
A study of code abstraction
Patrick Lambert
[http://dendory.net]

October 15, 2014

Abstract

Modern developers are shielded from the inner workings of com-
puters and networks thanks to several layers of code abstraction.
We'll dig into those layers from a single line of Perl code, down to
the bytes that get produced at the bottom of the API stack.

A study of code abstraction 1

1 Introduction

In the 80s and 90s, anyone who hoped to write a functional script
of any kind would have to delve deep into the inner workings of the
machine they were working on. For network code, it would be even
more challenging, since there were many types of networks, and many
systems that spoke different languages, had different file structures,
and so on. The standards and APIs were just beginning to be written,
and more often than not that meant your code, and in turn you as a
developer, had to understand exactly what went on deep down in the
system.

Now, things are obviously very different. As APIs matured, it made
no sense for everyone to keep reinventing the wheel. As such, code
abstraction became the norm. Whether you write in PHP, Perl, Python
or Visual C#, you're typically dealing with functions that come from
libraries or modules, which in turn talk to other functions, and so on
until you end up with an unknown number of abstraction layers between
what you write and what actually happens. This makes things easier
by removing complexities, but it also removes us from understanding
what really happens when we write a line of code, and creates more
dependencies on other snippets of code which in turn may contain bugs.

In this document, I will take a single line of Perl code, and follow it
down through the modules, all the way to the actual bytes going out on
the network. I picked Perl because it's a language I know, because it's
available for free on any system, and because it's fairly easy to dig into
its various modules.

1.1 Audience

This document is intended for anyone interested in coding and in the
inner workings of computer systems. It doesn't assume any familiarity
with Perl or a specific language, although having some type of scripting
or coding experience would be useful, along with some experience with
web development. While you may not understand each snippet of code,
the main purpose is to follow the flow all the way down to the lowest
level and realize the amount of work that goes on from a single line of
code.

Having Perl installed and following along isn't necessary, but it could
provide further benefits to try and replicate each layer of abstraction,
seeing how easy or hard it is to accomplish the same task with less and
less dependencies.

A study of code abstraction 2

2 Layers upon layers

The function I selected for this experiment is part of the XML::Feed[1]
module and accomplishes much through a single line of code:

1 my $feed = XML::Feed->parse(URI->new("http://www.reddit.com/.rss"));

What this does is simply go out to the web and fetch an XML file, in
this case an RSS stream from Reddit, and then returns it as a variable
for you to parse. After importing the module and parsing the line, you
can then access the information, in this case the latest news entries
available on the site. Here is a more complete snippet of code you can
try out for yourself to see the whole flow in action:

1 use XML::Feed;
2 use HTML::FormatText::WithLinks;
3 my $feed = XML::Feed->parse(URI->new("http://www.reddit.com/.rss"));
4 foreach my $i ($feed->entries)
5 {
6 print "Title: " . $i->title . "\n";
7 print "Time: " . $i->issued . "\n";
8 print "Link: " . $i->link . "\n";
9 $parsed = HTML::FormatText::WithLinks->new(before_link=>'', after_link=>'',

10 footnote=>'');
11 print $parsed->parse($i->content->body) . "\n\n";
12 }

It's not necessary to understand all of that, but this code basically
loops around each entry gathered from that web site, and then dis-
plays the title, time, link and description of each news entry. It also
uses the HTML::FormatText::WithLinks module to parse the descrip-
tion from HTML into plain text. For this experiment however, we will
solely concern ourselves with the line showed above.

2.1 First layer: Parsing the XML

Digging into the Perl API is fairly easy. If you do an online search
for XML::Feed you will soon find the page on the CPAN site with the
documentation for that particular module. There, you can click the
Source link which will show you the source code for that module. In
our case we're interested in the parse() function.

The parse() function has 46 lines of code, so already after just the
first layer, you can see how much is happening in order to accomplish

A study of code abstraction 3

this one task. Here is the full source code:

1 sub parse {
2 my $class = shift;
3 my($stream, $specified_format) = @_;
4 return $class->error("Stream parameter is required") unless $stream;
5 my $feed = bless {}, $class;
6 my $xml = '';
7 if (UNIVERSAL::isa($stream, 'URI')) {
8 my $ua = LWP::UserAgent->new;
9 $ua->agent(__PACKAGE__ . "/$VERSION");

10 $ua->env_proxy; # force allowing of proxies
11 my $res = URI::Fetch->fetch($stream, UserAgent => $ua)
12 or return $class->error(URI::Fetch->errstr);
13 return $class->error("This feed has been permanently removed")
14 if $res->status == URI::Fetch::URI_GONE();
15 $xml = $res->content;
16 } elsif (ref($stream) eq 'SCALAR') {
17 $xml = $$stream;
18 } elsif (ref($stream)) {
19 while (read($stream, my($chunk), 8192)) {
20 $xml .= $chunk;
21 }
22 } else {
23 open my $fh, $stream
24 or return $class->error("Can't open $stream: $!");
25 while (read $fh, my($chunk), 8192) {
26 $xml .= $chunk;
27 }
28 close $fh;
29 }
30 return $class->error("Can't get feed XML content from $stream")
31 unless $xml;
32 my $format;
33 if ($specified_format) {
34 $format = $specified_format;
35 } else {
36 $format = $feed->identify_format(\$xml)
37 or return $class->error($feed->errstr);
38 }
39

40 my $format_class = join '::', __PACKAGE__, "Format", $format;
41 eval "use $format_class";
42 return $class->error("Unsupported format $format: $@") if $@;
43 bless $feed, $format_class;
44 $feed->init_string(\$xml) or return $class->error($feed->errstr);
45 $feed;
46 }

A study of code abstraction 4

A lot of that is to handle errors and possible edge cases, and then
identify what kind of XML data it is. The actual parsing of the XML is
done in other modules, namely XML::Feed::Format::RSS for RSS feeds,
but we're not going to concern ourselves with that part. In reality,
we're only interested in a small fraction of the function. What parse()
actually does is use the LWP::UserAgent[2] module in order to make the
connection on line 8, since it provides functions to handle proxy servers,
create HTTP headers and more, then it uses URI::Fetch[3] on line 11
which is another module that provides a convenient way of reading web
pages, including support for various features of the HTTP protocol like
compression, caching, error codes and more. Then, it uses the built-in
Perl read() function in order to read the incoming data line by line. Here
are the relevant lines:

1 ...
2 my $ua = LWP::UserAgent->new;
3 ...
4 my $res = URI::Fetch->fetch($stream, UserAgent => $ua)
5 ...
6 open my $fh, $stream
7 ...
8 while (read $fh, my($chunk), 8192) {
9 $xml .= $chunk;

10 }
11 ...

Through these two additional modules, along with the native read()
function, the first abstraction layer can accomplish much through what
is still a fairly small amount of code. Now it's time to go down to the
second layer.

