar to the KMP and BM algo- given here.
can be precomputed as a function of rithms, Algorithm (2) should have
the position in p where a mismatch linear O(n) worst-case behavior for The Buick Search (OS)
first occurs. Let TD2[j] be the pre- any scan order. It would seem that Algorithm.
computed AZ for when a mismatch the KMP algorithm uses a best possi- To quickly code a fast substring
first occurs at I[j] for the scan order- ble scan order for remembering search algorithm, the easy-to-code
ing I[1. To precompute the table already scanned text in order to avoid SF pattern string scan order can be
TD2[1, first consider p[I[O]]. If a backtracking and should produce the used with the easy-to-compute 81 for
mismatch occurs testing this charac- best worst-case behavior. On the the pattern string shift at each stage.
ter, we know that the next character other hand, the BM scan order pro- No 82 is used. This is a simple, fast
of p that becomes aligned with the duces the worst possible perform- practical algorithm. Because it can be
corresponding text location must dif- ante, since it does not remember any both coded and debugged quickly
fer from p[I[O]]; otherwise there scanned text. A proof of the O(n) and it executes quickly, it can be
would be another mismatch. Find linearity of the search algorithm for called the Q~2Uick Search algorithm.
the maximum i<I[O] such that p[;] any fixed scan order of the pattern This simplified search algorithm is
does not equal p[I[O]]. Then, string might include the KMP and shown in Algorithm (3).
TD2[0] =(I[01 - i) is the minimum BM algorithms as special cases and If one augmented this straightfor-
shift where this holds. Next, TD2[1] reveal a relation between the bounds ward search with the AZ shift and
is the minimum amount one must on their worst-case behavior. The added code to stop backtracking in
shift p left so that p[I[O]] matches its proof of the linearity of this new the text, one would get a fast algo-
corresponding character, but p[I[l]] search should be similar to the proof rithm with the KMP algorithm tight
does not. for the BM algorithm [2,3]. The de- bound on worst-case behavior.

Continue defining TD2[j] to be tails of a complete proof, however,
the minimum left shift so that p[I[O]] have not yet been worked out, so we The MaxSmaI ShiN (MS)

p[I[j-l]] match their aligned
characters in p, but such that p[I[j]]

simply conjecture that linearity Algorlthm.
holds. One can try to choose a scan order

does not. The 82 shift table for a that somehow maximizes the 82 shift
specific ordered pattern can be l Conjecture: The arbitrary scan order values that depend on it. One way of
precomputed with Algorithm (1) substring search algorithm has O(n) doing this is to first pick the character
(Note: the algorithms described in worst-case behavior. in the pattern string p whose next
this article will be given in Pascal for Having a AI and a 62 that can be leftward occurrence in p is a maximal
clarity of presentation. A complete used with any substring scan order distance away. Test this character
implementation in the C language is
also given in the Appendix.) where
the matchshift (j, lshift) function re-
turns the value of the next leftward Algorithm (3)

shift, after an initial left shift lshift,
for which each of the firstj-ordered

(QuickSearchforastringintextj
pattern characters match their cor- gotmatch := false;
responding aligned string character. k := 0;

That is, this is the minimum value of while (gotmatch= false) and (k+m<=n)
mshift> = lshift> = 0, such that dobegin
either (I[il- mshift)<O, or i := 0; [iscansthepatternstringj
p[I[i]]=p[I[i]-mshift], for each while (i< m) and (p[i] =text [k+i])
i=O.. .(j-l). do i :=i+l;

Note that if the pattern string p is
scanned in the forward direction,

if (i=m) [allpatterncharsmatchedj

withI[]={O, 1, . .,m-1}, thenthe
thengotmatch :=true

82 we have computed is the KMP 6.
else k :=k+TDl[text[k+m]] [shiftpattern)

Also, if the pattern string is scanned end;
in the reverse direction, with if (gotmatch=true)
I[]={m-1, m-2, . ., 0}, ourA is thenQSearch :=k (substringmatch foundattext[k]j
the same as the BM d2. else&Search := (-1) [no substringmatchfoundintext)

Given a specific ordered pattern
and precomputed shift tables TDi[]

CCYY”WlCATlCNSCFT”EACMlA~~~~t 1990/Vo1.33,No.8 135

first. If it matches the corresponding
text character, then we have to max-
imally shift the pattern string p right,
before the next valid comparison
position is reached. Repeat this selec-
tion process with the remaining char-
acters of p. One could also take into
account the character where a
mismatch is first detected to skip over
pattern string subsequences of
repeated characters. Other
refinements could maximize higher-
order 82 shifts, but this would not
result in a significant increase of
search efficiency.

