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The technological development in the field of genome research has resulted in a massive
generation of data that has to be stored and analyzed. The enormous amount of infor-
mation demands special data structures and algorithms for an efficient analysis. Such an
analysis often requires the identification of interesting sequences in genomes, which can be
realized using full-text indices. Until recently, the major problem of this approach was its
memory consumption, which now can be overcome using the well known FM-index. There-
fore, in this thesis we extended the software library SeqAn that provides data structures
and algorithms for analyzing biological sequences, with sophisticated FM-index versions
designed for fast and memory efficient pattern search. We show that in comparison with
existing FM-index implementations our variants are not only competitive to other ap-
proaches, but also outperform them.
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1 Introduction

The discovery of the genetic blueprint of living organisms, the deoxyribonucleic acid
(DNA), opened the door for deeper insights into the processes driving biological systems.
Since many research fields like medicine and other life sciences profit of this knowledge, a
lot of effort has been spent to decode the information hidden in the genome. This resulted
in a fast development of new technologies generating vast amounts of sequence data to be
analyzed.

For this reason, today the focus changed from data acquisition to efficient data storage
and processing methods. An example addressing both issues is the so called pattern
recognition in genomic sequences. This search is required in many genomic studies that
make use of high-throughput next-generation sequencing (NGS) technologies. Here long
sequences are split and then amplified into millions of shorter ones (so called reads) to
identify their nucelotide sequence. To regain the original ordering of the reads, often they
are mapped to a reference, where the enormous number of sequences that need to be
processed requires sophisticated search strategies and data structures.

A lot of effort has been spent to develop methods that are both memory efficient and fast
at the same time, since achieving this is a challenging task. One approach to derive suitable
data structures is the Burrows-Wheeler Transform (BWT), which can be understood as a
rearrangement of characters in a sequence. Therefore, it has been incorporated in several
bioinformatic tools for read mapping, e.g. SOAP2 [24], BWA, [22],BWA-SW [23] and
Bowtie [20].

Another BWT based data structure is the FM-index, which is a both memory efficient
and fast approach to pattern search that can be applied to a variety of applications.

For this reason, in this thesis we describe the design and implementation of the FM-
index and several variants and extensions within the software library SeqAn1. This C++
based open source library is specialized on efficient data structures and algorithms to
process biological sequences [5]. Therefore, the FM-index provides a desirable addition to
increase the functionality of SeqAn.

1.1 Objectives

Since many applications for data analysis rely on efficient indexing strategies, we further
extend the functionality of SeqAn by incorporating different variants of the FM-index.

In order to do so, our first aim is to identify and design the different components of the
index. Therefore, we compare several existing approaches of FM-indices and modify them
such that they fulfill the requirements of the library. In particular, the index needs to be:

• Optimized for biological sequences

1www.seqan.de
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• Generically designed to guarantee generality as well as extensibility (the user should
be able to easily exchange and modify the underlying data types of the index)

• Support fast pattern search

• Memory efficient

• Simple and robust, such that it can be understood and maintained by a variety of
people

Further, we implement and combine the different components to create an FM-index
fulfilling all the requirements described above.

Our next aim is to enable the index to process not only single strings, but also sets of
strings. This is especially useful to efficiently represent and search NGS reads.

Finally, we aim at designing and implementing optimizations to reduce the search time
requirements of our FM-index variants.

1.2 Structure of the Thesis

As described above, the FM-index combines memory efficiency with fast pattern search.
Both terms will be explained in Section 2, together with the definition of frequently used
terms and concepts. In addition, this section will introduce the Burrows-Wheeler trans-
form as well as existing FM-index designs.

Section 3 will describe our approach to a FM-index implementation. In doing so, we
will provide an extensive overview of the different data structures and their designs.

After describing our implementations, in Section 4 we will present the results of applying
the FM-indices to sequences of different alphabets and text lengths. Further, we will
compare our indices to other publicly available ones as well as the enhanced suffix array
index that is already part of SeqAn.

Finally, Section 5 will summarize our achievements and provide an outlook on future
work.
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2 Research Context

For a better understanding of the algorithms and methods used and described in this
thesis we will introduce some fundamental terms and concepts. This is followed by an
introduction of the Burrows-Wheeler Transform and existing FM-index designs.

2.1 Definition and Notations

Since our goal is to design and implement an index over a sequence of characters, we start
by formally introducing the concepts of texts and their underlying alphabets.

A text T is a concatenation of n characters, where the ith character is denoted by
T[i]. We index the positions of T starting with 0, such that the whole text is represented
by T[0, n-1]. A subtext (also referred to as substring) is represented by T[i, ..., j] with
0 ≤ i ≤ j < n. If i = 0, we call T[0, ..., j] a prefix of T and T[i, ..., n-1] refers to a suffix
of T.

All characters of T belong to the same alphabet Σ, which is denoted as a set of distinct
characters. Further, there exists a lexicographic ordering of the characters such that ci is
smaller than cj , if ci occurs before cj in the lexicographic ordering of the alphabet. This
relation is also expressed by ci < cj .

For a finite alphabet the number of characters defines its size |Σ|, which is usually
small for biological sequences, such as genomes. A genome is often represented by four
letters (‘A’, ‘C’, ‘G’ and ‘T’ ), which correspond to the four nucleobases adenine, cytosine,
guanine and thymine of the DNA. A fifth letter (‘N’ ) is sometimes introduced to cover
positions with an unknown nucleobase.

In contrast to biological alphabets, we will also consider non-finite sequences with theo-
retical infinite large alphabets. In those cases |Σ| is defined to be the number of different
characters in T.

We refer to a character of the special alphabet Σ = {0, 1} as a bit. A text based on
such an alphabet is called a bit string1. A special kind of bit string is the rank support bit
string that supports a rank query in time O(1). A rank query determines the number of
bits set up to a specified position.

Another fundamental data structure used in this thesis is the concept of trees, which
are a special kind of graph [19].

A graph G(V,E) consists of a set of nodes V and a set of edges E. The edge e ∈ E
connects two nodes of V and is defined as e = {v, w} with v, w ∈ V . Furthermore, the
edge e can be directed or undirected. In case of a directed edge, e is denoted by e = (v, w),
indicating that v is the source or parent node and w the target or child node. Therefore,
e is an outgoing edge of v while it is an ingoing edge of w.

1Note that in this document we use bit string as a synonym for bit vector.
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Even if two nodes v0 and vk are not directly connected via an edge e = {v0, vk}, they
can be connected if there exists a set of edges P = {(v0, v1), (v1, v2), ..., (vk−1, vk)}, called
path. In the special case of v0 = vk we call P a cycle.

A tree is a graph in which all nodes are connected via edges and that does not contain
any cycles. A tree is called rooted, if it contains a node without any ingoing edges, which is
then labelled as the root node. Nodes with no outgoing edges are called leaves. All other
nodes are denoted as inner nodes. The special tree where the number of outgoing edges
of all nodes is less or equal two is called a binary tree. Figure 2.1 provides a graphical
representation of a tree and a binary tree.

Root 

Inner 
Node 

Leaf 

Figure 2.1: Graphical representation of a tree (on the left hand side) and a binary tree
data structure (on the right hand side).

Further, a tree where the edges are labelled with characters and the nodes contain the
number of occurrences of the sequence formed by concatenating the label of the edges to
the specified node is called a trie [2].

Another special kind of tree is a suffix tree. A suffix tree of text T is a tree-like
representation of all suffixes of T. Each edge of the tree is labeled with substrings of T,
such that all suffixes are represented by a path from the root to a leaf [17].

A compact representation of a suffix tree is a suffix array (SA) introduced in [26] by
Manber and Myers. In contrast to suffix trees, the SA does not store substrings of T, but
positions of suffixes of T. In more detail, the array is constructed such that T [SA[i]] <
T [SA[j]], for 0 ≤ i < j < n. Therefore, the SA can be seen as an array containing
the suffixes of T in lexicographic order, even though the SA does not explicitly store the
suffixes of T 2. Figure 2.2 illustrates a suffix tree and a the related SA.

2.2 Full-Text Indices and Text Compression

Now that the fundamental concepts are introduced we change our focus to the basics of
text compression.

A full-text index is a data structure that supports the fast search over large texts or text
collections [29]. Therefore, this data structure is very interesting in the area of genome
research, since a common task in this field is to identify patterns in genomes.

However, until recently, the memory consumption of those indices has been a problem
[29], which especially holds in the analysis of the often very large genomic sequences. How-

2In this document SA will be referred to as an array of suffixes. However, in the actual implementations
we only store positions of suffixes.
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Figure 2.2: An example of a suffix tree (on the left hand side) and the corresponding suffix
array for the text ”AGATTAT$” (on the right hand side).

ever, recent developments in the field of text compression have reduced the index size and
introduced the concept of self-indices. A self-index is an index which has memory require-
ments proportional to its compressed text while at the same time enables the retrieval of
any substring of the original text [29]. In doing so, a self-index effectively replaces the
original text.

This concept is invaluable in the field of genome research, since it allows the search for
patterns while compressing the data. Data compression aims at increasing data density
by reducing redundancies [21]. In regard to text compression this is related to making use
of regularities in a text in order to store its information and therefore using less memory
than the original text file.

Text and data compression is an extensively studied research field and providing an
appropriate overview would exceed the scope of this thesis by far. Therefore, the inter-
ested reader is referred to the available literature, e.g., [21], [31] or [32]. Nevertheless, in
the next section we will introduce the notion of empirical entropy, since some FM-index
implementations (see Section 2.5) depend on it.

2.2.1 Empirical Entropy

Data compression depends on the level of redundancy in a text, because using sophisticated
methods it is not necessary to store all occurrences. The redundancy can be expressed as
the level of disorder of a system, also called entropy. Hence, entropy provides information
on the possible extend of data compression.

Note that the term entropy was first introduced to information theory by Shannon in
[33]. As a consequence, in this field it is also known as Shannon’s entropy, which is defined
as:

H = −
∑

pi log pi, (2.1)

for the set of probabilities p1, ..., pn.

As is illustrated in the example given in Figure 2.3 this definition can be used to deter-
mine the entropy of a system of two random variables. The example shows that Shannon’s
entropy is maximal if both random variables have the same probability, or in other words,
when no prediction can be made which variable is more likely to occur.

5
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Figure 2.3: Graphical representation of the entropy of a 2-dimensional system. The two
possible events have probabilities p and q = 1 - p, respectively.

In order to apply Shannon’s entropy on a text T of length n, it is possible to replace
the probabilities pi in Equation 2.1 by the frequencies of the characters in T. In this case
Equation 2.1 becomes

H(T ) = −
∑ ni

n
log

ni

n
, (2.2)

where ni represents the occurrences of character ci in T.

In computer systems a character c is represented using a specified number of bits.
The number of necessary bits depends on the alphabet, because every character needs a
unique representation (also referred to as codeword). Since many texts only contain a small
proportion of the available characters, it is possible to find a smaller bit representation of
the characters and hence to compress the text.

If a fixed codeword is used to encode each character of a text, the best possible com-
pression is achieved by using log ni

n bits to encode each symbol [27]. Hence, H can be used
to estimate a first bound for the best possible compression.

However, it is possible to achieve an even greater compression if also the characters
preceding a codeword are taken into account, such as is done in the kth-order empirical
entropy, defined in [27]:

Hk(T ) =
1

|T |
∑
w∈Σk

|wT |H(wT ), (2.3)

where wT ∈ Σk is the concatenation of all characters of the alphabet Σ following string
w (of length k) in T (for example, if T = Mississippi then siT = “sp′′).

In [25] it is stated that N independent identically distributed variables can (for N →∞)
be compressed with N · H(T ) bits (where H(T ) denotes the entropy of each variable)
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without loss of information, and with a high probability of loosing information if using
fewer bits. For this reason, in contrast to H(T ), Hk(t) is suitable to describe the highest
possible compression.

Compressing a text in the way that no information is lost will be the topic of the next
section, where we will introduce the widely used Huffman coding.

2.2.2 Huffman Coding

Huffman Coding uses the entropy of a text in the way that symbols that are more likely
to occur than others are encoded via shorter code words [18]. In addition, these codes are
binary words that are chosen such that no code word is prefix of another one.

In [18], Huffman et al. present a strategy to create such a code. Note that even though
the construction does not necessarily depend on a binary tree, we will make use of it for
explanation purposes.

The code word construction works as follows:

1. All words of a text are sorted according to their frequency in the text.

2. A node for each word is created, storing the word itself and its frequency.

3. The two words with the smallest frequencies are combined to create a new parent
node. The word associated with this node is the combination of its child node’s
words and the frequency is the sum of their frequencies.

4. Repeat step 3 until all nodes are connected and form a binary tree.

5. Starting from the root, label all edges such that:

• Edges pointing to a left child node are marked with a 0.

• Edges pointing to a right child node are marked with a 1.

The code symbol of a word is now the concatenation of the edge symbols on the path
from the root to the leaf containing the word. The procedure is illustrated in Figure 2.4,
where each character represents a word.