2.2 Second layer: Setting up the connection

2.2.1 Setting a user agent

Before being able to read the file, a connection to the web server has
to be made. If you recall from the last section, this is done by using the
new function from the LWP::UserAgent function. While this module is
fully able to actually go out and make the connection over the network,
in this case the author of the previous layer selected to use new() and
then do some more processing first. Let's look at the code:

1 sub new
2 {
3 # Check for common user mistake

A study of code abstraction 5

4 Carp::croak("Options to LWP::UserAgent should be key/value pairs, not hash
5 reference")
6 if ref($_[1]) eq 'HASH';
7

8 my($class, %cnf) = @_;
9

10 my $agent = delete $cnf{agent};
11 my $from = delete $cnf{from};
12 my $def_headers = delete $cnf{default_headers};
13 my $timeout = delete $cnf{timeout};
14 $timeout = 3*60 unless defined $timeout;
15 my $local_address = delete $cnf{local_address};
16 my $ssl_opts = delete $cnf{ssl_opts} || {};
17 unless (exists $ssl_opts->{verify_hostname}) {
18 # The processing of HTTPS_CA_* below is for compatibility with Crypt::SSLeay
19 if (exists $ENV{PERL_LWP_SSL_VERIFY_HOSTNAME}) {
20 $ssl_opts->{verify_hostname} = $ENV{PERL_LWP_SSL_VERIFY_HOSTNAME};
21 }
22 elsif ($ENV{HTTPS_CA_FILE} || $ENV{HTTPS_CA_DIR}) {
23 # Crypt-SSLeay compatibility (verify peer certificate; but not the hostname)
24 $ssl_opts->{verify_hostname} = 0;
25 $ssl_opts->{SSL_verify_mode} = 1;
26 }
27 else {
28 $ssl_opts->{verify_hostname} = 1;
29 }
30 }
31 unless (exists $ssl_opts->{SSL_ca_file}) {
32 if (my $ca_file = $ENV{PERL_LWP_SSL_CA_FILE} || $ENV{HTTPS_CA_FILE}) {
33 $ssl_opts->{SSL_ca_file} = $ca_file;
34 }
35 }
36 unless (exists $ssl_opts->{SSL_ca_path}) {
37 if (my $ca_path = $ENV{PERL_LWP_SSL_CA_PATH} || $ENV{HTTPS_CA_DIR}) {
38 $ssl_opts->{SSL_ca_path} = $ca_path;
39 }
40 }
41 my $use_eval = delete $cnf{use_eval};
42 $use_eval = 1 unless defined $use_eval;
43 my $parse_head = delete $cnf{parse_head};
44 $parse_head = 1 unless defined $parse_head;
45 my $show_progress = delete $cnf{show_progress};
46 my $max_size = delete $cnf{max_size};
47 my $max_redirect = delete $cnf{max_redirect};
48 $max_redirect = 7 unless defined $max_redirect;
49 my $env_proxy = exists $cnf{env_proxy} ? delete $cnf{env_proxy} :
50 $ENV{PERL_LWP_ENV_PROXY};
51

52 my $cookie_jar = delete $cnf{cookie_jar};

A study of code abstraction 6

53 my $conn_cache = delete $cnf{conn_cache};
54 my $keep_alive = delete $cnf{keep_alive};
55

56 Carp::croak("Can't mix conn_cache and keep_alive")
57 if $conn_cache && $keep_alive;
58

59 my $protocols_allowed = delete $cnf{protocols_allowed};
60 my $protocols_forbidden = delete $cnf{protocols_forbidden};
61

62 my $requests_redirectable = delete $cnf{requests_redirectable};
63 $requests_redirectable = ['GET', 'HEAD']
64 unless defined $requests_redirectable;
65

66 # Actually ""s are just as good as 0's, but for concision we'll just say:
67 Carp::croak("protocols_allowed has to be an arrayref or 0, not
68 \"$protocols_allowed\"!")
69 if $protocols_allowed and ref($protocols_allowed) ne 'ARRAY';
70 Carp::croak("protocols_forbidden has to be an arrayref or 0, not
71 \"$protocols_forbidden\"!")
72 if $protocols_forbidden and ref($protocols_forbidden) ne 'ARRAY';
73 Carp::croak("requests_redirectable has to be an arrayref or 0, not
74 \"$requests_redirectable\"!")
75 if $requests_redirectable and ref($requests_redirectable) ne 'ARRAY';
76

77

78 if (%cnf && $^W) {
79 Carp::carp("Unrecognized LWP::UserAgent options: @{[sort keys %cnf]}");
80 }
81

82 my $self = bless {
83 def_headers => $def_headers,
84 timeout => $timeout,
85 local_address => $local_address,
86 ssl_opts => $ssl_opts,
87 use_eval => $use_eval,
88 show_progress=> $show_progress,
89 max_size => $max_size,
90 max_redirect => $max_redirect,
91 proxy => {},
92 no_proxy => [],
93 protocols_allowed => $protocols_allowed,
94 protocols_forbidden => $protocols_forbidden,
95 requests_redirectable => $requests_redirectable,
96 }, $class;
97

98 $self->agent(defined($agent) ? $agent : $class->_agent)
99 if defined($agent) || !$def_headers || !$def_headers->header("User-Agent");

100 $self->from($from) if $from;
101 $self->cookie_jar($cookie_jar) if $cookie_jar;

A study of code abstraction 7

102 $self->parse_head($parse_head);
103 $self->env_proxy if $env_proxy;
104

105 $self->protocols_allowed($protocols_allowed) if $protocols_allowed;
106 $self->protocols_forbidden($protocols_forbidden) if $protocols_forbidden;
107

108 if ($keep_alive) {
109 $conn_cache ||= { total_capacity => $keep_alive };
110 }
111 $self->conn_cache($conn_cache) if $conn_cache;
112

113 return $self;
114 }

Okay, so the amount of code is starting to be staggering. Fortunately,
again only a small portion is of interest for our purposes. Basically, the
goal of this function is to create a new instance of the LWP::UserAgent
class and configure various parameters to do with the upcoming con-
nection, such as the user agent to pass to the server, how long the
connection should stay active before timing out, which HTTP headers
should be sent out, how to handle encryption in the case of SSL web
sites, how to store any cookies that the site decides to send, and so on.

As you can imagine, if every developer had to worry about all of these
things every time they wanted to fetch a file from a web site, it would
be quite inconvenient. In our particular case, no parameter is passed
out to the new() function so we're basically accepting all the defaults,
then parse() above is making two additional changes, namely setting a
custom user agent, and copying the system-wide proxy settings to the
function:

1 $ua->agent(__PACKAGE__ . "/$VERSION");
2 $ua->env_proxy; # force allowing of proxies

Take note of what the user agent is being set to. When we get down
through the layers and look at the code that actually goes out on the
network, we'll get to see it in action.

2.2.2 Opening a stream

So far we've gotten a LWP::UserAgent object, and now we need to
open up a stream. If you recall from section 2.1, the user agent variable
is $ua, which is then passed to the fetch() function from the URI::Fetch
module. Let's look at this latest one. Be ready to scroll:

1 sub fetch {

A study of code abstraction 8

2 my $class = shift;
3 my($uri, %param) = @_;
4

5 # get user parameters
6 my $cache = delete $param{Cache};
7 my $ua = delete $param{UserAgent};
8 my $p_etag = delete $param{ETag};
9 my $p_lastmod = delete $param{LastModified};

10 my $content_hook = delete $param{ContentAlterHook};
11 my $p_no_net = delete $param{NoNetwork};
12 my $p_cache_grep = delete $param{CacheEntryGrep};
13 my $freeze = delete $param{Freeze};
14 my $thaw = delete $param{Thaw};
15 my $force = delete $param{ForceResponse};
16 croak("Unknown parameters: " . join(", ", keys %param))
17 if %param;
18

19 my $ref;
20 if ($cache) {
21 unless ($freeze && $thaw) {
22 require Storable;
23 $thaw = \&Storable::thaw;
24 $freeze = \&Storable::freeze;
25 }
26 if (my $blob = $cache->get($uri)) {
27 $ref = $thaw->($blob);
28 }
29 }
30

31 # NoNetwork support (see pod docs below for logic clarification)
32 if ($p_no_net) {
33 croak("Invalid NoNetworkValue (negative)") if $p_no_net < 0;
34 if ($ref && ($p_no_net == 1 || $ref->{CacheTime} > time() - $p_no_net)) {
35 my $fetch = URI::Fetch::Response->new;
36 $fetch->status(URI_OK);
37 $fetch->content($ref->{Content});
38 $fetch->etag($ref->{ETag});
39 $fetch->last_modified($ref->{LastModified});
40 $fetch->content_type($ref->{ContentType});
41 return $fetch;
42 }
43 return undef if $p_no_net == 1;
44 }
45

46 $ua ||= do {
47 my $ua = LWP::UserAgent->new;
48 $ua->agent(join '/', $class, $class->VERSION);
49 $ua->env_proxy;
50 $ua;

