AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Preliminary
Processor Programming
Reference (PPR)
for AMD Family 17h
Models 00h-0Fh

Processors



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Legal Notices

© 2017 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard
Terms and Conditions of Sale.

Trademarks:

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
3DNow! is a trademark of Advanced Micro Devices, Incorporated.

AGESA is a trademark of Advanced Micro Devices, Incorporated.

AMD Secure Encrypted Virtualization is a trademark of Advanced Micro Devices, Incorporated.

AMD Secure Memory Encryption is a trademark of Advanced Micro Devices, Incorporated.

AMD Virtualization is a trademark of Advanced Micro Devices, Incorporated.

ARM is a registered trademark of ARM Limited.

DesignWare is a registered trademark of Synopsys Incorporated.

MMX is a trademark of Intel Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

PCI Express is a registered trademark of PCI-Special Interest Group (PCI-SIG).

PCle is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Ultrabook is a registered trademark of Intel Corporation.

Windows is a registered trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO
VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY
LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS
THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH
LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

List of Chapters

Overview

Core Complex (CCX)

Reliability, Availability, and Serviceability (RAS) Features
UMC

BN -

List of Namespaces

List of Definitions

Memory Map - MSR
Memory Map - Main Memory



54945 Rev 1.14 - April 15, 2017

Table of Contents

1 Overview
1.1 Intended Audience
1.2 Reference Documents
1.2.1 Documentation Conventions
1.3 Conventions

1.3.1 Numbering
1.3.2 Arithmetic And Logical Operators

1.3.2.1 Operator Precedence and Associativity
1.3.3 Register Mnemonics
1.3.3.1 Logical Mnemonic

1.3.3.2 Physical Mnemonic

1.3.4 Register Format

1.3.4.1 A Register is a group of Register Instances
1.3.4.2 Register Physical Mnemonic, Title, and Name
1.3.4.3 Full Width Register Attributes

1.3.44 Register Description

1.3.4.5 Register Instance Table

1.3.4.5.1 Content Ordering in a Row
1.3.4.5.2 Multiple Instances Per Row
1.3.4.53 MSR Access Method

1.3.4.53.1 MSR Per-Thread Example
1.3.453.2 MSR Range Example
1.3.4.5.4 BAR Access Method

1.3.4.5.4.1 BAR as a Register Reference
1.3.4.5.5 PCICFG Access Method
1.3.4.5.5.1 PCICFG Bus Implied to be 00h
1.3.4.5.6 Data Port Access Method

1.3.4.6 Register Field Format

1.3.4.7 Simple Register Field Format

1.3.4.8 Complex Register Field Format

1.3.4.9 Field Name is Reserved

1.3.4.10 Field Access Type

1.3.4.10.1 Conditional Access Type Expression
1.3.4.11 Field Reset

1.3.4.12 Field Initialization

1.3.4.13 Field Check

1.3.4.14 Field Valid Values

1.4 Definitions
1.5 Changes Between Revisions and Product Variations
1.5.1 Revision Conventions
1.6 Package
1.7 Processor Overview
1.7.1 Features
1.8 System Overview
1.8.1 AM4 Desktop
1.8.2 Mixed Processor Revision Support
2 Core Complex (CCX)
2.1 Processor x86 Core

2.1.1 Core Definitions
2.1.2 Secure Virtual Machine Mode (SVM)

AMDA

PPR for AMD Family 17h Models 00h-OFh



54945 Rev 1.14 - April 15, 2017

2.1.2.1 BIOS support for SVM Disable

2.1.2.1.1 Enable AMD Virtualization™
2.1.2.1.2 Disable AMD Virtualization™
2.1.2.1.3 Disable AMD Virtualization™, with a user supplied key

2.1.3 CPU Power Management

2.14 Effective Frequency

2.1.5 Address Space

2.1.5.1 Virtual Address Space

2.1.5.2 Physical Address Space

2.1.5.3 System Address Map

2.1.5.3.1 Memory Access to the Physical Address Space
2.1.5.3.1.1 Determining Memory Type

2.1.6 Configuration Space

2.1.6.1 MMIO Configuration Coding Requirements
2.1.6.2 MMIO Configuration Ordering

2.1.6.3 Processor Configuration Space

2.1.7 PCI Configuration Legacy Access

2.1.8 Register Sharing

2.1.9 Timers

2.1.10  Interrupts

2.1.10.1 System Management Mode (SMM)

2.1.10.1.1 SMM Overview

2.1.10.1.2 Mode and Default Register Values
2.1.10.1.3 SMI Sources And Delivery

2.1.10.1.4 SMM Initial State

2.1.10.1.5 SMM Save State

2.1.10.1.6 System Management State

2.1.10.1.7 Exceptions and Interrupts in SMM
2.1.10.1.8 The Protected ASeg and TSeg Areas
2.1.10.1.9 SMM Special Cycles

2.1.10.1.10 Locking SMM

2.1.10.2 Local APIC

2.1.10.2.1 Local APIC Functional Description
2.1.10.2.1.1 Detecting and Enabling
2.1.10.2.1.2 APIC Register Space

2.1.10.2.1.3 Apicld Enumeration Requirements
2.1.10.2.1.4 Physical Destination Mode
2.1.10.2.1.5 Logical Destination Mode
2.1.10.2.1.6 Interrupt Delivery

2.1.10.2.1.7 Vectored Interrupt Handling
2.1.10.2.1.8 Interrupt Masking

2.1.10.2.1.9 Spurious Interrupts

2.1.10.2.1.10 Spurious Interrupts Caused by Timer Tick Interrupt
2.1.10.2.1.11 Lowest-Priority Interrupt Arbitration
2.1.10.2.1.12 Inter-Processor Interrupts
2.1.10.2.1.13 APIC Timer Operation
2.1.10.2.1.14 Generalized Local Vector Table
2.1.10.2.1.15 State at Reset

2.1.10.2.2 Local APIC Registers

2.1.11 CPUID Instruction

2.1.11.1

CPUID Instruction Functions

2.1.12  MSR Registers

2.1.12.1

MSRs - MSR0000_xxxx

AMDA

PPR for AMD Family 17h Models 00h-OFh



54945 Rev 1.14 - April 15, 2017

3

3.1

3.2

2.1.12.2
2.1.12.3
2.1.12.4
2.1.12.5
2.1.13

2.1.13.1
2.1.13.2
2.1.13.3

2.1.13.3.1

MSRs - MSRC000 0xxx
MSRs - MSRCO000 2xxx
MSRs - MSRC001_0xxx
MSRs - MSRCO001 _1xxx
Performance Monitor Counters
RDPMC Assignments

Large Increment per Cycle Events
Core Performance Monitor Counters

Floating Point (FP) Events

2.1.13.3.2 LS Events
2.1.13.3.3 IC and BP Events
2.1.13.34 DE Events
2.1.13.3.5 EX (SC) Events
2.1.13.3.6 L2 Cache Events.

2.1.13.4

2.1.13.4.1

2.1.14

L3 Cache Performance Monitor Counters

L3 Cache PMC Events

Instruction Based Sampling (IBS)
Reliability, Availability, and Serviceability (RAS) Features

Machine Check Architecture

3.1.1 Overview
3.1.2 Machine Check Architecture Extensions
3.13 Machine Check Global Registers
3.14 Machine Check Banks
3.1.5 Machine Check Bank Registers
3.1.6 Legacy MCA MSRs
3.1.7 Determining Bank Type
3.1.7.1 Mapping of Banks to Blocks
3.1.8 Machine Check Errors
3.19 Machine Check Initialization
3.1.9.1 Initialization Sequence
3.1.9.2 Configuration Requirements
3.1.10  MCA Recovery
3.1.11  Use of MCA Information
3.1.11.1 Error Management
3.1.11.2 Fault Management
3.1.12  Machine Check Error Handling
3.1.13  Error Codes
3.1.14  Error Thresholding
3.1.15  Error Simulation

MCA Registers
3.2.1 CPU Core
32.1.1 LS
3.2.1.1.1 LS Error Decode Tables
32.1.2 IF
32.1.2.1 IF Error Decode Tables
3213 L2
3.2.1.3.1 L2 Error Decode Tables
3214 DE
32.14.1 DE Error Decode Tables
32.1.5 EX
32.1.5.1 EX Error Decode Tables
3.2.1.6 FP
3.2.1.6.1 FP Error Decode Tables

AMDA
PPR for AMD Family 17h Models 00h-OFh



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

322 L3 Cache
3221 L3 Error Decode Tables
3.2.3 Data Fabric

3231 CS

3.2.3.1.1 CS Error Decode Tables
3232 PIE

3.2.3.2.1 PIE Error Decode Tables
324 UMC

3.2.4.1 UMC Error Decode Tables
3.2.5 Parameter Block
3251 PB Error Decode Tables
4 UMC
4.1 UMC Overview
4.1.1 UMC Frequency Support



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

List of Figures

Figure 1: Register Physical Mnemonic, Title, and Name
Figure 2: Full Width Register Attributes

Figure 3: Register Description

Figure 4: Register Instance Table: Content Ordering in a Row
Figure 5: Register Instance Table: MSR Example

Figure 6: Register Instance Table: MSR Range Example
Figure 7: Register Instance Table: BAR as Register Reference
Figure 8: Register Instance Table: Bus Implied to be 00h
Figure 9: Register Instance Table: Data Port Select

Figure 10: Simple Register Field Example

Figure 11: Register Field Sub-Row for {Reset,AccessType,Init,Check}
Figure 12: Register Field Sub-Row for Instance Specific Reset

Figure 13: Register Field Sub-Row for Description

Figure 14: Register Field Sub-Row for Valid Value Table

Figure 15: Register Field Sub-Row for Valid Bit Table

Figure 16: Family 17h Models 00h-OFh Processor Overview

Figure 17: Register Sharing Domains

Figure 18: Instance Parameters



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh
o
List of Tables
Table 1: Reference Documents Listing
Table 2: Arithmetic and Logical Operator Definitions
Table 3: Function Definitions
Table 4: Operator Precedence and Associativity
Table 5: Register Mnemonic Definitions
Table 6: Logical Mnemonic Definitions
Table 7: Physical Mnemonic Definitions
Table 8: AccessType Definitions
Table 9: Reset Type Definitions

Table 10: Init Type Definitions

Table 11: Definitions

Table 12: Package Definitions

Table 13: AM4 1P Capabilities

Table 14: Definitions

Table 15: SMM Initial State

Table 16: SMM Save State

Table 17: ICR Valid Combinations

Table 18: Blocks Capable of Supporting MCA Banks
Table 19: Legacy MCA Registers

Table 20: MCAX Registers

Table 21: MCA Bank to Block Mapping

Table 22: Table . Error Overwrite Priorities

Table 23: Error Code Types

Table 24: Error code: transaction type (TT)

Table 25: Error codes: cache level (LL)

Table 26: Error codes: memory transaction type (RRRR)
Table 27: MCA ADDR LS Register

Table 28: MCA SYND LS Register

Table 29: MCA_STATUS LS[ErrorCodeExt] Decode
Table 30: MCA_ADDR IF Register

Table 31: MCA _SYND IF Register

Table 32: MCA_STATUS IF[ErrorCodeExt] Decode
Table 33: MCA_ADDR L2 Register

Table 34: MCA SYND L2 Register

Table 35: MCA _STATUS L2[ErrorCodeExt] Decode
Table 36: MCA_ADDR_DE Register

Table 37: MCA_SYND_DE Register

Table 38: MCA STATUS DE[ErrorCodeExt] Decode
Table 39: MCA_ADDR_EX Register

Table 40: MCA_SYND EX Register

Table 41: MCA STATUS EX[ErrorCodeExt] Decode
Table 42: MCA_ADDR _FP Register

Table 43: MCA_SYND FP Register

Table 44: MCA STATUS FP[ErrorCodeExt] Decode
Table 45: MCA_ADDR_L3 Register

Table 46: MCA _SYND L3 Register

Table 47: MCA STATUS L3[ErrorCodeExt] Decode
Table 48: MCA_ADDR_CS Register

Table 49: MCA _SYND CS Register

Table 50: MCA_STATUS_CS[ErrorCodeExt] Decode



54945 Rev 1.14 - April 15, 2017

Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:

MCA_ADDR _PIE Register
MCA_SYND PIE Register
MCA_STATUS_PIE[ErrorCodeExt] Decode
MCA_ADDR_UMC Register
MCA_SYND_ UMC Register

MCA_STATUS _UMC]|ErrorCodeExt] Decode
MCA_ADDR _PB Register

MCA _SYND PB Register

MCA_STATUS PBJ[ErrorCodeExt] Decode

AMDA
PPR for AMD Family 17h Models 00h-OFh

10



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

1 Overview

1.1 Intended Audience

This document provides the processor behavioral definition and associated design notes. It is intended for platform
designers and for programmers involved in the development of BIOS functions, drivers, and operating system
kernel modules.

