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A VERV FAST 
SU6STRINC 

SEARCH ALGORITHM 

This article describes a substring search algorithm that is faster than the Boyer- 
Moore algorithm. This al- 

another. Often the execution of this 
gorithm does nobt o?$end on 

Existing Algorithms 
technique in code accounts for a Let p[i] be the i-th character in the 

scanning thepattern string substantial percentage of the work a pattern string p=p[O] . . . p[m-1] of 
program does, and increases in the length m, and let t[ j] be the j-th 

in any particular order. efficiency of these search routines can character in the text string t = t[O] . . 

Three variations of the significantly speed up a computer t [n -11 of length n>m. We will assume 

algorithm are given that program’ 
that the pattern string p is located at 

The substring search problem is to position kin the text string t in testing 
use three daxerent pattern find all occurrences of a given pattern for a substring match. That is, p[O] 

scan orders. Thgse include: string p as a substring of a larger is aligned with t[k], p[l] is aligned 
string of text t. Several important with t[k+l], and p[;] is aligned with 

(1) a ‘Quick Swwch”algo- algorithms have been discovered that t[k+i] up to i=m-1. 

rithm; (*) a “‘~axima1 forward (SF) approach. Two of the 
are more efficient than the straight- The SF algorithm is the obvious 

Shift ” algorithm; and (3) 
one that most programmers would 

most notable algorithms, published use to code a substring search. The 

an “Optimal Mismatch” over a decade ago, are the Knuth- pattern string p is aligned with the 
Morris-Pratt (KMP) [3] and the extreme left of the text, at position 

algorithm. Boyer-Moore (BM) [l] algorithms. k= 0, and then the pattern characters 
Both the KMP and BM algorithms are scanned from left to right, p[O] 
have worst-case linear-search behav- p[l]. p[m-11, testing for matches 

A 
fundamental technique ior, improving the quadratic SF against the corresponding text char- 
used in computer science is algorithm. In practice, however, on acters. If all match, then a substring 
to search for a specific sub- commonplace English text, the BM has been found. If any mismatch is 
string in a larger body of algorithm is several (usually three or found, the pattern string is shifted to 
text. Algorithms that do this more) times faster than the other two the right one step, incrementing k by 
rank with sorting algo- that are about the same [4]. In this 1, and the pattern string is rescanned 

rithms as cornerstones of software article, an improvement to the BM left to right starting again from its 
methodology Substring search algo- algorithm is presented that results in leftmost position at p[O]. This SF 
rithms can be used to find reference an even faster substring search algo- algorithm is easy to code. The main 
keywords in documents and all rithm. This new algorithm does not drawback of using the SF algorithm 
usages of some vari.able in source require that the pattern string be is that it is a quadratic algorithm with 
code, to monitor input text streams scanned in any particular order. worst-case O(mn) search time. In 
for certain event na:mes or prompt Three variations of the algorithm are practice, however, for each pattern 
words, or to locate items in a list given that use three different pattern string position, a mismatch is usually 
stored in a computer as flat text. The string scan orders. These include: (1) detected with the first character 
string search technique is so funda- a “Quick Search” algorithm; (2) a tested, and the expected running 
mental that most l.arge computer “Maximal Shift” algorithm; and (3) time is O(n). 
programs use it in one form or an “Optimal Mismatch” algorithm. The KMP algorithm [3] improves 

All three are very fast substring the SF algorithm with a worst-case 
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mental idea behind the KMP algo- 
rithm is to use already-known 
matches to permit shifting the pat- 
tern string forward by a delta, 6, of 
more than one character when a mis- 
match is found. The KMP method 
starts the same as the SF and scans 
the pattern string in the same left to 
right direction from p[O] through 
p[m - 11. When a character mismatch 
is found, however, between p[;] and 
t[k+ i], for example, the KMP algo- 
rithm shifts the pattern string right in 
order to align already-matched and 
scanned text with the nearest match- 
ing prefix of the pattern. Addition- 
ally, a different pattern character is 
brought to the mismatch position, 
since we already know that the cur- 
rent one is a mismatch. These prefix 
shifts for each mismatch position in 
the pattern string can be determined 
from the pattern string alone, and an 
initial O(m) time is needed to pre- 
compute them. After this shift of 
d>=l, testing characters of the text 
string then resumes at the point 
where the last mismatch was found, 
namely, at t[k+i] in the text string 
and at p[;- d] in the pattern string 
when (i-d)>=O. If (i-d)<O, p is 
shifted to position (k+ i+ 1) in t. Thus, 
there is no backtracking in t, result- 
ing in a worst-case O(n) search time. 
Nevertheless, in practice, the KMP 
and SF algorithms perform about the 
same [4] because the expected search 
time statistics are dominated by the 
event of a mismatch for the first char- 
acter tested, p[O]. 