A study of code abstraction 9

51 };
52

53 my $req = HTTP::Request->new(GET => $uri);
54 if ($HAS_ZLIB) {
55 $req->header('Accept-Encoding', 'gzip');
56 }
57 if (my $etag = ($p_etag || $ref->{ETag})) {
58 $req->header('If-None-Match', $etag);
59 }
60 if (my $ts = ($p_lastmod || $ref->{LastModified})) {
61 $req->if_modified_since($ts);
62 }
63

64 my $res = $ua->request($req);
65 my $fetch = URI::Fetch::Response->new;
66 $fetch->uri($uri);
67 $fetch->http_status($res->code);
68 $fetch->http_response($res);
69 $fetch->content_type($res->header('Content-Type'));
70 if ($res->previous && $res->previous->code ==
71 HTTP::Status::RC_MOVED_PERMANENTLY()) {
72 $fetch->status(URI_MOVED_PERMANENTLY);
73 $fetch->uri($res->previous->header('Location'));
74 } elsif ($res->code == HTTP::Status::RC_GONE()) {
75 $fetch->status(URI_GONE);
76 $fetch->uri(undef);
77 return $fetch;
78 } elsif ($res->code == HTTP::Status::RC_NOT_MODIFIED()) {
79 $fetch->status(URI_NOT_MODIFIED);
80 $fetch->content($ref->{Content});
81 $fetch->etag($ref->{ETag});
82 $fetch->last_modified($ref->{LastModified});
83 $fetch->content_type($ref->{ContentType});
84 return $fetch;
85 } elsif (!$res->is_success) {
86 return $force ? $fetch : $class->error($res->message);
87

88 } else {
89 $fetch->status(URI_OK);
90 }
91 $fetch->last_modified($res->last_modified);
92 $fetch->etag($res->header('ETag'));
93 my $content = $res->content;
94 if ($res->content_encoding && $res->content_encoding eq 'gzip') {
95 $content = Compress::Zlib::memGunzip($content);
96 }
97

98 # let caller-defined transform hook modify the result that'll be
99 # cached. perhaps the caller only wants the <head> section of

A study of code abstraction 10

100 # HTML, or wants to change the content to a parsed datastructure
101 # already serialized with Storable.
102 if ($content_hook) {
103 croak("ContentAlterHook is not a subref") unless ref $content_hook eq
104 "CODE";
105 $content_hook->(\$content);
106 }
107

108 $fetch->content($content);
109

110 # cache by default, if there's a cache. but let callers cancel
111 # the cache action by defining a cache grep hook
112 if ($cache &&
113 ($p_cache_grep ? $p_cache_grep->($fetch) : 1)) {
114

115 $cache->set($uri, $freeze->({
116 ETag => $fetch->etag,
117 LastModified => $fetch->last_modified,
118 Content => $fetch->content,
119 CacheTime => time(),
120 ContentType => $fetch->content_type,
121 }));
122 }
123 $fetch;
124 }

Let's break down what the function does. First, it accepts a number
of parameters which get set after line 5. As we've seen in 2.1, only two
get passed on in our case: the stream variable, which will be used to
read the information from the network, and the user agent class. Then,
this function has a number of conditional statements to deal with all of
these potential parameters. In our case, most of them are ignored since
we aren't dealing with cache, serialization, content handling, and so on.
Instead, we go right into the interesting part at line 53 which deals with
opening the network connection, and then after line 64, dealing with
the response from the server. Here is the relevant code:

1 my $req = HTTP::Request->new(GET => $uri);
2 ...
3 my $res = $ua->request($req);
4 my $fetch = URI::Fetch::Response->new;
5 $fetch->uri($uri);

As you can see, once again this function doesn't actually have any
network code. It creates a new object from the HTTP::Request[4] mod-
ule, then uses the request() function from LWP::UserAgent to make the
request on the opened connection, which will be our third abstraction
layer. Then, we see another newmodule being used, URI::Fetch::Response[5]

A study of code abstraction 11

in order to parse the various response codes. A web server can return a
number of codes along with the normal HTTP headers, such as whether
the connection was successful, if the file was moved, if the requested
item doesn't exist, and so on. This is what we see happening in the rest
of the function.

2.3 Third layer: Making the request

Let's recap. So far, we've been through two different abstraction lay-
ers. After using the XML::Feed module to parse the XML file from Red-
dit, we go down into LWP::UserAgent and URI::Fetch in order to make
a new user agent object, and pass it to fetch() in order to get data from
a site. Now, we go down one more layer into HTTP::Request->new()
to prepare the request and LWP::UserAgent->request() to send it out.

2.3.1 Preparing the request

The first thing that the previous layer does is calling the new() function
from HTTP::Request. Let's look at the code:

1 sub new
2 {
3 my($class, $method, $uri, $header, $content) = @_;
4 my $self = $class->SUPER::new($header, $content);
5 $self->method($method);
6 $self->uri($uri);
7 $self;
8 }

While this is a tiny function, the amount of work it does is deceiv-
ing. On line 4, it actually calls the new() function of its base module,
HTTP::Message[6]. We'll skip that one because all it does is set the
default headers for the upcoming connection. The next line sets the
method for the connection, which is a parameter passed by the previous
layer. If you remember, that method was GET. Any HTTP connection
must have a valid method. GET is usually used to fetch information,
while POST is used to send form data, such as logging into a web site.
Finally, the uri() function simply parses the URL passed to make sure
it's valid, returning various error messages in case it isn't.

A study of code abstraction 12

2.3.2 Sending the request

After making a new object of the HTTP::Request type, the previous
abstraction layer called the request() function from the LWP::UserAgent
module. Let's see its source code:

1 sub request
2 {
3 my($self, $request, $arg, $size, $previous) = @_;
4

5 my $response = $self->simple_request($request, $arg, $size);
6 $response->previous($previous) if $previous;
7

8 if ($response->redirects >= $self->{max_redirect}) {
9 $response->header("Client-Warning" =>

10 "Redirect loop detected (max_redirect =
11 $self->{max_redirect})");
12 return $response;
13 }
14

15 if (my $req = $self->run_handlers("response_redirect", $response)) {
16 return $self->request($req, $arg, $size, $response);
17 }
18

19 my $code = $response->code;
20

21 if ($code == &HTTP::Status::RC_MOVED_PERMANENTLY or
22 $code == &HTTP::Status::RC_FOUND or
23 $code == &HTTP::Status::RC_SEE_OTHER or
24 $code == &HTTP::Status::RC_TEMPORARY_REDIRECT)
25 {
26 my $referral = $request->clone;
27

28 # These headers should never be forwarded
29 $referral->remove_header('Host', 'Cookie');
30

31 if ($referral->header('Referer') &&
32 $request->uri->scheme eq 'https' &&
33 $referral->uri->scheme eq 'http')
34 {
35 # RFC 2616, section 15.1.3.
36 # https -> http redirect, suppressing Referer
37 $referral->remove_header('Referer');
38 }
39

40 if ($code == &HTTP::Status::RC_SEE_OTHER ||
41 $code == &HTTP::Status::RC_FOUND)
42 {
43 my $method = uc($referral->method);

A study of code abstraction 13

44 unless ($method eq "GET" || $method eq "HEAD") {
45 $referral->method("GET");
46 $referral->content("");
47 $referral->remove_content_headers;
48 }
49 }
50

51 # And then we update the URL based on the Location:-header.
52 my $referral_uri = $response->header('Location');
53 {
54 # Some servers erroneously return a relative URL for redirects,
55 # so make it absolute if it not already is.
56 local $URI::ABS_ALLOW_RELATIVE_SCHEME = 1;
57 my $base = $response->base;
58 $referral_uri = "" unless defined $referral_uri;
59 $referral_uri = $HTTP::URI_CLASS->new($referral_uri, $base)
60 ->abs($base);
61 }
62 $referral->uri($referral_uri);
63

64 return $response unless $self->redirect_ok($referral, $response);
65 return $self->request($referral, $arg, $size, $response);
66