Huffman encoding uses the frequencies of words and in doing so their predictability to
compress a text. Therefore, it serves as a good example to show the connection between
entropy and compression, as explained in Section 2.2. In addition, there is a FM-index
implementation employing Huffman coding, introduced in Section 2.5.4. Before explaining
the details of the FM-index, we will introduce its fundamental backbone, the Burrows-
Wheeler Transform (BWT). The BWT is of special interest in the field of data compression
because it can be used to transform a text such that the transformation can be compressed
to the kth order empirical entropy.

2.3 The Burrows-Wheeler Transform

The last section described the concepts of full-text-indices and text compression. In this
section we will introduce a text transformation, the Burrows-Wheeler Transform (BWT),
which can be applied to achieve both, efficient data storage and fast search query times.
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Figure 2.4: An example illustrating the Huffman encoding of the text
“ACAGTATCTAGATCA”.

We start by presenting the construction scheme and show the close relation between the
BWT and suffix arrays. Thereby, special attention is paid to the properties of the BWT
and its use for efficient pattern search.

2.3.1 Construction and Properties

The BWT is a sophisticated rearrangement of the characters of a given text T into TBWT

and was first described in [4]. The transformation consists of the following steps:

1. A special character $, which is lexicographically smaller than every other character
in the alphabet, is attached to the end of T 3.

2. All cyclic rotations of the concatenation of T [i, n-1] and T [0, i-1] are formed, result-
ing in a table CR.

3. CR is lexicographically sorted to create a table SCR.

4. The last column of SCR is extracted to generate BWT(T) = TBWT .

For example the BWT of ”AGATTAT” yields ”T$TGAATA”, as shown in Figure 2.5.

The construction of SCR by sorting all cyclic rotations of T is time and memory con-
suming. However, a closer look at table SCR reveals a connection to the suffix array (SA)
of T. To be precise, SCR[i] and T [SA[i]] are equal up to $, as shown in Figure 2.6. This
property is of great value, since the characters in last column of SCR are also the prede-
cessors of the characters in the first column of table SCR. Hence, it is possible to construct
TBWT [i] by extracting the character T [SA[i]-1]. The only exception to this rule applies
for the position in SA pointing to the first character in T, since there is no predecessor to
T [SA[0]]. In this case TBWT [i] = $.

3This step is not part of the original construction in [4] and was introduced later for efficiency reasons.
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Figure 2.5: An example for the BWT construction scheme, using the text T =
“AGATTAT”.
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Figure 2.6: Graphical representation of the connection between table SCR and SA of a
text T.

Note that Burrows and Wheeler did not include the character $ in their proposed
algorithm [4], hence it is not crucial for the general construction. However, this step
becomes necessary if one is interested in using the well known and efficient suffix array
construction algorithms. The usage of a suffix array construction algorithm depends on
the relation between table SCR of T and the suffix array of T, which does not exist if $ is
not appended. The reason for this is a difference in the SCR tables of T with and without
$, as can be seen in Figure 2.7.

The relation of SCR and SA, as described above, is one of the most important properties
of the BWT. In the following we will focus on two additional features, which are the last-
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(b) SCR and SA of “GACA$”.

Figure 2.7: Relationship between the tables SCR and SA of text “GACA” with and with-
out appended $, where only in the latter case both tables correspond to each
other.

to-first-mapping and the favourable compression behaviour.

Last-to-first-mapping The last-to-first-mapping (LF-mapping) describes the relation be-
tween the last column of SCR, from now on referred to as L, and its first column F. The
LF-mapping corresponds to the following observation [7]:

Lemma: 1 The ith occurrence of character c in L corresponds to the ith occurrence of c
in F.

For example, the second ’A’ in Figure 2.5 (step 3) in L corresponds to the second ’A’
in F.

Proof: 1 Let C = {c0, ..., ck}, ci ∈ Σ and ci = cj denote the set of occurrences of charac-
ter c in T . Further, let ci ∈ C denote the ith c in column F. It is obvious that the ordering
of characters c in F is determined by their suffixes in SCR (due to the construction of
SCR). Because of the cyclic rotations also the ordering of the cs in column L is deter-
mined by their suffixes in SCR (which start in F). Therefore, the order of the characters c
in F and L is determined in exactly the same way. Hence, the ith occurrence of character
c in L corresponds to the ith occurrence of c in F.

To realize the LF-mapping in O(1), a prefix-sum table and an occurrence table of TBWT

are required. The prefix-sum table C of text T stores for every character c the number of
characters smaller c in T. In contrast, the occurrence table Occ is a data structure that
stores how many occurrences of c up to position i are observed in a given text T.

Using C and Occ, the LF-mapping of character c at position pos in TBWT can be
computed as follows:

1. Retrieve the number of occurrences of c up to and excluding position pos in TBWT

using Occ.

2. Retrieve the number of characters smaller c in TBWT using C.

3. Compute the position of c in F by summing up the results of Steps 1 and 2.

For example, for TBWT = “T$TGAATA” in Figure 2.5 the LF-mapping for the first ‘T’
yields Occ(‘T’, 0) + C(‘T’) = 0 + 5 = 5. For the second ‘A’ in TBWT the LF-mapping
computes Occ(‘A’, 5) + C(‘A’) = 1 + 1 = 2.
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As we will show in Sections 2.3.2 and 2.3.3, the LF-mapping makes it possible to retrieve
T from TBWT and search for patterns by simulating a suffix array search. Hence, the LF-
mapping is a crucial property of the BWT.

Text compression using the Burrows-Wheeler Transform Another favourable feature
of TBWT is its compression behaviour, which we explain in the following. In general,
the BWT results in a string containing substrings of the same characters (from now on
referred to as runs). This property is induced by the sorting of the suffixes involved in
the BWT construction (see previous section). This sorting causes occurrences of the same
suffix to be adjacent in the SA. Therefore, it is likely to find the same character in the
corresponding range of the BWT, because the number of different words in a text is limited
and the same suffix is preceded by a certain one or a few characters.

A good example for this situation is an English text, if we look at the range of the suffix
array containing all occurrences of “he”. This tuple could be preceded by ‘S’, ‘s’, ‘T’ or
‘t’. However, of all four possible combinations “the” appears to be the most likely one.
Therefore, the BWT of the corresponding range will contain many ‘t’s leading to runs of
the same character.

Now one can make use of the structure of the rearranged text by applying compression
techniques, such as replacing runs of the same character by a character combined with a
number indicating the length of the run. This is a very simple technique, mentioned to
illustrate the potential of compression schemes on the BWT of texts. In Section 2.4.1 we
will show a different approach to text compression, but for more sophisticated techniques
the reader is referred to the literature, for example [1].

2.3.2 Reversing

In addition to the compressibility introduced in the last section, it is possible to retrieve
the original text by reversing the BWT. This is very useful, since for this reason it is
sufficient to store TBWT and to replace text T.

To understand how to retrieve the original text from TBWT , we recall:

1. The predecessor of a character in F is the character in L in the same row.

2. The LF-mapping ensures that one can identify the same character in the first and
last column.

Using the former described features and tables it is possible to reconstruct the original
text from TBWT with the backward reconstruction scheme:

1. Identify the position pos of the last character c of T4.

2. Apply the LF-mapping on c to compute its position i in F.

3. Set pos to i.

4. Retrieve the predecessor p of c from TBWT [i].

4Note that the last character of the text is always the first character of the BWT, because of the appended
’$’.
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5. Set c to p.

6. Repeat steps 2 to 6 until T is recovered from TBWT .

The procedure above is visualized in Figure 2.8 for TBWT = “T$TGAATA”.
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Figure 2.8: Illustration of the beginning of the reversing scheme from TBWT =
“AGATTAT”.

The forward reversing scheme works in a similar fashion, apart from the major difference
that one determines a characters successor by extracting the character in the same row,
but first column. Afterwards, the inverse of the LF-mapping, called FL-mapping, has to
be applied, which is marginally more complicated to implement than the LF-mapping [1].

As stated before, the LF-mapping can not only be used to compute the original string.
Knowing the BWT it also allows to simulate a suffix array search, as is explained in the
next section.

2.3.3 Searching

The search procedure for a pattern by using TBWT is very similar to the reversing scheme
introduced in the last section. Before going into more detail, we point out that suffixes
with the same prefix are adjacent in the SA of T. Therefore, it is possible to split the
search procedure into the counting and localizing phase. The counting phase describes the
determination of a range of suffixes that share a specified prefix, whereas the localizing
phase aims at identifying the patterns by following their links in the SA. As was introduced
in [26], we refer to the whole procedure as suffix array search, which can be simulated using
TBWT .

Counting Phase Suffix array search is very time efficient, because it is possible to search
simultaneously for all occurrences of a specified pattern P by first determining a lower
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and an upper bound. The lower and upper bounds are pointers to positions in F, in the
following referred to as sp and ep, respectively.

In addition to sp and ep, a pointer i is maintained that defines the current position in
P. Further, let c denote the currently processed character of P.

For a pattern P of length m the search procedure initializes i to be m-1 and c with
P [i ]. The lower bound sp is initialized with C [c] and ep with C [c + 1]. In doing so, sp
and ep mark the first and the last occurrence of the last character of P in F, respectively.

After the initialization the search procedure determines sp and ep iteratively until the
first character in P is reached, as follows:

1. i = i - 1

2. c = P [i]

3. sp = C [c] + Occ(c, sp - 1)

4. ep = C [c] + Occ(c, ep) - 1

Occ(c, sp - 1 ) returns the number of cs in TBWT [0, sp - 1]. Adding the number of
characters smaller than c in TBWT (Step 3) yields the position of the first c in the range
sp to ep in F. Note that this only holds because the positions in a string are enumerated
starting with 0. If the enumeration would start with 1, C [c] + Occ(c, sp - 1) would point
to the last c in the range from 0 to sp - 1. The calculation of Step 4 would have to be
adjusted similarly.

Note that Steps 3 and 4 realize the LF-mapping for the first and last c in TBWT [sp, ep].
The efficiency of those two steps relies on the availability of Occ, since otherwise it would
be necessary to firstly locate the first and the last c in TBWT [sp, ep] before applying the
LF-mapping.

The whole counting phase is demonstrated in Figure 2.9 for the text “AGATTAT” and
the pattern “TAT”.
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Figure 2.9: Searching for the pattern “TAT” in the text “AGATTAT”. Note that the
columns of table SCR between the first and the last column are only shown
for demonstration purposes.
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Localizing The counting procedure determines the lower and upper bound sp and ep that
specify a range in SA of T pointing to occurrences of the pattern in the text. Therefore,
the entries of the suffix array in this range reveal the position of matches between the
pattern and the text.

However, identifying the exact positions can be a time consuming task, because in order
to reduce the memory consumption many implementations do not store the entire suffix
array, but only a fraction, and reconstruct missing entries on demand (see Section 3.2 for
details). Therefore, the overall running time of the search is strongly influenced by the
counting procedure and the suffix array access time. In the following, we will analyze the
time requirements in more detail.

Running Time The running time of the search depends on the pattern length, the number
of occurrences of the pattern in the text and the suffix array access time. Since searching
can be separated into counting and localization, we differentiate the analysis of the search
time in counting and localization.

The counting time is linear with respect to the length of the pattern, since in each
iteration one character of the pattern is processed. Therefore, the dominant factor con-
cerning the counting scheme is the pattern length. In contrast, the length of the text has
no influence on the search time, which is one of the reasons why the BWT is interesting
for large texts (such as genomes). In addition, the counting scheme is independent of the
number of occurrences of a pattern in the text, since only the upper and lower bound of
the range are determined, and the design of the suffix array has no influence since it is not
accessed during the counting phase.

In contrast to the time needed to count the occurrences of a pattern, the localization
does not depend on the pattern length. Instead, it is influenced by the number of pattern
occurrences, since the suffix array has to be accessed for each occurrence individually. For
this reason, the design of the SA is crucial for the localization time (for more details refer
to Section 3.2).

This section explained how the BWT can be used to search for patterns in a text
and demonstrated why this search procedure is interesting especially for large texts. In
addition, we have shown how to efficiently construct the BWT, its properties and the
reversing scheme. Furthermore, we explained how the BWT can be used to compress
a text. In doing so, we illustrated that this method is exceptional suitable for pattern
search in large sequences because it can be used to speed up search time and compress the
underlying text at the same time. The next section will show how the BWT is incorporated
into an index, the FM-index.

2.4 The Full-Text-Minute-Space Concept

Even though the FM in FM-index represents the first characters of the authors names
(Ferragina and Manzini), the FM corresponds to full-text and minute space. A full-text
index is a data structure built over a text T that supports the efficient search for substrings
in T [11]. Minute space on the other hand denotes that the index is very memory efficient5.

5In the following, space will be used as a synonym for memory.
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The FM-index can be seen as a collection of tables with extra functionality (as illustrated
in Figure 2.10). The composition of tables depends on the FM-index usage and can be
divided into two categories. The first category consists of tables necessary to determine
the number of pattern occurrences in a text. Hence, all tables supporting the LF-mapping
belong to this category. To be precise, the LF-category consists of two tables, namely the
prefix-sum table and an occurrence table. Recall, the prefix-sum table C of text T stores
for every character c the number of characters smaller c in T. In contrast, the occurrence
table is a data structure that stores how many occurrences of c up to position i could be
observed in a given text T.