C code for constructing a “Max-
imal Shift” (MS) ordered pattern is
given in the Appendix. This code
sorts with a comparison of the mini-
mum left shifts needed to match the
characters being compared. The sort
first picks the character with the
maximal minimum left shift. If two
characters have the same minimum
left-shift value, we use the BM heur-
istic to first select the one closest to the
end of the pattern string.

The Optimal MCsmatch
(OM) Algorithm.
An algorithm that is even faster in
practice can be achieved by using a
pattern string scan order that opti-
mizes the chance of getting a mis-
match at each test position. This is
done by ordering the characters of
the pattern string p from the one least
likely to occur in the text alphabet to
the one most likely to occur. Use this
as the pattern scan order. This in-
creases the probability of finding a
mismatch as soon as possible and
results in greater eflic:iency.

C code for constructing an “Opti-
mal Mismatch” (OM) ordered pat-
tern is given in the Appendix. This
code sorts with a comparison of the
frequency of occurrence of the pat-
tern string’s characte:rs in the text
alphabet. When two characters have
the same frequency, the ELM heuristic
is used to first select the one closest to
the end of the pattern string. One
could go beyond this by first select-
ing, for characters of near equal fre-
quency, the one that would give the
maximal AZ shift. Even further, one
could compute the number of ex-

136

TABLE 1. Fraction OF Text Characters Testetl

Plen words BM OS MS

: 1::
1.000
0.543

3 741 0.376
4 2142 0.293

z
3077 0.242
3773 0.210

;
3911 0.186
3474 0.168

Ii
2965 0.155
1881 0.144

::
1051 0.137

542 0.129

::
260 0.124
102 0.117

15 39 0.115

petted comparisons for each char-
acter that would result from the
probability of it matching or not
matching and the expected shift as-
sociated with each event. This does
not give much better results than the
simplified OM algorithm that we
have used.

To illustrate the impact of the OM
algorithm, note that over 20 percent
of English words end in the letter ‘e’,
the most commonly occurring char-
acter in English text with about a 10
percent occurrence rate. Thus, many
words that are searched for in text us-
ing the BM algorithm often get a
match for the first character tested.
Testing the least probable character
of a word first, considerably improves
this statistic. The average ratio ofthe
text occurrence probability of the last
letter of a word to the least likely let-
ter in it is almost 5, making a mis-
match on the first character tested
five times more probable in general.
For some words (one percent), this
ratio can be as high as 50 or more.
For words ending in ‘e’, the average
ratio is almost 9.

Comparison 06 the!
Rlgorithms.
To compare the BM, QS, MS, and
3M algorithms, each was used to
search for the same strings in large
hxed text buffers, and the number of
comparisons made with text charac-
iers was counted. The algorithms
were coded in the C programming

-

language (see Appendix). The first
text buffer used was formed from the
UNIX’” spelling dictionary file,
lusrldictlwords, by discarding non-
alphabetic characters and converting
alphabetics to lower case. This re-
sulted in about 200K characters of
text. Then, all occurrences of each
alphabetic word in /usr/dict/words
were searched for in this text buffer
using each of the four algorithms.
After counting the number of char-
acter comparisons made for each
word and algorithm, the fraction of
the total characters of text was com-
puted and recorded. Finally, for each
pattern string length, the average of
this fraction was computed for each
algorithm. The resulting statistics
(Table I) show that the QS, MS, and
OM algorithms are all faster than the
BM algorithm. Table I compares the
BM, QS, MS, and OM algorithms
as a function of the pattern string
length, “Plen.” The “Words” col-
umn gives the number of words of
each length searched for in the text.
These results show that the OM algo-
rithm is the fastest one of all.