1.2 Reference Documents

Table 1: Reference Documents Listing

Term Description

docAPM1 AMD64 Architecture Programmer's Manual Volume 1: Application Programming, order#
24592.

docAPM2 AMD64 Architecture Programmer's Manual Volume 2: System Programming, order# 24593.

docAPM3 AMDG64 Architecture Programmer's Manual Volume 3: Instruction-Set Reference, order# 24594.

docAPM4 AMD64 Architecture Programmer's Manual Volume 4: 128-Bit and 256-Bit Media Instructions,
order# 26568.

docAPMS AMD64 Architecture Programmer's Manual Volume 5: 64-Bit Media and x87 Floating-Point
Instructions, order# 26569.

docACPI Advanced Configuration and Power Interface (ACPI) Specification. http://www.acpi.info.

docAPML Advanced Platform Management Link (APML) Specification, order #41918.

docIOMMU AMD /O Virtualization Technology (IOMMU) Specification, order# 48882.
docJEDEC JEDEC Standards. http://www.jedec.org.

docPCle PCI Express® Specification. http://www.pcisig.org.

docPClIlb PCI Local Bus Specification. http://www.pcisig.org.

docRAS RAS Feature Enablement for AMD Family 17h Models 00h-OFh, order# 55987.
docRevG Revision Guide for AMD Family 17h Models 00h-OFh Processors, order# 55449.
docAM4 Socket AM4 Processor Functional Data Sheet, order# 55509.

1.2.1 Documentation Conventions

When referencing information found in external documents listed in Reference Documents, the "=>" operator is
used. This notation represents the item to be searched for in the reference document. For example:

docExDoc => Headerl => Header2
is to have the reader use the search facility when opening referenced document "docExDoc" and search for
"Header2". "Header2" may appear more than once in "docExDoc", therefore, referencing the one that follows

"Header1". In that case, the easiest way to get to Header?2 is to use the search to locate Header1, then again to locate
"Header2".

1.3 Conventions

11


http://www.acpi.info/
http://www.pcisig.org/
http://www.pcisig.org/
http://www.jedec.org/

54945 Rev

1.3.1

AMDA

1.14 - April 15,2017

Numbering

* Binary numbers: Binary numbers are indicated either by appending a “b" at the end (e.g., 0110b) or by
verilog syntax (e.g., 4'b110).

* Hexadecimal numbers: Hexadecimal numbers are indicated by appending an “h" to the end (e.g., 45F8h) or
by verilog syntax (e.g., 16'h45F8).

* Decimal numbers: A number is decimal if not specified to be binary or hex.

* Exception: Physical register mnemonics are implied to be hex without the h suffix.

» Underscores in numbers: Underscores are used to break up numbers to make them more readable. They do
not imply any operation (e.g., 0110 _1100).

1.3.2

Arithmetic And Logical Operators

In this document, formulas generally follow Verilog conventions for logic equations.

Table 2: Arithmetic and Logical Operator Definitions

Operator | Definition

{} Concatenation. Curly brackets are used to indicate a group of bits that are concatenated together.
Each set of bits is separated by a comma (e.g., {Addr[3:2], Xlate[3:0]} represents a 6-bit values;
the two MSBs are Addr[3:2] and the four LSBs are Xlate[3:0]).

| Bitwise OR (e.g., 01b | 10b == 11b).

I Logical OR (e.g., 01b || 10b == 1). It treats a multi-bit operand as 1 if >= 1 and produces a 1-bit
result.

& Bitwise AND (e.g., 01b & 10b == 00b).

&& Logical AND (e.g., 01b && 10b == 1). It treats a multi-bit operand as 1 if >= 1 and produces a 1-
bit result.

A Bitwise exclusive-OR (e.g., 01b ~ 10b == 11b). Sometimes used as “raised to the power of"" as
well, as indicated by the context in which it is used (e.g., 22 == 4).

~ Bitwise NOT (also known as one's complement). (e.g., ~10b == 01b).

! Logical NOT (e.g., 10b == 0). It treats a multi-bit operand as 1 if >= 1 and produces a 1-bit result.

<,<=,>, |Relational. Less than, Less than or equal, greater, greater than or equal, equal, and not

>= == |= |equal

+, -, *,/, | Arithmetic. Addition, subtraction, multiplication, division, and modulus.

%

<< Bitwise left shift. Shift left first operand by the number of bits specified by the 2nd
operand (e.g., 01b << 01b == 10b).

>> Bitwise right shift. Shift right first operand by the number of bits specified by the 2nd
operand (e.g., 10b >>01b == 01b).

?: Ternary conditional (e.g., condition ? value if true : value if false).

Table 3: Function Definitions

PPR for AMD Family 17h Models 00h-OFh

Term Description

ABS ABS(integer expression): Remove sign from signed value.

FLOOR |FLOOR(integer expression): Rounds real number down to nearest integer.

CEIL CEIL(real expression): Rounds real number up to nearest integer.

MIN MIN(integer expression list): Picks minimum integer or real value of comma separated list.
MAX MAX(integer expression list): Picks maximum integer or real value of comma separated list.
COUNT | COUNT(integer expression): Returns the number of binary 1's in the integer.

ROUND | ROUND(real expression): Rounds to the nearest integer; halfway rounds away from zero.

12



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

UNIT | UNIT(register field reference): Input operand is a register field reference that contains a valid values
table that defines a value with a unit (e.g., clocks, ns, ms, etc). This function takes the value in the
register field and returns the value associated with the unit (e.g., If the field had a valid value definition
where 1010b was defined as 5 ns). Then if the field had the value of 1010b, then UNIT() would return
the value 5.

POW POW(base, exponent): POW(x,y) returns the value x to the power of y.

1.3.2.1 Operator Precedence and Associativity

This document follows C operator precedence and associativity. The following table lists operator precedence
(highest to lowest). Their associativity indicates in what order operators of equal precedence in an expression are
applied. Parentheses are also used to group subexpressions to force a different precedence; such parenthetical
expressions can be nested and are evaluated from inner to outer (e.g., “X =A || !B && C" is the same as “X =A ||
(('B) && CO)").

Table 4. Operator Precedence and Associativity

Operator Description Associativity
I, ~ Logical negation/bitwise complement right to left
* 1, % Multiplication/division/modulus left to right
+, - Addition/subtraction left to right
<<, >> Bitwise shift left, Bitwise shift right left to right
<, <=, >, Relational operators left to right
>= == |=

& Bitwise AND left to right
A Bitwise exclusive OR left to right
| Bitwise inclusive OR left to right
&& Logical AND left to right
[ Logical OR left to right
?7: Ternary conditional right to left

1.3.3 Register Mnemonics

A register mnemonic is a short name that uniquely refers to a register, either all instances of that register, some
instances, or a single instance.

Every register instance can be expressed in 2 forms, logical and physical, as defined below.

Table 5: Register Mnemonic Definitions

Term Description

logical mnemonic The register mnemonic format that describes the register functionally, what namespace
to which the register belongs, a name for the register that connotes its function, and
optionally, named parameters that indicate the different function of each instance (e.g.,
Link::Phy::PciDevVendIDF3). See 1.3.3.1 [Logical Mnemonic].

physical mnemonic The register mnemonic that is formed based on the physical address used to access the
register (e.g., D18F3x00). See 1.3.3.2 [Physical Mnemonic].

1.3.3.1 Logical Mnemonic

The logical mnemonic format consists of a register namespace, a register name, and optionally a register instance

13



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

specifier (e.g., register namespace::register name register instance specifier).

For Unb::PciDevVendIDF3:
* The register namespace is Unb, which is the UNB IP register namespace.
* The register name is PciDevVendIDF3, which reads as PCICFG device and vendor ID in Function 3.
» There is no register instance specifier because there is just a single instance of this register.

For Dct::Phy::CalMisc2_dct[1:0] chiplet{BCST,3:0] pad[BCST,11:0]:
* The register namespace is Dct::Phy, which is the DCT PHY register namespace.
* The register name is CalMisc2, which reads as miscellaneous calibration register 2.
* The register instance specifier is _dct[1:0] chiplet{BCST,3:0]_pad[BCST,11:0], which indicates that there
are 2 DCTPHY instances, each IP for this register has 5 chiplets (0-3 and BCST), and for each chiplet 13
pads (0-11 and BCST). This register has 130 instances. (2*5%13)

Table 6: Logical Mnemonic Definitions

Term Description

register namespace A namespace for which the register name must be unique. A register
namespace indicates to which IP it belongs and an IP may have multiple
namespaces. A namespace is a string that supports a list of "::" separated
names. The convention is for the list of names to be hierarchical, with the
most significant name first and the least significant name last (e.g.,
Link::Phy::Rx is the RX component in the Link PHY).

register name A name that cannotes the function of the register.

register instance specifier The register instance specifier exists when there is more than one instance for
a register. The register instance specifier consists of one or more register
instance parameter specifier (e.g., The register instance specifier
_dct[1:0]_chiplet[BCST,3:0] pad[BCST,11:0] consists of 3 register instance
parameter specifiers, dct[1:0], chiplet{BCST,3:0], and pad[BCST,11:0]).
register instance parameter A register instance parameter specifier is of the form _register parameter
specifier name[register parameter value list] (e.g., The register instance parameter
specifier dct[1:0] has a register parameter name of dct (The DCT PHY
instance name) and a register parameter value list of "1:0" or 2 instances of
DCT PHY).

register parameter name A register parameter name is the name of the number of instances at some
level of the logical hierarchy (e.g., The register parameter name dct specifies
how many instance of the DCT PHY exist).

register parameter value list The register parameter value list is the logical name for each instance of the
register parameter name (e.g., For _dct[1:0], there are 2 DCT PHY instances,
with the logical names 0 and 1, but it should be noted that the logical names 0
and 1 can correspond to physical values other than 0 and 1). It is the purpose
of the AddressMappingTable to map these register parameter values to
physical address values for the register.

1.3.3.2 Physical Mnemonic

The physical register mnemonic format varies by the access method. The following table describes the supported
physical register mnemonic formats.

Table 7: Physical Mnemonic Definitions
Term Description
PCICFG The PCICFG, or PCI defined configuration space, physical register mnemonic

14



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

format is of the form DXFYxZZZ.

BAR

The BAR, or base address register, physical register mnemonic format is of the
form PREFIXxZZZ.

MSR

The MSR, or x86 model specific register, physical register mnemonic format is of
the form MSRXXXX XXXX, where XXXX XXXX is the hexadecimal MSR
number. This space is accessed through x86 defined RDMSR and WRMSR

instructions.

PMC

The PMC, or x86 performance monitor counter, physical register mnemonic
format is any of the forms {PMCxXXX, L2IPMCxXXX, NBPMCxXXX}, where
XXX is the performance monitor select.

CPUID

The CPUID, or x86 processor identification state, physical register mnemonic
format is of the form CPUID FnXXXX XXXX EiX[ xYYY], where
XXXX XXXX is the hex value in the EAX and YY'Y is the hex value in ECX.

1.3.4 Register Format

A register is a group of register instances that have the same field format (same bit indices and field names).

1.34.1 A Register is a group of Register Instances

All instances of a register:
* Have the same:

* Field bit indices and names
» Field titles, descriptions, valid values.

* Register title

* Register description
* Fields may have different: (instance specific)
* Access Type. See 1.3.4.10 [Field Access Type].
* Reset. See 1.3.4.11 [Field Reset].
* Init. See 1.3.4.12 [Field Initialization].
* Check. See 1.3.4.13 [Field Check].

1.3.4.2 Register Physical Mnemonic, Title, and Name

A register definition is identified by a table that starts with a heavy bold line. The information above the bold line in

order is:

1. The physical mnemonic of the first instance of the register

* Aregister that has multiple instances, may have instances that have different access methods, each
with it's own physical mnemonic format.

» This text is not intended to represent the physical mnemonics of all instances of the register. It is
only a visually aid to identify a register when scanning down a list, for readers that prefer to find
registers by physical mnemonic.

* The first instance physical mnemonic is the physical mnemonic of the first instance of the list of
instances, sorted in lexical/alphabetical order.

2. The register title in brackets.
3. The register name in parenthesis.

15



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Physical Mnemonic Title Name

ime Stamp Counte_r_]](T o)
Read-write, Volatile. Reset: 0000_0000_0000_0000h.
Core::X86::Msr-"TSC_lthree[1:0]_core[3:0]_thread[1:0]; MSRO0000010

Bits | Description

63:0 |TSC: time stamp counter. Read-write,Volatile. Reset: 0. The TSC increments at the PO frequency. The
TSC counts at the same rate in all P-states, all C states, S0, or S1. A read of this MSR in guest mode is
affected by Core:: X86::Msr:: TscRateMsr. The value (TSC/TSCRatio) is the TSC PO frequency based
value (as if TSCRatio == 1.0) when (TSCRatio '= 1.0).