67 }
68 elsif ($code == &HTTP::Status::RC_UNAUTHORIZED ||
69 $code == &HTTP::Status::RC_PROXY_AUTHENTICATION_REQUIRED
70)
71 {
72 my $proxy = ($code == &HTTP::Status::RC_PROXY_AUTHENTICATION_REQUIRED);
73 my $ch_header = $proxy || $request->method eq 'CONNECT'
74 ? "Proxy-Authenticate" : "WWW-Authenticate";
75 my @challenge = $response->header($ch_header);
76 unless (@challenge) {
77 $response->header("Client-Warning" =>
78 "Missing Authenticate header");
79 return $response;
80 }
81

82 require HTTP::Headers::Util;
83 CHALLENGE: for my $challenge (@challenge) {
84 $challenge =~ tr/,/;/; # "," is used to separate auth-params!!
85 ($challenge) = HTTP::Headers::Util::split_header_words($challenge);
86 my $scheme = shift(@$challenge);
87 shift(@$challenge); # no value
88 $challenge = { @$challenge }; # make rest into a hash
89

90 unless ($scheme =~ /^([a-z]+(?:-[a-z]+)*)$/) {
91 $response->header("Client-Warning" =>
92 "Bad authentication scheme '$scheme'");

A study of code abstraction 14

93 return $response;
94 }
95 $scheme = $1; # untainted now
96 my $class = "LWP::Authen::\u$scheme";
97 $class =~ s/-/_/g;
98

99 no strict 'refs';
100 unless (%{"$class\::"}) {
101 # try to load it
102 eval "require $class";
103 if ($@) {
104 if ($@ =~ /^Cant locate/) {
105 $response->header("Client-Warning" =>
106 "Unsupported authentication scheme '$scheme'");
107 }
108 else {
109 $response->header("Client-Warning" => $@);
110 }
111 next CHALLENGE;
112 }
113 }
114 unless ($class->can("authenticate")) {
115 $response->header("Client-Warning" =>
116 "Unsupported authentication scheme '$scheme'");
117 next CHALLENGE;
118 }
119 return $class->authenticate($self, $proxy, $challenge, $response,
120 $request, $arg, $size);
121 }
122 return $response;
123 }
124 return $response;
125 }

While this is a massive function, it's actually just half of the story. Its
main purpose is to parse the headers received by the server and act
on them. For example, line 21 checks whether the server said that the
requested file was moved, and if so, makes another request to the new
address. On line 72 it also handles the case where a proxy server is
required, and whether that proxy needs authentication.

But before all of that can happen, we still need to open the actual con-
nection, we need the function that tells the system to open a network
socket. This happens on line 5. The simple_request() function actu-
ally does some more preparation tasks and then calls send_request().
That's the second half of the story for this layer of abstraction:

1 sub send_request

A study of code abstraction 15

2 {
3 my($self, $request, $arg, $size) = @_;
4 my($method, $url) = ($request->method, $request->uri);
5 my $scheme = $url->scheme;
6

7 local($SIG{__DIE__}); # protect against user defined die handlers
8

9 $self->progress("begin", $request);
10

11 my $response = $self->run_handlers("request_send", $request);
12

13 unless ($response) {
14 my $protocol;
15

16 {
17 # Honor object-specific restrictions by forcing protocol objects
18 # into class LWP::Protocol::nogo.
19 my $x;
20 if($x = $self->protocols_allowed) {
21 if (grep lc($_) eq $scheme, @$x) {
22 }
23 else {
24 require LWP::Protocol::nogo;
25 $protocol = LWP::Protocol::nogo->new;
26 }
27 }
28 elsif ($x = $self->protocols_forbidden) {
29 if(grep lc($_) eq $scheme, @$x) {
30 require LWP::Protocol::nogo;
31 $protocol = LWP::Protocol::nogo->new;
32 }
33 }
34 # else fall thru and create the protocol object normally
35 }
36

37 # Locate protocol to use
38 my $proxy = $request->{proxy};
39 if ($proxy) {
40 $scheme = $proxy->scheme;
41 }
42

43 unless ($protocol) {
44 $protocol = eval { LWP::Protocol::create($scheme, $self) };
45 if ($@) {
46 $@ =~ s/ at .* line \d+.*//s; # remove file/line number
47 $response = _new_response($request,
48 &HTTP::Status::RC_NOT_IMPLEMENTED, $@);
49 if ($scheme eq "https") {
50 $response->message($response->message . "

A study of code abstraction 16

51 (LWP::Protocol::https not installed)");
52 $response->content_type("text/plain");
53 $response->content(<<EOT);
54 LWP will support https URLs if the LWP::Protocol::https module
55 is installed.
56 EOT
57 }
58 }
59 }
60

61 if (!$response && $self->{use_eval}) {
62 # we eval, and turn dies into responses below
63 eval {
64 $response = $protocol->request($request, $proxy, $arg, $size,
65 $self->{timeout}) ||
66 die "No response returned by $protocol";
67 };
68 if ($@) {
69 if (UNIVERSAL::isa($@, "HTTP::Response")) {
70 $response = $@;
71 $response->request($request);
72 }
73 else {
74 my $full = $@;
75 (my $status = $@) =~ s/\n.*//s;
76 $status =~ s/ at .* line \d+.*//s; # remove file/line number
77 my $code = ($status =~ s/^(\d\d\d)\s+//) ? $1 :
78 &HTTP::Status::RC_INTERNAL_SERVER_ERROR;
79 $response = _new_response($request, $code, $status, $full);
80 }
81 }
82 }
83 elsif (!$response) {
84 $response = $protocol->request($request, $proxy,
85 $arg, $size, $self->{timeout});
86 # XXX: Should we die unless $response->is_success ???
87 }
88 }
89

90 $response->request($request); # record request for reference
91 $response->header("Client-Date" => HTTP::Date::time2str(time));
92

93 $self->run_handlers("response_done", $response);
94

95 $self->progress("end", $response);
96 return $response;
97 }

A study of code abstraction 17

Again, we see a lot more handling of the request, error handling,
and various edge cases. Little is of interest in here, except for line 64.
Here we get introduced to another module which will make up the next
abstraction layer: LWP::Protocol[7]. All of the information we've dealt
with so far, including the request from HTTP::Request, the user agent,
optional arguments, are all passed onto that new module.

2.4 Fourth layer: Defining protocols

If you look at the new() function for the LWP::Protocol module, you
may be left a bit confused:

1 sub create
2 {
3 my($scheme, $ua) = @_;
4 my $impclass = LWP::Protocol::implementor($scheme) or
5 Carp::croak("Protocol scheme '$scheme' is not supported");
6

7 # hand-off to scheme specific implementation sub-class
8 my $protocol = $impclass->new($scheme, $ua);
9

10 return $protocol;
11 }

This is supposed to be the key module to do all of the network stuff
we've been looking for since the start. What this actually does is hand
off all of the work to the proper subclass. This module has sub-modules
for each type of request, including LWP::Protocol::http for HTTP re-
quests, LWP::Protocol:file for files, and so on. But if you go on the
CPAN site and try to look at those sub-modules, you may find them
suspiciously missing. This is because for the first time so far, this layer
has been hidden from us. While developers are expected to work with
any of the previous modules, now we've finally delved deep enough that
for normal use cases, it's been decided that we're now entering a layer
deep enough that we shouldn't mess with it. Here be dragons...