Using the occurrence table Occ on TBWT , the ith character in TBWT is the same as the
one at position Occ(i)+C(TBWT [i]) in F. Hence, the summation realizes the LF-mapping
necessary for the pattern counting.

The second category comprises tables required for the localization of patterns in T. If
the purpose of the index construction is to determine the number of occurrences of a given
pattern and their locations in a text T, then the index needs to store a SA. Otherwise the
SA can be omitted.

FM-Index 
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Prefix-­‐Sum-­‐Table	
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Figure 2.10: Graphical representation of the FM-index tables.

Compressed Suffix Array As mentioned in Section 2.3.3, a SA is required in order to
determine the exact locations of a substring in text T. However, it is not necessary to keep
the position of every suffix of T, since the LF-mapping allows to reconstruct a substring
of T, starting at any position. Hence, it is sufficient to keep only a few suffix array entries
and use the LF-mapping recursively to reconstruct T partially until a saved suffix array
position is reached. In doing so, the memory consumption of this so called compressed
suffix array (CSA) is only a fraction of the original space consumption. However, the
fraction of saved positions has a great impact on the search time and should be chosen as
a good trade-off between memory consumption and speed.

Prefix-Sum Table In contrast to the SA, for the prefix-sum table there exists no opti-
mization mechanism in regard to the memory consumption. The reason for this is that
the frequencies of different characters do not influence each other. Hence, one needs to
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store the whole array. However, the prefix-sum table only accounts for a small fraction of
the index, since the alphabet size of T is usually magnitudes smaller than the length of
the text. This holds especially for biological sequences, for example genomes with their
four to five letter alphabet, in contrast to millions of nucleotides.

In the rare case of dealing with a large alphabet one can omit the storage of the prefix-
sum table. In this case the number of occurrences of character c is determined by summing
up the results of occurrence enquiries of all characters smaller than c at the last position
of TBWT . However, this approach is very time consuming.

Occurrence Table While only minor changes have to be made in order to adapt the
suffix array and the prefix-sum table, the design of the occurrence structure needs to be
more sophisticated such that fast access and memory efficiency are guaranteed. In fact,
the occurrence data structure is the crucial part of the FM-index and different designs
have been implemented that we will explain in the following.

2.4.1 The Original FM-Index Concept

In their original work [7], Ferragina and Manzini first performed the Burrows-Wheeler
Transform and then compressed TBWT , denoted as CBWT, to guaranty a constant query
time when determining the number of occurrences of a specified character c up to position
i in TBWT .

Their compression scheme is based on the assumption that TBWT contains substrings
of equal characters that can be represented in a memory efficient fashion. In more detail,
the compression scheme consist of the following three steps:

1. Move-to-front encoding The move-to-front encoding (MTF) used in [7] is based
on the technique introduced in [3]. The basic idea is to maintain a list of all characters
(called move-to-front list - MTFL), which is initialized over the characters of the
alphabet in lexicographic order. At each position the character is replaced with its
rank in the MTFL and afterwards moved to the beginning. Hence, the modified text
(called move-to-front text - MTFT) is turned into a sequence of integer values, most
likely containing long runs of zeros due to the former applied BWT. For a graphical
illustration of this first step see Figure 2.11.

2. Run-length encoding In order to reduce the memory usage of the runs of zeros a
run-length encoding (RLE) is applied to MTFT. To be more precise, each substring
0m is replaced by the product of:

a) Calculating (m+1)

b) Computing the binary representation of (m+1) and reverse the order of bits

c) Discarding the most significant bit (which appears at the right hand side after
the reversing)

The binary representation is then stored using two new symbols 0 and 1. For example
000 becomes:

a) (3 + 1) = 4

b) 4 = 1002, which is reversed to 0012
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c) 0012 → 00

3. Variable length prefix code To complete the compression, the integer values
in MTFT, as well as 0 and 1, need to be represented memory efficiently. This is
achieved by using two bits, 10 for 0 and 11 for 1, respectively. The integer value
m is transformed into blog(i + 1)c zero bits followed by the binary representation of
(m+1).

Figure 2.11: Graphical representation of the move-to-front encoding.

The resulting binary string is a compressed representation of TBWT . However, in order
to be practical, a constant occurrence query time has to be guaranteed. In order to do so,
Ferragina and Manzini partition TBWT into blocks [7]. To be more precise, they introduce
two layers of partitioning. The first layer consists of blocks which span a substring of
TBWT of length l, while the second layer consists of super blocks that cover a substring of
length l2. Afterwards, the blocks are compressed using the method described above. The
partitioned and compressed TBWT , enhanced with auxiliary information, can then be used
to answer an occurrence inquiry in constant time. The main problem of this approach is
that it is a theoretical approach that requires large amounts of memory, as we will show
in the following.

For each bucket and super bucket the auxiliary information is composed of:

• Super buckets

– NOj - Stores the number of occurrences for all characters in TBWT [1, j · l2]. In
other words, NOj stores the number of occurrences of the characters in TBWT

until super bucket j.

– W - Stores the sum of required memory of the compressed buckets preceding
the current one.

• Buckets

– NO′j - Stores the number of occurrences of a given character in TBWT until the
given bucket, starting from the preceding super bucket.

– W - Stores the sum of required memory of the compressed buckets preceding
the current one, starting from the preceding super bucket.

In addition, the following information are kept for the substrings of the buckets:
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• MTF[j] keeps a picture of the state of the MTFL at the beginning of the encoding
of TBWT in the bucket j.

• S - Table S is the most space consuming and complicated table of the original
proposed FM-index. It can be interpreted as a 4-dimensional array that stores
the number of occurrences of a given character in a given substring. In more detail,
S[c, h, BZj , MTF[j]] stores for every character c for every length h (h ≤ l) for
every possible compressed string BZj and every possible picture of the MTF-list the
number of occurrences of c.

Using the data structure introduced above, one can determine the number of occurrences
of a given character at a specific position in constant time. This is done by adding the
information of the preceding super bucket and bucket to the value in table S. However, the
obvious weak point of this approach is the space consumption of table S, as is explained
in the following.

Consumption of Table S As explained above, table S can be referred to as a 4-dimensional
array. Each dimension is described in the following:

• The key for the first dimension is a character c.

• The key for the second dimension is the length of a substring in a bucket.

• BZj is used as a key for the third dimension and represents a binary string of size
l ’. This size depends on the used encoding scheme. In this case l′ = (1 + 2blogΣc)∗ l
[10]. Note that [10] states that each possible compressed bucket BZj is represented.

• The last dimension represents all possible MTF list states, which are 2|Σ||log|Σ|.

The overall memory consumption of table S is dominated by the factor 2l
′
. Even for

a very small alphabet of 5 different characters and a small bucket size of 8 it holds that
l′ = 40, and therefore S contains more than 1011 entries. Hence, S would be larger
than 1.3TB, even if one would assume that only one bit per entry is required (which is
not possible in practice). For this reason, the proposed occurrence table structure is not
practical. In the following section we present different approaches designed to overcome
this problem. Note that reducing the buckets size is no solution because then the other
introduced data structures would become too memory demanding.

2.5 Overview of Different FM-Index Implementations

As the last section showed, the originally proposed FM-index requires large amounts of
memory for table S if l is not chosen to be very small. However, smaller l increase the
number of required buckets and super buckets. Therefore, it is necessary to reduce the
memory consumption of the occurrence data structures in order to design a practical BWT
based framework for indexing. There exist several different approaches dealing with this
problem, which we will introduce in this section. Since the major differences are related
to the occurrence data structure we will focus the attention on this part. We start by
presenting a simple solution that is strongly related to the original proposed index (see [7]
for details).
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2.5.1 A Practical Implementation of the Original FM-Index

In [8], Ferragina and Manzini present a practical solution of the FM-index described in
Section 2.4. In contrast to the original FM-index, this solution simply refrains from storing
table S. In doing so, they are able to reduce the memory consumption of the index at the
cost of speed at query time. In order to compute the occurrence of a given character c up
to a given location i in TBWT , the substring of the bucket containing i is decompressed
and the number of occurrences of c from the beginning of the bucket to i are counted.

The major advantage of this approach is the small memory consumption. In fact, using
move-to-front encoding followed by run-length encoding and a statistical compressor on
TBWT , it is not only competitive to the best known compression schemes, but possibly
superior [9].

However, the process of decompression necessary in each occurrence query involved in
the LF-mapping is time consuming. For this reason, several FM-index implementations
with different approaches to overcome this shortcoming have been published, such as the
run-length FM-index that will be introduced next.

2.5.2 Run-Length FM-index

Even though the approach described above is very memory efficient [8], it is not optimal
concerning the time consumption for pattern query times. In contrast, the run-length FM-
index introduced in the following does not need to decompress sections of TBWT . Instead
an occurrence query is performed in constant time.

The run-length FM-index described in [28] uses runs of equal letters in TBWT for the
compression. An array R, which is a concatenation of representatives of each run of
characters, and a bit vector B marking the start positions of the character runs, replace
TBWT (see Figure 2.12). An additional bit vector B’ marks the starting positions of the
sorted character runs. The sorting scheme sorts the runs according to their character value.
However, the order of runs of equal characters remains conserved. Further, a prefix-sum
table CR of R is constructed.

Applying these data structures, Makinen and Navarro [28] use the following two equa-
tions for the LF-mapping:

C[c] + Occ(TBWT , c, i) = select(B′, CR[c] + 1 + Occ(R, c, rank(B, i)))− 1 (2.4)

for any c ∈ Σ and 1 ≤ i ≤ n, such that BWT [i] 6= c. Note that the function rank returns
the number of bits set up to position i and select returns the position of the ith bit set to
1.

C[c]+Occ(TBWT , c, i) = select(B′, CR[c]+Occ(R, c, rank(B, i)))+i−select(B, rank(B, i))
(2.5)

for any c ∈ Σ and 1 ≤ i ≤ n, such that BWT [i] = c.
Nevertheless, this approach needs an additional data structure to ensure a constant

occurrence query time using R. In order to do so, array R is replaced with a two dimensional
array of bit values that encode R. In detail, position i in row Rc is set to 1, if and only
if R[i] = c (see Figure 2.13). It is worth mentioning that the rank determination of a
specified position in a bit string needs additional information, as described in Section 3.1.
However, this additional information only needs sub-linear space [28].
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Figure 2.12: An example illustrating the data structures involved in the run-length FM-
index.
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Figure 2.13: Binary representation of R.

2.5.3 A Wavelet Tree Based FM-Index

Even though the run-length FM-index has a better query time than the original index,
it is not as memory efficient. Now, alone for the two bit vectors B and B’ 2n bits have
to be stored. In addition, the size of R strongly depends on the length of zero runs that
determine the length of a single row in R. Those shortcomings are overcome in the wavelet
tree based version of the FM-index [12] at the cost of pattern query speed, as we illustrate
next.

A wavelet tree is a binary tree of bit strings that represents a given text T [16]. For an
alphabet Σ and a text of length n the tree needs O(log n) bits of storage and supports the
determination of the character of a specified position in O(log |Σ|) time. In addition, it
allows to obtain the number of occurrences of a given character up to a specified position
in O(log |Σ|). The only requirement is the availability of a data structure that supports
rank operations on bit strings in constant time (see Section 3.1 for details). Nevertheless,
the wavelet tree can be seen as a 0 th-order compressor [12]. Details on wavelet trees
can be found in Section 3.4. For now it is sufficient to treat wavelet trees as 0 th-order
compressors, which at the same time represent the occurrence table of a text.

In order to achieve a better compression, in [12] the authors make use of the recently
introduced compression boosting [9, 10, 13]. The idea behind compression boosting is to
use a 0 th-order compressor (that does not incorporate any context information) as a kth
order compressor (that uses the “best possible” context), via the booster [12]. Such a
compression booster is introduced in [6]. It determines the best compressible contexts t0,
t1, ..., tn−1 of a text T (in our case TBWT ).

Combining the different techniques Ferragina and Manzini first use the booster to get
the contexts ti of TBWT of text T. Afterwards, the beginning of each ti is marked in
a bit string. In the last step the prefix-sum table Ci[0, ..., n − 1] and a wavelet tree are
computed for every context.

Note that even though the theoretical compression is close to the kth-order entropy, the
overall result strongly depends on the length of the contexts, since the structure of the
wavelet tree of each context needs additional memory as well as the prefix-sum table.
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In contrast, the following approach for an efficient FM-index implementation does not
need to store a tree or several of the prefix-sum tables. Instead, it is based on a Huffman
encoding (see Section 2.2.2) before computing the occurrence table.

2.5.4 A Huffman Based FM-Index

A different approach to the original, run-length or wavelet tree based FM-indices is the
Huffman based FM-index presented in [14] and [15].

The idea of this approach is simple: first use Huffman encoding (Section 2.2.2) on the
text to obtain T’. Afterwards, the BWT is applied on T’ to determine the bit string B.
This bit string already realizes the occurrence table in the FM-index. This method has
the advantage that the determination of an occurrence in B is reduced to a rank query.
For the same reason there is no need for an additional prefix-sum table. However, in order
to search for a pattern, the pattern itself has to be Huffman encoded as well. Further,
an extra bit string B’ is needed to mark the beginnings of the Huffman code words, since
Huffman-transformed patterns can match in the middle of a codeword in T’.