The BM algorithm [l] changes the 
direction of scanning the pattern 
string by testing the last character of 
it first and then proceeding right to 
left through the pattern string, 
p[m-l] p[m-21.. .p[O], in testing 
for matches with the text. Similar to 
KMP, when a mismatch is found, at 
p[m - i], for instance, the information 
gained from known matches is used 
to shift the pattern right as much as 
possible. The shifts are generally 
larger than those for the KMP algo- 
rithm. For the mismatching charac- 
ter in the text string, t[k+m-i], the 
BM algorithm uses a precomputed 
table to find the index of its first left- 
ward occurrence from the end of the 

3atter-n string. If this occurs to the left 
If the position of the mismatch, then 
:he difference is defined to be 61 for 
:hat position in the pattern string. 
Since most often, the last character of 
3, p[m-11, gives a mismatch, 61 is 
Tenerally positive. For reasonably 
short patterns, the expected value of 
61 is almost (m-1). Using the BM 61 
for the pattern shift after a mismatch 
yields a substring search algorithm 
that is usually better than three times 
as fast as those of the SF or KMP in 
practice [4]. This improved algo- 
rithm, however, has a worst-case 
O(mn) search time. By further incor- 
porating the KMP idea to compute 
a 62 and using the maximum of 61 
and dz for the actual d shift used, one 
gets an O(m+n) algorithm. This sec- 
ond shift value is computed by taking 
the already-matched suffix of p to the 
right of the first mismatched charac- 
ter and by finding the next leftward 
occurrence of it in p. Additionally, the 
character at the mismatch position 
must be different from the current 
one. Like 61, d2 is precomputed as 
a function of the position in p where 
a mismatch first occurs, and both 
dr and 62 can be precomputed in 
O(m) time. 

An improved AlgorCthm 
One can recode the intent of the 61 of 
the BM technique. First, note that 
the pattern string always shifts right 
by at least one character. Hence, the 
character in the text string im- 
mediately past the end of the pattern 
string, namely t[k+m], must be in- 
volved in testing for a substring 
match at the next position of the pat- 
tern string. Thus, a new Ar can be 
computed to be the index of the first 
leftward occurrence of this character 
from the end of the text string. As 
with the BM dt, this index can be 
precomputed as a function of the text 
string alphabet, for instance, in a 
table TDl[c], whose value for any 
character c of the alphabet is its left- 
ward index from the end of p (so that 
the last character of p has index 1). 
Then, 

81 =TDl[t[k+m]]. 

Whenever a mismatch is found, 

this value of 81 is the amount of shift 
p to the right. This either aligns that 
character in p with the text character 
t[k+m], or, when that character does 
not occur in p, shifts p right past it to 
text position (k+m+ 1). Note that this 
81 is computed as an absolute pattern 
shift and is not defined relative to the 
position in p of the last mismatch. 
Using this 81 instead of the BM 61 
has the following advantages: 

(1) Al>=1 always, and so it can be 
used by itself to simply and 
quickly code a fast, practical 
algorithm. The BM dl, however, 
is sometimes < =O, in which 
case either a shift of just 1 or d2 
is used. 

(2) In practice, one expects that 
Al>= 61 +l. Also, whenever the 
last character of the pattern string 
matches the text character, then 
one expects that Al>= 6 + 2, and 
so on. Thus using Al results in a 
faster algorithm than that of BM. 
This is mostly true for short 
pattern strings, and the effect 
of this increase in speed decreases 
as the pattern string gets longer. 

(3) 81 does NOT depend on the 
order in which the pattern string 
p is scanned. This is because it is 
defined relative to a text string 
character that lies outside the 
current comparison range of the 
pattern string. The BM 61, how- 
ever, depends strongly on the 
right to left pattern string scan 
order for its definition and effi- 
cient usage. 

This last point is important, for it 
means that the pattern string p may be 
scanned in any order at all. One could 
scan it forward, backward, or use any 
other ordering of the subindices of 
the pattern string. Let an index 
ordering be represented as an integer 
array I[ ]={I[O], ., I[m-11) that 
is a permutation of (0, . . , m-l>. 
Then, I[ 1.1 is the location in the pat- 
tern string of thej-th scan element, 
and p[I[j]] is the character of the 
pattern string at that location, for 
eachj=O. (m-1). 