Next, the increase in speed of the
fastest algorithm, the OM algorithm,
over the BM algorithm, was com-
puted as the ratio BM/OM of the
values in Table I for each word, and
the average for each pattern length
was computed as shown in Table II.
This shows a dramatic increase in

UNIX is a trademark of AT&T Bell Laboratories

0.529
0.390
0.299
0.246
0.213
0.190
0.171
0.157
0.147
0.138
0.132
0.125
0.120
0.115
0.113

0.529
0.390
0.300
0.251
0.216
0.194
0.174
0.159
0.148
0.139
0.132
0.124
0.119
0.113
0.109

0.529
0.377
0.288
0.237
0.204
0.181
0.163
0.150
0.140
0.131
0.125
0.118
0.114
0.109
0.106

-

August 199O/Vol33. No.8/COMYUWICATIOWSOFTRE~~LCY

SUBSTRING SEARCH

TABLE II. OM Compured
to EM

Plen BMIOM Mill Max
1 1.89 1.71 1.99
2 1.45 1.35 1.53
3 1.30 1.18 1.41
4 1.23 1.10 1.34

i 1.19 1.16 1.07 1.05 1.30 1.27

ii 1.14 1.12 1.02 1.02 1.25 1.23
9 1.11 1.01 1.20

IO 1.10 1.01 1.19
11 1.09 1.01 1.18

:: 1.09 1.08 0.99 1.00 1.17 1.16

:i 1.08 1.08 1.02 1.00 1.14 1.16

search speed for short pattern strings
and a general increase of almost 10
percent for longer strings. Table II
also shows the minimum and max-
imum values of the BM/OM ratio for
any individual word that occurred for
each string length. This shows that
the OM algorithm is at least as good
as the BM one and can sometimes be
significantly faster.

A further test to compare the BM
and OM algorithms was done using
the text buffer formed by concatenat-
ing all the UNIX manual pages. The
raw, unformatted manual pages were
only filtered by throwing away for-
mat command lines and by convert-
ing alphabetic characters from upper
to lower case. Nonalphabetic special
characters, including all white
spaces, were retained in the text. This
resulted in almost 3 megabytes of
technical English text. Again, each
alphabetic word from the UNIX dic-
tionary was searched for in this text
buffer using the BM and OM search
algorithms. The results are given in
Table III. It is interesting to note that
the speedup ratio BM/OM, as a
function of Plen is almost exactly the
same as computed in the dictionary
text search tests.

Conclusion
Throughout the history of computer
science, there has been an evolving
discovery of new, fast string search
algorithms. Theoretical work in
automata theory, in the 1960s led

TABLE 16. Munual Page Text Comparison of EM Und OM

Plen BM OH BMIOM Mln Max

: 0.533 1.000 0.367 0.522 1.92 1.46 1.74 1.35 2.00 1.52
3 0.365 0.278 1.31 1.18 1.40
4 0.282 0.228 1.24 1.11 1.32

i 0.232 0.200 0.194 0.171 1.19 1.16 1.04 1.05 1.33 1.32
; 0.175 0.157 0.153 0.139 1.14 1.13 1.01 1.02 1.23 1.29

9 0.144 0.128 1.12 1.02 1.20
IO 0.132 0.119 1.11 1.02 1.19
11 0.124 0.112 1.10 1.00 1.19
12 0.115 0.105 1.09 1.02 1.17
:: 0.109 0.103 0.100 0.095 1.09 1.08 1.02 1.02 1.13 1.17

15 0.099 0.091 1.08 1.02 1.17

directly to the algorithms of the
1970s. Of these, the Boyer-Moore
(BM) algorithm became notorious as
the fastest technique available to
search for a single fixed substring. It
was also notorious for going against
natural intuition by scanning the pat-
tern string in reverse order and thus
gaining its startling efficiency. Fol-
lowing this work, many improve-
ments have been made to the BM
algorithm that can increase search
speed for certain types of patterns.
All of these improved algorithms,
however, still depend on the BM
technique of scanning the pattern
string in reverse order to achieve their
efficiency.

This article has presented an ex-
tension of the BM algorithm that
does away with dependence on the
scan order of the pattern string. In
fact, the pattern can be scanned in
any arbitrary order, and there is still
an increase in efficiency over the BM
algorithm. It is then shown how to
select scan orders that increase this
efficiency even more. Three specific
new algorithms are presented that
use three different pattern string scan
orders. These algorithms are called
the “Quick Search” (QS), the “Max-
imal Shift” (MS), and the “Optimal
Mismatch” (OM) algorithms.

