
A Way Forward in Parallelising Dynamic Languages

Remigius Meier
Department of Computer Science

ETH Zürich, Switzerland
remi.meier@inf.ethz.ch

Armin Rigo
www.pypy.org
arigo@tunes.org

Abstract
Dynamic languages became very popular in recent years. At some
point, the need for concurrency arose, and many of them made the
choice to use a single global interpreter lock (GIL) to synchronise
the interpreter in a multithreading scenario. This choice, however,
makes it impossible to actually run code in parallel.

Here we want to compare different approaches to replacing the
GIL with a technology that allows parallel execution. We look
at fine-grained locking, shared-nothing, and transactional memory
(TM) approaches. We argue that software-based TM systems are
the most promising, especially since they also enable the introduc-
tion of large, parallelisable atomic blocks as a better synchronisa-
tion mechanism in the language.

Keywords transactional memory, dynamic languages, parallelism,
global interpreter lock

1. Introduction
In a world where computers get more and more cores and single-
thread performance increases less and less every year, many dy-
namic languages have a problem. While there is certainly a lot of
popularity around languages like Python and Ruby, their ability to
make use of multiple cores is somewhat limited. For ease of imple-
mentation, they chose to use a single, global interpreter lock (GIL)
to synchronise the execution of code in multiple threads. While this
is a straight-forward way to eliminate synchronisation issues in the
interpreter, it prevents parallel execution. Code executed in multi-
ple threads will be serialised over this GIL so that only one thread
can execute at a time.

There exist several solutions and workarounds to remove or
avoid the GIL in order to benefit from multiple cores. We are going
to discuss several of them and try to find the best way forward. The
first approach uses fine-grained locking to replace the single GIL.
Then there are shared-nothing models that use for example multiple
processes with multiple interpreters and explicit message passing.
Finally, one can also directly replace the GIL with transactional
memory (TM), either software-based (STM) or hardware-based
(HTM).

The approach that wins in the end should perform similarly for
single-threaded execution as compared to the GIL and be able to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICOOOLPS’14, July 28 2014, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-4503-2914-9/14/07. . . $15.00.
http://dx.doi.org/10.1145/2633301.2633305

execute code in parallel on multiple cores. Furthermore, we will
also take into account the compatibility with existing code that may
already use threads for concurrency, as well as the changes that are
required to the interpreter itself.

These requirements are not easy to meet. The author’s position
is that STM provides the best way forward. While STM currently
has a big performance problem, it gets more points in the other
categories. We think that it is the only solution that also provides
a better synchronisation mechanism to the application in the form
of parallelisable atomic blocks. In the following section, we try to
present a balanced view of the compared approaches.

2. Discussion
In this section we first explain the motivation for using a GIL
and then examine different approaches to remove or avoid it –
highlighting their advantages and disadvantages.

2.1 Why is there a GIL?
The GIL is a very simple synchronisation mechanism for support-
ing multithreading in an interpreter. The basic guarantee is that the
GIL may only be released in between bytecode instructions1. The
interpreter can thus rely on complete isolation and atomicity for
the instructions’ execution. Also, accesses to data structures like
dictionaries and lists happen atomically and do not need additional
protection from data races when shared between threads.

The GIL also provides the application with a sequential consis-
tency model [13]. This can be very valuable as it means less sur-
prises for the programmer. For example in Table 1, the program-
mer can expect the critical section to only be entered by one thread.
On the other hand, if the model allowed to buffer the writes, both
threads may enter the critical section at the same time.

Thread 1 Thread 2
A = B = 0

A = 1 B = 1
if B == 0: if A == 0:

only one thread enters here
(e.g. critical section)

Table 1. Critical section with a sequential consistency model.