For any specific order of scanning 
a pattern string, one can define a AP 
shift that is similar to the KMP d or 
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[ first initialize TDZC] fortheminimummatchingshiftj 
TD2[0]:= 1; [ nomatchj 
lshift:= 1; 
forj:=lto(m-1) 
dobegintscanfurtherleftwardforfirstmatchingshift 

lshift:=matchshift(j,lshift); 
TD2[j]:=lshift; 

end; 

[nextgetcorrectshiftwithcurrentcharmismatch 
forj:= Oto (m-l) 
do begin 

gotshift:= false; 
lshift:= TD2[j]; f get initialmatching shift) 
while (gotshift= false) and(lshift<m) 
dobegin [ alreadyhave amatching shift) 

[ alsorequirecurrentcharmustnotmatch) 
i:= (I[j] -1shift); 
if (i< 0) or (p[I[j]]<>p[i]) 
thengotshift:=true 
elsebegin [ getnextmatchingshiftj 

lshift:= lshift+l; 
lshift:= matchshift(j,lshift); 

end; 
end; 
TD2[j]:= lshift; [ set final shift) 

end; 

ArgorliChrim (2) 

[Search for apatternintextj 
gotmatch := false; 
k 0; := 
while (gotmatch= false) and (k+m<= n) [enough text is still left] 
dobegin 

j:=O; {j scans the ordered pattern] 
while(j <m) and(p[ I[j ] ] =text[k+I[j I]> 

doj :=j+l; 
if (j =m) (allpatterncharsmatchedj 
then gotmatch :=true 
elsebegin{ shift pattern] 

delta1 :=TDl[text[k+m]]; 
delta2 :=TD2[j 1; 
k := k+max ( deltal, delta2 ); 

end; 
end; 
if (gotmatch=true) 
thenSearch:=k {patternmatchfoundattextlocationk 
elseSearch := (-1) [ nopatternmatch found intextj 
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SUBSTRING SEARCH 

the BM d2. Then, for the substring and TD2[ ] for it, the new substring creates new algorithmic possibilities. 
search algorithm, one uses a A pat- search algorithm (Algorithm (2)) is Three different variations based on 
tern shift that is the maximum of 61 easy to code. three different scan orderings are 
and AZ. Like the BM d2, this new 82 Similar to the KMP and BM algo- given here. 
can be precomputed as a function of rithms, Algorithm (2) should have 
the position in p where a mismatch linear O(n) worst-case behavior for The Buick Search (OS) 
first occurs. Let TD2[ j] be the pre- any scan order. It would seem that Algorithm. 
computed AZ for when a mismatch the KMP algorithm uses a best possi- To quickly code a fast substring 
first occurs at I[ j] for the scan order- ble scan order for remembering search algorithm, the easy-to-code 
ing I[ 1. To precompute the table already scanned text in order to avoid SF pattern string scan order can be 
TD2[ 1, first consider p[I[O]]. If a backtracking and should produce the used with the easy-to-compute 81 for 
mismatch occurs testing this charac- best worst-case behavior. On the the pattern string shift at each stage. 
ter, we know that the next character other hand, the BM scan order pro- No 82 is used. This is a simple, fast 
of p that becomes aligned with the duces the worst possible perform- practical algorithm. Because it can be 
corresponding text location must dif- ante, since it does not remember any both coded and debugged quickly 
fer from p[I[O]]; otherwise there scanned text. A proof of the O(n) and it executes quickly, it can be 
would be another mismatch. Find linearity of the search algorithm for called the Q~2Uick Search algorithm. 
the maximum i<I[O] such that p[;] any fixed scan order of the pattern This simplified search algorithm is 
does not equal p[I[O]]. Then, string might include the KMP and shown in Algorithm (3). 
TD2[0] =(I[01 - i) is the minimum BM algorithms as special cases and If one augmented this straightfor- 
shift where this holds. Next, TD2[1] reveal a relation between the bounds ward search with the AZ shift and 
is the minimum amount one must on their worst-case behavior. The added code to stop backtracking in 
shift p left so that p[I[O]] matches its proof of the linearity of this new the text, one would get a fast algo- 
corresponding character, but p[I[l]] search should be similar to the proof rithm with the KMP algorithm tight 
does not. for the BM algorithm [2,3]. The de- bound on worst-case behavior. 