The major advantage of this approach is its simplicity. Further, the authors claim that
their method is the fastest and smallest index compared to the previously described ones
[15]. This comes as a surprise because the utilized compression scheme is a 0 th-order
compressor as opposed to the kth-order compressor scheme used in [12]. Furthermore, the
search procedure has to Huffman encode each pattern, which needs extra preparation.

We postpone the discussion of possible reasons for the superior performance of the Huff-
man based FM-index to the next section, where we will compare the different approaches
and reason why we chose to implement a wavelet tree based FM-index version in this
project.

2.6 Reasons for a Wavelet Tree Based FM-Index in SeqAn

With the introduction of the original FM-index concept (see Section 2.4.1) it was shown
that, due to the size of the occurrence table, this method is not feasible for a practical
implementation. As presented in Section 2.5, various approaches exist that try to efficiently
realize the occurrence table, however for our implementation we have chosen to use a
method based on wavelet trees. In the following we will give reasons for our choice.

The practical implementation of the original FM-index [8] described in Section 2.4 has
a major drawback, which is the dependence on a partially decompression of TBWT . This
step is time consuming and has a negative effect of the bucket sizes of the occurrence table.
In addition, the compression scheme is a 0th-order compressor which does not justify the
time trade-off. Therefore, this approach seems to be rather unsuitable for the SeqAn
software library.

The next approach by Mäkinen and Navarro [28] does not need to decompress TBWT .
Instead, two bit strings of length n and a 2-dimensional auxiliary table (which strongly
depends on the underlying text) are constructed, such that the search procedure is in-
dependent of the alphabet size. In doing so, Mäkinen and Navarro created a fast index.
However, the dependency of their approach on long runs of zeros in the run-length en-
coded BWT is a bottleneck. We will see later that our approach only needs 2n bits for
the occurrence table for DNA (for general alphabets log|Σ| · n), without the need for an
extra auxiliary table.
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In [12], Ferragina and Manzini introduced the first FM-index with a kth-order compres-
sor. Their approach yields a very good theoretical compression. However, it is questionable
whether this compression is much better than an 0 th-order compressor, since they have
a memory overhead due to the requirement of storing the tree structure for every context
ti. In addition, this approach will waste memory by storing the bit strings of the wavelet
trees. The reason for this is that it is not possible to address a single bit on a computer.
Instead, one has to allocate a block of bits. If the length of the context ti is not a multi-
ple of this block size memory will be wasted, or one has to shift bits which will have an
negative impact on the pattern query time. Furthermore, the boosting scheme introduces
more complexity, which is not desired for a simple and robust data structure.

In contrast to the wavelet tree based approach by Ferragina and Manzini [12], the Huff-
man based FM-index [15] uses a 0 th-order compressor. However, the authors claim to be
more memory efficient than the other FM-index variants, if applied to DNA. A reason for
this phenomenon could be that the runs of zeros produced by the move-to-front encod-
ing are short, which has a negative effect on the memory consumption of the run-length
FM-index (see Section 2.5.2), and that the kth-order entropy is not much smaller than
the 0 th-order entropy, which negates the theoretical advantage of the wavelet tree based
approach. In this case the previously discussed memory issues of the wavelet tree outweigh
the theoretical advantage of the wavelet tree based FM-index. Further, the fastest index is
the Huffman based approach [15], though it requires each pattern to be Huffman encoded
before the pattern search.
Transforming the pattern into a Huffman code creates complexity and becomes a disad-
vantage if the pattern has to be changed constantly during the search, which is the case
in many bioinformatic applications, such as read mapping, where sequencing errors have
introduced changes in the patterns.

Considering all advantages and disadvantages, we chose to implement a wavelet tree
based FM-index, because it is a fair trade-off between dependency on the alphabet, com-
pression efficiency and pattern query time. However, in contrast to the approach described
in [12], we chose to omit the compression booster and build a single wavelet tree over
TBWT . In doing so, we make use of a 0 th-order compressor and create a simple and
robust index, which is especially fast on biological sequences. To summarize, the reasons
for choosing a wavelet tree based FM-index are:

• In contrast to [8], no decompression of any subsequences of TBWT is necessary.

• No modification of the pattern is necessary such as required in [15]. Therefore, our
approach is also suited for applications in which the pattern is modified, e.g. read
mapping algorithms.

• The wavelet tree is a 0 th-order compressor. Therefore our theoretical compression
is at best as good as the one obtained in [12]. However, we only need to store one
tree structure and a few bit strings. Since the bit strings are rather long, the ratio
of contained information to memory allocated is very high, which is not necessarily
the case in [12]. In fact, for the DNA alphabet the memory consumption of the
occurrence table of the new wavelet tree based FM-index is about half of the one
required in [15]. In this case, our implementation needs about 2n bits (plus auxiliary
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memory for the constant time rank query support) while the one in [15] needs 2n
bits for B and 2n bits for B’ (for the alphabet Σ = {A,C,G, T})6.

• The design and implementation of a data type wavelet tree will include a desir-
able feature in SeqAn, because it can replace more costly data structures in other
applications.

• Wavelet trees are a simple and robust data structure. Hence, their implementation is
easily maintained and understood also by non-experts, which is an important feature
of a fast developing software library.

6This statement is based in the assumption that on average two bits are required to encode one nucleotide.
This is a reasonable assumption, since in most genomic sequences the frequencies of the four nucleotides
are fairly similar.
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3 Approach and Methodology

In the last section we have shown that the composition of the FM-index has a strong
influence on the index compressibility and pattern search time, where in particular the
occurrence table needs to be designed carefully. We will present two approaches for an
occurrence table design, namely a wavelet tree based FM-index and, for comparison, a
FM-index version based on a 2-dimensional occurrence table.

Before providing a detailed explanation of the construction of the occurrence table, we
will present the design of data structures that are part of both FM-index versions, such
as the rank support bit string and the compressed suffix array.

An overview of the different data structures is given in Figure 3.1.
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Figure 3.1: Structure of the FM-index with its main tables.

3.1 A Constant Time Rank Query Data Structure

A rank query of a specified position i on a bit string B returns the number of bits set in
B [0, i ]. Without additional information, each position of B needs to be accessed to check
whether or not the corresponding bit is set. The running time of this approach is O(n),
which is problematic for large bit strings.

The main idea how to turn a bit string into a rank support bit string is to associate
rank information with intervals of the bit string. The interval information is then used
such that only a constant number of operations has to be performed.
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In order to do so, we divide the bit string into buckets of size l and super buckets of
size l2, as was done in [7] and [10]. Afterwards, we create a bucket string BS of size n

l
and a super bucket string SBS of size n

l2
. The entry i in SBS stores the number of bits

set in B[0, i · l2− 1], while BS[i] returns the number of bits set in B[b ilc, i · l]. A graphical
representation of the bucket structure is shown in Figure 3.2.

Figure 3.2: Structure of a rank support bit string.

Using this bucket scheme, a rank query of position i on B is reduced to the summation
of a super bucket, a bucket and the rank of bits of the bucket containing i. More formally,
the rank query is reduced to:

rank(i) = SBS[b i− 2

l
c − 1] + BS[b i

l
c − 1] + rank(B[b i

l
c, b i + 1

l
c − 1]). (3.1)

Note that rank(B[b ilc, b
i+1
l c − 1]) has to process at most l many bits. Since l is a fixed

constant the whole rank query needs O(1) time.
Even though, the search time directly depends on the chosen l. Therefore it is desirable

to decrease l as far as possible. On the other hand, Figure 3.3 shows that the memory
consumption increases with smaller l.

Another restriction on l is the availability of data types usable to implement the bit
string. Since the smallest addressable unit is the byte, it is impossible to directly address
each bit of a bit string. Instead, it is necessary to implement the bit string as a string
with an underlying data type, e.g. bool, char, int, etc., and use bit shift operations as well
as logical operators to access a specified bit.

For example, in order to check whether the 4th bit in a bit string bS, implemented as a
string of chars, is set, the following operations have to be performed:

1. result = bS[b12
8 c] >> (12 modulo 8− 1) = bitString[1] >> 3

2. result = result & 1

Therefore, serial counting the number of bits set in a bucket requires at most l shift
operations and l logical operations.

However, there exist methods to count the number of bits in a non-serial fashion, which
requires even less operations, such as implemented in builtin popcount, provided by the
GCC compiler1. In order to apply builtin popcount, the data type used to implement the
bit string has to be unsigned int, unsigned long or unsigned long long. Therefore, l can
not exceed 64.

For three reasons, we chose unsigned long long to be the underlying default data type
of our bit string. Firstly, we can make use of builtin popcount and sacrifice memory

1http://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/Other-Builtins.html, received January 28, 2012

25



10.000	
  
1.000.000	
  
100.000.000	
  

1,00E-­‐05	
  
1,00E-­‐04	
  
1,00E-­‐03	
  
1,00E-­‐02	
  

1,00E-­‐01	
  

1,00E+00	
  

1,00E+01	
  

1,00E+02	
  

1,00E+03	
  

16
	
  

32
	
  

64
	
  
12
8	
  

25
6	
  

51
2	
  

10
00
	
  

10
00
0	
  

10
00
00
	
  

Text	
  length	
  M
em

or
y	
  
Co

ns
um

p3
on

	
  [M
B]
	
  

l	
  

Figure 3.3: Memory consumption of the bucket and super bucket string for different l ’s
and text length.

efficiency for speed. Secondly, l = 64 is more memory efficient than using unsigned int or
unsigned long (the size of the latter depends on the operating system) and thirdly an l
that differs from 64 would require additional bit shift operations, since the bucket borders
could be in different entries of the underlying string.

As a consequence, we made unsigned short the default data type of the bucket string.
An unsigned short requires 16 bits, which is larger than the 12 bits necessary to encode
l2 = 4096, and at the same time it is the smallest directly accessible data type. Again we
sacrifice memory for speed, to be precise 4 bits per entry.

In contrast to the bucket string, the super bucket string is independent of the data type
of the bit string. Instead, it depends on the text length, which is different from instance to
instance. Therefore, we chose unsigned int to be the default underlying data type of the
super bucket string. In doing so, we limit the text length of the default implementation
to 4,294,967,296 characters, which is sufficient for most applications.

In addition to the default implementation, the user can use metafunctions already im-
plemented in SeqAn (such as Fibre, introduced in Section 3.6) to overload the default
settings of the rank support bit string.

By carefully choosing the underlying data types of the rank support bit string, it is
possible to reduce the memory consumption of the index, since the rank support bit string
is used in other data structures, such as the compressed SA, which we explain in the
following.
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3.2 The Compressed Suffix Array

The suffix array of the original text is essential to recover the positions of a pattern in
the text. Nevertheless, the suffix array needs at least Ω(n · logn) bits of memory. This
is problematic for large sequences and can be reduced by using a compressed suffix array
(CSA).

Instead of storing the positions of all suffixes of a text T, a selection of entries is kept. In
the case of the FM-index this is a valid solution, since it is possible to retrieve the position
of a suffix in between two stored positions by consecutively using the LF-mapping. In
other words, if there is no entry for a specified position x in CSA, the original text is
recovered until a text position with a corresponding entry CSA[y ] is reached. Therefore
CSA[y ] + i, with i being the number of necessary LF-mappings, represents SA[x ].

The SA access time depends on the fraction of stored entries in the CSA, as well as its
values. For example, if every x th position in the uncompressed SA is chosen to be stored,
in the worst case the CSA could consist of neighbouring text position. In this case the SA
access time would be O(n).

In order to achieve an access time of O( 1
x) we use a rank support bit string to mark

every x th position in the text and store those suffix array positions in the CSA. Hence,
the CSA consists of a sparse string storing SA values and an indicator bit string.

Obviously there is a trade-off between memory consumption and running time. Con-
sidering this, the user should choose low compression rates if enough memory is available.

3.3 The Prefix-Sum Table

Like the SA described in the section above, the prefix-sum table is a data structure required
by all FM-index variants.

For small alphabets it is sufficient to create an array of the size of the alphabet. The
different entries are then addressed using a mapping function, conserving the ordering of
the characters during the mapping process.

Note that the described method is not applicable to large alphabets. In these cases the
prefix-sum table is implemented as an array of tuples. Each entry stores the character it
represents and the number of characters smaller than this character. Note that it is not
any longer possible to directly address an entry. Instead, it is necessary to use a mapping
function or search for the location in the array. We have chosen the latter, because a
mapping would either require additional memory or perform a search as well.

3.4 Wavelet Trees

In contrast to the previous data structures, in the following we will describe an index
specific one, namely the wavelet tree.