Figure 1: Register Physical Mnemonic, Title, and Name

1.3.4.3 Full Width Register Attributes

The first line that follows the bold line contains the attributes that apply to all fields of the register. This row is
rendered as a convenience to the reader and replicates content that exists in the register field.
* AccessType: If all non-reserved fields of a register have the same access type, then the access type is
rendered in this row.
» The supported access types are specified by 1.3.4.10 [Field Access Type].
» The example figure shows that the access type "Read-write, Volatile" applies to all non-reserved
fields of the register.
* Reset: If all non-reserved fields of a register have a constant reset, then the full width register reset is
rendered in this row. The example figure shows the reset "0000000000000000h".
* The value zero (0) is assumed for display purposes for all reserved fields.
» Ifnone of the above content is rendered, then this row of the register is not rendered.

_MSRI]O{]{]_UUID [Time StamE Counter] ! !SC!
Read-write, Volatile Reset: 0000_0000_0000_0000h.
Core::X86::Msr:. TSC_lthree[1:0] core[3:0] thread[1:0]; MSRO0000010

Bits | Description

63:0 |TSC: time stamp counter. Read-write,Volatile. Reset: 0. The TSC increments at the PO frequency. The
TSC counts at the same rate in all P-states, all C states, S0, or S1. A read of this MSR in guest mode is
affected by Core::X86::Msr:: TscRateMsr. The value (TSC/TSCRatio) is the TSC PO frequency based
value (as if TSCRatio == 1.0) when (TSCRatio '= 1.0).

Figure 2: Full Width Register Attributes

1.3.4.4 Register Description

The register description is optional and appears after the "full width register attributes" row and before the "register
instance table" rows. The register description can be one or more paragraphs.

16



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

PciDevVendIDF3 [Device/Vendor ID]
Read-only. Reset: 0000 1022h
A register description.
That can be multiple paragraphs.
Link:: Phy::Tx:PeiDevVendIDF3; D18F3x00
Bits | Description
31:16 |DeviceID: device ID. Read-only. Reset: Fixed 0000h.
15:0 | VendorID: vendor ID. Read-only. Reset: Fixed, 1022h. Imit: 1234h

Figure 3: Register Description

1.3.4.5 Register Instance Table
The zero or more rows of 8-pt font before the Bits/Description row is the register instance table.

The register instance table can generally be described as follows:
* Each row describes the access method of one or more register instances.
» Ifarow describes two or more instances, then the logical instance range, left to right, corresponds to the
physical range, left to right.
» The absence of register instance rows indicates that the register exists for documentation purposes, and no
access method is described for the register.

Because there are multiple access methods for all the registers, each of the following subsections describes an
aspect of the register instance table in isolation.

1.3.4.51 Content Ordering in a Row

Content in a register instance table row is ordered as follows:
* The text up to the first semicolon is the logical mnemonic.
* See 1.3.3.1 [Logical Mnemonic].
» The text after the first semicolon is the physical mnemonic.
* See 1.3.3.2 [Physical Mnemonic].
* Optionally, content after the physical mnemonic provides additional information about the access method
for the register instances in the row.

BXXD00F0x000 (NB_VENDOR_1ID)

Read-only. Reset: 1022h.

Vendor ID Register —
T0HC::NB_VENDOR_ID_aliasHOST; BXXD00F0x000, BXX=IOHC-NB_BUS_NUM_CNIL_aliasSMN[NB_BUS_NUM]
TOHC::NB_VENDOR_ID_aliasSMI}; NBCFGx0000000); NBCFG=13B0_0000h

Figure 4: Register Instance Table: Content Ordering in a Row

1.3.4.5.2 Multiple Instances Per Row

Multiple instances in a row is represented by a single dimension “range" in the logical mnemonic and the physical
mnemonic.

The single dimension order of instances is the same for both the logical and physical mnemonic. The first logical

17



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

mnemonic is associated with the first physical mnemonic, so forth for the 2nd, up until the last.
* Brackets indicates a list, most significant to least significant.
* The “:" character indicates a continuous range between 2 values.
* The “," character separates non-contiguous values.
* There are some cases where more than one logical mnemonic maps to a single physical mnemonic.

Note that it is implied that the MSR {lthree,core,thread} parameters are not part of a range.

Example:
NAMESP::REGNAME inst{BLOCK[5:0],BCST]_aliasHOST; FFF1x00000088 x[000[B:6]_0001,00000000]
* There are 7 instances.
*+  NAMESP is the namespace.
* 6 instances are represented by the sub-range 000[B:6] 0001.
* _instBCST corresponds to FFF1x00000088 x00000000.
* _inst BLOCK 0 corresponds to FFF1x00000088 x00060001.

* _inst BLOCK 5 corresponds to FFF1x00000088 x000B0001.

1.3.4.5.3 MSR Access Method

The MSR parameters {lthree,core,thread} are implied by the identity of the core on which the RDMSR/WRMSR s
being executed, and therefore are not represented in the physical mnemonic.

MSRs that are:
» per-thread have the {Ithree,core,thread} parameters.
» per-core do not have the thread parameter.
* per-L3 do not have the {core,thread} parameters.
* common to all L3's do not have the {lthree,core,thread} parameters.

1.3.4.5.3.1 MSR Per-Thread Example

An MSR that is per-thread has all three {Ithree,core,thread} parameters and all instances have the same physical
mnemonic.

MSR0000_0010 [Time Stamp Counter] (TSC)

Read-write, Volatile. Reset: 0000 _0000_0000_0000h.

=C_0IE::XB&::MH::TSC_lﬂ'mee[l:Gme[E:G]_ﬂnead[@]j@'lSR.DDODDGID:]

Bits | Description

63:0 |TSC: time stamp counter. Read-write, Volatile. Reset: 0. The TSC increments at the PO frequency. The
TSC counts at the same rate in all P-states, all C states, S0, or S1. A read of this MSR in guest mode is
affected by Core:: X86::Msr:: TscRateMsr. The value (TSC/TSCRatio) is the TSC PO frequency based
value (as if TSCRatio == 1.0) when (TSCRatio '= 1.0).

Figure 5: Register Instance Table: MSR Example

1.3.4.5.3.2 MSR Range Example
An MSR can exist as a range for a parameter other than the {Ithree,core,thread} parameters.

In the following example the n parameter is a range. The n0 value corresponds to MSR0000 0201, and so on.

18



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

MSRO0000 0201 [Variable-Size MTRRs Mask] (MtrrVarMask)

Reset: 0000 0000 0000 0000h.
Core:“X86: Msr--MtrrVarMask [n[7:0] Ithree[1:0] core[3:0]: MSR0000_020[[FD,B.9,7,53,1]] |
—_ — - -

Figure 6: Register Instance Table: MSR Range Example

1.3.4.5.4 BAR Access Method

The BAR access method is indicated by a physical mnemonic that has the form PREFIXxNUMBER.
* Example: APICx0000. The BAR prefix is “APIC".

The BAR prefix represents either a constant or an expression that consists of a register reference.

1.3.4.54.1 BAR as a Register Reference

A relocatable BAR is when the base of an IP is not a constant.
» The prefix NTBPRIBARO represents the base of the IP, the value of which comes from the register
NBIFEPFNCFG::BASE ADDR 1 aliasHOST instNBIFO funcl[BASE ADDR].

NTBPRIBAR0x00000 (NTB_SMU_PCTRL0)

Reset: 0000 _0000h.
NTE:NTBE_SMU_PCTRL U_aliasHOST'PRIi m.PRIB.%RQkDOOUO;

FRIBARO-NBIFEPFNCEG::BASE_ADDR_L aliasHOST_instNBIFQ_funcl[BASE_ADDE,
NTB:NTB_SMU_PCTRLO_ a].lasHOSTSE.C lh:]:BﬁEL:B.&EDiDU{:uo

NTB:NTB_ SMU _PCTRLO_ allasSI\ﬂ \JTBxUODUDUOU NTB=0400_ 0000[1

Figure 7: Register Instance Table: BAR as Register Reference

1.3.4.5.5 PCICFG Access Method

The PCICFG access method is indicated by a physical mnemonic that has the form DXXFXxNUMBER. There are
2 cases:

* Bus omitted and implied to be 00h.

* Bus represented as BXX and indicates that the bus is indicated by a register field.

Example:
+ Example: D18F000h. (The bus, when omitted, is implied to be 00h)
*  Example: BXXDOF000h. (The bus as an expression that includes a register reference)

1.3.4.5.5.1 PCICFG Bus Implied to be 00h

Example:
* The absence of a B before the D14 implies that the bus is 0.
|FCH TTF- I_PC PciDevVendlD_aliasHOST] D14F3x000]

Figure 8: Register Instance Table: Bus Implied to be 00h

19



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

1.3.4.5.6 Data Port Access Method
A data port requires that the data port select be written before the register is accessed via the data port.
Example:

* The data port select value follows the “ x".
» The data port select register follows the “DataPortWrite=".

DF::FabricBlocklnstan(EComt_hlst[PIEO,BCST]_aliiEHOST; DlBEDXMU_X[OD[}SDDDI,OOODD[}DD];[DataP0rtW1'ite=DF::FabricConfigAccessControl ]
DF:-FabricBlockInstanceCount inst[PTEQ.BCST]_aliasSMN; DFF0x00000040_x[00050001,000000007; DFFU=000T_CUUUR;

Figure 9: Register Instance Table: Data Port Select

1.3.4.6 Register Field Format

The register field definition are all rows that follow the Bits/Description row. Each field row represents the
definition of a bit range, with the bit ranges ordered from most to least significant. There are 2 columns, with the
left column defining the field bit range, and the right column containing the field definition.

There are 2 field definition formats, simple and complex. If the description can be described in the simple one
paragraph format then the simple format is used, else the complex format is used.

1.3.4.7 Simple Register Field Format

The simple register format compresses all content into a single paragraph with the following implied order:
1. Field name (required)
* Allowed to be Reserved. See 1.3.4.9 [Field Name is Reserved].
» "FFXSE" in the example figure.
2. Field title
» "fast FXSAVE/FRSTOR enable" in the example figure.
3. Field Access Type. See 1.3.4.10 [Field Access Type].
» In the example figure the access type is "Read-write".
4. Field Reset. See 1.3.4.11 [Field Reset].
* In the example figure the reset is warm reset and "0".

5. Field Init. See 1.3.4.12 [Field Initialization].
6. Field Check. See 1.3.4.13 [Field Check].
7. Field Valid Values, if the valid values are single bit (E.g. 0=, 1=). See 1.3.4.14 [Field Valid Values].

* In the example figure the 1= definition begins with "Enables" and ends with "mechanism".
* In the example figure there is no 0= definition.

8. Field description, if it is a single paragraph.
» In the example figure the field description begins with "This is" and ends with "afterwards".

All fields that don't exist are omitted.

14 |FEXSEF!fast FXSAVE/FRSTOR enable. Read-write) Reset: 0./[l=Fnables the fast FXSAVE/FRSTOR
tmechanism.|A 64-bit operating system may enable the fast FXSAVE/FRSTOR mechanism if
(Core::X86::Cpuid::FeatureExtIdEdx[FFXSR] == 1). This bit is set once by the operating system and its
value is not changed afterwards.

Figure 10: Simple Register Field Example

20



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

1.3.4.8 Complex Register Field Format

Content that can't be expressed in the single paragraph format is broken out to a separate sub-row (a definition
column row).

Additional sub-rows are added in the following order:
1. Complex expression for {Reset,AccessType,Init,Check}.
2. Instance specific {Reset,AccessType,Init,Check} values.
3. Description, if more than 1 paragraph.
4. Valid values, if more than 0=/1=. Or a Valid bit table. (see figure)

The following figure highlights a complex access type specification.

63:0 |APerfReadOnly: read-only actual core clocks counter. Reset: (. This register increments in
proportion to the actual number of core clocks cycles while the core is in C0. See

Core:: X86:Msr:MPerfReadOnly. This register is not affected by writes to Core:: X86::Msr:: APERF.
L AccessType: Core:: X86::Msr:: HWCR[EffFregqReadOnlyLock] ? Read-only,Volatile : Read-

write, Volatile.

Figure 11: Register Field Sub-Row for {Reset,AccessType,Init,Check}

The following figure highlights instance specific cold reset values.
* The format of each instance specific row is: logical mnemonic, then content type, then content value.
* In this case there are 2 reset values, one row for each reset value.

23 McaBankPresent. Read-onlv. Set by hardware if the Instance has an MCA bank.
_inst[TCDX][6:0],1050,10M0,CCM[1:0],CAKE[5:0],BCST]_alias[SMN,HOST]: Reset: Fixed,0.
_inst[PIED,CS[1:0]]_alias[SMIN,HOST]: Reset: Fixed,1.

Figure 12: Register Field Sub-Row for Instance Specific Reset

The following figure highlights a complex description specification.

4 INVDWBINVD: INVD toe WBINVD conversion. Read-write. Reset: 1. Check: 1. 1=Convert INVD to
WBINVD.
Description: This bit is required to be set for normal operation when any of the following are true:

* An 12 is shared by multiple threads.

* An L3 is shared by multiple cores.