Of course, Perl is open source, and the whole point of this experiment
is to break away those layers, so we're not going to let that stop us. If
you go on the source repository for the module[8], you can find what
we need. Here's the code for the massive request() function:

1 sub request
2 {
3 my($self, $request, $proxy, $arg, $size, $timeout) = @_;
4

5 $size ||= 4096;

A study of code abstraction 18

6

7 # check method
8 my $method = $request->method;
9 unless ($method =~ /^[A-Za-z0-9_!\#\$%&\'*+\-.^\`|~]+$/) { # HTTP token

10 return HTTP::Response->new(&HTTP::Status::RC_BAD_REQUEST,
11 'Library does not allow method ' .
12 "$method for 'http:' URLs");
13 }
14

15 my $url = $request->uri;
16 my($host, $port, $fullpath);
17

18 # Check if we're proxy'ing
19 if (defined $proxy) {
20 # $proxy is an URL to an HTTP server which will proxy this request
21 $host = $proxy->host;
22 $port = $proxy->port;
23 $fullpath = $method eq "CONNECT" ?
24 ($url->host . ":" . $url->port) :
25 $url->as_string;
26 }
27 else {
28 $host = $url->host;
29 $port = $url->port;
30 $fullpath = $url->path_query;
31 $fullpath = "/$fullpath" unless $fullpath =~ m,^/,;
32 }
33

34 # connect to remote site
35 my $socket = $self->_new_socket($host, $port, $timeout);
36

37 my $http_version = "";
38 if (my $proto = $request->protocol) {
39 if ($proto =~ /^(?:HTTP\/)?(1.\d+)$/) {
40 $http_version = $1;
41 $socket->http_version($http_version);
42 $socket->send_te(0) if $http_version eq "1.0";
43 }
44 }
45

46 $self->_check_sock($request, $socket);
47

48 my @h;
49 my $request_headers = $request->headers->clone;
50 $self->_fixup_header($request_headers, $url, $proxy);
51

52 $request_headers->scan(sub {
53 my($k, $v) = @_;
54 $k =~ s/^://;

A study of code abstraction 19

55 $v =~ s/\n/ /g;
56 push(@h, $k, $v);
57 });
58

59 my $content_ref = $request->content_ref;
60 $content_ref = $$content_ref if ref($$content_ref);
61 my $chunked;
62 my $has_content;
63

64 if (ref($content_ref) eq 'CODE') {
65 my $clen = $request_headers->header('Content-Length');
66 $has_content++ if $clen;
67 unless (defined $clen) {
68 push(@h, "Transfer-Encoding" => "chunked");
69 $has_content++;
70 $chunked++;
71 }
72 }
73 else {
74 # Set (or override) Content-Length header
75 my $clen = $request_headers->header('Content-Length');
76 if (defined($$content_ref) && length($$content_ref)) {
77 $has_content = length($$content_ref);
78 if (!defined($clen) || $clen ne $has_content) {
79 if (defined $clen) {
80 warn "Content-Length header value was wrong, fixed";
81 hlist_remove(\@h, 'Content-Length');
82 }
83 push(@h, 'Content-Length' => $has_content);
84 }
85 }
86 elsif ($clen) {
87 warn "Content-Length set when there is no content, fixed";
88 hlist_remove(\@h, 'Content-Length');
89 }
90 }
91

92 my $write_wait = 0;
93 $write_wait = 2
94 if ($request_headers->header("Expect") || "") =~ /100-continue/;
95

96 my $req_buf = $socket->format_request($method, $fullpath, @h);
97 #print "------\n$req_buf\n------\n";
98

99 if (!$has_content || $write_wait || $has_content > 8*1024) {
100 WRITE:
101 {
102 # Since this just writes out the header block it should almost
103 # always succeed to send the whole buffer in a single write call.

A study of code abstraction 20

104 my $n = $socket->syswrite($req_buf, length($req_buf));
105 unless (defined $n) {
106 redo WRITE if $!{EINTR};
107 if ($!{EAGAIN}) {
108 select(undef, undef, undef, 0.1);
109 redo WRITE;
110 }
111 die "write failed: $!";
112 }
113 if ($n) {
114 substr($req_buf, 0, $n, "");
115 }
116 else {
117 select(undef, undef, undef, 0.5);
118 }
119 redo WRITE if length $req_buf;
120 }
121 }
122

123 my($code, $mess, @junk);
124 my $drop_connection;
125

126 if ($has_content) {
127 my $eof;
128 my $wbuf;
129 my $woffset = 0;
130 INITIAL_READ:
131 if ($write_wait) {
132 # skip filling $wbuf when waiting for 100-continue
133 # because if the response is a redirect or auth required
134 # the request will be cloned and there is no way
135 # to reset the input stream
136 # return here via the label after the 100-continue is read
137 }
138 elsif (ref($content_ref) eq 'CODE') {
139 my $buf = &$content_ref();
140 $buf = "" unless defined($buf);
141 $buf = sprintf "%x%s%s%s", length($buf), $CRLF, $buf, $CRLF
142 if $chunked;
143 substr($buf, 0, 0) = $req_buf if $req_buf;
144 $wbuf = \$buf;
145 }
146 else {
147 if ($req_buf) {
148 my $buf = $req_buf . $$content_ref;
149 $wbuf = \$buf;
150 }
151 else {
152 $wbuf = $content_ref;

A study of code abstraction 21

153 }
154 $eof = 1;
155 }
156

157 my $fbits = '';
158 vec($fbits, fileno($socket), 1) = 1;
159

160 WRITE:
161 while ($write_wait || $woffset < length($$wbuf)) {
162

163 my $sel_timeout = $timeout;
164 if ($write_wait) {
165 $sel_timeout = $write_wait if $write_wait < $sel_timeout;
166 }
167 my $time_before;
168 $time_before = time if $sel_timeout;
169

170 my $rbits = $fbits;
171 my $wbits = $write_wait ? undef : $fbits;
172 my $sel_timeout_before = $sel_timeout;
173 SELECT:
174 {
175 my $nfound = select($rbits, $wbits, undef, $sel_timeout);
176 if ($nfound < 0) {
177 if ($!{EINTR} || $!{EAGAIN}) {
178 if ($time_before) {
179 $sel_timeout = $sel_timeout_before - (time -
180 $time_before);
181 $sel_timeout = 0 if $sel_timeout < 0;
182 }
183 redo SELECT;
184 }
185 die "select failed: $!";
186 }
187 }
188

189 if ($write_wait) {
190 $write_wait -= time - $time_before;
191 $write_wait = 0 if $write_wait < 0;
192 }
193

194 if (defined($rbits) && $rbits =~ /[^\0]/) {
195 # readable
196 my $buf = $socket->_rbuf;
197 my $n = $socket->sysread($buf, 1024, length($buf));
198 unless (defined $n) {
199 die "read failed: $!" unless $!{EINTR} || $!{EAGAIN};
200 # if we get here the rest of the block will do nothing
201 # and we will retry the read on the next round

A study of code abstraction 22

202 }
203 elsif ($n == 0) {
204 # the server closed the connection before we finished
205 # writing all the request content. No need to write any more.
206 $drop_connection++;
207 last WRITE;
208 }
209 $socket->_rbuf($buf);
210 if (!$code && $buf =~ /\015?\012\015?\012/) {
211 # a whole response header is present, so we can read it without blocking
212 ($code, $mess, @h) = $socket->read_response_headers(laxed => 1,
213 junk_out => \@junk,
214);
215 if ($code eq "100") {
216 $write_wait = 0;
217 undef($code);
218 goto INITIAL_READ;
219 }
220 else {
221 $drop_connection++;
222 last WRITE;
223 # XXX should perhaps try to abort write in a nice way too
224 }
225 }
226 }
227 if (defined($wbits) && $wbits =~ /[^\0]/) {
228 my $n = $socket->syswrite($$wbuf, length($$wbuf), $woffset);
229 unless (defined $n) {
230 die "write failed: $!" unless $!{EINTR} || $!{EAGAIN};
231 $n = 0; # will retry write on the next round
232 }
233 elsif ($n == 0) {
234 die "write failed: no bytes written";
235 }
236 $woffset += $n;
237

238 if (!$eof && $woffset >= length($$wbuf)) {
239 # need to refill buffer from $content_ref code
240 my $buf = &$content_ref();
241 $buf = "" unless defined($buf);
242 $eof++ unless length($buf);
243 $buf = sprintf "%x%s%s%s", length($buf), $CRLF, $buf, $CRLF
244 if $chunked;
245 $wbuf = \$buf;
246 $woffset = 0;
247 }
248 }
249 } # WRITE
250 }