As a consequence, applications can rely on certain operations
to be atomic and that they will always be executed in the order in
which they appear in the code. While depending on this may not
always be a good idea, it is done in practice. A GIL-replacement

1 This also applies to Abstract Syntax Tree (AST) interpreters, where the
GIL may only be released between interpreting two AST nodes. We talk
about “bytecode instructions” in a general way as a basic step in the
interpreter.

should therefore uphold these guarantees, while preferably also be
as easily implementable as a GIL for the interpreter. The latter
can be especially important since many of these languages are
developed and maintained by very large open-source communities,
which are not easy to coordinate.

The GIL also allows for easy integration with external C li-
braries that may not be thread-safe. For the duration of the calls, we
simply do not release the GIL. External libraries that are explicitly
thread-safe can voluntarily release the GIL themselves in order to
still provide some parallelism. This is done for example for poten-
tially long I/O operations. Consequently, I/O-bound, multithreaded
applications can actually parallelise to some degree. Again, a po-
tential solution should be able to integrate with external libraries
with similar ease. We will however focus our argumentation more
on running code in the interpreted language in parallel, not the ex-
ternal C code.

Since the GIL is mostly an implementation detail of the in-
terpreter, it is not exposed to the application running on top of
it. To synchronise memory accesses in applications using threads,
the state-of-the-art still means explicit locking everywhere. It is
known that using locks for synchronisation can be hard at times [14,
15, 18]. They are non-composable, have overhead, may deadlock,
limit scalability, and add to the overall complexity of the program
logic. For a better parallel programming model for dynamic lan-
guages, we propose another, well-known synchronisation mech-
anism called atomic blocks [16, 17]. This is also suggested by
[14, 15] as an easier mechanism than locks.

Atomic blocks are composable, deadlock-free, higher-level and
expose useful atomicity and isolation guarantees to the application
for a series of instructions. Interpreters using a GIL can simply
guarantee that the GIL is not released during the execution of the
atomic block. Of course, this still means that no two atomic blocks
can execute in parallel or even concurrently. Potential solutions are
preferable if they provide a good way to implement atomic blocks
(or another, comparable synchronisation mechanism) that are also
able to be executed in parallel.

2.2 Potential Solutions
For the discussion, we define a set of criteria to evaluate the poten-
tial solutions for removing or avoiding the GIL and its limitations:

Performance: How much does the approach impact performance
on a single thread and how much on multiple threads? Can it
make use of parallelism?

Existing applications: How big are the changes required to inte-
grate with and parallelise existing applications?

Better synchronisation: Does the approach enable better, par-
allelisable synchronisation mechanisms for applications (e.g.
atomic blocks)? Many synchronisation mechanisms can be built
on top of all solutions (e.g. message passing, monitors). We
look for mechanisms that are directly enabled by the contend-
ing approaches.

Implementation: How difficult is it to implement the approach in
the interpreter?

External libraries: Does the approach allow for easy integration
of external libraries?

2.2.1 Fine-Grained Locking
The first obvious candidate to replace the GIL is to use multiple
locks instead of a single global lock. By refining the granularity of
the locking approach, we gain the ability to run code that does not
access the same objects in parallel. What we lose instead is the sim-
plicity of the GIL approach. With every additional lock, the likeli-
ness of deadlocks grows, as well as the overhead that acquiring and

releasing locks produces. The former means that sometimes it is
necessary to fall back to less fine-grained locking, preventing some
potential parallelism in order to keep the complexity manageable.
The latter means that we lose a bit of performance compared to the
GIL, which requires much less acquire-release operations.

Jython [2] is one project that implements an interpreter for
Python on the Java Virtual Machine (JVM) and that uses fine-
grained locking2 to correctly synchronise the interpreter. For a lan-
guage like Python, one needs quite a few, carefully placed locks –
every dictionary, list, instance, or mutable object in general needs
a lock. Compared to e.g. Java, object attributes are backed by a
dictionary. Accesses to it must be synchronised because the inter-
preter could crash otherwise. Since there is no central location for
all these locks, the complexity of the implementation is quite a bit
larger compared to using a GIL. Integrating external, non-thread-
safe libraries should however be very simple too. One can simply
use one lock per library to avoid this issue.