+ (CC6is enabled.

»__Probe filter is enabled

Figure 13: Register Field Sub-Row for Description

The following figure highlights a complex valid value table, used either when the field is more than 1 bit or when
the definition is more than a single sentence.

21



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh
2:1 |CpuWdtTimeBase: CPU watchdog timer time base. Read-write. Reset: 0. Specifies the time base for
the timeout period specified in CpuWdtCountSel
ValidValues:
Value Description
00b 1.31ms
01b 1.28us
10b Reserved (5ns)
11b Reserved

Figure 14: Register Field Sub-Row for Valid Value Table

The following figure highlights a valid bit table which is used when each bit has a specific function.

55:52 |Reserved.

51:48 |SliceMask. Read-write. Reset: 0.
ValidValues:
Bit Description
[0] L3 Slice 0 mask.
[1] L3 Slice 1 mask.
[2] L3 Slice 2 mask.
[3] L3 Slice 3 mask.

Figure 15: Register Field Sub-Row for Valid Bit Table

1.3.4.9 Field Name is Reserved

When a register field name is Reserved, and it does not explicitly specify an access type, then the implied access
type is "Reserved-write-as-read".

* The Reserved-write-as-read access type is:
* Reads must not depend on the read value.
»  Writes must only write the value that was read.

1.3.4.10 Field Access Type

The AccessType keyword is optional and specifies the access type for a register field. The access type for a field is
a comma separated list of the following access types.

Table 8: AccessType Definitions

Term Description

Read-only Readable; writes are ignored.

Read-write Readable and writable.

Read Readable; must be associated with one of the following {Write-once, Write-1-only, Write-1-to-
clear, Error-on-write}.

Write-once Capable of being written once; all subsequent writes have no effect. If not associated with
Read, then reads are undefined.

Write-only Writable. Reads are undefined.

Write-1-only Writing a 1 sets to a 1; Writing a 0 has no effect. If not associated with Read, then reads are
undefined.

22



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

Write-1-to-clear

Writing a 1 clears to a 0; Writing a 0 has no effect. If not associated with Read, then reads are
undefined.

Write-0-only

Writing a 0 clears to a 0; Writing a 1 has no effect. If not associated with Read, then reads are
undefined.

Error-on-read

Error occurs on read.

Error-on-write

Error occurs on write.

Error-on-write-0

Error occurs on bitwise write of 0.

Error-on-write-1

Error occurs on bitwise write of 1.

Inaccessible Not readable or writable (e.g., Hide ? Inaccessible : Read-Write).
Configurable Indicates that the access type is configurable as described by the documentation.
Unpredictable | The behavior of both reads and writes is unpredictable.

Reserved-write-
as-1

Reads are undefined. Must always write 1.

Reserved-write-
as-0

Reads are undefined. Must always write 0.

Volatile Indicates that a register field value may be modified by hardware, firmware, or microcode
when fetching the first instruction and/or might have read or write side effects. No read may
depend on the results of a previous read and no write may be omitted based on the value of a
previous read or write.

1.3.4.10.1 Conditional Access Type Expression

The ternary operator can be used to express an access type that is conditional on an expression that can contain any

of the following:

* Aregister field value

e A constant

e A definition

1.3.4.11

Field Reset

The Reset keyword is optional and specifies the value for a register field at the time that hardware exits reset,
before firmware initialization initiates.

Unless preceded by one of the following prefixes, the reset value is called warm reset and the value is applied at
both warm and cold reset.

Table 9: Reset Type Definitions

Type Description

Cold Cold reset. The value is applied only at cold reset.
Fixed The value applies at all time.

1.3.4.12 Field Initialization

The Init keyword is optional and specifies an initialization recommendation for a register field.

If present, then there is an optional prefix that specifies the owner of the initialization. See Table 10 [Init Type

Definitions].

* Example: Init: BIOS,2'b0. /A initialization recommendation for a field to be programmed by BIOS.

23



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Table 10: Init Type Definitions

Type Description

BIOS Initialized by AMD provided AMD Generic Encapsulated Software Architecture (AGESA™)
x86 software.

SBIOS Initialized by OEM or IBV provided x86 software, also called Platform BIOS.

1.3.4.13 Field Check

The Check keyword is optional and specifies the value that is recommended for firmware/software to write for a
register field. It is a recommendation, not a requirement, and may not under all circumstances be what software
programs.

1.3.4.14 Field Valid Values

A register can optionally have either a valid values table or a valid bit table:
* Avvalid values table specifies the definition for specific field values.
+ Avalid bit table specifies the definition for specific field bits.

1.4 Definitions

Table 11: Definitions

Term Description

AGESA™ AMD Generic Encapsulated Software Architecture.

AP Applications Processor.

APML Advanced Platform Management Link.

BAPM Bidirectional Application Power Management.

BCD Binary Coded Decimal number format.

BCS Base Configuration Space.

BERT Bit Error Rate Tester. A piece of test equipment that generate arbitrary test patterns and
checks that a device under test returns them without errors.

BIST Built-In Self-Test. Hardware within the processor that generates test patterns and verifies
that they are stored correctly (in the case of memories) or received without error (in the case
of links).

Boot VID Boot Voltage ID. This is the VDD and VDDNB voltage level that the processor requests
from the external voltage regulator during the initial phase of the cold boot sequence.

C-states These are ACPI defined core power states. CO is operational. All other C-states are low-
power states in which the processor is not executing code. See docACPL.

COF Current operating frequency of a given clock domain.

Cold reset PWROK is deasserted and RESET L is asserted.

DID Divisor Identifier. Specifies the post-PLL divisor used to reduce the COF.

Doubleword A 32-bit value.

DW Doubleword.

ECS Extended Configuration Space.

EDC Electrical design current. Indicates the maximum current the voltage rail can demand for a
short, thermally insignificant time.

FCH The integrated platform subsystem that contains the 10 interfaces and bridges them to the
system BIOS. Previously included in the Southbridge.

FDS Functional Data Sheet. There is one FDS for each package type. See docSAM4.

24



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

FID Frequency Identifier. Specifies the PLL frequency multiplier for a given clock domain.
GB Gbyte or Gigabyte; 1,073,741,824 bytes.

GT/s Giga-Transfers per second.

HTC Hardware Thermal Control.

HTC-active state

Hardware-controlled lower-power, lower performance state used to reduce temperature.

10 configuration

Access to configuration space though IO ports CF8h and CFCh.

1P

In electronic design a semiconductor Intellectual Property, IP , or IP block is a reusable unit
of logic, cell, or integrated circuit layout design that is the intellectual property of one party.

KB

Kbyte or Kilobyte; 1024 bytes.

Master abort

This is a PCI-defined term that is applied to transactions on other than PCI buses. It
indicates that the transaction is terminated without affecting the intended target; reads return
all 1s; write are discarded; the master abort error code is returned in the response, if
applicable; master abort error bits are set if applicable.

MB Megabyte; 1024 KB.

MMIO Memory-Mapped Input-Output range. This is physical address space that is mapped to the
10 functions such as the 10 links or MMIO configuration.

MMIO Access to configuration space through memory space.

configuration

Node A node, is an integrated circuit device that includes one to 8 cores (one or two Core
Complexes).

ow Octword. An 128-bit value.

Physical address | Addresses used by cores in transactions sent to the DF.

Processor A package containing one or more Nodes. See Node.

PSI Power Status Indicator.

QW Quadword. A 64-bit value.

RX Receiver.

REFCLK Reference clock. Refers to the clock frequency (100 MHz) or the clock period (10 ns)
depending on the context used.

Shutdown A state in which the affected core waits for either INIT, RESET, or NMI. When shutdown
state is entered, a shutdown special cycle is sent on the 10 links.

Slam Refers to changing the voltage to a new value in one step (as opposed to stepping).

SMAF System Management Action Field. This is the code passed from the SMC to the processors
in STPCLK assertion messages.

SMC System Management Controller. This is the platform device that communicates system

management state information to the processor through an 1O link, typically the system 10
hub.

Speculative event

A performance monitor event counter that counts all occurrences of the event even if the
event occurs during speculative code execution.

TCC Temperature Calculation Circuit.

Tctl Processor Temperature control value.

TDC Thermal Design Current. See the AMD Infrastructure Roadmap, #41482.

TDP Thermal Design Power. A power consumption parameter that is used in conjunction with
thermal specifications to design appropriate cooling solutions for the processor.

Token A scheduler entry used in various Northbridge queues to track outstanding requests.

TX Transmitter.

Ul Unit interval. This is the amount of time equal to one half of a clock cycle.

UMI Unified Media Interface. The link between the processor and the FCH.

VDD Main power supply to the processor core logic.

VID Voltage level identifier.

VRM Voltage Regulator Module.

25



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh
W Word. A 16-bit value.

Warm reset RESET L is asserted only (while PWROK stays high).

XBAR Cross bar; command packet switch.

1.5 Changes Between Revisions and Product Variations

1.5.1 Revision Conventions

The processor revision is specified by CPUID_Fn00000001 EAX (FamModStep) or CPUID Fn80000001 EAX
(FamModStepExt). This document uses a revision letter instead of specific model numbers. Where applicable, the
processor stepping is indicated after the revision letter. All behavior marked with a revision letter apply to future
revisions unless they are superseded by a change in a later revision. See the revision guide in 1.2 [Reference
Documents] for additional information about revision determination.

1.6 Package

The following packages are supported.

Table 12: Package Definitions

Term Description
AM4 Desktop, single die, single socket. For client platform. DDR4.
1.7 Processor Overview

1.7.1 Features

Family 17h Models 00h-OFh are a microprocessor System-On-a-Chip (SOC) featuring AMD x86 cores. It also
introduces integrated 10, and integrated southbridge control hub, SCH where no supporting chipset is necessary.

« CPU:
* 2 Core Complexes (CCX). The Core represents the x86 ISA core from AMD designed for FX and
7th generation APU offerings.
» Supports Simultaneous Multithreading over previous generations clusters.
» Each core complex consists of:
* 4 cores where each core may run in single-thread mode (1T) or two-thread SMT mode (2T)
for a total of up to 8 threads per complex
*  512KB of L2 per core for a total of 2MB L2 per complex
* 4MB L2 total
* 8MB of L3 shared across all cores within the complex
* 16MB L3 total
* Scalable Data Fabric. This provides the data path that connects the compute complexes, the I/O interfaces,
and the memory interfaces to each other.
» Handles request, response, and data traffic
» Handles probe traffic to facilitate coherency, including a probe filter supporting up to 512GB per
DRAM channel
» Handles interrupt request routing (APIC)
*  Memory interface
* 2 Unified Memory Controllers (UMC), each supporting one DRAM channel

26



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

* 2 DDR4 PHYs. Each PHY supports:
*  64-bit data plus ECC
* 1 DRAM channel per PHY
* 2 DIMMs per channel
* DDRA4 transfer rates from 1333MT/s to 3200MT/s
+ UDIMM,SODIMM
* PSP and SMU
+  MPO (PSP) and MP1 (SMU) microcontrollers
* This document refers to the AMD Secure Processor technology as Platform Security

Processor (PSP).
*  Thermal monitoring
* Fuses
* Clock control
*+ NBIO
*+ 2 SYSHUBs

* 1 IOHUB with IOMMU v2.x
*  Two 8x16 PCle® controllers supporting Gen1/Gen2/Gen3. Note that SATA Express is supported by
combining an x2 PCle port and two SATA ports on the same 2 lanes.
. Enterprlse 12G (E12G) Combo PHYs, PCS, and UPI muxing
6 x4 PHYs plus 5 x2 PHYs
» PHYs can support the following controller types: PCle, WAFL, xGMI, SATA, and Ethernet (SGMII
1000/100/10, 10GBASE-KR, 1000BASE-KX protocols). In addition, SATA Express can be
supported by combining PCle and SATA controllers on the same lanes with a GPIO for a device to
indicate its controller type.
* PHY muxing is provided that allows different package or board configurations to enable a single
PHY to support functionality from multiple on-die controllers
* Fusion Controller Hub (FCH) or southbridge (SB))

+ ACPI

» CLKGEN/CGPLL for refclk generation

+ eMMC

*  GPIOs (varying number depending on muxing)
* (6 ports)

« LPC

* Real-Time Clock (RTC)
*  SMBus (2 ports)

» SPI/eSPI
*  UART (4 ports)
* Azalia

* High Definition Audio
* Ethernet complex
* Up to 4 lanes of 10/100/1000 SGMII, or 10GBASE-KR, or 1000BASE-KX Ethernet operation
» 2 instances of a “lite" controller configuration
* 2 instances of a “heavy" controller configuration
+ SATA
* Up to 8 lanes of SATA Gen1/Gen2/Gen3, also provides the legacy SATA support for SATAe ports
* SGPIO
+ USB3.0
* 4 ports of USB3 SuperSpeed
* includes support for legacy USB speeds

27



54945 Rev 1.14 - April 15, 2017

DFT
(TEST)

_ Eﬁ ] SMUEOJ :rhan*nal.] i:i]
1 i 1

1

AMDA

PPR for AMD Family 17h Models 00h-OFh

SCALABLE CONTROL FABRIC (SYSTEM MANAGEMENT NETWORK + DFT + DFD)

J

i

USB x1 PHY

USB x1 PHY \

— UUSB3 x4
W USB -_J___
[ USB x1 PHY i PCS ,dD Audio

!