A wavelet tree encodes a given text T as a binary tree. The tree is constructed by
defining subtexts for each node which are then encoded by bit strings. Those are generated
by comparing elements of the subtexts to a pivot element p. Each character c smaller
than p is represented by a ‘0 ’, while characters greater or equal than p are encoded by
a ‘1 ’. Now the bit string defines the strings of the child nodes, where all characters
represented by ‘0 ’ form the new substring of the left child and all characters encoded

27



by ‘1 ’ define the substring of the right child node. A wavelet tree for the sequence:
“AGCTAGCTCATACAGGGTATGACCAGTACGACAG” is shown in Figure 3.4.
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Figure 3.4: Graphical representation of a wavelet tree. Note that the character strings are
shown for clarity but are not stored in the actual tree structure.

In order to compute the rank of a given character c in T up to position i, one determines
the rank of 0s if c is smaller to the pivot element p of the current node or the rank of 1s
if c is greater than p. The result is a new position i that is used in the next computation.
Afterwards, this procedure is repeated in the left child, if c is smaller than the current
p, or in the right child, if c is greater or equal than p, until the last node containing c2

is reached. In total this procedure requires O(log|Σ|) many rank queries for an balanced
wavelet tree, leading to the proposed running time. However, it is still possible to increase
the performance, as we will show in the next section.

3.4.1 Optimal Rank Query Time in Wavelet Trees

The former explained running time of O(log|Σ|) can be optimized by a more sophisticated
choice of pivot elements p.

We reduce the number of involved nodes on the average rank query by choosing the
pivot elements according to the frequency of the characters in text T. To be more precise,
p is chosen such that the numbers of 0 s and 1 s in a bit string is as equal as possible. The
influence of the pivot elements on the tree structure is illustrated in Figure 3.5.

The structures of the trees in Figure 3.5 have a strong impact on the rank query time.
For example, if one wants to compute the rank of ‘A’ at any position using the tree in
Figure 3.5(a), only one rank query is needed, whereas ‘G’ or ‘T’ require three rank queries.
However, on average this is better than using the tree of Figure 3.5(b), assuming that the
frequencies of the characters in text T reflect the expected number of rank queries of the
characters.

3.4.2 Wavelet Tree Implementation Design

How to achieve an optimal rank query time was described in the last section, where we
have shown that the tree structure has a major influence. However, the impact of the
implementation design on query time and memory consumption must not be neglected
and will be described in the following.

2The last node containing c does not have to be a leaf, as can be seen in Figure 3.5(b)
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(a) Unbalanced wavelet tree
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(b) Balanced wavelet tree

Figure 3.5: Influence of the pivot elements on the wavelet tree structure.

A fast solution for determining the position in a wavelet tree would be to label all nodes
with their corresponding position in an array, as can be seen in Figure 3.6.
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Figure 3.6: Possible implementation structure of a wavelet tree.

However, this approach has a major drawback, namely its memory consumption. For
example, in order to store the nodes of Figure 3.5, seven entries would have to be gen-
erated, even though the graph consists of only three nodes. This effect becomes even
more prominent with larger alphabet sizes. In fact, using this scheme one would have to
consider 2|Σ| − 1 many entries, even though the number of nodes, including leaves, in a
wavelet tree is at most |Σ| − 1.

For this reason, our wavelet tree structure is encoded using an array in which every
entry stores the pivot element of its corresponding node and a link to the right subtree.
We do not need to store the location of the left subtree, because, per default, its location
is one to the right of the current node in the array. Nevertheless, we need to encode
the possibilities of having no child node, having only the left or right subtree as a child
node or having two subtrees. Therefore, a link to the root encodes the situation of having
no child nodes, a 1 or 2 showing that only the right, respectively the left, child node
exists and values greater than 2 indicate two child nodes. Figure 3.7 provides a graphical
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representation of our approach.
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Figure 3.7: Memory efficient design of a wavelet tree structure.

This section provided detailed information on the usage of wavelet trees as a substitute
for the compression scheme in [7] that is memory efficient and fast at the same time. The
next section will introduce our design of an occurrence table based on a 2-dimensional
array.

3.5 The 2-Dimensional Occurrence Table

In contrast to wavelet trees described above, a simple 2-dimensional occurrence table is
memory inefficient. To be precise, the memory consumption is O(|Σ| ·n) for a text T over
the alphabet Σ of size n, since for every character c ∈ Σ the array keeps for every text
position i < n the number of cs up to i in T.

Because the frequencies of different characters in T are usually independent of each other
it is impossible to retrieve information on the number of occurrences of one character if its
frequency is not known. Therefore, it is required to store information of all characters to
realize the occurrence table. However, it is unnecessary to store the number of cs up to i
for each position i < n . Instead, it is sufficient to keep the number of occurrences of c up
to i in specified intervals. The number of occurrences of c between two stored positions x
and y with x < y can be computed by counting the number of occurrences of c in T[x +
1, i ] and adding them to Occ[x ][c].

3.6 Appropriate Data Types of the FM-index

During the last sections we have introduced all data structures required by the different
FM-index versions. In this section we will describe how appropriate data types for these
structures are chosen.

First of all we want to recall one fundamental concept of the SeqAn library, the usage
of templates to specify data types at compile time. This design ensures a speed advantage
since data types do not have to be determined at running time. On the other hand, all data
types have to be known at compile time, which introduces a problem for the FM-index.
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The underlying data types of the compressed SA, the 2-dimensional occurrence table as
well as the data types of the rank support bit string depend on the length n of the text
T. Since the largest possible value necessary to be stored by those data structures is (n -
1), it is sufficient that their strings have underlying data types of dlog(n− 1)e bits.

In order to ensure the usage of the most efficient underlying data types for the different
tables of the FM-index, in our implementation we made use of the metafunction Fibre,
which returns the type of a specified data structure. Note that there exists a Fibre for
each text dependent data type of each data structure.

For example, the Fibre of the compressed SA defines the sparse string to be a string
of unsigned ints. We chose unsigned int because it can store values between 0 and
4,294,967,295 which is sufficient for most applications.

In addition to the default implementation, the user can specialize the Fibres for a specific
purpose. For example, if the text length is smaller than 65,536 it is sufficient to use a data
type of 16 bits, such as unsigned short, as the underlying data type for the sparse string
of the compressed SA.

In addition to the data types, the strategy to represent the $ has to be chosen carefully,
which we will explain in the next section.

3.7 Handling of Alphabet Extrinsic Characters

The last sections have shown our design of the FM-index tables. However, in order to
implement a robust FM-index applicable on all alphabets special attention has to be paid
to the alphabet extrinsic character $. As explained in Section 2.3.1, the $ sign poses
an essential modification to the original proposed BWT construction that is necessary to
use suffix arrays during the FM-index computation. In the following we propose several
approaches to represent the $.

A simple solution would be to use the smallest character c of the alphabet as a sub-
stitute for the $ sign. Using the smallest character is essential, since the $ has to be the
lexicographic smallest character. However, this solution is only practical in cases where c
does not appear in the underlying text of the index. Because this restriction can not be
met in many cases, such as in the case of genomic sequences (encoded in a DNA alphabet),
the proposed idea is not practical for our purpose.

Another solution would be to create a new alphabet. However, this approach is only
practical for certain alphabets. Therefore it is not possible in many cases, especially if the
user defines a special alphabet.

A practical solution is to substitute the $ with the least frequent character c in the text
and store its position. In doing so, it is possible to circumvent the problem of creating a
new alphabet for TBWT and the text is not limited to certain characters of the alphabet.
The obvious drawback is an additional check in each occurrence query to determine if it
is necessary to subtract the result by 1. This is the case when determining the number of
occurrences of the least frequent character behind the $ position. Note that by choosing
the least frequent character as the $ substitute we reduce the number of necessary checks
to a minimum.

In addition to the previous approach that we implemented for the wavelet tree based
as well as the 2-dimensional array based FM-index, we designed an alternative approach
for the wavelet tree version of the FM-index. Again, we substitute the $ with a character
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c, but in order to circumvent the check necessary in the previous version we insert an
additional node in the wavelet tree.

This extra node v is inserted as the child of the leaf l containing c. Therefore l becomes
an inner node. In addition, we assign c to be the pivot element of node v and resize the
length of its bit string to be the number of cs (note that the dollar is included in this
number). Afterwards, the bits of the new bit string are set accordingly.

This approach is superior concerning rank query time in situations where the frequency
of one of the characters is very low. In those cases the leaf containing the $ will be
reached seldomly. Therefore, the additional node influences the rank query on a very low
level within the tree, but it makes the dollar position comparison dispensable. Hence, for
certain text compositions the alternative $ handling will be more efficient.

3.8 Search Speed Optimization

The compressed suffix array introduced in the last section has a strong influence on the
localization of a pattern in the original text. However, since the pattern search also
depends on the counting method, in this section we will show two alternatives to enhance
the search time by modifying the counting procedure.

3.8.1 Range Control

Our first approach is based on the idea that unique patterns do not require the determi-
nation of the upper and lower bounds sp and ep in every step of the counting routine.
Instead, it is sufficient to determine only one of the two (since they must be equal), which
reduces the time requirements.

An advantage of the range control optimization is its simplicity, though a major draw-
back is the dependence on the occurrence determination of a character at a specified
position, since this step has a logarithmic relation to the alphabet size. In the follow-
ing we present an alternative that overcomes this shortcoming at the cost of additional
memory allocation.

3.8.2 Text Verification

In order to minimize the number of necessary LF-mappings, now we introduce a text
verification based search procedure.

The idea is similar to the one presented above: it is not necessary to determine both
sp and ep for unique patterns. However, instead of computing one of the two bounds,
one verifies the remaining prefix of the pattern against the text once sp and ep are equal.
The advantage of such a procedure is the direct access and verification of characters.
On the other hand, the memory requirement increases because the whole text hast to
be stored, since the reconstruction using TBWT would mean to indeed mimic the range
control optimization scheme presented above.

3.9 Suffix Trie Simulation

The search speed optimizations are strategies to make the FM-index more suitable for
pattern searches. However, the described optimizations do not take into consideration that
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in many applications the pattern contain errors. For example, the reads in a sequencing
project are usually error prone, such that a strict pattern search does not yield the desired
results.

Therefore, we implemented an iterator which can be used to traverse TBWT as if travers-
ing a suffix trie. Note that we do not store the trie structure, but instead generate parts
of the trie on demand. In general, the user can choose to go down, go right or go up in
the trie. In the first case the child node of the current node following the edge with a user
defined label is generated. If no label is specified, the node following the edge with the
lexicographic smallest label is constructed. In the second case, the node in the same trie
following the edge with the next larger edge label compared to the current incoming edge
label is constructed. Finally, in the last case, the parent node becomes the current node
and all information on the former current node is discarded. In detail, the iterator works
as follows:

The iterator processes TBWT starting with the last occurrence of a specified character,
similar to the counting procedure described in Section 2.3.3. The major difference is an
additional stack that stores for every processed node x of the trie a range [spx, epx], instead
of overwriting sp and ep in each iteration. In doing so, a history of steps is created that
can be used to identify patterns that differ from the text.

The bounds spx and epx specify a range in F (first row of SCR, see Section 2.3) con-
taining all words who’s last characters match the edge labels from the root to the current
node x of the trie. Note that since the procedure starts with the last occurrence of a
specified character, the words are “spelled backwards” compared with the trie (see Figure
3.8(a)). Therefore, the last character of the word has to match the label of the first edge
of the trie starting from the root. The second last character matches the second edge and
so on. Hence, the procedure described above generates a suffix trie of the reversed text T
(see Figure 3.8(b)). In order to use the iterator of the suffix trie of T the index has to be
built using the reversed text.

Text = AGATTAT 
Pattern = TTAT 
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Figure 3.8: On the left hand side a schematic overview of the trie construction for the
pattern “TTAT” is presented, whereas (b) show the constructed trie of text
“AGATTAT”.
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3.10 Extension to Sets of Strings

Since often biological questions involve several sequences in contrast to a single sequence,
we extended our FM-index variants to be also applicable to string sets.

A very simple adaptation to cope with string sets would be to concatenate all strings
before applying the FM-index. However, this can lead to matches that span over the
borders of two adjacent strings and is therefore no valid solution in reality. In order to
circumvent such wrong matches, one could either verify the matches returned by the search
procedure or add a special character to the ends of the strings. After using the search
routine, in both cases one has to identify the position of the string the pattern matched
to within the string set as well as the matching position in the string.

To avoid this extra effort we follow a different approach, in which the search procedure
directly returns the correct string as well as the pattern position within the string. As
described above, we add a special symbol (which is the $ already introduced in previous
sections) to the end of each string. Afterwards, we directly build the suffix array of the
string set in contrast to first concatenate the strings. For this reason, the suffix array is an
array of pairs, where each entry represents a position within the string set and a position
within a string.

To implement this concept into our FM-index variants, all indices (except the wavelet
tree based one that incorporates an extra node for the $ sign) have to be adapted to store
more than one $ position. Simply storing these positions as integer values would require
to determine the number of characters substituted by a $ up to a specified position, which
is time consuming. Therefore, we chose to encode the $ positions with a bit string, which
enables us to retrieve the number of substituted characters up to a specified position in
constant time.
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4 Results and Discussion

As stated in the introduction, our goal is to design and implement a practical FM-index
version that is both memory efficient and guarantees fast pattern search times. We have
shown how we achieve those two goals in the previous section and will analyze our imple-
mented indices in the following.