In the end, fine-grained locking can transparently replace the
GIL and therefore parallelise existing applications, generally with-
out any changes. An implementation has to follow the GIL seman-
tics very closely, otherwise it may expose some latent data races
in existing applications which are just not exposed with a GIL3.
This approach does however not provide a better parallelising syn-
chronisation mechanism to the application and still requires explicit
locking in the application.

2.2.2 Shared-Nothing
There are also approaches that work around the GIL instead of try-
ing to replace it. If an application can be split into completely inde-
pendent parts that only very rarely need to share something, or only
do so via an external program like a database, then it is sensible to
have one GIL per independent part. At the extreme, there are ap-
plications that parallelise perfectly simply by running independent
processes; some web servers and some numeric computations do.

We will consider here a slightly more general approach: the
multiprocessing [3] module of Python. In essence, it uses process-
forking to provide the application with multiple interpreters that
can run in parallel. Communication is then done explicitly through
pipes.4

The model of explicit communication is sometimes seen as a
superior way to synchronise concurrent applications because of
its explicitness. However, not every application fits well into this
model and its applicability is therefore limited. Performance is
good as long as the application does not need to communicate a
lot, because inter-process communication is relatively expensive.
Also the implementation of this approach is very cheap since one
can actually take an unmodified GIL-supported interpreter and run
several of them in parallel. That way, we also inherit the easy
integration of external libraries without any changes.

2.2.3 Transactional Memory
Transactional memory (TM) can be used as a direct replacement
for a single global lock. Transactions provide the same atomicity
and isolation guarantees as the GIL provides for the execution of
bytecode instructions. So instead of acquiring and releasing the

2 The performance impact of fine-grained locking is milder on the JVM than
it would be in a typical piece of C code; see e.g. [20].
3 There are rare cases where not having atomic bytecodes actually changes
the semantics. E.g. in Jython, dict1.update(dict2) is not atomic: it first
reads data from dict2 with dict2’s lock, and then puts it into dict1 with
dict1’s lock. A lot can happen in-between.
4 There are multiple alternative designs like e.g. actors or tuple spaces.
Since they are similar and do not replace the GIL directly, we focus on
the example of multiprocessing.

GIL Fine-grained locking Shared-nothing HTM STM
Performance (single threaded) ++ + ++ ++ --
Performance (multithreaded) -- + + + +
Existing applications ++ ++ -- ++ ++
Better synchronisation o o + o ++
Implementation ++ - ++ ++ ++
External libraries ++ ++ ++ ++ ++

Table 2. Comparison between the approaches (--/-/o/+/++)

GIL between these instructions, this approach runs the protected
instructions inside transactions.

TM can be implemented in software (STM) or in hardware
(HTM). There are also hybrid approaches, which combine the two.
We count these hybrid approaches as STM, since they usually
provide the same capabilities as software-only approaches but with
different performance characteristics. We will now first look at
HTM, which recently gained a lot of popularity by its introduction
in common desktop CPUs from Intel (Haswell generation) [4, 19].

HTM provides us with transactions like any TM system does. It
can be used as a direct replacement for the GIL [4, 8, 9]. However,
as is common with hardware-only solutions, there are quite a few
limitations that can not be lifted easily. For this comparison, we
look at the implementation of Intel in recent Haswell generation
CPUs.

HTM in these CPUs works on the level of caches. This has a few
consequences like false-sharing on the cache-line level, and most
importantly it limits the amount of memory that can be accessed
within a transaction. This transaction-length limitation makes it
necessary to have a fallback in place in case this limit is reached.
In recent attempts, the usual fallback is the GIL [4, 9]. In our
experiments, the current generation of HTM proved to be very
fragile and thus needing the fallback very often. Consequently,
scalability suffered a lot from this.