A study of code abstraction 23

251

252 ($code, $mess, @h) = $socket->read_response_headers(laxed => 1,
253 junk_out => \@junk)
254 unless $code;
255 ($code, $mess, @h) = $socket->read_response_headers(laxed => 1,
256 junk_out => \@junk)
257 if $code eq "100";
258

259 my $response = HTTP::Response->new($code, $mess);
260 my $peer_http_version = $socket->peer_http_version;
261 $response->protocol("HTTP/$peer_http_version");
262 {
263 local $HTTP::Headers::TRANSLATE_UNDERSCORE;
264 $response->push_header(@h);
265 }
266 $response->push_header("Client-Junk" => \@junk) if @junk;
267

268 $response->request($request);
269 $self->_get_sock_info($response, $socket);
270

271 if ($method eq "CONNECT") {
272 $response->{client_socket} = $socket; # so it can be picked up
273 return $response;
274 }
275

276 if (my @te = $response->remove_header('Transfer-Encoding')) {
277 $response->push_header('Client-Transfer-Encoding', \@te);
278 }
279 $response->push_header('Client-Response-Num', scalar
280 $socket->increment_response_count);
281

282 my $complete;
283 $response = $self->collect($arg, $response, sub {
284 my $buf = ""; #prevent use of uninitialized value in SSLeay.xs
285 my $n;
286 READ:
287 {
288 $n = $socket->read_entity_body($buf, $size);
289 unless (defined $n) {
290 redo READ if $!{EINTR} || $!{EAGAIN};
291 die "read failed: $!";
292 }
293 redo READ if $n == -1;
294 }
295 $complete++ if !$n;
296 return \$buf;
297 });
298 $drop_connection++ unless $complete;
299

A study of code abstraction 24

300 @h = $socket->get_trailers;
301 if (@h) {
302 local $HTTP::Headers::TRANSLATE_UNDERSCORE;
303 $response->push_header(@h);
304 }
305

306 # keep-alive support
307 unless ($drop_connection) {
308 if (my $conn_cache = $self->{ua}{conn_cache}) {
309 my %connection = map { (lc($_) => 1) }
310 split(/\s*,\s*/, ($response->header("Connection") || ""));
311 if (($peer_http_version eq "1.1" && !$connection{close}) ||
312 $connection{"keep-alive"})
313 {
314 $conn_cache->deposit($self->socket_type, "$host:$port", $socket);
315 }
316 }
317 }
318

319 $response;
320 }

The code starts by checking if the input parameters are valid, whether
there's a proxy or not, and then on line 35, you can see a call to the
_new_socket() function inside the same module. This function calls the
IO::Socket::INET[9] module in order to create a new socket, which is
a computer's way to open a logical connection to a network resource,
such as a web server. After that, the function adds various information
on that socket, including the version of the HTTP protocol used on line
40, and the default headers on line 49. It defines how much content it's
sending on line 75, then actually writes out the headers on the socket
starting at line 100 using the syswrite() function.

After that, it reads from the socket starting at line 130 using sys-
read(), and starts parsing the headers at line 252. The syswrite() and
sysread() functions are built-in Perl functions that can read and write
to a stream, such as the opened network socket. Of more interest is
the IO::Socket::INET module which builds upon IO::Socket[10]. Let's
go down another abstraction level.

2.5 Fifth layer: I/O Sockets

IO simply means input and output. With the IO::Socket module we're
now deep enough for things to be generalized greatly. We're no longer
talking about XML data, or even HTTP connections. We're now deep

A study of code abstraction 25

enough on the OSI model[11] to be talking directly to network drivers
in your operating system. This is where an Internet socket, which is
an endpoint of an inter-process communication flow across a computer
network, is created.

The first thing the previous layer did was call the binding() function
of the IO::Socket module, which in turn calls the ioctl() Perl function,
which is a system call to set whether the socket will be blocking (stops
execution of the code while waiting for all the data to be sent or re-
ceived) or non-blocking (allows the code to continue while partial data
is on the line). Then, the actual socket is created.

To see what actually goes on when creating a socket, let's look at
the configure() function which makes all the interesting initial network
calls:

1 sub configure {
2 my($sock,$arg) = @_;
3 my($lport,$rport,$laddr,$raddr,$proto,$type);
4

5

6 $arg->{LocalAddr} = $arg->{LocalHost}
7 if exists $arg->{LocalHost} && !exists $arg->{LocalAddr};
8

9 ($laddr,$lport,$proto) = _sock_info($arg->{LocalAddr},
10 $arg->{LocalPort},
11 $arg->{Proto})
12 or return _error($sock, $!, $@);
13

14 $laddr = defined $laddr ? inet_aton($laddr)
15 : INADDR_ANY;
16

17 return _error($sock, $EINVAL, "Bad hostname '",$arg->{LocalAddr},"'")
18 unless(defined $laddr);
19

20 $arg->{PeerAddr} = $arg->{PeerHost}
21 if exists $arg->{PeerHost} && !exists $arg->{PeerAddr};
22

23 unless(exists $arg->{Listen}) {
24 ($raddr,$rport,$proto) = _sock_info($arg->{PeerAddr},
25 $arg->{PeerPort},
26 $proto)
27 or return _error($sock, $!, $@);
28 }
29

30 $proto ||= _get_proto_number('tcp');
31

32 $type = $arg->{Type} || $socket_type{lc _get_proto_name($proto)};
33

A study of code abstraction 26

34 my @raddr = ();
35

36 if(defined $raddr) {
37 @raddr = $sock->_get_addr($raddr, $arg->{MultiHomed});
38 return _error($sock, $EINVAL, "Bad hostname '",$arg->{PeerAddr},"'")
39 unless @raddr;
40 }
41

42 while(1) {
43

44 $sock->socket(AF_INET, $type, $proto) or
45 return _error($sock, $!, "$!");
46

47 if (defined $arg->{Blocking}) {
48 defined $sock->blocking($arg->{Blocking})
49 or return _error($sock, $!, "$!");
50 }
51

52 if ($arg->{Reuse} || $arg->{ReuseAddr}) {
53 $sock->sockopt(SO_REUSEADDR,1) or
54 return _error($sock, $!, "$!");
55 }
56

57 if ($arg->{ReusePort}) {
58 $sock->sockopt(SO_REUSEPORT,1) or
59 return _error($sock, $!, "$!");
60 }
61

62 if ($arg->{Broadcast}) {
63 $sock->sockopt(SO_BROADCAST,1) or
64 return _error($sock, $!, "$!");
65 }
66

67 if($lport || ($laddr ne INADDR_ANY) || exists $arg->{Listen}) {
68 $sock->bind($lport || 0, $laddr) or
69 return _error($sock, $!, "$!");
70 }
71

72 if(exists $arg->{Listen}) {
73 $sock->listen($arg->{Listen} || 5) or
74 return _error($sock, $!, "$!");
75 last;
76 }
77

78 # don't try to connect unless we're given a PeerAddr
79 last unless exists($arg->{PeerAddr});
80

81 $raddr = shift @raddr;
82

A study of code abstraction 27

83 return _error($sock, $EINVAL, 'Cannot determine remote port')
84 unless($rport || $type == SOCK_DGRAM || $type == SOCK_RAW);
85

86 last
87 unless($type == SOCK_STREAM || defined $raddr);
88

89 return _error($sock, $EINVAL, "Bad hostname '",$arg->{PeerAddr},"'")
90 unless defined $raddr;
91

92 undef $@;
93 if ($sock->connect(pack_sockaddr_in($rport, $raddr))) {
94 return $sock;
95 }
96

97 return _error($sock, $!, $@ || "Timeout")
98 unless @raddr;
99 }

100

101 $sock;
102 }

Here we're dealing with actual network code. The first thing this func-
tion does is assign all the values needed for the socket, then it calls
_sock_info() on line 24. This function uses various string parsing util-
ities to determine whether the protocol, host and port are valid. Here
we're no longer talking about HTTP, but instead TCP, which is what HTTP
rides over in the OSI model. The host should be a valid host name or
IP address, and the port should be a valid port. HTTP runs on port 80,
HTTPS on 443, and so on. TCP/IP is the basis for any stream connection
over the Internet.