Continue defining TD2[ j] to be tails of a complete proof, however, 
the minimum left shift so that p[I[O]] have not yet been worked out, so we The MaxSmaI ShiN (MS) 

p[I[ j-l]] match their aligned 
characters in p, but such that p[I[ j]] 

simply conjecture that linearity Algorlthm. 
holds. One can try to choose a scan order 

does not. The 82 shift table for a that somehow maximizes the 82 shift 
specific ordered pattern can be l Conjecture: The arbitrary scan order values that depend on it. One way of 
precomputed with Algorithm (1) substring search algorithm has O(n) doing this is to first pick the character 
(Note: the algorithms described in worst-case behavior. in the pattern string p whose next 
this article will be given in Pascal for Having a AI and a 62 that can be leftward occurrence in p is a maximal 
clarity of presentation. A complete used with any substring scan order distance away. Test this character 
implementation in the C language is 
also given in the Appendix.) where 
the matchshift ( j, lshift) function re- 
turns the value of the next leftward Algorithm (3) 

shift, after an initial left shift lshift, 
for which each of the firstj-ordered 

(QuickSearchforastringintextj 
pattern characters match their cor- gotmatch := false; 
responding aligned string character. k := 0; 

That is, this is the minimum value of while (gotmatch= false) and (k+m<=n) 
mshift> = lshift> = 0, such that dobegin 
either (I[il- mshift)<O, or i := 0; [iscansthepatternstringj 
p[I[i]]=p[I[i]-mshift], for each while (i< m) and (p[ i] =text [k+i]) 
i=O.. .( j-l). do i :=i+l; 

Note that if the pattern string p is 
scanned in the forward direction, 

if (i=m) [allpatterncharsmatchedj 

withI[ ]={O, 1, . .,m-1}, thenthe 
thengotmatch :=true 

82 we have computed is the KMP 6. 
else k :=k+TDl[text[k+m]] [shiftpattern) 

Also, if the pattern string is scanned end; 
in the reverse direction, with if (gotmatch=true) 
I[ ]={m-1, m-2, . ., 0}, ourA is thenQSearch :=k (substringmatch foundattext[k]j 
the same as the BM d2. else&Search := (-1) [ no substringmatchfoundintext) 

Given a specific ordered pattern 
and precomputed shift tables TDi[ ] 
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first. If it matches the corresponding 
text character, then we have to max- 
imally shift the pattern string p right, 
before the next valid comparison 
position is reached. Repeat this selec- 
tion process with the remaining char- 
acters of p. One could also take into 
account the character where a 
mismatch is first detected to skip over 
pattern string subsequences of 
repeated characters. Other 
refinements could maximize higher- 
order 82 shifts, but this would not 
result in a significant increase of 
search efficiency. 

C code for constructing a “Max- 
imal Shift” (MS) ordered pattern is 
given in the Appendix. This code 
sorts with a comparison of the mini- 
mum left shifts needed to match the 
characters being compared. The sort 
first picks the character with the 
maximal minimum left shift. If two 
characters have the same minimum 
left-shift value, we use the BM heur- 
istic to first select the one closest to the 
end of the pattern string. 

The Optimal MCsmatch 
(OM) Algorithm. 
An algorithm that is even faster in 
practice can be achieved by using a 
pattern string scan order that opti- 
mizes the chance of getting a mis- 
match at each test position. This is 
done by ordering the characters of 
the pattern string p from the one least 
likely to occur in the text alphabet to 
the one most likely to occur. Use this 
as the pattern scan order. This in- 
creases the probability of finding a 
mismatch as soon as possible and 
results in greater eflic:iency. 

C code for constructing an “Opti- 
mal Mismatch” (OM) ordered pat- 
tern is given in the Appendix. This 
code sorts with a comparison of the 
frequency of occurrence of the pat- 
tern string’s characte:rs in the text 
alphabet. When two characters have 
the same frequency, the ELM heuristic 
is used to first select the one closest to 
the end of the pattern string. One 
could go beyond this by first select- 
ing, for characters of near equal fre- 
quency, the one that would give the 
maximal AZ shift. Even further, one 
could compute the number of ex- 
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TABLE 1. Fraction OF Text Characters Testetl 

Plen words BM OS MS 

: 1:: 
1.000 
0.543 

3 741 0.376 
4 2142 0.293 

z 
3077 0.242 
3773 0.210 

; 
3911 0.186 
3474 0.168 

Ii 
2965 0.155 
1881 0.144 

:: 
1051 0.137 

542 0.129 

:: 
260 0.124 
102 0.117 

15 39 0.115 

petted comparisons for each char- 
acter that would result from the 
probability of it matching or not 
matching and the expected shift as- 
sociated with each event. This does 
not give much better results than the 
simplified OM algorithm that we 
have used. 