The performance of HTM is pretty good as it does not intro-
duce much overhead (< 40% [4]). And it can transparently par-
allelise existing applications to some degree. The implementation
is very straight-forward because it directly replaces the GIL in a
central place. HTM is also directly compatible with any external
library that needs to be integrated and synchronised for use in mul-
tiple threads. The one thing that is missing is support for a better
synchronisation mechanism for the application. It is not reasonable
in general to expose the hardware-transactions to the application
in the form of atomic blocks, because doing so would require the
system to support much longer transactions.

STM provides all the same benefits as HTM except for its perfor-
mance. It is not unusual for the overhead introduced by STM to be
between 100% to even 1000% [6, 7]. While STM systems often
scale very well to a big number of threads and eventually overtake
the single-threaded execution, they often provide no benefits at all
for low numbers of threads (1-8). There are some attempts [5, 12]
that can reduce the overhead a lot, but scale badly or only for cer-
tain workloads. Often the benefits on more than one thread are too
small in real world applications.

However, STM compared to HTM does not suffer from the
same restricting limitations. Transactions can in principle be ar-
bitrarily long. This makes it possible to expose transactions to the
application in the form of atomic blocks – thereby attacking the is-
sues of parallelisation and synchronisation in a unified way. While
many synchronisation mechanisms can be bolted on top of any GIL
replacement, this is the only approach that directly enables a bet-
ter, parallelising synchronisation mechanism than locks. We think
this is a very important point because it not only gives dynamic

languages the ability to parallelise (already commonplace in most
other languages), but also pushes parallel programming forward in
a way that other approaches cannot. Together with sequential con-
sistency, it provides an environment for parallel applications that
has much less surprises than e.g. Java or C#.

On the implementation level, while one can argue that STM re-
quires the insertion of read and write barriers in the whole inter-
preter, this can be done automatically and locally by a program
transformation [10]. There are attempts to do the same for fine-
grained locking [11] but they require a whole program analysis
since locks are inherently non-composable — and their effective-
ness is doubtful in our use case, since we execute bytecode instruc-
tions in any order defined by a script only known at runtime. This
makes it close to impossible to order locks consistently or to know
in advance which locks a transaction will need.

3. The Way Forward
Following the above argumentation for each approach, we assem-
bled a general overview in Table 2. The points were assigned ac-
cording to the criteria described in 2.2. Since the criteria are de-
fined intuitively, there are no formal justifications for the number
of points. The reader is thus advised to take the result with a grain
of salt and form their own opinion.

The general picture is everything else than clear. It looks like
HTM may be a good solution to replace the GIL in the near future.
Current implementations are however far too limiting, not widely
available, and do not provide good scaling.

Allowing for parallel execution just means that dynamic lan-
guages catch up to all other languages that already provide real
parallelism. This is why we think that only the STM approach is a
viable solution in the long-term. It unifies both, the simple memory
model (sequential consistency) and the synchronisation of memory
accesses using composable atomic blocks. It is not just a simple
GIL replacement.

Unfortunately, STM has a big performance problem, which cur-
rently makes it lose this comparison. Particularly, for our use case
there is not much static information available since we are execut-
ing a program only known at runtime. Additionally, replacing the
GIL means running every part of the application in transactions, so
there is not much code that can run outside and that can be opti-
mised better. The performance of the TM system is vital.

One way to get more performance is to develop STM systems
that make better use of low-level features in existing OS kernels.
We are currently working on an STM system that makes use of
several such features like virtual memory and memory segmenta-
tion. We further tailor the system to the discussed use case, which
gives us an advantage over other STM systems that try to be more
general or simply focus on other use cases. With this approach,
initial results suggest that we can keep the overhead of STM well
below 50%. A hybrid TM system, which also uses HTM to acceler-
ate certain tasks, looks like a very promising direction of research
too.

We think that further work to reduce the overhead of STM is
very worthwhile. In fact, considering some analogies that have been

drawn between garbage collection and transactional memory [1],
we think that it is worthwhile to focus the STM research more
specifically onto the context shown in this paper – for use in im-
plementations of high-level languages, rather than as a tool directly
used by the programmer.