The first of these, the QS algo-
rithm, is very easy to implement and
scans the pattern in the most natural
forward order. It is almost as easy to
understand, code, and debug as the

slow, straightforward algorithm that
most programmers tend to use. Us-
ing the QS algorithm, however, will
most often give superior search
speeds to even the BM algorithm.
When a programmer is called on to
rapidly code a string search, the QS
algorithm should be his or her choice.

The final algorithm, the OM algo-
rithm, is the fastest one of all. It gains
its efficiency by first testing the least
probable pattern string character
and thus detects mismatches more
quickly. This event dominates search
statistics and results in a significant
increase in speed (see Tables I, II,
and III). The greatest gains are for
short pattern strings, where there is
a 20 percent or greater increase in
search speed for normal English text.
For longer strings, the relative advan-
tage becomes smaller, and one can
expect a text search speed increase of
about 10 percent.

In applications not involving En-
glish text, the algorithms presented in
this article should still give better
performance than the Boyer-Moore
string search. The statistics on the
degree of improvement would be dif-
ferent since they depend on the size
of the text alphabet and the fre-
quency of occurrence of the alphabet
characters in the application text.

Acknowledgments.
Although this work was not the result
of a directly funded research project,
it is most certainly a side-effect of

COMMVNlCATlONSOCTNEACM/August 1990/Vul.33,No.8 137

the projects I have worked on at
JHU/APL. I would like to acknowl-
edge the stirpulating technical envi-
ronment in which I work and the
resources made available to me on a
daily basis. These factors have made
this work possible.
References

1. Bayer, R.S., and Moore, J.S. A fast string
searching algorithm. Cornnun. ACMZO, 10 (Oct.
1977), 762-772.

2. Guibas, LJ., and Odlyzko, A.M. A new proof
of the linearity of the Iloyer-Moore String

Searching Algorithm. SI.4M J. Comput. 9, 4
(Nov. 1980), 672-682.

3. Knuth, D.E., Morris, J.H., and Pratt, V. R. Fast
pattern matching in strings. SiamJ. Comput. 6,
2 CJune 1977), 323-350.

4. Smit, G.V. A comparison ofthree string match-

ing algorithms. .Sof~w.-Pm. nndExj. 12, 1 Uan.
1982), 57-66.

CR Categories and Subjrct Descriptors: F.2.2
[Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems-
sorting and searching

General Terms: Algorithms
Additional Key Words and Phrases: Boyer-

Moore, Knuth-Morris-Pratt, pattern, search,
substring

About The Author:
DANIEL M. SUNDAY is currently a mathema-
tician at the Johns Hopkins University Applied

Physics Laboratory (JHUIAPL) and works as the
designer and developer of software systems. He is
also the Lead Software Engineer on a project
developing color display systems for the U.S. Navy.
Author’s Present Address: The Johns Hopkins
University, Applied Physics Laboratory, Johns
Hopkins Road, Laurel, MD 20723-6099.
dan~aplvax.jhuapl.edu

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACMcopyright noticeand the titleofthe
publication and its date appear, and notice is given
that copying is by permission ofthe Association for

Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

APPENDIX
C-Language Impaementat#on

In thisappendix, the algorithms presented in this article are given in the C programming
language. This is the code that was used to test the algorithms and is a complete and cor-
rect implementation of them. The code is also a reasonably efficient C representation
of the algorithms, although readability of the code took precedence over raw speed.

In the C code, the global variables Plen and Tlen are assumed to be preset to the pat-
tern and text !;tring lengths. That is, Plen=m, and Tlen=n. Also, the Constant ASIZE is the
size of the text alphabet that is assumed to be the ASCII character set The constant MAXPAT
is the maximum length of a pattern string. The pattern string is represented as a NULL-
terminated string declared as an array:

charpstr[MAXPAT];

Given a specific pattern scan order I [: J = { I [o] , . . . , I [IR- I]], the ordered pattern is rep-
resented by an array of structures

typedef structpattern-scan-element [
int lot; /*locationinpstrofscanelement*/
char c; /*characterofpstratscanlocation*/
:I
.PAT;

PAT :pattern[MAXPAT]; /* aspecific orderedpattern*/

wherepatternL;i:I . loc=I[j], patterncjl. c=pstr[: I[j] J forj=o.. . (m-l), and pattern [ml . C=O.