To illustrate the impact of the OM 
algorithm, note that over 20 percent 
of English words end in the letter ‘e’, 
the most commonly occurring char- 
acter in English text with about a 10 
percent occurrence rate. Thus, many 
words that are searched for in text us- 
ing the BM algorithm often get a 
match for the first character tested. 
Testing the least probable character 
of a word first, considerably improves 
this statistic. The average ratio ofthe 
text occurrence probability of the last 
letter of a word to the least likely let- 
ter in it is almost 5, making a mis- 
match on the first character tested 
five times more probable in general. 
For some words (one percent), this 
ratio can be as high as 50 or more. 
For words ending in ‘e’, the average 
ratio is almost 9. 

Comparison 06 the! 
Rlgorithms. 
To compare the BM, QS, MS, and 
3M algorithms, each was used to 
search for the same strings in large 
hxed text buffers, and the number of 
comparisons made with text charac- 
iers was counted. The algorithms 
were coded in the C programming 

- 

language (see Appendix). The first 
text buffer used was formed from the 
UNIX’” spelling dictionary file, 
lusrldictlwords, by discarding non- 
alphabetic characters and converting 
alphabetics to lower case. This re- 
sulted in about 200K characters of 
text. Then, all occurrences of each 
alphabetic word in /usr/dict/words 
were searched for in this text buffer 
using each of the four algorithms. 
After counting the number of char- 
acter comparisons made for each 
word and algorithm, the fraction of 
the total characters of text was com- 
puted and recorded. Finally, for each 
pattern string length, the average of 
this fraction was computed for each 
algorithm. The resulting statistics 
(Table I) show that the QS, MS, and 
OM algorithms are all faster than the 
BM algorithm. Table I compares the 
BM, QS, MS, and OM algorithms 
as a function of the pattern string 
length, “Plen.” The “Words” col- 
umn gives the number of words of 
each length searched for in the text. 
These results show that the OM algo- 
rithm is the fastest one of all. 

Next, the increase in speed of the 
fastest algorithm, the OM algorithm, 
over the BM algorithm, was com- 
puted as the ratio BM/OM of the 
values in Table I for each word, and 
the average for each pattern length 
was computed as shown in Table II. 
This shows a dramatic increase in 

UNIX is a trademark of AT&T Bell Laboratories 

0.529 
0.390 
0.299 
0.246 
0.213 
0.190 
0.171 
0.157 
0.147 
0.138 
0.132 
0.125 
0.120 
0.115 
0.113 

0.529 
0.390 
0.300 
0.251 
0.216 
0.194 
0.174 
0.159 
0.148 
0.139 
0.132 
0.124 
0.119 
0.113 
0.109 

0.529 
0.377 
0.288 
0.237 
0.204 
0.181 
0.163 
0.150 
0.140 
0.131 
0.125 
0.118 
0.114 
0.109 
0.106 

- 

August 199O/Vol33. No.8/COMYUWICATIOWSOFTRE~~LCY 



SUBSTRING SEARCH 

TABLE II. OM Compured 
to EM 

Plen BMIOM Mill Max 
1 1.89 1.71 1.99 
2 1.45 1.35 1.53 
3 1.30 1.18 1.41 
4 1.23 1.10 1.34 

i 1.19 1.16 1.07 1.05 1.30 1.27 

ii 1.14 1.12 1.02 1.02 1.25 1.23 
9 1.11 1.01 1.20 

IO 1.10 1.01 1.19 
11 1.09 1.01 1.18 

:: 1.09 1.08 0.99 1.00 1.17 1.16 

:i 1.08 1.08 1.02 1.00 1.14 1.16 

search speed for short pattern strings 
and a general increase of almost 10 
percent for longer strings. Table II 
also shows the minimum and max- 
imum values of the BM/OM ratio for 
any individual word that occurred for 
each string length. This shows that 
the OM algorithm is at least as good 
as the BM one and can sometimes be 
significantly faster. 

A further test to compare the BM 
and OM algorithms was done using 
the text buffer formed by concatenat- 
ing all the UNIX manual pages. The 
raw, unformatted manual pages were 
only filtered by throwing away for- 
mat command lines and by convert- 
ing alphabetic characters from upper 
to lower case. Nonalphabetic special 
characters, including all white 
spaces, were retained in the text. This 
resulted in almost 3 megabytes of 
technical English text. Again, each 
alphabetic word from the UNIX dic- 
tionary was searched for in this text 
buffer using the BM and OM search 
algorithms. The results are given in 
Table III. It is interesting to note that 
the speedup ratio BM/OM, as a 
function of Plen is almost exactly the 
same as computed in the dictionary 
text search tests. 