Acknowledgments
We would like to thank Maciej Fijałkowski and Carl Friedrich Bolz
for their valuable inputs and the many fruitful discussions.

References
[1] Dan Grossman. 2007. The transactional memory / garbage collection

analogy. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications (OOPSLA
’07).

[2] The Jython Project, www.jython.org

[3] The Multiprocessing Module of Python, docs.python.org/2/
library/multiprocessing.html

[4] Odaira, Rei, Jose G. Castanos, and Hisanobu Tomari. ”Eliminating
global interpreter locks in Ruby through hardware transactional
memory.” Proceedings of the 19th ACM SIGPLAN symposium on
Principles and practice of parallel programming. ACM, 2014.

[5] Jons-Tobias Wamhoff, Christof Fetzer, Pascal Felber, Etienne Rivière,
and Gilles Muller. 2013. FastLane: improving performance of software
transactional memory for low thread counts. SIGPLAN Not. 48, 8
(February 2013), 113-122.

[6] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid
Guerraoui. 2011. Why STM can be more than a research toy. Commun.
ACM 54, 4 (April 2011), 70-77.

[7] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software
transactional memory: why is it only a research toy?. Commun. ACM 51,
11 (November 2008), 40-46.

[8] Nicholas Riley and Craig Zilles. 2006. Hardware transactional memory
support for lightweight dynamic language evolution. In Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications (OOPSLA ’06). ACM, New York,
NY, USA

[9] Fuad Tabba. 2010. Adding concurrency in python using a commercial
processor’s hardware transactional memory support. SIGARCH Comput.
Archit. News 38, 5 (April 2010)

[10] Pascal Felber and Torvald Riegel and Christof Fetzer and Martin
Süßkraut and Ulrich Müller and Heiko Sturzrehm. 2007. Transactifying
applications using an open compiler framework. TRANSACT, August
(2007): 4-6.

[11] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. 2006. Au-
tolocker: synchronization inference for atomic sections. In Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL ’06). ACM, New York, NY, USA

[12] Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, and Michael
Spear. 2010. Transactional mutex locks. In Proceedings of the 16th
international Euro-Par conference on Parallel processing: Part II (Euro-
Par’10), Pasqua D’Ambra, Mario Guarracino, and Domenico Talia
(Eds.). Springer-Verlag, Berlin, Heidelberg, 2-13.

[13] Lamport, Leslie. ”How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.” Computers, IEEE Transactions
on 100.9 (1979): 690-691.

[14] Victor Pankratius and Ali-Reza Adl-Tabatabai. 2011. A study of
transactional memory vs. locks in practice. In Proceedings of the
twenty-third annual ACM symposium on Parallelism in algorithms and
architectures (SPAA ’11). ACM, New York, NY, USA

[15] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel.
2010. Is transactional programming actually easier?. SIGPLAN Not. 45,
5 (January 2010), 47-56.

[16] Tim Harris and Keir Fraser. 2003. Language support for lightweight
transactions. In Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and
applications (OOPSLA ’03).

[17] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice
Herlihy. 2005. Composable memory transactions. In Proceedings of
the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP ’05).

[18] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-
ing from mistakes: a comprehensive study on real world concurrency bug
characteristics. SIGARCH Comput. Archit. News 36, 1 (March 2008),
329-339.

[19] Leis, Viktor, Alfons Kemper, and Thomas Neumann. ”Exploiting
Hardware Transactional Memory in Main-Memory Databases.” Proc. of
ICDE. 2014.

[20] Kenneth Russell and David Detlefs. 2006. Eliminating
synchronization-related atomic operations with biased locking and bulk
rebiasing. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and applications
(OOPSLA ’06).

www.jython.org
docs.python.org/2/library/multiprocessing.html
docs.python.org/2/library/multiprocessing.html

	Introduction
	Discussion
	Why is there a GIL?
	Potential Solutions
	Fine-Grained Locking
	Shared-Nothing
	Transactional Memory

	The Way Forward