WAFL PCS] _

-.mxz E12G PHY]

eSPI, UART

UMC [MEM PHY w/ECC)

INTB CCP'
~ CPU Core Complex o~
o MP1 (SMU) | |
512KiB L2 + 3 - Sk ).
2MiB shared L3 slice) Ememet;:m 5 ='§‘“"L‘Pcv ’xg Elgg E:::
X 4 X
CPU Core Complex {SATA PCS" x4 E12G PHY
4x (Core + J E x4 E12G PHY
512KiB L2 + = x4 E12G PHY
2MiB shared L3 slice) (PCI } = l_)
= = . == & Lo E126 PHY
. P, i > o | e
22 2'2 22 22 SysHub _)(_SysHub ) || PCIESX16 4———~(PCle PCS} 3 E<2 E12G PHY
oD 'u‘ o| D3| vo nBIF ) nBIF ) (Gen3-capable : x4 E12G PHY
x| |zix] |=i=Z] =iz r— L [XGMIPCS)L | (%4 E12G PHY
e I I I8 |SCH /ACPI, eMMC, —— patte i
Sy iy By b x4 E12G PHY
olle)l el e | SDP Mux/Demux ) EGPIO, XGMI PCS)= Jomo—d
= = = = : L S, AGPIO, 12C, 4 .
= 3] 3| 3 LPC. RTC. UMC |MEM PHY w/ECC)
ol gl gl ¢ SMBus, SPI/

10 HUB _lowmu ) I

|

| SCALABLE DATA FABRIC I

Figure 16: Family 17h Models 00h-OFh Processor Overview

1.8

1.8.1

AM4 Desktop

System Overview

AM4 is a single-socket client infrastructure supporting DDR4 and PCle for non-coherent I/O communication. The
AM4 package is a lidded uPGA package that supports AMD Family 15h Models 60h - 6Fh, Family 17h Models
00h-OFh die, and Family 17h Models 10h-1Fh die.

Table 13: AM4 1P Capabilities

AM4 1P Configuration

Module Type

Single die, micro pin grid array common socket
infrastructure with other AM4 products

Cores / module 8
Memory channel/module 2
Max DIMMs/channel 2
DIMM Type 1.2V up to DDR4-3200

Combo links/module (notel)

PHY groupings of 16 lanes may each have a

maximum of 8 PCle ports, where a port consists of a
power-of-2 lanes (x1, x2, x4, x8, x16) or a SATA
Express port

Max PCle/module

24 lanes: 16 for dGPU, 4 for 10 expander, 4 for storage
(NVMe or 2 ports SATA Express)

Max SATA/ module (note2)

Up to 4 Gen 3

28



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Native I/O | USB3/2, SPI, LPC, I12C, RTC, Power control, etc.

Notes:
1: Combo links can take the form of PCle, SATA, SATA Express with configuration

restrictions.
2: These functions are in lieu of PCle on those ports (e.g., a group of 8 SATA displaces 8 PCle

lanes).

1.8.2 Mixed Processor Revision Support

AMD Family 17h processors with different OPNs or different revisions cannot be mixed in a multiprocessor
system. If an unsupported configuration is detected, BIOS should configure the BSP as a single processor system

and signal an error.

29



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

2 Core Complex (CCX)

2.1 Processor x86 Core

2.1.1

Core Definitions

Table 14: Definitions

Term Description

CCX Core Complex where more than one core shares L3 resources.

Core The instruction execution unit of the processor when the term Core is used in a x86 core
context.

CoreCOF Core current operating frequency in MHz. CoreCOF =
(Core::X86::Msr::PStateDef[ CpuFid[7:0]]/Core:: X86::Msr::PStateDef[ CpuDfsId])*200.

CPL Current Privilege Level of the running task when the term CPL is used in a x86 core context.

CpuCoreNum Specifies the core number.

Downcoring Removal of cores.

IBS Instruction based sampling.

IO configuration

Access to configuration space through 1O ports CF8h and CFCh.

IORR

10 range register.

L1 cache The level 1 caches (instruction cache and the data cache).

L2 cache The level 2 caches.

L3 Level 3 Cache. The L3 term is also in Addrmaps to enumerate CCX units.
L3 cache Level 3 Cache.

Linear (virtual)
address

The address generated by a core after the segment is applied.

LINT

Local interrupt.

Logical address

The address generated by a core before the segment is applied.

LVT

Local vector table. A collection of APIC registers that define interrupts for local events (e.g.,
APIC[530:500] [Extended Interrupt [3:0] Local Vector Table]).

Micro-op Micro-op. Instructions have variable-length encoding and many perform multiple primitive
operations. The processor does not execute these complex instructions directly, but, instead,
decodes them internally into simpler fixed-length instructions called macro-ops. Processor
schedulers subsequently break down macro-ops into sequences of even simpler instructions
called micro-ops, each of which specifies a single primitive operation.

MSR Model-specific register. The core includes several MSRs for general configuration and
control.

MTRR Memory-type range register. The MTRRs specify the type of memory associated with
various memory ranges.

NTA Non-Temporal Access.

PDM Processor debug mode.

PMC Performance monitor counter.

PTE Page table entry.

SMI System management interrupt.

Speculative event

A performance monitor event counter that counts all occurrences of the event even if the
event occurs during speculative code execution.

30



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

SVM Secure virtual machine.
BSC Boot strap core. Core 0 of the BSP.
BSP Boot strap processor.

Canonical-address

An address in which the state of the most-significant implemented bit is duplicated in all the
remaining higher-order bits, up to bit 63.

CMP Specifies the core number.

#GP A general-protection exception.

#GP(0) Notation indicating a general-protection exception (#GP) with error code of 0.

NBC NBC = (CPUID Fn00000001 EBX[LocalApicld[3:0]]==0). Node Base Core. The lowest
numbered core in the node.

SMM System Management Mode.

SMT Simultaneous multithreading. See Core::X86::Cpuid::Coreld[ ThreadsPerCore].

Thread One architectural context for instruction execution.

WDT Watchdog timer. A timer that detects activity and triggers an error if a specified period of
time expires without the activity.

2.1.2 Secure Virtual Machine Mode (SVM)

Support for SVM mode is indicated by Core:: X86::Cpuid::FeatureExtIdEcx[SVM].

2.1.2.1

BIOS support for SVM Disable

The BIOS should include the following user setup options to enable and disable AMD Virtualization™ technology.

2.1.2.1.1
 Core:
« Core:
 Core:

2.1.2.1.2
¢« Core:
e« Core::
« Core::

Enable AMD Virtualization™

:X86::Msr::VM_CR[SvmeDisable] = 0.
:X86::Msr::VM_CR[Lock] = 1.
:X86::Msr::SvmLockKey[SvmLockKey] = 0000000000000000h.

Disable AMD Virtualization™

:X86::Msr::VM_CR[SvmeDisable] = 1.
X86::Msr::VM_CR[Lock] = 1.
X86::Msr::SvmLockKey[SvmLockKey] = 0000000000000000h.

The BIOS may also include the following user setup options to disable AMD Virtualization technology.

2.1.2.1.3

Disable AMD Virtualization™, with a user supplied key

*  Core::X86::Msr::VM_CR[SvmeDisable] = 1.
*  Core::X86::Msr::VM_CR[Lock] = 1.
*  Core::X86::Msr::SvmLockKey[SvmLockKey] programmed with value supplied by user. This value should

be stored in NVRAM.
2.1.3 CPU Power Management
2.14 Effective Frequency

31



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

The effective frequency interface allows software to discern the average, or effective, frequency of a given core
over a configurable window of time. This provides software a measure of actual performance rather than forcing
software to assume the current frequency of the core is the frequency of the last P-state requested.

The following procedure calculates effective frequency using Core:: X86::Msr:: MPERF and
Core::X86::Msr:: APERF:
1. At some point in time, write 0 to both MSRs.
2. At some later point in time, read both MSRs.
3. Effective frequency = (value read from Core::X86::Msr:: APERF / value read from
Core::X86::Msr::MPERF) * PO frequency.

Additional notes:

* The amount of time that elapses between steps 1 and 2 is determined by software.

» It is software's responsibility to disable interrupts or any other events that may occur in between the write of
Core::X86::Msr::MPERF and the write of Core::X86::Msr::APERF in step 1 or between the read of
Core::X86::Msr::MPERF and the read of Core::X86::Msr::APERF in step 2.

* The behavior of Core::X86::Msr::MPERF and Core::X86::Msr::APERF may be modified by
Core::X86::Msr::HWCR[EffFreqCntMwait].

* The effective frequency interface provides +/- SOMHz accuracy if the following constraints are met:

» Effective frequency is read at most one time per millisecond.

*  When reading or writing Core:: X86::Msr::MPERF and Core::X86::Msr:: APERF software executes
only MOV instructions, and no more than 3 MOV instructions, between the two RDMSR or
WRMSR instructions.

*  Core::X86::Msr::MPERF and Core::X86::Msr:: APERF are invalid if an overflow occurs.

2.1.5 Address Space

2.1.51 Virtual Address Space

The processor supports 48-bit address bits of virtual memory space (256 TB) as indicated by
Core::X86::Cpuid::LongModelnfo.

2.1.5.2 Physical Address Space
The processor supports a 48-bit physical address space. See Core::X86::Cpuid::LongModelnfo.

The processor master aborts the following upper-address transactions (to address PhysAddr):
* Link or core requests with non-zero PhysAddr[63:48].

2.15.3 System Address Map
The processor defines a reserved memory address region starting at FFFD00000000h and extending up to
FFFFFFFFFFFFh. System software must not map memory into this region. Downstream host accesses to the

reserved address region results in a page fault. Upstream system device accesses to the reserved address region
results in an undefined operation.

2.1.5.3.1 Memory Access to the Physical Address Space

All memory accesses to the physical address space from a core are sent to its associated Data Fabric (DF). All
memory accesses from a link are routed through the DF. An 10 link access to physical address space indicates

32



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

to the DF the cache attribute (Coherent or Non-coherent, based on bit[0] of the Sized Read and Write commands).

A core access to physical address space has two important attributes that must be determined before issuing the
access to the NB: the memory type (e.g., WB, WC, UC; as described in the MTRRs) and the access destination
(DRAM or MMIO).

If the memory map maps a region as DRAM that is not populated with real storage behind it, then that area of
DRAM must be mapped as UC memtype.

This mechanism is managed by the BIOS and does not require any setup or changes by system software.

2.1.5.3.1.1 Determining Memory Type

The memory type for a core access is determined by the highest priority of the following ranges that the access
falls in: 1=Lowest priority.
1. The memory type as determined by architectural mechanisms.
» See the APM2 chapter titled “Memory System", sections “Memory-Type Range Registers" and
“Page-Attribute Table Mechanism".
* See the APM2 chapter titled “Nested Paging", section “Combining Memory Types, MTRRs".
* See Core::X86::Msr::MTRRdefType, Core::X86::Msr::MtrrVarBase,
Core:: X86::Msr::MtrrVarMask, Core:: X86::Msr::MtrrVar_64K and
Core:: X86::Msr::MtrrVarFix 16K 0 through Core::X86::Msr::MtrrVarFix 4K 7.
2. TSeg & ASeg SMM mechanism. (see Core::X86::Msr::SMMAddr and Core::X86::Msr:: SMMMask)
CRO[CD]: If (CRO[CD]==1) then MemType=CD.
4. MMIO configuration space, APIC space.
*  MMIO APIC space and MMIO config space must not overlap.
*  MemType=UC.
5. If (“In SMM Mode"&& ~((Core:: X86::Msr::SMMMask[AValid] && “The address falls within the ASeg
region") || (Core::X86::Msr::SMMMask[TValid] && “The address falls within the TSeg region"))) then
MemType=CD.

e

2.1.6 Configuration Space

PClI-defined configuration space was originally defined to allow up to 256 bytes of register space for each function
of each device; these first 256 bytes are called base configuration space (BCS). It was expanded to support up to
4096 bytes per function; bytes 256 through 4095 are called extended configuration space (ECS).

The processor includes configuration space registers located in both BCS and ECS. Processor configuration space
is accessed through bus 0, devices 18h to 1Fh, where device 18h corresponds to node 0 and device 1Fh corresponds
to node 7. See 2.1.6.3 [Processor Configuration Space].