4.1 Experimental Set-Up of the Benchmarking

Four main factors influence the memory consumption and pattern search time, which are
text and pattern length, as well as alphabet size and suffix array compression rate. The
impact of these factors is analyzed in a benchmarking study performed under the following
set-up.

We generated artificial texts by concatenating randomly chosen characters of a former
specified alphabet. To ensure equal character frequencies this sampling follows an equal
distribution. The alphabets chosen for the text generation are Dna, Dna5, AminoAcid and
of type unsigned char, which contain 4, 5, 24 and 224 characters, respectively1. Further,
we generated patterns of different lengths by randomly extracting subsequences of the
former created texts, which ensures that each pattern occurs at least one time (otherwise
the pattern search would be aborted after too few iterations, which would induce a bias
in the running time analysis).

While the memory consumption was measured by storing the different index tables on
hard drive, we divided our running time analysis according to counting and localization
phase. The counting phase time requirement was determined by searching a fixed num-
ber of 100,000 patterns. Note that due to the speed of the search procedure an accurate
measurement was achieved by repeating the process until the overall time exceeded 30
seconds. The actual running time needed to search for 100,000 patterns was then derived
by dividing the overall time by the number of necessary repetitions. In contrast, we ana-
lyzed the time requirements of the localization phase by measuring the suffix array access
time. This was done by iterating over the suffix array and accessing each entry. Similar
to the counting phase time measurement, we repeated the process until the overall time
exceeded 30 seconds and then computed the time necessary to access 100,000 positions.

Note that throughout this section the 2-dimensional occurrence table based FM-index
is referred to as 2dOcc, the wavelet tree based FM-index that substitutes the $ sign is
referred to as WTS and the wavelet tree based FM-index incorporating an extra node for
the $ sign as WT.

Further, our implementations are also applied to real data sets to give an impression
of their performance not only in simulations, but also in real world scenarios. Note that
now we do not divide the running time analysis into counting and localizing, but measure

1Note that we excluded 32 characters from the 256 characters of the unsigned char data type from our
benchmarking, since they represent control characters such as the end-of-file symbol.
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the overall pattern search time. In doing so we also consider the impact of the number of
matches between pattern and text.

As an example for a comparably small genomic sequence (4.6MB in size) we have chosen
the Escherichia coli genome (accession: NC 012947). The second genome belongs to
Drosophila melanogaster (accession number: PRJNA164, 132.2MB in size) and the largest
genome to be analyzed is the genomic sequence of Homo sapiens (accession number:
PRJNA42201, 3.1GB). All genomes are taken from the NCBI reference sequence database
(http://www.ncbi.nlm.nih.gov/ ).

In addition, we used the real world data sets to compare our new implementations not
only with each other, but also with the enhanced suffix array index of SeqAn2, as well as
FM-index implementations taken from the Pizza&Chili Corpus (http://pizzachili.dcc.uchile.cl/index.html).

All benchmarks were performed on a machine with 2 x Intel(R) Xeon(R) CPU X5550
@ 2.67GHz and 50GB of RAM.

4.2 Memory Consumption

We begin our verification by analyzing the memory consumption of the FM-index versions,
first depending on different compression rates of the suffix arrays (SA). Afterwards, we
will analyze the memory consumed by the 2-dimensional occurrence table data structure
(2dOcc) (see Section 3.2) and the wavelet trees (see Section 3.4). Finally, the different
FM-index implementations are examined with respect to their overall memory dependence
on alphabet size and text length.

4.2.1 Memory Consumption of the Compressed Suffix Arrays

A major contributor to the memory consumption of the FM-index is the suffix array.
For this reason, the size is reduced by storing only a fraction of all values present in the
uncompressed SA. This is possible because values in between two stored SA positions can
be computed using the BWT of T (TBWT , as described in Section 3.2).

A graphical representation of the memory consumption for differently compressed suffix
arrays (CSA) is given in Figure 4.1. The CSAs have been constructed using a text of 10
million characters.

As can be seen in Figure 4.1, the memory consumption increases with decreasing SA
compression. Even though this behaviour is expected, the following points are worth
mentioning:

1. There is a non-linear relation between the suffix array compression and its memory
consumption.

2. The memory consumption of the CSA with a compression factor of 1 is larger than
the memory consumption of a normal SA.

Both observations can be explained with the memory consumption of the rank support
bit string (RSBS) used to indicate positions in the CSA that store a value. The RSBS

2The following flags were used for compilation: -DSEQAN HAS ZLIB=1 -DSEQAN HAS BZIP2=1
-DSEQAN HAS EXECINFO=1 -D LARGEFILE SOURCE -D FILE OFFSET BITS=64
-W -Wall -Wno-long-long -fstrict-aliasing -Wstrict-aliasing -pedantic -Wno-variadic-macros
-DSEQAN ENABLE TESTING=0 -O3 -DNDEBUG -DSEQAN ENABLE DEBUG=0
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Figure 4.1: Graphical representation of the memory consumption for differently com-
pressed suffix arrays. Note that both axis are scaled logarithmically.

requires 1.57MB, which explains the difference between the 41.57MB, required by the
uncompressed SA, and the memory consumption of a normal SA (which is 40MB). In
addition, since the memory required by the RSBS is independent of the SA compression
it contributes as a constant factor to the overall CSA memory consumption. Hence, it
explains the non-linearity between SA compression and CSA memory requirement. To
be more precise, the memory consumption of the RSBS is a lower bound of the overall
compressibility of a CSA.

We want to point out that for high SA compression rates the memory consumption is
dominated by the requirements of the RSBS and hence the differences between the memory
consumption of highly compressed SAs are minor. In contrast, the SA access time has a
linear dependence on the SA compression, as we will show later. Hence, considering both
properties, a very high SA compression is impractical.

On the other hand, Figure 4.2 shows that there is a linear dependence on the text length.

4.2.2 Memory Consumption of the Occurrence Tables

In contrast to the memory consumption of the CSA, the sizes of the occurrence table data
structures (Occ) depend not only on the text, but also on the underlying alphabet. The
effects of the alphabet on the Occs are shown in Figure 4.3. The Occs were build using
a text of 10 million characters over different alphabets with equal frequencies for each
character.

Even though the 2-dimensional occurrence table of Figure 4.3 stores only every 100’s
row, it is the most memory intensive data structure for all alphabets. In contrast, the
most memory efficient data structure is the wavelet tree in which the $ is substituted by
the least frequent character.

The high memory consumption of the 2-dimensional occurrence table data structure is
the result of a linear dependence of the alphabet size combined with a linear dependence
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Figure 4.2: Graphical representation of the memory consumption of a CSA with a com-
pression factor of 100 for different text lengths.
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Figure 4.3: Graphical representation of the memory consumption for different occurrence
table data structures. The underlying text consisted of 10 million characters
drawn from the alphabets unsigned char, AminoAcid, Dna5 and Dna. Note
that both axes are scaled logarithmically.

on the text length. In addition, since entries between two stored rows need to be recom-
puted, it is necessary to store TBWT explicitly. Therefore, similar to the behaviour of the
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CSAs, the memory consumption of the 2-dimensional occurrence table converges towards
a lower bound, independent of the alphabet or the compression rate. Figure 4.4 provides
a graphical representation of the described dependence.
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Figure 4.4: Graphical representation of the memory consumption for differently com-
pressed 2dOccs. Note that the memory consumption axis is scaled
logarithmically.

In contrast to the 2-dimensional occurrence table data structure, TBWT represents the
theoretical upper bound (plus some auxiliary data) on the memory consumption for the
wavelet trees in Figure 4.3. Since the characters have approximately the same frequencies,
the tree is balanced and has a depth of log2|Σ|. For the character string this is approxi-
mately 8. Hence, each character is contained in 8 bit strings. Since 8 bits per character
is also the memory consumption of TBWT string, as claimed TBWT represents an upper
bound.

However, in Figure 4.3 one can observe that the wavelet trees actually need more memory
than necessary to store TBWT as a string (12.36MB versus 10MB). The reason for this
observation is the additional memory requirement of the rank support tables of the rank
support bit string.

Since for the alphabets Amino Acid, Dna5 and Dna it holds log2|Σ| < 8, the memory
requirement for the corresponding wavelet trees is smaller than the original text size. The
smaller the alphabet, the smaller the memory requirements. Therefore, the wavelet tree
is most memory efficient for Dna strings.

Note that the wavelet tree version that incorporates an extra node for the $ needs more
memory due to the extra node.

Concerning the text length: similar to the CSAs, the memory consumption of the
occurrence table data structures show a linear dependence on the text length, as shown
in Figure 4.5.
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Dna5. Note that both axes are scaled logarithmically.

4.2.3 Memory Consumption of the FM-index

The last two sections have shown the memory consumption of the CSA and the occurrence
table data structures with respect to different alphabets and text lengths. In this section
we will analyze the memory consumption of the whole FM-index. We start by focusing
on the influence of the alphabet on the index.

In order to do so, we build the different indices over a text of 10 million characters drawn
from different alphabets with equal character frequencies. Since there is no alphabet de-
pendence of the CSA regarding to the memory consumption, the reason for the differences
between the indices in Figure 4.6 are the occurrence table data structures. Hence, Figure
4.3 and Figure 4.6 show a similar distribution of the bars, which only differ in the assigned
values.

Note that with a SA compression factor of 10, for Dna and Dna5 alphabets both wavelet
tree based FM-index versions require less memory than the original text file. For a SA
compression factor of 100 the compression is so effective that the wavelet tree based FM-
indices for AminoAcid texts require less memory than the original file and for Dna and
Dna5 alphabets the index size is even reduced to 50-60% of the original file.

The indices are not only sensitive to the alphabet size, but are also influenced by the
text length. However, since we have illustrated that the CSA as well as the occurrence
table data structures show a linear dependence on the text length (see previous sections),
the results of this section can be transferred to shorter or longer texts.

After analyzing the memory requirements of the different FM-index implementations,
in the next section we will have a detailed look on the time requirements of the pattern
search.
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Figure 4.6: Graphical representation of the memory consumption for different indices. The
underlying text consisted of 10 million characters drawn from the alphabets
unsigned char, AminoAcid, Dna5 and Dna.

4.3 Search Time Analysis

In the last section we have shown that the wavelet tree based FM-index implementations
can be parametrized such that the memory requirements are less than the size of the orig-
inal file. In addition to its memory efficiency, the FM-index also facilitates a fast pattern
search, as we will show in this section. We begin by examining the time requirements
of the counting procedure in dependence on the text and pattern length as well as the
alphabet. Afterwards, we will focus on the SA access time and time requirements of the
whole search procedure.

4.3.1 Counting Time Dependence on the Text Length

As described in Section 2.3, in theory the counting procedure is independent of the text
length. However, in practice we do observe that counting requires more time for longer
texts. This dependence is visualized in Figure 4.7, where the time consumption of the
counting procedure for the different FM-index implementations and text lengths is illus-
trated. In the presented scenario the pattern length was fixed to 100 and the text type
was Dna5.
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the 2dOcc based FM-index was fixed to 100. Note that the text length axis is
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Figure 4.7 shows that for the wavelet tree based FM-indices the counting time is approx-
imately constant (apart from a slight increase) for texts up to 107 characters. For larger
texts, the time requirements are more than doubled. For the 2-dimensional array based
FM-index the counting time stays constant for text lengths up to 105 characters before
increasing, though the increase is not as prominent as in the case of the wavelet tree based
indices. In general, it is worth mentioning that considering the whole range of text lengths,
the overall increase in the time requirement in almost equal for all indices. However, it
is clear to see that the wavelet tree based variants are much faster than the 2dOcc based
version (this can be adjusted when decreasing the occurrence table compression).

Since the procedure of counting is theoretically only influenced by the pattern length,
it comes as a surprise to observe a dependence on the text length. The reason for the
differing behaviour in practice is hardware related, for instance there occur cache effects
in case the program needs to access information that is not already present in cache but
has to be loaded beforehand, which increases the time consumption (for more details, refer
to [30]).

Since the cache is very limited in size, large data sets tend to increase the number
of necessary information loads. Such a situation can be observed during the counting
procedure. The value of the lower bound sp, as well as the value of the upper bound ep
(refer to Section 2.3.3), can change to any position of TBWT from iteration to iteration.
Therefore, different parts of the rank support bit strings in the wavelet tree need to be
present in cache in order to minimize the running time. Since this is not possible for large
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texts, due to the limited cache size the running time changes for different text lengths.
A visualization of cache effects is shown in Figure 4.8, which presents the time necessary

to access 4 billion positions in bit strings of increasing length. The positions are accessed
sequentially with a step size of 4096. In doing so, we guaranty that information needs to
be reloaded once the whole bit string does not fit into cache.
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Figure 4.8: Time necessary to access a rank-support-bit-string 4 billion times with different
underlying text lengths. Note that the text length axis is scaled logarithmically.

Note that the graphs in Figure 4.7 differ from the graph in Figure 4.8, because not every
re-computation of sp and ep lead to cache misses. Further, for the 2dOcc based FM-index
cache effects already occur for shorter text lengths, since in comparison to the wavelet tree
based FM-indices this FM-index requires more memory.