Once that's done, line 30 calls _get_proto_number() to get the ac-
tual number assigned to TCP, something we'll come back to in the next
section. Similarly, line 37 converts a host name into an IP address if
need be. The actual socket is created on line 44, which is a call to the
function of the same name from IO::Socket. After that, various flags
are set, potential errors are handled, and the socket is returned.

2.6 Sixth layer: Kernel drivers

So far we've gone through Perl code, but now, our code is talking
directly to the system. But how is the operating system, whether it's
Windows, OS X or Unix, actually sending bits over the network? The
answer is the network driver. At this point, every driver will be differ-
ent based on the OS you use along with your network card. This is

A study of code abstraction 28

the beauty of APIs. Just like Perl modules give us APIs to their own
functions, operating systems have system calls to talk to each type of
hardware.

We're going to go briefly over what happens at the system level on
Linux, because the source code is freely available. For an in-depth
lecture I suggest the Linux Kernel Networking[12] presentation by Rami
Rosen. The source of the socket code is available in socket.c[13] in the
Kernel source tree. Here is the code that the Kernel uses to allocate a
socket to an application:

1 static struct socket *sock_alloc(void)
2 {
3 struct inode *inode;
4 struct socket *sock;
5

6 inode = new_inode_pseudo(sock_mnt->mnt_sb);
7 if (!inode)
8 return NULL;
9

10 sock = SOCKET_I(inode);
11

12 kmemcheck_annotate_bitfield(sock, type);
13 inode->i_ino = get_next_ino();
14 inode->i_mode = S_IFSOCK | S_IRWXUGO;
15 inode->i_uid = current_fsuid();
16 inode->i_gid = current_fsgid();
17 inode->i_op = &sockfs_inode_ops;
18

19 this_cpu_add(sockets_in_use, 1);
20 return sock;
21 }

On Linux, socket are linked to inodes, which is an index on the file
system. The Kernel keeps track of these inodes. The this_cpu_add()
function is simply a way to add the number of sockets to an internal
list. Finally, connect() is also defined in that file as a system call:

1 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2 int, addrlen)
3 {
4 struct socket *sock;
5 struct sockaddr_storage address;
6 int err, fput_needed;
7

8 sock = sockfd_lookup_light(fd, &err, &fput_needed);
9 if (!sock)

10 goto out;
11 err = move_addr_to_kernel(uservaddr, addrlen, &address);

A study of code abstraction 29

12 if (err < 0)
13 goto out_put;
14

15 err =
16 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
17 if (err)
18 goto out_put;
19

20 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
21 sock->file->f_flags);
22 out_put:
23 fput_light(sock->file, fput_needed);
24 out:
25 return err;
26 }

The socket code is just part of the story however. Once the CPU knows
how to accept socket calls, it needs to know what to send to the actual
hardware, and that's done with network drivers. There are hundreds
of drivers for everything from Ethernet cards, fiber optic connections,
wireless, and so on. You can view the source of the fairly popular Intel
PRO/100 Ethernet Card in e100.c[14] in the source tree.

If you dig into that code, you might realize that abstraction doesn't
end here. Take a look for example at the e100_write_flush() function:

1 static inline void e100_write_flush(struct nic *nic)
2 {
3 (void)ioread8(&nic->csr->scb.status);
4 }

Here you can see that the driver calls a function called ioread8() which
is a Kernel call that is defined in iomap.h which in turn calls readb()
based on the architecture that Linux runs on, whether it's x86, arm,
alpha and so on. For example, here is an implementation of readb() for
the hexagon platform:

1 static inline u8 readb(const volatile void __iomem *addr)
2 {
3 u8 val;
4 asm volatile(
5 "%0 = memb(%1);"
6 : "=&r" (val)
7 : "r" (addr)
8);
9 return val;

10 }

A study of code abstraction 30

This is what manually copies each character, in the form of bytes,
to and from the network hardware. Seeing as this is assembly code,
we're officially as low on the abstraction stack as we can go. After that,
it's nothing but assembly commands going back and forth between the
operating system, the CPU and the various hardware in your machine.

3 Network traffic

So far, we've been through five different layers of Perl code and a
sixth layer of Kernel functions in order to find out what a single line
did. We went from parsing XML data, to fetching raw data on an HTTP
connection from a web server, down to the actual network sockets used
to read and write at the system level. Now, it's time to see what the
data actually is when looked at directly on the network.

To do this, I'll be using a packet capture utility to see exactly what
is written on the socket by all of this code. First, this is the actual
packet, in bytes (converted from binary to hexadecimal to make it more
readable), as sent over the wire:

1 00 01 96 6A 21 02 00 04 23 44 1C DD 08 00 45 00
2 00 CB 48 28 40 00 80 06 33 F6 C0 A8 00 05 C0 A8
3 00 01 FC ED 00 50 4C 8E C0 3A 09 C4 F6 D1 50 18
4 01 00 CC BE 00 00 47 45 54 20 68 74 74 70 3A 2F
5 2F 77 77 77 2E 72 65 64 64 69 74 2E 63 6F 6D 2F
6 2E 72 73 73 20 48 54 54 50 2F 31 2E 31 0D 0A 54
7 45 3A 20 64 65 66 6C 61 74 65 2C 67 7A 69 70 3B
8 71 3D 30 2E 33 0D 0A 43 6F 6E 6E 65 63 74 69 6F
9 6E 3A 20 54 45 2C 20 63 6C 6F 73 65 0D 0A 41 63

10 63 65 70 74 2D 45 6E 63 6F 64 69 6E 67 3A 20 67
11 7A 69 70 0D 0A 48 6F 73 74 3A 20 77 77 77 2E 72
12 65 64 64 69 74 2E 63 6F 6D 0D 0A 55 73 65 72 2D
13 41 67 65 6E 74 3A 20 58 4D 4C 3A 3A 46 65 65 64
14 2F 30 2E 35 32 0D 0A 0D 0A

Oviously this is fairly pointless to us, so let's use a network utility to
analyze it:

1 Frame: Number = 183, Captured Frame Length = 217, MediaType = ETHERNET
2 - Ethernet: Etype = Internet IP (IPv4),DestinationAddress:[00-01-96-6A-21-02],
3 SourceAddress:[00-04-23-44-1C-DD]
4 - DestinationAddress: 000196 6A2102 [00-01-96-6A-21-02]
5 Rsv: (001001..)
6 UL: (......0.) Universally Administered Address
7 IG: (.......0) Individual address (unicast)

A study of code abstraction 31

8 - SourceAddress: 000423 441CDD [00-04-23-44-1C-DD]
9 Rsv: (000000..)

10 UL: (......0.) Universally Administered Address
11 IG: (.......0) Individual address (unicast)
12 EthernetType: Internet IP (IPv4), 2048(0x800)
13 - Ipv4: Src = 192.168.0.5, Dest = 192.168.0.1, Next Protocol = TCP, Packet ID =
14 18472, Total IP Length = 203
15 - Versions: IPv4, Internet Protocol; Header Length = 20
16 Version: (0100....) IPv4, Internet Protocol
17 HeaderLength: (....0101) 20 bytes (0x5)
18 - DifferentiatedServicesField: DSCP: 0, ECN: 0
19 DSCP: (000000..) Differentiated services codepoint 0
20 ECT: (......0.) ECN-Capable Transport not set
21 CE: (.......0) ECN-CE not set
22 TotalLength: 203 (0xCB)
23 Identification: 18472 (0x4828)
24 - FragmentFlags: 16384 (0x4000)
25 Reserved: (0...............)
26 DF: (.1..............) Do not fragment
27 MF: (..0.............) This is the last fragment
28 Offset: (...0000000000000) 0
29 TimeToLive: 128 (0x80)
30 NextProtocol: TCP, 6(0x6)
31 Checksum: 13302 (0x33F6)
32 SourceAddress: 192.168.0.5
33 DestinationAddress: 192.168.0.1
34 - Tcp: Flags=...AP..., SrcPort=64749, DstPort=HTTP(80), PayloadLen=163,
35 Seq=1284423738 - 1284423901, Ack=163903221, Win=256 (scale factor 0x8) = 65536
36 SrcPort: 64749
37 DstPort: HTTP(80)
38 SequenceNumber: 1284423738 (0x4C8EC03A)
39 AcknowledgementNumber: 163903221 (0x9C4F7D1)
40 - DataOffset: 80 (0x50)
41 DataOffset: (0101....) 20 bytes
42 Reserved: (....000.)
43 NS: (.......0) Nonce Sum not significant
44 - Flags: ...AP...
45 CWR: (0.......) CWR not significant
46 ECE: (.0......) ECN-Echo not significant
47 Urgent: (..0.....) Not Urgent Data
48 Ack: (...1....) Acknowledgement field significant
49 Push: (....1...) Push Function
50 Reset: (.....0..) No Reset
51 Syn: (......0.) Not Synchronize sequence numbers
52 Fin: (.......0) Not End of data
53 Window: 256 (scale factor 0x8) = 65536
54 Checksum: 0xCCBE, Disregarded
55 UrgentPointer: 0 (0x0)
56 TCPPayload: SourcePort = 64749, DestinationPort = 80