Configuration space is accessed by the processor through two methods as follows:
* 10O-space configuration: IO instructions to addresses CF8h and CFCh.
* Enabled through 10::IoCfgAddr[ConfigEn], which allows access to BCS.
* Use of I0-space configuration can be programmed to generate GP faults through
Core:: X86::Msr::HWCR[1oCfgGpFault].
» SMI trapping for these accesses is specified by Core::X86::Msr::SMI ON 10 TRAP CTL STS
and Core::X86::Msr::SMI_ON 10 _TRAP.
*  MMIO configuration: configuration space is a region of memory space.
* The base address and size of this range is specified by Core:: X86::Msr:: MmioCfgBaseAddr. The
size is controlled by the number of configuration-space bus numbers supported by the system.
Accesses to this range are converted configuration space as follows:

33



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

* Address[31:0] = {Oh, bus[7:0], device[4:0], function[2:0], offset[11:0]}.

The BIOS may use either configuration space access mechanism during boot. Before booting the OS, BIOS must
disable 10 access to ECS, enable MMIO configuration and build an ACPI defined MCFG table. BIOS ACPI code
must use MMIO to access configuration space.

2.1.6.1 MMIO Configuration Coding Requirements

MMIO configuration space accesses must use the uncacheable (UC) memory type.
Instructions used to read MMIO configuration space are required to take the following form:
mov eax/ax/al, any address mode;

Instructions used to write MMIO configuration space are required to take the following form:
mov any_address mode, eax/ax/al;

No other source/target registers may be used other than eax/ax/al.

In addition, all such accesses are required not to cross any naturally aligned DW boundary. Access to MMIO
configuration space registers that do not meet these requirements result in undefined behavior

2.1.6.2 MMIO Configuration Ordering

Since MMIO configuration cycles are not serializing in the way that 10 configuration cycles are, their ordering
rules relative to posted may result in unexpected behavior.

Therefore, processor MMIO configuration space is designed to match the following ordering relationship that exists
naturally with 10-space configuration: if a core generates a configuration cycle followed by a posted write cycle,
then the posted write is held in the processor until the configuration cycle completes. As a result, any unexpected
behavior that might have resulted if the posted-write cycle were to pass MMIO configuration cycle is avoided.

2.1.6.3 Processor Configuration Space

Accesses to unimplemented registers of implemented functions are ignored: writes dropped; reads return 0.
Accesses to unimplemented functions also ignored: writes are dropped; however, reads return all F's. The processor
does not log any master abort events for accesses to unimplemented registers or functions.

Accesses to device numbers of devices not implemented in the processor are routed based on the configuration map
registers. If such requests are master aborted, then the processor can log the event.

2.1.7 PCI Configuration Legacy Access

I0x0CF8 [10-Space Configuration Address] (IoCfgAddr)

Read-write. Reset: 0000_0000h.

10::IoCfgAddr, and 10::IoCfgData are used to access system configuration space, as defined by the PCI
specification. 10::IoCfgAddr provides the address register and 10::IoCfgData provides the data port. Software sets
up the configuration address by writing to [0::IoCfgAddr. Then, when an access is made to 10::IoCfgData, the
processor generates the corresponding configuration access to the address specified in 10::1oCfgAddr. See 2.1.6
[Configuration Space].

10::10CfgAddr may only be accessed through aligned, DW 10O reads and writes; otherwise, the accesses are passed
to the appropriate IO link. Accesses to 10::10CfgAddr and 10::IoCfgData received from an IO link are treated as

34



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

all other IO transactions received from an IO link. 10::IoCfgAddr and 10::loCfgData in the processor are not
accessible from an 1O link.

10::IoCfgAddr_aliasIO; IOx0CF8; 10=0000_0000h

Bits | Description
31 ConfigEn: configuration space enable. Read-write. Reset: 0. 0=I10 read and write accesses are passed
to the appropriate 10 link and no configuration access is generated. 1=IO read and write accesses to
10::IoCfgData are translated into configuration cycles at the configuration address specified by this
register.
30:28 |Reserved.
27:24 |ExtRegNo: extended register number. Read-write. Reset: 0. ExtRegNo provides bits[11:8] and RegNo
provides bits[7:2] of the byte address of the configuration register.
23:16 |BusNo: bus number. Read-write. Reset: 0. Specifies the bus number of the configuration cycle.
15:11 |Device: device number. Read-write. Reset: 0. Specifies the device number of the configuration cycle.
10:8 | Function. Read-write. Reset: 0. Specifies the function number of the configuration cycle.
7:2 | RegNo: register address. Read-write. Reset: 0. See 10::10CfgAddr[ExtRegNo].
1:0 |Reserved.

I0x0CFC [10-Space Configuration Data Port] (IoCfgData)

Read-write. Reset: 0000 _0000h.

10::IoCfgData_aliasIO; I0x0CFC; 10=0000_0000h

Bits |Description
31:0 |Data. Read-write. Reset: 0. See 10::1oCfgAddr.
2.1.8 Register Sharing
_core[3]_thread[1:0] ‘ _core[3]_thread[1:0] ‘
_core[2]_thread[1:0] _core[2]_thread[1:0]
_core[1]_thread[1:0] ‘ _core[1]_thread[1:0]
{ _core[0]_thread[1:0] [ _core[0]_thread[1:0]
{ ICache DCache [ ICache DCache
L2 Cache L2 Cache
1111 1111
L3 Cache L3 Cache
_lthree[1] _Ithree[0]

<

| | >
Coherent Channel

Figure 17: Register Sharing Domains

MSRO0000_0010 [Time Stamp Counter] (TSC)

Read-write, Volat]
Core::X86::Msr- TS

0000_0000h.

Bits

_Ithree[1: D]_com[3:(]]_thread[l:ﬂ]’MSRDI]D[XJGlU

Description

63:0

TSC: time stamp counter. Read-write Volatile. Reset: 0. The TSC increments at the PO frequency. The
TSC counts at the same rate in all P-states, all C states, S0, or S1. A read of this MSR in guest mode is
affected by Core::X86::Msr:: TscRateMsr. The value (TSC/TSCRatio) is the TSC P0 frequency based

35



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Figure 18: Instance Parameters

Instances of core registers are designated as Ithree[n:0] core[n:0] thread[1:0]. Core registers may be shared at
various levels of hierarchy as one register instance per die, per L3 complex, per core or per thread. The absence of
the instance parameter _thread[1:0] signifies that there is not a specific instance of said register per thread and thus
the register is shared between thread 1 and thread 0. Similarly, the absence of the instance parameter core[n:0]
signifies that there is not a specific instance of said register per core and thus the register is shared by all cores in
that L3 complex, and so on. Software must coordinate writing to shared registers with other threads in the same
sharing hierarchy level.

2.1.9 Timers

Each core includes the following timers. These timers do not vary in frequency regardless of the current P-state
or C-state.
*  Core::X86::Msr:: TSC; the TSC increments at the rate specified by the PO Pstate. See
Core:: X86::Msr::PStateDef.
* The APIC timer (Core::X86::Apic:: Timerlnitial Count and Core::X86::Apic:: TimerCurrentCount), which
increments at the rate of 2xCLKIN; the APIC timer may increment in units of between 1 and 8.

2.1.10 Interrupts

2.1.10.1 System Management Mode (SMM)

System management mode (SMM) is typically used for system control activities such as power management.
These activities are typically transparent to the operating system.

2.1.10.1.1 SMM Overview

SMM is entered by a core on the next instruction boundary after a system management interrupt (SMI) is received
and recognized. A core may be programmed to broadcast a special cycle to the system, indicating that it is entering
SMM mode. The core then saves its state into the SMM memory state save area and jumps to the SMI service
routine (or SMI handler). The pointer to the SMI handler is specified by MSRs. The code and data for the SMI
handler are stored in the SMM memory area, which may be isolated from the main memory accesses.

The core returns from SMM by executing the RSM instruction from the SMI handler. The core restores its state
from the SMM state save area and resumes execution of the instruction following the point where it entered SMM.
The core may be programmed to broadcast a special bus cycle to the system, indicating that it is exiting SMM
mode.

2.1.10.1.2 Mode and Default Register Values

The software environment after entering SMM has the following characteristics:
* Addressing and operation is in Real mode.
* A far jump, call or return in the SMI handler can only address the lower 1M of memory, unless the
SMI handler first switches to protected mode.

» If (Core::X86::Msr::SMM_BASE[SmmBase]>=0010_0000h) then:
* The value of the CS selector is undefined upon SMM entry.
* The undefined CS selector value should not be used as the target of a far jump, call, or

return.

36



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

*  4-Gbyte segment limits.

* Default 16-bit operand, address, and stack sizes (instruction prefixes can override these defaults).

* Control transfers that do not override the default operand size truncate the EIP to 16 bits.

* Far jumps or calls cannot transfer control to a segment with a base address requiring more than 20 bits, as
in Real mode segment-base addressing, unless a change is made into protected mode.

» Interrupt vectors use the Real mode interrupt vector table.

* The IF flag in EFLAGS is cleared (INTR is not recognized).

* The TF flag in EFLAGS is cleared.

* The NMI and INIT interrupts are masked.

* Debug register DR7 is cleared (debug traps are disabled).

The SMM base address is specified by Core:: X86::Msr::SMM_BASE[SmmBase]. Important offsets to the base
address pointer are:

*  Core::X86::Msr::SMM_BASE[SmmBase] + 8000h: SMI handler entry point.

*  Core::X86::Msr::SMM_BASE[SmmBase] + FEOOh - FFFFh: SMM state save area.

2.1.10.1.3 SMI Sources And Delivery

The processor accepts SMIs as link-defined interrupt messages only. The core/node destination of these SMIs is a
function of the destination field of these messages. However, the expectation is that all such SMI messages are
specified to be delivered globally (to all cores of all nodes).

There are also several local events that can trigger SMIs. However, these local events do not generate SMIs directly.
Each of them triggers a programmable IO cycle that is expected to target the SMI command port in the IO hub and
trigger a global SMI interrupt message back to the coherent fabric.

Local sources of SMI events that generate the 10 cycle specified in Core:: X86::Msr::SmiTrigloCycle are:
* In the core, as specified by:
* Core::X86::Msr::McExcepRedir.
*  Core::X86::Msr::SMI_ ON 10 TRAP.
* Alllocal APIC LVT registers programmed to generate SMIs.

The status for these is stored in Core::X86::Smm::LocalSmiStatus.

2.1.10.1.4 SMM Initial State

After storing the save state, execution starts at Core:: X86::Msr::SMM_BASE[SmmBase] + 08000h. The SMM
initial state is specified in the following table.

Table 15: SMM Initial State

Register SMM Initial State
CS SmmBase[19:4]

DS 0000h

ES 0000h

FS 0000h

GS 0000h

SS 0000h
General-Purpose Registers | Unmodified
EFLAGS 0000 _0002h

RIP 0000000000008000h
CRO Bits 0, 2, 3, and 31 cleared (PE, EM, TS, and PG); remainder is unmodified

37



54945 Rev 1.14 - April 15, 2017

AMDA
PPR for AMD Family 17h Models 00h-OFh

CR4 0000000000000000h

GDTR Unmodified

LDTR Unmodified

IDTR Unmodified

TR Unmodified

DR6 Unmodified

DR7 0000000000000400h

EFER All bits are cleared except bit 12 (SVME) which is unmodified.
2.1.10.1.5 SMM Save State

In the following table, the offset field provides the offset from the SMM base address specified by
Core::X86::Msr::SMM_BASE[SmmBase].