4.3.2 Counting Time Dependence on the Alphabet

In contrast to the text length, there is a logarithmic relation between the alphabet size and
the counting time of the wavelet tree based FM-indices. Since the number of nodes in a
wavelet tree increases with increasing alphabet size, the number of rank queries necessary
to determine the number of occurrences of a specified character until a specified position
in TBWT grows as well. The described situation is shown in Figure 4.9.

Note that in regard to the different alphabets the time required by the counting proce-
dure is approximately constant for the 2-dimensional array based FM-index. In contrast,
the counting times of both wavelet tree based FM-index versions differ for the various
alphabets. The minimal time consumption is required for the smallest alphabet, Dna,
closely followed by Dna5. Between the wavelet tree based FM-indices, the times for Dna
and Dna5 differ only slightly. In contrast, the running time more than doubles from Dna5
to AminoAcid, as well as from AminoAcid to unsigned char. Since the alphabet sizes be-
tween Dna5, AminoAcid and unsigned char grow exponentially, there cannot be a linear
relationship between the counting time and alphabet size. However, if we take the loga-
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Figure 4.9: Graphical representation of the time required by the counting procedure to
determine the number of matches between the original text and 100,000 pat-
terns. While the text and the pattern length are fixed, the alphabet size was
4, 5, 24 and 224 for Dna, Dna5, AminoAcid and unsigned char, respectively.

rithm to the base of 2 of the alphabet sizes and set these results in relation to the counting
time, a linear correlation is revealed. Therefore the wavelet tree based FM-indices show a
linear relation between the logarithm of the alphabet size and counting time, as claimed
in Section 2.5.3.

4.3.3 Counting Time Dependence on the Pattern Length

Since the FM-index is built over the text and not over the searched patterns, the patterns
themselves are not preprocessed. Therefore, there is a linear relationship between the
pattern length and the time required by the counting routine of the FM-index search. A
graphical representation of the dependence is provided in Figure 4.10.

The fastest index is the wavelet tree based implementation in which the $ is substituted
by the least frequent character. The second fastest is the wavelet tree based version with
an extra node for the $. This shows that the processing of the extra node is more time
consuming than the processing of the substituted $.

4.3.4 Suffix Array Access Time Dependence on the Text Length

In the last section we have discussed the counting time dependence of the FM-index with
respect to text and pattern length, as well as alphabet size. To complete the search
time analysis, in the following we will focus on the second part of the search routine, the
localization procedure. In order to do so, we will first concentrate on the SA access time
with respect to the text length and then analyze the influence on SA compression.
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Figure 4.10: Graphical representation of the time required by the counting procedure to
determine the number of matches between the original text and 100,000 pat-
terns. While text length and alphabet have been fixed, the pattern length has
been increased exponentially. Note that both axes are scaled logarithmically.

From a theoretical point of view there is no dependence between the text length and
the SA access time. However, Figure 4.11 shows that the time consumption increases with
increasing text length, which moreover is not linear. To be more precise, there is a small
increase of the time consumption for texts up to 107 characters. Afterwards, the time
consumption is more than twice as high.

Since no part in the computation of an entry in the CSA is influenced by the text length,
the in practice observed dependency is hardware related. A similar situation occurred
when we analyzed the counting time dependence on the text length in Section 4.3.1. Note
that graphs presenting the counting time of the wavelet tree based FM-indices are very
similar to the one in Figure 4.11. This comes as no surprise, since in order to compute
the CSA entries the LF-mapping has to be applied, which is the same procedure as the
computation of the bounds sp and ep. Therefore we omit a detailed analysis and instead
refer the reader to Section 4.3.1.

4.3.5 Suffix Array Access Time Dependence on the Suffix Array Compression

In contrast to the text length, in regard to the SA compression there is a linear influence
on the SA access time. With increasing compression the number of CSA entries that need
to be computed increases, as well as the number of LF-mappings necessary to compute
one SA entry (for details see Section 3.2), as is illustrated in Figure 4.12.

At this point we have analyzed the dependencies of the two phases of the search proce-
dure. However, the overall search time also depends on the number of matches between
the pattern and the original text and is therefore highly problem specific. Nevertheless,
a rough search time estimate can be computed by summing up the counting and the SA
access time (for one entry) and multiplying the sum with the number of expected matches.
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Figure 4.11: Graphical representation of the SA access time of a CSA with a compression
factor of 100 for different text lengths. The presented results reflect the time
necessary to access 100,000 CSA positions. Note that the text length axis is
scaled logarithmically.
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Figure 4.12: SA access time dependence on the SA compression. The presented results
reflect the time necessary to access 100,000 CSA positions. Note that both
axes are scaled logarithmically.

Since our aim was to design and implement an FM-index that is suitable for biological
sequences we will analyze the overall search time using genomes of different organisms,
namely Escherichia coli, Drosophila melanogaster and Homo sapiens, in the next section.
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4.4 Comparison of the Indices on Real Data

In this section we will analyze the search time of the different FM-indices with various
SA compression rates using the Drosophila melanogaster genome. In addition, we provide
results for a much smaller and a much larger genome, of Escherichia coli and Homo
sapiens, respectively.

We start the analysis by comparing indices with a SA compression factor of 1. Since no
LF-Mapping is involved when retrieving a position in the CSA we expect this setting to
yield the fastest results.

Figure 4.13(a) shows that the 2dOcc FM-index with an occurrence table compression
rate of 10 is the fastest index, followed by the two wavelet tree based FM-index implemen-
tations. The increased compression rate of 100 in the second 2dOcc FM-index makes this
index the slowest. Note that the axes of Figure 4.13(a) are scaled logarithmically. There-
fore, the difference between the two wavelet tree FM-indices and the less compressed 2dOcc
FM-index are much smaller than the difference between the two wavelet tree FM-indices
and the higher compressed 2dOcc FM-index. For details refer to Table 4.2 at the end of
this section.

The Figures 4.13(b) and 4.13(c) show the search times for the indices of Figure 4.13(a)
with a SA compression rate of 10 and 100, respectively. While the order of the indices
remains, their progressions are different. To be more precise, especially Figure 4.13(c)
shows that the search time is not doubled for the 2dOcc based FM-indices, as is observed
in Figure 4.13(a). In fact, the search time is almost constant for the two indices for
pattern lengths of 40 and 80. The same trend can be observed for the wavelet tree based
FM-indices, though not as prominent.

The reason for this behaviour is a domination of the localization phase during the search
for small patterns. In contrast to Figure 4.13(a), in Figure 4.13(c) a major proportion
of the time is spent to determine the corresponding entry in the CSA. With increasing
pattern length this effect decreases, since most of the search time is spent during the
counting phase.

In addition, the localization phase is strongly influenced by the number of matches
between the patterns and the genome. As can be seen in Table 4.1, there are more matches
between the genome and the patterns for smaller pattern lengths, which increases the time
spent in the localization phase.

Pattern length Number of matches

40 317,241
80 198,210
160 159,338
320 140,981
640 125,719
1280 113,418
2560 103,503

Table 4.1: Number of matches between patterns of different lengths and the Drosophila
melanogaster genome.

As stated above, the described effect is not as strong for the wavelet tree based FM-
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indices. A reason for this is that they are much more memory efficient and therefore less
prone to cache effects than the 2dOcc based FM-indices.
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(a) Search times for different FM-indices with a SA compres-
sion of 1.

40 80 16
0

32
0

64
0

12
80

25
60

100

101

102

Pattern length

T
im

e
[s

ec
]

(b) Search times for different FM-indices with a
SA compression of 10.
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(c) Search times for different FM-indices with a
SA compression of 100.

Figure 4.13: Graphical representation of the time required by the different FM-indices to
find 100,000 patterns in the Drosophila melanogaster genome. The compres-
sion rates of the SA are (a) 1, (b) 10 and (c) 100. Note that both axes are
scaled logarithmically in each figure.

In addition to the search time differences of the indices in regard to a specified SA
compression rate, we are also interested in the differences of the same index regarding
various SA compression rates. Therefore, we calculated the pairwise difference in the
search time between the indices of a SA compression rate of 1 and 10, as well as 1 and
100. The results are visualized in Figure 4.14(a) and Figure 4.14(b), respectively.

From the first look, the graphs in Figure 4.14(a) do not seem to follow a common
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tendency. However, it has to be mentioned that the overall search times are so close that
in the figure even small differences appear to have a strong impact such that tendencies
might be covered. Hence, for a better understanding we further normalized the obtained
differences with the running times of the indices with compression rate 1. The results are
presented in Figure 4.15(a), where it is now clear to see that for the pair of compression
rates 1 and 10 the differences in search time indeed decrease with increasing pattern length.

For the pair of compression rates 1 and 100 this tendency is already visible for the not
normalized differences presented in Figure 4.14(b), because compared to the first pair the
search time differences are far larger. Figure 4.15(b) further supports this observation.

The reason for the relation between search time and pattern length can be explained
with the high percentage of time spent in the localization phase, as discussed above. With
increasing pattern length this effect is reduced, such that the difference between the two
SA compression rates do not as strongly influence the overall search times.

All in all, as expected the search time requirements increase with increasing SA com-
pression. Though, it is worth mentioning that the loss in speed is relatively small for the
step from compression rate 1 to 10.

4.5 Memory versus Time Consumption

In the last section we have first analyzed the memory consumption of the different FM-
index implementations and discussed their counting and search time requirements. In the
following we will put those two properties into relation.

Figure 4.16 shows the time to search for 100,000 patterns of length 320 in the Drosophila
melanogaster genome, depending on the size of the corresponding index. We only included
one of the two wavelet tree based FM-index implementations, since their values are almost
identical and they would not be distinguishable in the figure.

As shown in the last section, there is a trade-off between memory consumption and
search time. However, Figure 4.16 shows that increasing the SA compression from 1
(blue) to 10 (red) reduces the memory consumption by at least 50% while no significant
speed reduction can be observed. A further increase in the SA compression does reduce
the memory consumption, however, the reduction is relatively small. On the other hand,
there is a significant increase in the search time. Hence, it seem to be appropriate to at
least use a compression rate of 10, while there is a trade-off for further compression rates.

Comparing the indices with respect to their occur table, it is obvious that the 2dOcc
based FM-index with the smaller Occ compression is the fastest, followed by the two
wavelet tree based indices. However, while the memory consumption almost quadruples
from the wavelet tree based versions to the 2dOcc version, the search time of the 2dOcc
versions is not even twice as high compared to the wavelet tree based variants.

If we repeat the experiment, but search for patterns of length 40, the situation changes,
as is shown in Figure 4.17. Because the localization phase has a strong impact on the
overall search time, the 2dOcc FM-index implementation with an Occ compression of 10
and the two wavelet tree FM-index versions are almost equal in terms of time consumption.
At the same time the memory consumption does not change in comparison to Figure 4.16,
such that the wavelet tree based FM-indices show no disadvantages with respect to the
2dOcc FM-index implementations.
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(a) Search times difference between indices with a SA compression of 1 and 10.
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Figure 4.14: Graphical representation of the difference in search time between the indices
whit a SA compression of 1 and the indices with a compression rate of 10 and
100 respectively. Note that the pattern length axis is scaled logarithmically
in both figures.

4.6 Comparison with Other Indices

So far we have compared our new FM-indices amongst themselves. In this section we com-
pare the new indices with the enhanced suffix array index (ESA-index, in the following re-
ferred to as ESA) implemented in SeqAn, an FM-index (FM-index version 2) implemented
by Paolo Ferragina and Rossano Venturini (from now on PC V2) as well as a run-length
encoded FM-index implemented by Veli Mäkinen and Rodrigo González (from now on
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(a) Normalized Search times difference between indices with
a SA compression of 1 and 10. An division by 0 occurred
for the read length of 2560, therefore the coordinates are not
shown.
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(b) Normalized search time differences between indices with
a SA compression of 1 and 100.

Figure 4.15: Graphical representation of the normalized difference in search time between
the indices with a SA compression of 1 and the indices with a compression
rate of 10 and 100 respectively. Note that both axes are scaled logarithmically
in both figures.

PC RL). The latter two are available at the Pizza&Chili Corpus (http://pizzachili.dcc.uchile.cl/index.html3).

In contrast to the results presented in the earlier sections, we compiled the code for the

3There is also an alphabet friendly FM-index version available. However, we were not able to include this
version in the benchmarking because the program would terminated throwing an error. In addition the
version 1 of the normal FM-index is also available, however, it follows a different syntax.
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Figure 4.16: Graphical representation of the time required by the different FM-indices to
find 100,000 patterns of length 320 in the Drosophila melanogaster genome
versus their memory consumptions. Note that 2dOcc[x][y] denotes a 2-
dimensional occurrence table based FM-index with a SA compression rate
of x and a occurrence table compression rate of y.
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Figure 4.17: Graphical representation of the time required by the different FM-indices to
find 100,000 patterns of length 40 in the Drosophila melanogaster genome
versus their memory consumptions. Note that 2dOcc[x][y] denotes a 2-
dimensional occurrence table based FM-index with a SA compression rate
of x and a occurrence table compression rate of y.

following benchmarks on a 32-bit machine. This was necessary because the indices from
the Pizza&Chili Corpus depend on a 32-bit architecture4.