Often an ordered pattern can be constructed from a pattern string by sorting with a
comparison function PCITIP() that compares two PAT elements according to the specifica-
tion for the UNlX qsort() function. The following function does this.

138 August 199O/Vol.33, Na,8,COYY”“tCIT,cW*cFT”EAcY

/* order-patterno: constructanorderedpatternfromastring
++/
order-pattern(pstr, pcmp, pattern)
char *pstr; /* input: thepatternstring*/
id (*pcmp) (> ; /* input: routine to ComparePATelements */
PAT *pattern; /*output: the scanorderedpattern*/
t

int i;
PAT *pat=pattern;

for (i=O; i<=Plen; +ti, +tpst-r, *pat) [
pat->loc = i;
pat->c = *pstr;

I
qsort(pattern, Plen, sizeof(PAT), pcmp);

1

For example, the comparison function for the Maximal Shift pattern ordering is:
maxshift-pcmp(patl, pat2) /* "MaximalShift" pattern comparison*/
r*patl, *pat2; /* input: pointerstotwoPATelements */

int dsh=MinShift[pat2->loc J -MinShift[patl->loc 1;

return(dsh? dsh : (pat2->loc -patl->loc));
I

where the array MinShift [j] gives the minimum left shift needed to match the pattern
string character at location j. Note that if two characters have the same MinShift value,
we use the BM heuristic to first select the one Closest to the end of the pattern string.
The MinShift [] array is easily computed with the following code.

for (i=O; i<Plen; +ti) [
for (j=i-1; j >=O; --j)

if (pstr[j]= =pstr[i]) break;
MinShift[i]=(i-j);

1
Also, the comparison function for constructing the Optimal Mismatch pattern

ordering is:
optimal-pcmp(patl, pat2) /* "OptimalMismatch" pattern comparison */
PAT*patl, *pat2; /* input: pointerstotwo PAT elements */
I

float fx= Freq[patl->c] -Freq[pat2->c];

return(fx? (fx>O ?l :-1) : (pat2->loc-patl->loc));
1

where the array Freq[c] returns the frequency of occurrence of the character c in the text
alphabet. The values used in our tests with English text for the percentage frequency of
occurrence of alphabetic characters is given in Table I. This table was derived from the
UNIX spelling dictionary. Most other nonalphabetic characters have low-occurrence fre-
quencies. Note, however; the most common character in English text, the space character,
with about 15 percent occurrence, is not included. This is relevant in applications where
the pattern string can have embedded blanks.

TABLE 1. fingllsh next Alghaget Frequency

char Freq Char Fw
e 11.1
a 8.9 ii :I;
i

:
0
n
5
I
C
U
m
d

7.8
7.4
7.1
6.9
6.8
5.6
5.5
4.5
3.6
3.2
3.2

::‘:
2.0
1.5
1.1
1.1
1.0
0.3
0.2
0.2
0.2

Given a pattern string and the associated scan-ordered pattern, the functions to
precompute the A, and A~ shift tables TD~[] and TDZ[J are the fOlIOWIng:

*/
int TDl[ASIZE];

build_TDl(pstr)
char *pstr;
I

int i;
char *Pi

for (i=O; i<ASIZE; i+t)
TDl[i] = Plen+ 1;

for (ppstr; *p; p+t>
TDl[*p] =Plen- (p-pstr)

1

/* build-TDl(): constructs the deltalshifttable from a pattern string

/*output: table fordeltalshift index*/

/S input: thepatternstring*/

/* initialize the TDl[] table */

/* fillinvalues frompattern string*/
;

/*build_TD2(): constructs the delta2 shift table fromanorderedpattern
*/
int TD2[MAXPAT 1; /++ output: table fordelta2shiftindex*/

builhTD2(pstr, pattern)
char *pstr; /* input: the actual pattern string++/
PAT *pattern; 1% input: the scan-orderedpattern*/
I

int lshift. , /* currentleftshift*/
int i, plot; /*patternlocationcounters */

/* first initialize TD2[] fortheminimummatchingleftshift*/
TD2[O]=lshift=l; /*noprecedingchars, so=l*/
for (p.loc=l; ploc<Plen; tl-plot) (/K foreachpatternlocation*/