Conclusion 
Throughout the history of computer 
science, there has been an evolving 
discovery of new, fast string search 
algorithms. Theoretical work in 
automata theory, in the 1960s led 

TABLE 16. Munual Page Text Comparison of EM Und OM 

Plen BM OH BMIOM Mln Max 

: 0.533 1.000 0.367 0.522 1.92 1.46 1.74 1.35 2.00 1.52 
3 0.365 0.278 1.31 1.18 1.40 
4 0.282 0.228 1.24 1.11 1.32 

i 0.232 0.200 0.194 0.171 1.19 1.16 1.04 1.05 1.33 1.32 
; 0.175 0.157 0.153 0.139 1.14 1.13 1.01 1.02 1.23 1.29 

9 0.144 0.128 1.12 1.02 1.20 
IO 0.132 0.119 1.11 1.02 1.19 
11 0.124 0.112 1.10 1.00 1.19 
12 0.115 0.105 1.09 1.02 1.17 
:: 0.109 0.103 0.100 0.095 1.09 1.08 1.02 1.02 1.13 1.17 

15 0.099 0.091 1.08 1.02 1.17 

directly to the algorithms of the 
1970s. Of these, the Boyer-Moore 
(BM) algorithm became notorious as 
the fastest technique available to 
search for a single fixed substring. It 
was also notorious for going against 
natural intuition by scanning the pat- 
tern string in reverse order and thus 
gaining its startling efficiency. Fol- 
lowing this work, many improve- 
ments have been made to the BM 
algorithm that can increase search 
speed for certain types of patterns. 
All of these improved algorithms, 
however, still depend on the BM 
technique of scanning the pattern 
string in reverse order to achieve their 
efficiency. 

This article has presented an ex- 
tension of the BM algorithm that 
does away with dependence on the 
scan order of the pattern string. In 
fact, the pattern can be scanned in 
any arbitrary order, and there is still 
an increase in efficiency over the BM 
algorithm. It is then shown how to 
select scan orders that increase this 
efficiency even more. Three specific 
new algorithms are presented that 
use three different pattern string scan 
orders. These algorithms are called 
the “Quick Search” (QS), the “Max- 
imal Shift” (MS), and the “Optimal 
Mismatch” (OM) algorithms. 

The first of these, the QS algo- 
rithm, is very easy to implement and 
scans the pattern in the most natural 
forward order. It is almost as easy to 
understand, code, and debug as the 

slow, straightforward algorithm that 
most programmers tend to use. Us- 
ing the QS algorithm, however, will 
most often give superior search 
speeds to even the BM algorithm. 
When a programmer is called on to 
rapidly code a string search, the QS 
algorithm should be his or her choice. 

The final algorithm, the OM algo- 
rithm, is the fastest one of all. It gains 
its efficiency by first testing the least 
probable pattern string character 
and thus detects mismatches more 
quickly. This event dominates search 
statistics and results in a significant 
increase in speed (see Tables I, II, 
and III). The greatest gains are for 
short pattern strings, where there is 
a 20 percent or greater increase in 
search speed for normal English text. 
For longer strings, the relative advan- 
tage becomes smaller, and one can 
expect a text search speed increase of 
about 10 percent. 

In applications not involving En- 
glish text, the algorithms presented in 
this article should still give better 
performance than the Boyer-Moore 
string search. The statistics on the 
degree of improvement would be dif- 
ferent since they depend on the size 
of the text alphabet and the fre- 
quency of occurrence of the alphabet 
characters in the application text. 
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APPENDIX 
C-Language Impaementat#on 

In thisappendix, the algorithms presented in this article are given in the C programming 
language. This is the code that was used to test the algorithms and is a complete and cor- 
rect implementation of them. The code is also a reasonably efficient C representation 
of the algorithms, although readability of the code took precedence over raw speed. 

In the C code, the global variables Plen and Tlen are assumed to be preset to the pat- 
tern and text !;tring lengths. That is, Plen=m, and Tlen=n. Also, the Constant ASIZE is the 
size of the text alphabet that is assumed to be the ASCII character set The constant MAXPAT 
is the maximum length of a pattern string. The pattern string is represented as a NULL- 
terminated string declared as an array: 

charpstr[MAXPAT]; 

Given a specific pattern scan order I [: J = { I [o] , . . . , I [IR- I]], the ordered pattern is rep- 
resented by an array of structures 

typedef structpattern-scan-element [ 
int lot; /*locationinpstrofscanelement*/ 
char c; /*characterofpstratscanlocation*/ 
:I 
.PAT; 

PAT :pattern[MAXPAT]; /* aspecific orderedpattern*/ 

wherepatternL;i:I . loc=I[j], patterncjl. c=pstr[: I[j] J forj=o.. . (m-l), and pattern [ml . C=O. 