Table 16: SMM Save State

Offset Size Contents Access
FEOOh Word ES Selector Read-only
FEO02h 6 Bytes Reserved
FEO8h Quadword Descriptor in memory format
FE10h Word CS Selector Read-only
FE12h 6 Bytes Reserved
FE18h Quadword Descriptor in memory format
FE20h Word SS Selector Read-only
FE22h 6 Bytes Reserved
FE28h Quadword Descriptor in memory format
FE30h Word DS Selector Read-only
FE32h 6 Bytes Reserved
FE38h Quadword Descriptor in memory form
FE40h Word FS Selector Read-only
FE42h 2 Bytes Reserved
FE44h Doublewor FS Base {16'b[47], 47:32}(note 1)

d
FE48h Quadword Descriptor in memory format
FE50h Word GS Selector Read-only
FE52h 2 Bytes Reserved
FE54h Doublewor GS Base {16'b[47], 47:32}(note 1)

d
FE58h Quadword Descriptor in memory format
FE60h 4 Bytes GDTR |Reserved Read-only
FE64h Word Limit
FE66h 2 Bytes Reserved
FE68h Quadword Descriptor in memory format
FE70h Word LDTR |Selector Read-only
FE72h Word Attributes
FE74h Doublewor Limit

d
FE78h Quadword Base

38



54945 Rev 1.14 - April 15, 2017

AMDA

FE80h 4 Bytes IDTR |Reserved Read-only

FE84h Word Limit

FE86h 2 Bytes Reserved

FE88h Quadword Base

FE90h Word TR Selector Read-only

FE92h Word Attributes

FE94h Doublewor Limit
d

FE98h Quadword Base

FEAOh |Quadword |10 RESTART RIP

FEA8h |Quadword |IO RESTART RCX

FEBOh  |Quadword |IO RESTART RSI

FEB8h |Quadword |IO RESTART RDI

FECOh  |Doublewor | Core::X86::Smm::TrapOffset [SMM IO Trap Offset] Read-only
d

FEC4 Doublewor | Core:: X86::Smm::LocalSmiStatus Read-only
d

FECS8h Byte Core::X86::Smm::IoRestart Read-write

FEC%h Byte Core::X86::Smm::AutoHalt Read-write

FECAh |Byte Core:: X86::Smm::NmiMask Read-write

FECBh |5 Bytes Reserved

FEDOh |Quadword |EFER Read-only

FED8h |Quadword |Core::X86::Smm::SvmState Read-only

FEEOh Quadword | Guest VMCB physical address Read-only

FEE8h Quadword |SVM Virtual Interrupt Control Read-only

FEFOh 16 Bytes |Reserved

FEFCh Doublewor | Core:: X86::Smm::SmmRevID Read-only
d

FFOOh Doublewor | Core::X86::Smm::SmmBase Read-write
d

FF04h 28 Bytes  |Reserved

FF20h Quadword | Guest PAT Read-only

FF28h Quadword |Host EFER (note 2)

FF30h Quadword |Host CR4 (note 2)

FF38h Quadword |Nested CR3 (note 2)

FF40h Quadword |Host CRO (note 2)

FF48h Quadword |CR4

FF50h Quadword |CR3

FF58h Quadword |CRO

FF60h Quadword |DR7 Read-only

FF68h Quadword |DR6

FF70h Quadword |RFLAGS Read-write

FF78h Quadword |RIP Read-write

FF80h Quadword |R15

FF88h Quadword [R14

FF90h Quadword |R13

FF98h Quadword |R12

FFAOh Quadword |R11

FFA8h Quadword |R10

PPR for AMD Family 17h Models 00h-OFh

39



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

FFBOh Quadword [R9
FFB8h Quadword [RS8
FFCOh Quadword |RDI Read-write
FFC8h Quadword |RSI
FFDOh Quadword |RBP
FFD8h Quadword |RSP
FFEOh Quadword |RBX
FFE8h Quadword |RDX
FFFOh Quadword |RCX
FFF8h Quadword |[RAX
Notes:

1. This notation specifies that bit[47] is replicated in each of the 16 MSBs of the DW (sometimes called sign
extended). The 16 LSBs contain bits[47:32].

2. Only used for an SMI in guest mode with nested paging enabled.

The SMI save state includes most of the integer execution unit. Not included in the save state are: the floating point
state, MSRs, and CR2. In order to be used by the SMI handler, these must be saved and restored. The save state is
the same, regardless of the operating mode (32-bit or 64-bit).

2.1.10.1.6 System Management State

The following are offsets in the SMM save state area.
SMMxFECO0 [SMM 10 Trap Offset] (TrapOffset)

Read-only, Volatile. Reset: 0000_0000h.

If the assertion of SMI is recognized on the boundary of an IO instruction, Core::X86::Smm:: TrapOffset contains
information about that 1O instruction. For example, if an IO access targets an unavailable device, the system can
assert SMI and trap the IO instruction. Core:: X86::Smm:: TrapOffset then provides the SMI handler with
information about the 1O instruction that caused the trap. After the SMI handler takes the appropriate action, it can
reconstruct and then re-execute the 10 instruction from SMM. Or, more likely, it can use

Core:: X86::Smm::IoRestart to cause the core to re-execute the IO instruction immediately after resuming from
SMM.

Bits |Description
31:16 |Port: trapped IO port address. Read-only,Volatile. Reset: 0. This provides the address of the IO
instruction.
15:12 |BPR: 10O breakpoint match. Read-only,Volatile. Reset: 0.
11 TF: EFLAGS TF value. Read-only,Volatile. Reset: 0.
10:7 |Reserved.
6 SZ32: size 32 bits. Read-only, Volatile. Reset: 0. 1=Port access was 32 bits.
SZ.16: size 16 bits. Read-only, Volatile. Reset: 0. 1=Port access was 16 bits.
SZ8: size 8 bits. Read-only, Volatile. Reset: 0. 1=Port access was 8 bits.
REP: repeated port access. Read-only, Volatile. Reset: 0.
STR: string-based port access. Read-only,Volatile. Reset: 0.
V: 10 trap word valid. Read-only,Volatile. Reset: 0. 0=The other fields of this offset are not valid.
1=The core entered SMM on an 1O instruction boundary; all information in this offset is valid.

0 RW: port access type. Read-only, Volatile. Reset: 0. 0=IO write (OUT instruction). 1=IO read (IN
instruction).

— (N [W| K|

SMMxFEC4 [Local SMI Status] (LocalSmiStatus)
|Read-on1y,V01ati1e. Reset: 0000_0000h. |

40



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

This offset stores status bits associated with SMI sources local to the core. For each of these bits, 1=The
associated mechanism generated an SMI.

Bits | Description

31:9 |Reserved.

8 MceRedirSts: machine check exception redirection status. Read-only,Volatile. Reset: 0. This bit is
associated with the SMI source specified in Core::X86::Msr::McExcepRedir[RedirSmiEn].

7:4 Reserved.

3:0 |IoTrapSts: 10 trap status. Read-only, Volatile. Reset: 0. Each of these bits is associated with each of
the respective SMI sources specified in Core::X86::Msr::SMI ON 10 TRAP.

SMMXxFECS [10 Restart Byte] (IoRestart)
Read-write. Reset: 00h.

If the core entered SMM on an IO instruction boundary, the SMI handler may write this to FFh. This causes the
core to re-execute the trapped 1O instruction immediately after resuming from SMM. The SMI handler should
only write to this byte if Core::X86::Smm:: TrapOffset[ V] == 1; otherwise, the behavior is undefined.

If a second SMI is asserted while a valid 10 instruction is trapped by the first SMI handler, the core services the
second SMI prior to re-executing the trapped 10 instruction. Core::X86::Smm:: TrapOffset[ V] == 0 during the
second entry into SMM, and the second SMI handler must not rewrite this byte.

If there is a simultaneous SMI 1O instruction trap and debug breakpoint trap, the processor first responds to the
SMI and postpones recognizing the debug exception until after resuming from SMM. If debug registers other than
DR6 and DR7 are used while in SMM, they must be saved and restored by the SMI handler. If
Core::X86::Smm::IoRestart is set to FFh when the RSM instruction is executed, the debug trap does not occur
until after the 10 instruction is re-executed.

Bits | Description

7:0 |RST: SMM IO Restart Byte. Read-write. Reset: 0.

SMMxFEC9 [Auto Halt Restart Offset] (AutoHalt)
Read-write. Reset: 00h.

Bits | Description

7:1 Reserved.

0 HLT: halt restart. Read-write. Reset: 0. 0=Entered SMM on a normal x86 instruction boundary.
1=Entered SMM from the Halt state. Upon SMM entry, this bit indicates whether SMM was entered
from the Halt state. Before returning from SMM, this bit can be written by the SMI handler to specify
whether the return from SMM should take the processor back to the Halt state or to the instruction-
execution state specified by the SMM state save area (normally, the instruction after the halt). Clearing
this bit the returns to the instruction specified in the SMM save state. Setting this bit returns to the halt
state. If the return from SMM takes the processor back to the Halt state, the HLT instruction is not
refetched and re-executed. However, the Halt special bus cycle is broadcast and the processor enters the
Halt state.

SMMxFECA [NMI Mask] (NmiMask)
Read-write. Reset: 00h.

Bits |Description

7:1 Reserved.

0 NmiMask: NMI Mask. Read-write. Reset: 0. 0=NMI not masked. 1=NMI masked. Specifies whether
NMI was masked upon entry to SMM.

SMMxFEDS [SMM SVM State] (SvmState)
Read-only, Volatile. Reset: 0000_0000_0000_0000h.

This offset stores the SVM state of the processor upon entry into SMM.

41



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Bits | Description
63:5 |Reserved.

4 SmmFromSev. Read-only,Volatile. Reset: 0. 1= SMM was entered while executing on a guest with
SEV enabled.

3 HostEflagesIF: host EFLAGS IF. Read-only, Volatile. Reset: 0.
2:0 | SvmState. Read-only,Volatile. Reset: 0.

Valid Values:

Value Description

000b SMM entered from a non-guest state.

001b Reserved.

010b SMM entered from a guest state.

101b-011b |Reserved.

110b SMM entered from a guest state with nested paging enabled.
111b Reserved.

SMMxFEFC [SMM Revision Identifier] (SmmRevID)
Read-only. Reset: 0003_0064h.
This offset stores the SVM state of the processor upon entry into SMM.
Bits | Description
31:18 |Reserved.
17 BRL. Read-only. Reset: 1. 1=Base relocation supported.
16 IOTrap. Read-only. Reset: 1. 1=I0 trap supported.
15:0 |Revision. Read-only. Reset: 0064h.

SMMxFE00 [SMM Base Address] (SmmBase)

Read-write, Volatile. Reset: 0000 0000 0000 0000h.
This offset stores the base of the SMM-State of the processor upon entry into SMM.
Bits | Description
63:32 |Reserved.
31:0 |SmmBase. Read-write,Volatile. Reset: 0. See Core::X86::Msr::SMM_ BASE[SmmBase].

2.1.10.1.7 Exceptions and Interrupts in SMM

When SMM is entered, the core masks INTR, NMI, SMI, and INIT interrupts. The core clears the IF flag to disable
INTR interrupts. To enable INTR interrupts within SMM, the SMM handler must set the IF flag to 1.

Generating an INTR interrupt can be used for unmasking NMI interrupts in SMM. The core recognizes the
assertion of NMI within SMM immediately after the completion of an IRET instruction. Once NMI is recognized
within SMM, NMI recognition remains enabled until SMM is exited, at which point NMI masking is restored to the
state it was in before entering SMM.

While in SMM, the core responds to STPCLK interrupts, as well as to all exceptions that may be caused by the SMI
handler.

2.1.10.1.8 The Protected ASeg and TSeg Areas

These ranges are controlled by Core::X86::Msr:: SMMAddr and Core:: X86::Msr::SMMMask; see those registers
for details.

42



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

2.1.10.1.9 SMM Special Cycles

Special cycles can be initiated on entry and exit from SMM to acknowledge to the system that these transitions are
occurring. These are controlled by Core::X86::Msr:: HWCR[RsmSpCycDis,SmiSpCycDis].

2.1.10.1.10  Locking SMM

The SMM registers (Core:: X86::Msr::SMMAddr and Core::X86::Msr::SMMMask) can be locked from being
altered by setting Core:: X86::Msr:: HWCR[SmmLock]. SBIOS must lock the SMM registers after initialization to
prevent unexpected changes to these registers.

2.1.10.2 Local APIC

2.1.10.2.1 Local APIC Functional Description

The local APIC contains logic to receive interrupts from a variety of sources and to send interrupts to other local
APICs, as well as registers to control its behavior and report status. Interrupts can be received from:

* 10 devices including the 10 hub (10 APICs)

*  Other local APICs (inter-processor interrupts)

* APIC timer

* Thermal events

* Performance counters

* Legacy local interrupts from the IO hub (INTR and NMI)

* APIC internal errors

The APIC timer, thermal events, performance counters, local interrupts, and internal errors are all considered local
interrupt sources, and their routing is controlled by local vector table entries. These entries assign a message type
and vector to each interrupt, allow them to be masked, and track the status of the interrupt.

IO and inter-processor interrupts have their message type and vector assigned at the source and are unaltered by the
local APIC. They carry a destination field and a mode bit that together determine which local APIC(s) accepts
them. The destination mode (DM) bit specifies if the interrupt request packet should be handled in physical or
logical destination mode.

2.1.10.2.1.1 Detecting and Enabling
APIC is detected and enabled via Core:: X86::Cpuid::FeatureldEdx[APIC].

The local APIC is enabled via Core:: X86::Msr::APIC_BAR[ApicEn]. Reset forces APIC disabled.

2.1.10.2.1.2 APIC Register Space

MMIO APIC space:

*  Memory mapped to a 4 KB range. The memory type of this space is the UC memory type. The base address
of this range is specified by {Core::X86::Msr::APIC_BAR[ApicBar[47:12]], 000h}.

* The mnemonic is defined to be APICXXX; XXX is the byte address offset from the base address.

*+  MMIO APIC registers memory in xAPIC mode is defined by the register starting with
Core::X86::Apic::Apicld at offset (Core:: X86::Msr::APIC_BAR[ApicBar[47:12]] + 20h) ending with
Core::X86::Apic::ExtendedInterruptLvtEntries at offsets Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] +
533h.

43



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

* Treated as normal memory space when APIC is disabled, as specified by
Core::X86::Msr::APIC_ BAR[ApicEn].