140 August 199O/Vol.33, No.8ICOYMVNICITIONSOFT”SliCY

CCYMUllClTlCllOOFTllEliCYIAugust 1990/Vo1.33,No.8 WI

/* scanleftward for firstmatchingshift*/
lshift=matchshift(pstr, pattern, plot, lshift);
TD2[ploc] =lshift; /* set initialmatchingshift*/

\
;*next get correct shiftwithcurrent charmismatch*/
for (plot = 0; ploc<Plen; +tploc) [

lshift=TD2[ploc 1; /* get initialmatchingshift*/
while (IshiftCPlen) [/*when current shift islessthanpatternlen*/

/* alreadyhave amatchingshifthere */
/*also require currentcharmustnotmatch*/
i= (pattern[ploc].loc-lshift);
if (i<O 11 pattern[ploc].c !=pstr[i]) /*mismatch*/

break;
/*ifnot, scan furtherfornextmatchingshift*/
ttlshift;
lshift =matchshift(pstr, pattern, plot, lshift);

1
TD2[ploc] =lshift; /* setfinalshift*/

1
I

/*matchshift(): findthenextleftwardmatchingshiftforthe first
** plocpatternelements afteracurrentshiftoflshift.
**output: return this nextleftshiftvalue.
‘A/
matchshift(pstr, pattern, plot, lshift)
char *p&r; /* input: the pattern string*/
PAT *pattern; /* input: theorderedpattern*/
int plot; /*input: thenumberofpatternelementstomatch*/
int lshift; /* input: the smallest leftshiftto consider*/
I

PAT *pat;
int j;

for (; lshift<Plen; tl-lshift) [/* scanleftformatchingshift*/
pat= pattern+ploc; /* currentpatternelement*/
while (--pat>=pattern) [

/* all preceding chars must match*/
if ((j = (pat->loc-lshift))<O)

continue;
if (patr>c !=pstr[j])break;

-I
if (patcpattern) break;/* allmatched*/

1
returnlshift;

After TDq and TD~[I have been precomputed for the scan-ordered pattern, the search
algorithm is given by the following function. This function returns the index of the first
instance of the pattern in the text. If no matching substring is found, it returns a (-1).

/* search(): thearbitraryscanordersubstringsearchalgorithm.
**output: returnthetext indexofthe substring, or (-1) if none.

*/
search11 pattern, text)
PAT *pattern; /* input: a scan-ordered pattern string */
char *text; /* input: the text */
I

PE *p; /*patternscanpointer*/
char *tx= text; /* text scan pointer */
int dl, d2; /” deltas for pattern shift */

whi:Le (tx + Plen <= text f Tlen) /* while enough text is still left “/
1

for (p = pattern; p -> c; *p) f /* scan the pattern*/
if (p -> c != *(tx + p -> lot))/* got a mismatch */

break; /* so stop checking */
3
if (p->c=O) /* pat end=> got substring */

return (tx-text); /* return index into text */

/*nosubstringmatch, soshifttonexttextpositions/
dl=TDl[*(tx+Plen)]; /* get delta1 */
d2 = TD2[p - pattern J ; /* get delta2 */
tx+= (dl>d2 ? dl : d2); /* use max for shift */

1
return (-1) ; /* no sub&ring found */

1

The simplified Quick Search function, which onfy uses A? and only needs to have TDI[]
precomputed, is given by the foltowing function:

/* qsearc:h() : thequicksubstringsearchalgorithm.
*g output: returnthetextindexofthesubstring,or(-1) ifnone.
*/
qsearch(pstr, text)
char *ps tr; /* input: the pattern string */
char *text; /* input: the text */
I

char *p; /s pattern string pointer */
char St, *tx=text; /X text pointers g/

whi:Le (tx + Plen <= text + Tlen) /* while enough text is still left */
I

for (p=pstr, t=tx; *p; *p, +tt> [/* scan pattern string */
if (*p !=*t)break; /s mismatch, so stop */

1
if (*p = 0) return (tx - text) ; /* got substring, return index */
/*no substringmatch, so shifttonexttext location*/
tx+= TDl[*(tx+Plen)]; /g shift by delta1 x/

1
return (-1) ; /* no substring found s/ El

1

142 August lQQO/Vol.33, No.8ICONYUNICITIONSOCT”EMY