Often an ordered pattern can be constructed from a pattern string by sorting with a 
comparison function PCITIP() that compares two PAT elements according to the specifica- 
tion for the UNlX qsort() function. The following function does this. 
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/* order-patterno: constructanorderedpatternfromastring 
++/ 
order-pattern(pstr, pcmp, pattern) 
char *pstr; /* input: thepatternstring*/ 
id (*pcmp) ( > ; /* input: routine to ComparePATelements */ 
PAT *pattern; /*output: the scanorderedpattern*/ 
t 

int i; 
PAT *pat=pattern; 

for (i=O; i<=Plen; +ti, +tpst-r, *pat) [ 
pat->loc = i; 
pat->c = *pstr; 

I 
qsort( pattern, Plen, sizeof(PAT), pcmp); 

1 

For example, the comparison function for the Maximal Shift pattern ordering is: 
maxshift-pcmp( patl, pat2 ) /* "MaximalShift" pattern comparison*/ 
r*patl, *pat2; /* input: pointerstotwoPATelements */ 

int dsh=MinShift[pat2->loc J -MinShift[patl->loc 1; 

return(dsh? dsh : (pat2->loc -patl->loc)); 
I 

where the array MinShift [ j ] gives the minimum left shift needed to match the pattern 
string character at location j. Note that if two characters have the same MinShift value, 
we use the BM heuristic to first select the one Closest to the end of the pattern string. 
The MinShift [] array is easily computed with the following code. 

for (i=O; i<Plen; +ti) [ 
for (j=i-1; j >=O; --j) 

if (pstr[j]= =pstr[i]) break; 
MinShift[i]=(i-j); 

1 
Also, the comparison function for constructing the Optimal Mismatch pattern 

ordering is: 
optimal-pcmp( patl, pat2 ) /* "OptimalMismatch" pattern comparison */ 
PAT*patl, *pat2; /* input: pointerstotwo PAT elements */ 
I 

float fx= Freq[patl->c] -Freq[pat2->c]; 

return(fx? (fx>O ?l :-1) : (pat2->loc-patl->loc)); 
1 

where the array Freq[c] returns the frequency of occurrence of the character c in the text 
alphabet. The values used in our tests with English text for the percentage frequency of 
occurrence of alphabetic characters is given in Table I. This table was derived from the 
UNIX spelling dictionary. Most other nonalphabetic characters have low-occurrence fre- 
quencies. Note, however; the most common character in English text, the space character, 
with about 15 percent occurrence, is not included. This is relevant in applications where 
the pattern string can have embedded blanks. 



TABLE 1. fingllsh next Alghaget Frequency 

char Freq Char Fw 
e 11.1 
a 8.9 ii :I; 
i 

: 
0 
n 
5 
I 
C 
U 
m 
d 

7.8 
7.4 
7.1 
6.9 
6.8 
5.6 
5.5 
4.5 
3.6 
3.2 
3.2 

::‘: 
2.0 
1.5 
1.1 
1.1 
1.0 
0.3 
0.2 
0.2 
0.2 

Given a pattern string and the associated scan-ordered pattern, the functions to 
precompute the A, and A~ shift tables TD~[] and TDZ[J are the fOlIOWIng: 

*/ 
int TDl[ ASIZE]; 

build_TDl(pstr ) 
char *pstr; 
I 

int i; 
char *Pi 

for (i=O; i<ASIZE; i+t) 
TDl[i] = Plen+ 1; 

for (ppstr; *p; p+t> 
TDl[*p] =Plen- (p-pstr) 

1 

/* build-TDl(): constructs the deltalshifttable from a pattern string 

/*output: table fordeltalshift index*/ 

/S input: thepatternstring*/ 

/* initialize the TDl[] table */ 

/* fillinvalues frompattern string*/ 
; 

/*build_TD2(): constructs the delta2 shift table fromanorderedpattern 
*/ 
int TD2[ MAXPAT 1; /++ output: table fordelta2shiftindex*/ 

builhTD2( pstr, pattern) 
char *pstr; /* input: the actual pattern string++/ 
PAT *pattern; 1% input: the scan-orderedpattern*/ 
I 

int lshift. , /* currentleftshift*/ 
int i, plot; /*patternlocationcounters */ 

/* first initialize TD2[] fortheminimummatchingleftshift*/ 
TD2[O]=lshift=l; /*noprecedingchars, so=l*/ 
for (p.loc=l; ploc<Plen; tl-plot) ( /K foreachpatternlocation*/ 
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/* scanleftward for firstmatchingshift*/ 
lshift=matchshift( pstr, pattern, plot, lshift ); 
TD2[ploc] =lshift; /* set initialmatchingshift*/ 