4The code was compiled using the command make with CFLAGS=-g -O9 -lm -fomit-frame-pointer -W
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We start our comparison with a relatively small genome, the Escherichia coli genome,
which is 4.6 MB in size. The results for the different indices are shown in Figure 4.18(a),where
it is obvious that the ESA is the fastest of all indices. For smaller pattern lengths it is
about 8 times as fast as the second fastest index, the new wavelet tree based FM-index in
which the $ is substituted (from now on WTS). However, the distance in time increases
with increasing pattern length, because in our experiment ESA does not show a linear
dependence on the pattern length. WTS is followed by the other new wavelet tree im-
plementation (WT), with a small increase in time. The difference of this index to the
following 2dOcc FM-index with an occurrence table compression rate of 10 (referred to as
2dOcc[10]) is small as well. In contrast, the gap to the next fastest index, the PC RL is
larger. In fact, PC RL is about as fast as the 2dOcc FM-index with an Occ compression
rate of 100 (from now on referred to as 2dOcc[100]) and is 3 to 4.5 times slower than the
wavelet tree based FM-indices. The gap to the last index, the PC V2 is even larger. This
index is 30 to 50 times slower than the new wavelet tree based FM-indices.

On the other hand, Figure 4.18(b) shows that the slowest index is also the most memory
efficient. However, the difference between this index and the wavelet tree based one is
very small, which means that one has to sacrifice a lot of speed to gain a small memory
advantage. Further, the only index faster than WT is ESA, which is in return also the
most memory intensive. Even though it is about 25 - 60 times faster, it also requires 10
times as much memory.

The reason for the speed superiority of ESA is the lower number of computations to ad-
just the lower and upper bound within the SA, as well as its cache efficient implementation
(as is explained later).

Repeating the experiment with the Drosophila melanogaster genome, which is 132.2MB
in size yields the results presented in Figure 4.19(a). The results show that the fastest and
the slowest indices are ESA and PC V2, respectively, as was observed for the Escherichia
coli genome. In contrast, the order of the indices in between those two has changed. The
second fastest index is 2dOcc[10], followed by the wavelet tree based FM-indices. The
order of 2dOcc[100] and PC RL has changed as well. Therefore, the indices from the
Pizza&Chili Corpus are the slowest in this experiment.

The reason for the changed order of 2dOcc[10] and the wavelet tree based FM-indices
are cache effects. While the rank queries during the LF-Mapping (involved in the counting
phase and the localization phase) do not cause cache problems for the small Escherichia
coli genome, they do for the larger Drosophila melanogaster genome. Because the rank
queries are necessary in the counting and localization phase for the wavelet tree based
FM-indices, those two are stronger affected than 2dOcc[10], since the rank queries only
influence the localization phase of 2dOcc[10].

Since the compression rate has an impact on both memory consumption and running
times of the indices, Figure 4.19(b) puts both properties in relation to each other. The
most memory efficient index is still PC V2. However, similar to the Escherichia coli
genome, the index is only slightly more memory efficient while it is magnitudes slower. In
addition, the ESA-index is also still the fastest, but the most memory consuming as well.
In contrast, the 2dOcc based FM-index with an Occ compression of 10 is now the second
fastest. Further, its speed advantage is about 50%, while the index consumes about 5 times
as much memory as the wavelet tree based ones (the two wavelet tree based FM-indices

-Wall -Winline -DDEBUG=0 -DNDEBUG=1

53



40 80 160 320 640 1280 2560

10−1

100

101

102

103

Pattern length

T
im

e
[s

ec
]

2dOcc[10]

2dOcc[100]
WT
WTS
ESA

PC V2
PC RL
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Figure 4.18: Search times for the Escherichia coli genome for different pattern lengths and
in dependence of the memory consumption.

are represented by one symbol in the figure).

Finally, Figure 4.20(a) shows the running times for the Homo sapiens genome. Note
that the two Pizza&Chili Corpus indices are missing. Applying them to the Homo sapiens
genome resulted in an error message. Therefore, we only compare the FM-indices with
ESA.

The order of the indices is the same as in Figure 4.19(a). However, the figure shows that
the search times do not follow the same pattern as for the Escherichia coli or Drosophila
melanogaster genomes. Instead, the time spent on the patterns of length 40 is magnitudes
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Figure 4.19: Search times for the Drosophila melanogaster genome for different pattern
lengths and in dependence of the memory consumption.

larger than the time spent on the other pattern length. Only the patterns of length 2560
require more time.

The explanation can be found in Table 4.2, where it is shown that the number of
matches for patterns of length 40 is about 10 to 40 times larger than for the other patterns.
Therefore, the localization phase requires a large amount of time, especially for the used
SA compression of 100.

Figure 4.20(b) illustrates that the trade-off between time and memory consumption
became larger in comparison with the smaller genomes. Even though the relation of the
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memory consumption is similar, ESA is now up to 150 times faster than the wavelet tree
based versions.

One of the reasons for this behaviour are cache effects. In contrast to the search using
TBWT , the more cache efficient ESA-index not only decreases the distance between the
lower and upper bounds sp and ep, but also decreases the range with respect to the whole
suffix array. Therefore, once the distance between sp and ep is small enough to fit the
whole range into cache, it does not have to be reloaded. Hence, the extra time caused by
cache misses is very small.
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(a) Search times for the Homo sapiens genome. Note that both axes are scaled
logarithmically.

2 4 6 8 10 12 14 16

100

101

Memory consumption [GB]

T
im

e
[s

ec
]

2dOcc[10]

2dOcc[100]
WT
WTS
ESA

(b) Search time in dependence of the memory consumption for the Homo sapiens
genome for a pattern length of 320. Note that the time axis is scaled logarithmi-
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Figure 4.20: Search times for the Homo sapiens genome for different pattern lengths and
in dependence of the memory consumption.
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All in all, we have shown that the wavelet tree based FM-indices are much more memory
efficient than the ESA-index, and for the larger genomes even outperform the Pizza&Chili
Corpus indices. In addition, all of our new FM-indices are faster than the indices of the
Pizza&Chili Corpus. Further, in contrast to the Pizza&Chili Corpus indices all of the
SeqAn indices were able to cope with the Homo sapiens genome. We have also illustrated
that while the ESA-index is the most memory intensive index, it is by far the fastest,
which is especially obvious for large sequences. In order to overcome this shortcoming
of our new FM-index variants we implemented two speed optimization methods that are
presented in the next section.

4.7 Time Optimization Methods

In this section we will present the results of the new speed up optimizations for the FM-
index that have been described in Section 3.8.1 and Section 3.8.2.

We applied the two optimization methods to the Drosophila melanogaster genome and
obtained the results shown in Figure 4.21.

While there are only marginal differences between the range optimized and the original
FM-index search, shown in Figure 4.21(a), a significant improvement in the search time
can be observed for the text optimized method, shown in Figure 4.21(b).

One possible explanation that range control does not enhance the speed are again cache
effects, since (as already discussed in former sections) the counting as well as the localiza-
tion phase are prone to cause cache misses. However, even though the two bounds sp and
ep have to be computed, the necessary information might only be loaded once into cache
when sp and ep are close enough to each other. Therefore, the range control method did
not achieve the desired results, because it still was not able to circumvent cache effects.

In contrast, the text verification optimization reduces the effect of cache effects dramat-
ically. As soon as sp and ep are equal, the method identifies the location of the remaining
prefix in the original text. Due to the compression of the SA, first the location of the pat-
tern has to be computed (which causes cache effects). However, afterwards cache effects
only occur if the identified text or the pattern exceed the cache size limit. Further, the
remaining prefix of the pattern is already verified during the localization phase, such that
this step does not have to be repeated.

It is interesting to see that the most significant decrease in time consumption can be
observed for a SA compression rate of 100. The reason for this is that the localization is
already integrated into the search and does not consume additional time. This especially
holds for short patterns, since in those cases the localization phase demands a high per-
centage of the overall time. However, it does not explain why the overall time decreased
from pattern length 40 to 80 and from pattern length 80 to 160. The reason for this
behaviour is the higher number of matches, as can be seen in Table 4.2.

4.8 Application to String Sets

After we have extensively described and discussed the results gained for single strings, we
will change the focus to sets of strings. Since the search procedure for strings and string
sets is identical and the additional memory consumption for the SA (which is now a string
of pairs, as described in Section3.10) is the same for all indices, we will not repeat the
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(a) Search times for the Drosophila melanogaster genome for the original FM-index
search and the range control optimization methods as well as for the ESA-index.
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Figure 4.21: Search times for the Drosophila melanogaster genome for the original FM-
index search, the range control and the text verification optimization methods
as well as for the ESA-index. WTRO denotes the range control optimization
applied to WT, while WTTO denotes the text optimization method applied
to WT. Note that both axes are scaled logarithmically in each figure.

whole analysis of the previous sections. Instead, we will only point out the main differences
of the two input formats that can be seen in Figure 4.22.

Note that in difference to the benchmarking of single strings, now we use a text that is
not contiguous, but consists of 100,000 strings of length 320. Those strings, as well as the
patterns, were generated in the same fashion as before.
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In contrast to the search time behaviour of the FM-index on strings, now the wavelet
tree based index that incorporates an extra node representing the $ is both faster and
more memory efficient than the other wavelet tree based version.

The reason for this is the number of $ signs. While only one position has to be stored
in the case of a single string, there are several in the case of a string set, depending on the
number of included strings. We solved this problem using a rank support bit string (RSBS)
indicating the $ positions. The extra node requires less memory than the RSBS, which
explains the smaller memory consumption for the FM-index implementation incorporating
the additional node.

The speed advantage is also a result of a more compressed representation of the $
positions for the FM-index with the extra node for the $. Here cache effects occur not as
often, because the $ signs are closer together, reducing the probability of the need to load
new information into the cache. In contrast, the $ signs of the FM-index substituting the
$ can be distributed over the whole length of TBWT .
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Figure 4.22: Search times of the different FM-index implementation taking a set of strings
as input.
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5 Conclusion and Outlook

The technological development in the field of genome research has resulted in a massive
generation of data that has to be stored and analyzed. The enormous amount of informa-
tion demands special data structures and algorithms for an efficient analysis. This need is
met by the open source library SeqAn that aims at providing sophisticated and up-to-date
software for biological sequences.

In this thesis we designed, implemented and compared different FM-index variants in
SeqAn. We compared several existing designs with a focus on their realization of the
occurrence table data structure, the core module of the FM-index. Based on the results,
we chose the wavelet tree data structure to be the most suitable for this task.

In order to realize a memory efficient wavelet tree that quickly returns an occurrence
query, we designed a sophisticated tree structure and implemented a rank support bit
string, which is able to return the rank of a specified position in constant time. To
complete the FM-index we also designed a compressed suffix array as well as a prefix-sum
table that is applicable to non-finite alphabets.

We implemented two wavelet tree based variants that process the $ sign necessary for
an efficient Burrows-Wheeler Transform. The first variant is based on a substitution of
this sign, while the second one incorporates an extra node for the $. Furthermore, for a
comparison we created a third FM-index version that is based on a 2-dimensional array.

In a benchmarking study we analyzed the different FM-index versions in regard to
pattern search time and memory efficiency. We also applied our methods to real world
data sets and compared them to the enhanced suffix array index of SeqAn (ESA-index)
and two FM-index implementations from the Pizza&Chili Corpus.

The benchmarking showed that the wavelet tree based variants are far more memory effi-
cient than the array based index. Further, depending on the occurrence table compression
rate, the wavelet tree based implementations are also faster.

In comparison to other indices, our wavelet tree based variants are much more memory
efficient than the ESA-index, and for the larger genome even outperform the Pizza&Chili
Corpus indices. In addition, all of our new FM-indices are faster than the indices of
the Pizza&Chili Corpus. We have also shown that while the ESA-index is the most
memory intensive index, it is the fastest one, which is especially obvious for large sequences.
Therefore, two speed optimization extensions have been incorporated in the new FM-index
variants.

Further, we provided a suffix trie iterator that can be used for inexact pattern search.

Another characteristic of our FM-index implementation is its ability to also accept sets
of strings as the input.

Further, future versions shall be extended to except an even larger range of input in-
stances. For instance, though our focus was to provide a data structure efficient for
biological sequences it shall also be applicable to other kinds of texts, for example those
based on very large alphabets. We already adapted the prefix-sum table to handle large
alphabets, though (due to time constrains) exhaustive testing and verification remains a
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future task.
Furthermore, it would be interesting to exchange our wavelet tree structure implemen-

tation with another one including pointers from a parent node to its child nodes. In doing
so, at the cost of additional memory one could spare a few of the currently necessary
comparisons and hence further decrease the running time.

Another speed optimization approach would be to exchange the whole wavelet tree with
another occurrence table data structure in which the number of occurrences is encoded
with a rank support bit string for each character. In doing so, one could discard the tree
traversal and directly access the correct bit string, again at the cost of additional memory.

All in all, we created a generically designed and powerful extension to the SeqAn library
that is both memory efficient and supports fast pattern searching.
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