A study of code abstraction 32

57 - Http: Request, GET http://www.reddit.com/.rss
58 Command: GET
59 - URI: http://www.reddit.com/.rss
60 Location: http://www.reddit.com/.rss
61 ProtocolVersion: HTTP/1.1
62 TE: deflate,gzip;q=0.3
63 Connection: TE, close
64 Accept-Encoding: gzip
65 Host: www.reddit.com
66 UserAgent: XML::Feed/0.52
67 HeaderEnd: CRLF

This tree of information was generated by the Microsoft Network Mon-
itor, but you can get such information from Wireshark, or any other
packet capture utility. All of this represents a single packet. Needless
to say, it would be quite a bit of work to generate something like that
for each and every packet your application wants to send over the net-
work, hence all the layers of abstraction we've been through. Let's take
a look at what's contained here, so we can relate to the functions we've
seen in the previous sections.

On line 1, we see that this is an Ethernet frame, so we know the
driver that handled this request is an Ethernet driver. On line 2, we
have the start of the Ethernet header. This is entirely filled up by the
driver itself, including the MAC addresses of the source and destination.
Then on line 13, we have the header for the IP part of TCP/IP, namely
the source and destination addresses. In our case, we're dealing with
IPv4 addresses. You can see there are a lot of flags, most of which
have default values, and those are assigned by the socket code in Perl
modules. If you notice line 30, the protocol number for TCP is actually
6, something we've seen in one of the previous layers.

Line 34 starts the TCP part of TCP/IP, which defines a stream connec-
tion. The destination port is 80, and then sequence numbers are shown,
which is a way the system keeps track of packets. Line 46 starts TCP
flags which are set by the various modules we've covered, again most
are set to default values. Finally, we have the HTTP request starting
at line 57. These lines are much higher in the stack than the previous
parts. Here we have settings that can actually be set by accessible Perl
functions. Line 57 has the URL of the HTTP request, and line 66 has the
user agent, something we've seen as well, in our case set to the name
of the library, XML::Feed, along with the version.

A study of code abstraction 33

4 Conclusion

In this experiment, we started with a single line of code, and went
down through the various Perl modules, down to C code for the oper-
ating system, and down onto the network to see exactly what went on
from this one command. As you may have noticed, things get compli-
cated very quickly. It's interesting to note that nothing we've seen is
a black box, meaning that if you really wanted to, you could recreate
the actual packet that was shown in the previous section. In Perl, that
would require you to access the IO::Socket module directly which isn't
all that difficult to do, and there are even modules for deeper coding. If
you're interested in socket coding in Perl I recommend the Perl Socket
Programming tutorial[15].

Hopefully this has been enlightening, or at least entertaining. As you
can see, abstraction is everywhere in modern day coding. This has a lot
of advantages, but it's good to sometimes break through those layers
and explore that lies beneath.

5 References

References

[1] XML::Feed - Syndication feed parser and auto-discovery
http://search.cpan.org/~davecross/XML-Feed-0.52/lib/XML/Feed/
Entry.pm

[2] LWP::UserAgent - Web user agent class
http://search.cpan.org/dist/libwww-perl/lib/LWP/UserAgent.pm

[3] URI::Fetch - Smart URI fetching/caching
http://search.cpan.org/~neilb/URI-Fetch-0.10/lib/URI/Fetch.pm

[4] HTTP::Request - HTTP style request message
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Request.
pm

[5] URI::Fetch::Response - Feed response for URI::Fetch
http://search.cpan.org/~btrott/URI-Fetch-0.09/lib/URI/Fetch/
Response.pm

[6] HTTP::Message - HTTP style message (base class)
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Message.
pm

http://search.cpan.org/~davecross/XML-Feed-0.52/lib/XML/Feed/Entry.pm
http://search.cpan.org/~davecross/XML-Feed-0.52/lib/XML/Feed/Entry.pm
http://search.cpan.org/dist/libwww-perl/lib/LWP/UserAgent.pm
http://search.cpan.org/~neilb/URI-Fetch-0.10/lib/URI/Fetch.pm
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Request.pm
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Request.pm
http://search.cpan.org/~btrott/URI-Fetch-0.09/lib/URI/Fetch/Response.pm
http://search.cpan.org/~btrott/URI-Fetch-0.09/lib/URI/Fetch/Response.pm
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Message.pm
http://search.cpan.org/~gaas/HTTP-Message-6.06/lib/HTTP/Message.pm

A study of code abstraction 34

[7] LWP::Protocol - Base class for LWP protocols
http://search.cpan.org/~mschilli/libwww-perl/lib/LWP/Protocol.pm

[8] LWP::Protocol::http - Source code
https://metacpan.org/source/GAAS/libwww-perl-6.03/lib/LWP/
Protocol/http.pm

[9] IO::Socket::INET - Object interface for AF_INET domain sockets
http://search.cpan.org/~gbarr/IO-1.25/lib/IO/Socket/INET.pm

[10] IO::Socket - Object interface to socket communications
http://search.cpan.org/~gbarr/IO-1.25/lib/IO/Socket.pm

[11] Wikipedia: OSI model
http://en.wikipedia.org/wiki/OSI_model

[12] Rami Rosen: Linux Kernel Networking
http://haifux.org/hebrew/lectures/217/netLec5.pdf

[13] source.c: Linux Cross Reference
http://lxr.free-electrons.com/source/net/socket.c

[14] e100.c: Linux Kernel Source Tree
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
tree/drivers/net/ethernet/intel/e100.c

[15] Tutorialspoint: Perl Socket Programming
http://www.tutorialspoint.com/perl/perl_socket_programming.htm

http://search.cpan.org/~mschilli/libwww-perl/lib/LWP/Protocol.pm
https://metacpan.org/source/GAAS/libwww-perl-6.03/lib/LWP/Protocol/http.pm
https://metacpan.org/source/GAAS/libwww-perl-6.03/lib/LWP/Protocol/http.pm
http://search.cpan.org/~gbarr/IO-1.25/lib/IO/Socket/INET.pm
http://search.cpan.org/~gbarr/IO-1.25/lib/IO/Socket.pm
http://en.wikipedia.org/wiki/OSI_model
http://haifux.org/hebrew/lectures/217/netLec5.pdf
http://lxr.free-electrons.com/source/net/socket.c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/intel/e100.c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/intel/e100.c
http://www.tutorialspoint.com/perl/perl_socket_programming.htm

	Introduction
	Audience

	Layers upon layers
	First layer: Parsing the XML
	Second layer: Setting up the connection
	Setting a user agent
	Opening a stream

	Third layer: Making the request
	Preparing the request
	Sending the request

	Fourth layer: Defining protocols
	Fifth layer: I/O Sockets
	Sixth layer: Kernel drivers

	Network traffic
	Conclusion
	References