\ 
;*next get correct shiftwithcurrent charmismatch*/ 
for (plot = 0; ploc<Plen; +tploc) [ 

lshift=TD2[ploc 1; /* get initialmatchingshift*/ 
while (IshiftCPlen) [ /*when current shift islessthanpatternlen*/ 

/* alreadyhave amatchingshifthere */ 
/*also require currentcharmustnotmatch*/ 
i= (pattern[ploc].loc-lshift); 
if (i<O 11 pattern[ploc].c !=pstr[i]) /*mismatch*/ 

break; 
/*ifnot, scan furtherfornextmatchingshift*/ 
ttlshift; 
lshift =matchshift( pstr, pattern, plot, lshift ); 

1 
TD2[ploc ] =lshift; /* setfinalshift*/ 

1 
I 

/*matchshift(): findthenextleftwardmatchingshiftforthe first 
** plocpatternelements afteracurrentshiftoflshift. 
**output: return this nextleftshiftvalue. 
‘A/ 
matchshift( pstr, pattern, plot, lshift ) 
char *p&r; /* input: the pattern string*/ 
PAT *pattern; /* input: theorderedpattern*/ 
int plot; /*input: thenumberofpatternelementstomatch*/ 
int lshift; /* input: the smallest leftshiftto consider*/ 
I 

PAT *pat; 
int j; 

for ( ; lshift<Plen; tl-lshift) [ /* scanleftformatchingshift*/ 
pat= pattern+ploc; /* currentpatternelement*/ 
while (--pat>=pattern) [ 

/* all preceding chars must match*/ 
if ((j = (pat->loc-lshift))<O) 

continue; 
if (patr>c !=pstr[j ])break; 

-I 
if (patcpattern) break;/* allmatched*/ 

1 
returnlshift; 

After TDq and TD~[I have been precomputed for the scan-ordered pattern, the search 
algorithm is given by the following function. This function returns the index of the first 
instance of the pattern in the text. If no matching substring is found, it returns a ( -1). 

/* search(): thearbitraryscanordersubstringsearchalgorithm. 
**output: returnthetext indexofthe substring, or (-1) if none. 



*/ 
search11 pattern, text ) 
PAT *pattern; /* input: a scan-ordered pattern string */ 
char *text; /* input: the text */ 
I 

PE *p; /*patternscanpointer*/ 
char *tx= text; /* text scan pointer */ 
int dl, d2; /” deltas for pattern shift */ 

whi:Le (tx + Plen <= text f Tlen) /* while enough text is still left “/ 
1 

for (p = pattern; p -> c; *p) f /* scan the pattern*/ 
if (p -> c != *(tx + p -> lot))/* got a mismatch */ 

break; /* so stop checking */ 
3 
if (p->c=O) /* pat end=> got substring */ 

return (tx-text); /* return index into text */ 

/*nosubstringmatch, soshifttonexttextpositions/ 
dl=TDl[*(tx+Plen)]; /* get delta1 */ 
d2 = TD2[ p - pattern J ; /* get delta2 */ 
tx+= (dl>d2 ? dl : d2); /* use max for shift */ 

1 
return (-1) ; /* no sub&ring found */ 

1 

The simplified Quick Search function, which onfy uses A? and only needs to have TDI[] 
precomputed, is given by the foltowing function: 

/* qsearc:h() : thequicksubstringsearchalgorithm. 
*g output: returnthetextindexofthesubstring,or(-1) ifnone. 
*/ 
qsearch( pstr, text ) 
char *ps tr; /* input: the pattern string */ 
char *text; /* input: the text */ 
I 

char *p; /s pattern string pointer */ 
char St, *tx=text; /X text pointers g/ 

whi:Le (tx + Plen <= text + Tlen) /* while enough text is still left */ 
I 

for (p=pstr, t=tx; *p; *p, +tt> [ /* scan pattern string */ 
if (*p !=*t)break; /s mismatch, so stop */ 

1 
if (*p = 0) return (tx - text) ; /* got substring, return index */ 
/*no substringmatch, so shifttonexttext location*/ 
tx+= TDl[*(tx+Plen)]; /g shift by delta1 x/ 

1 
return (-1) ; /* no substring found s/ El 

1 
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