2.1.10.2.1.3 Apicld Enumeration Requirements

Operating systems are expected to use Core::X86::Cpuid::Sizeld[ApicldCoreldSize], the number of least
significant bits in the Initial APIC ID that indicate core ID within a processor, in constructing per-core CPUID
masks. Core::X86::Cpuid::Sizeld[ ApicldCoreldSize] determines the maximum number of cores (MNC) that the
processor could theoretically support, not the actual number of cores that are actually implemented or enabled on
the processor, as indicated by Core::X86::Cpuid::Sizeld[NC].

Each Core::X86::Apic:: Apicld[Apicld] register is preset as follows:
* Apicld[6] = Socket ID.
* Apicld[5:4] = Node ID.
* Apicld[3] = Logical CCX L3 complex ID
* Apicld[2:0]= (SMT) ? {LogicalCorelD[1:0],Threadld} : {1'b0,LogicalCorelD[1:0]}.

2.1.10.2.1.4 Physical Destination Mode

The interrupt is only accepted by the local APIC whose Core::X86::Apic:: Apicld[Apicld] matches the destination
field of the interrupt. Physical mode allows up to 255 APICs to be addressed individually.

2.1.10.2.1.5 Logical Destination Mode

A local APIC accepts interrupts selected by Core:: X86::Apic::LocalDestination and the destination field of the
interrupt using either cluster or flat format as configured by Core:: X86::Apic::DestinationFormat[Format].

If flat destinations are in use, bits[7:0] of Core::X86::Apic::LocalDestination[Destination] are checked against
bits[7:0] of the arriving interrupt's destination field. If any bit position is set in both fields, the local APIC is a valid
destination. Flat format allows up to 8 APICs to be addressed individually.

If cluster destinations are in use, bits[7:4] of Core::X86::Apic::LocalDestination[Destination] are checked against
bits[7:4] of the arriving interrupt's destination field to identify the cluster. If all of bits[7:4] match, then bits[3:0] of
Core:: X86::Apic::LocalDestination| Destination] and the interrupt destination are checked for any bit positions that
are set in both fields to identify processors within the cluster. If both conditions are met, the local APIC is a valid
destination. Cluster format allows 15 clusters of 4 APICs each to be addressed.

2.1.10.2.1.6 Interrupt Delivery
SMI, NMI, INIT, Startup, and External interrupts are classified as non-vectored interrupts.

When an APIC accepts a non-vectored interrupt, it is handled directly by the processor instead of being queued in
the APIC. When an APIC accepts a fixed or lowest-priority interrupt, it sets the bit in

Core:: X86::Apic::InterruptRequest corresponding to the vector in the interrupt. For local interrupt sources, this
comes from the vector field in that interrupt's local vector table entry. The corresponding bit in
Core::X86::Apic::TriggerMode is set if the interrupt is level-triggered and cleared if edge-triggered. If a subsequent
interrupt with the same vector arrives when the corresponding bit in
Core::X86::Apic::InterruptRequest[RequestBits] is already set, the two interrupts are collapsed into one. Vectors
15-0 are reserved.

2.1.10.2.1.7 Vectored Interrupt Handling

44



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Core::X86::Apic:: TaskPriority and Core:: X86::Apic::ProcessorPriority each contain an 8-bit priority divided into a
main priority (bits[7:4]) and a priority sub-class (bits[3:0]). The task priority is assigned by software to set a
threshold priority at which the processor is interrupted.

The processor priority is calculated by comparing the main priority (bits[7:4]) of
Core::X86::Apic:: TaskPriority[ Priority] to bits[7:4] of the 8-bit encoded value of the highest bit set in
Core::X86::Apic::InService. The processor priority is the higher of the two main priorities.

The processor priority is used to determine if any accepted interrupts (indicated by
Core::X86::Apic::InterruptRequest[RequestBits]) are high enough priority to be serviced by the processor. When
the processor is ready to service an interrupt, the highest bit in Core::X86::Apic::InterruptRequest[RequestBits] is
cleared, and the corresponding bit is set in Core::X86::Apic::InService[InServiceBits].

When the processor has completed service for an interrupt, it performs a write to Core::X86:: Apic:: EndOfInterrupt,
clearing the highest bit in Core::X86::Apic::InService[InServiceBits] and causing the next-highest interrupt to be
serviced. If the corresponding bit in Core:: X86::Apic::TriggerMode[TriggerModeBits] is set, a write to
Core::X86::Apic::EndOfInterrupt is performed on all APICs to complete service of the interrupt at the source.

2.1.10.2.1.8 Interrupt Masking

Interrupt masking is controlled by the Core:: X86::Apic::ExtendedApicControl. If
Core::X86::Apic::Extended ApicControl[IerEn] is set, Core:: X86::Apic::InterruptEnable are used to mask
interrupts. Any bit in Core::X86::Apic::InterruptEnable[InterruptEnableBits] that is clear indicates the
corresponding interrupt is masked. A masked interrupt is not serviced and the corresponding bit in
Core::X86::Apic::InterruptRequest[RequestBits] remains set.

2.1.10.2.1.9 Spurious Interrupts

In the event that the task priority is set to or above the level of the interrupt to be serviced, the local APIC delivers a
spurious interrupt vector to the processor, as specified by Core:: X86::Apic:: SpuriousInterruptVector.
Core::X86::Apic::InService is not changed and no write to Core::X86::Apic::EndOflnterrupt occurs.

2.1.10.2.1.10 Spurious Interrupts Caused by Timer Tick Interrupt

A typical interrupt is asserted until it is serviced. An interrupt is deasserted when software clears the interrupt status
bit within the interrupt service routine. Timer tick interrupt is an exception, since it is deasserted regardless of
whether it is serviced or not.

The processor is not always able to service interrupts immediately (i.e., when interrupts are masked by clearing
EFLAGS.IM).

If the processor is not able to service the timer tick interrupt for an extended period of time, the INTR caused by the
first timer tick interrupt asserted during that time is delivered to the local APIC in ExtInt mode and latched, and the
subsequent timer tick interrupts are lost. The following cases are possible when the processor is ready to service
interrupts:
* An Extlnt interrupt is pending, and INTR is asserted. This results in timer tick interrupt servicing. This
occurs 50 percent of the time.
* An ExtInt interrupt is pending, and INTR is deasserted. The processor sends the interrupt acknowledge
cycle, but when the PIC receives it, INTR is deasserted, and the PIC sends a spurious interrupt vector. This
occurs 50 percent of the time.

45



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

There is a 50 percent probability of spurious interrupts to the processor.

2.1.10.2.1.11 Lowest-Priority Interrupt Arbitration
Fixed and non-vectored interrupts are accepted by their destination APICs without arbitration.

Delivery of lowest-priority interrupts requires all APICs to arbitrate to determine which one accepts the interrupt. If
Core::X86::Apic::SpuriousInterruptVector[ FocusDisable] is clear, then the focus processor for an interrupt always
accepts the interrupt. A processor is the focus of an interrupt if it is already servicing that interrupt (corresponding
bit in Core::X86::Apic::InService[InServiceBits] is set) or if it already has a pending request for that interrupt
(corresponding bit in Core::X86::Apic::InterruptRequest[RequestBits] is set). If
Core::X86::Apic::ExtendedApicControl[lerEn] is set the interrupt must also be enabled in

Core:: X86::Apic::InterruptEnable[InterruptEnableBits] for a processor to be the focus processor. If there is no focus
processor for an interrupt, or focus processor checking is disabled, then each APIC calculates an arbitration priority
value, stored in Core:: X86::Apic::ArbitrationPriority, and the one with the lowest result accepts the interrupt.

The arbitration priority value is calculated by comparing Core::X86:: Apic:: TaskPriority|[ Priority] with the 8-bit
encoded value of the highest bit set in Core::X86::Apic::InterruptRequest| RequestBits] (IRRVec) and the 8-bit
encoded value of the highest bit set Core::X86::Apic::InService[InServiceBits] (ISRVec). If
Core::X86::Apic::ExtendedApicControl[lerEn] is set the IRRVec and ISRVec are based off the highest enabled
interrupt. The main priority bits[7:4] are compared as follows:

if ((TaskPriority[Priority[7:4]] >= InterruptRequest[IRRVec[7:4]])
&& (TaskPriority[Priority[7:4]1] > InService[ISRVec[7:4]1])) {
ArbitrationPriority[Priority] = TaskPriority[Priority]

} elsif { (InterruptRequest[IRRVec[7:4]] > InService[ISRVec[7:4]11])
ArbitrationPriority[Priority] = {InterruptRequest[IRRVec[7:4]],0h}
} else {

ArbitrationPriority[Priority] = {InService[ISRVect[7:4]],0h}

}

2.1.10.2.1.12 Inter-Processor Interrupts

The Core::X86::Apic::InterruptCommandLow and Core::X86::Apic::InterruptCommandHigh provide a mechanism
for generating interrupts in order to redirect an interrupt to another processor, originate an interrupt to another
processor, or allow a processor to interrupt itself. A write to register Core::X86::Apic::InterruptCommandLow
causes an interrupt to be generated with the properties specified by the Core:: X86::Apic:: InterruptCommandLow
and Core::X86::Apic::InterruptCommandHigh fields.

Message type (bits[10:8]) == 011b (Remote Read) is deprecated.

Not all combinations of ICR fields are valid. Only the following combinations are valid:
Note: x indicates a don't care.

Table 17: ICR Valid Combinations

Message Type Trigger Mode Level Destination Shorthand
Fixed Edge X X
Level Assert X
Lowest Priority, SMI, Edge X Destination or all
NMLI, INIT excluding self
Level Assert Destination or all
excluding self

46



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Startup X X Destination or all
excluding self

2.1.10.2.1.13 APIC Timer Operation

The local APIC contains a 32-bit timer, controlled by Core::X86::Apic:: TimerLvtEntry,

Core::X86::Apic:: TimerlnitialCount, and Core::X86::Apic::TimerDivideConfiguration. The processor bus clock is
divided by the value in Core::X86::Apic:: TimerDivideConfiguration| Div[3:0]] to obtain a time base for the timer.
When Core::X86:: Apic:: TimerlnitialCount[ Count] is written, the value is copied into

Core::X86::Apic:: TimerCurrentCount. Core:: X86:: Apic:: TimerCurrentCount[Count] is decremented at the rate of
the divided clock. When the count reaches 0, a timer interrupt is generated with the vector specified in
Core::X86::Apic:: TimerLvtEntry[ Vector]. If Core::X86::Apic:: TimerLvtEntry[Mode] specifies periodic operation,
Core::X86::Apic:: TimerCurrentCount[ Count] is reloaded with the Core::X86::Apic:: TimerInitial Count[ Count]
value, and it continues to decrement at the rate of the divided clock. If Core::X86::Apic:: TimerLvtEntry[Mask] is
set, timer interrupts are not generated.

2.1.10.2.1.14 Generalized Local Vector Table

All LVTs (Core:: X86::Apic:: ThermalLvtEntry to Core::X86::Apic::LVTLINT, and
Core::X86::Apic::ExtendedInterruptLvtEntries) support a generalized message type as follows:
* 000b=Fixed
*  010b=SMI
*  100b=NMI
e 111b=ExtINT
* All other messages types are reserved.

2.1.10.2.1.15 State at Reset

At power-up or reset, the APIC is hardware disabled (Core::X86::Msr:: APIC_BAR[ApicEn] == 0) so only SMI,
NMLI, INIT, and Extlnt interrupts may be accepted.

The APIC can be software disabled through Core::X86::Apic::SpuriousInterruptVector[ APICSWEn]. The software
disable has no effect when the APIC is hardware disabled.

When a processor accepts an INIT interrupt, the APIC is reset as at power-up, with the exception that:
*  Core::X86::Apic::Apicld is unaffected.
* Pending APIC register writes complete.

2.1.10.2.2 Local APIC Registers

APICx020 [APIC ID] (Apicld)
Read-write. Reset: XX00 0000h.
Core::X86::Apic::Apicld_Ithree[1:0] core[3:0] thread[1:0]; APICx020; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits |Description
31:24 | Apicld: APIC ID. Read-write. Reset: XXh. The reset value varies based on core number. See
2.1.10.2.1.3 [Apicld Enumeration Requirements].
23:0 |Reserved.

APICx030 [APIC Version] (ApicVersion)

Read-only. Reset: 80XX 0010h.
Core::X86::Apic::ApicVersion_lthree[1:0] core[3:0] thread[1:0]; APICx030; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}

47



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Bits | Description

31 ExtApicSpace: extended APIC register space present. Read-only. Reset: 1. 1=Indicates the presence
of extended APIC register space starting at Core::X86::Apic::Extended ApicFeature.
30:25 |Reserved.

24 | DirectedEoiSupport: directed EOI support. Read-only. Reset: Fixed,0. 0=Directed EOI capability not
supported.
23:16 |MaxLvtEntry. Read-only. Reset: XXh. Specifies the number of entries in the local vector table minus
one.
15:8 |Reserved.

7:0 | Version. Read-only. Reset: 10h. Indicates the version number of this APIC implementation.

APICx080 [Task Priority] (TaskPriority)
Read-write. Reset: 0000 0000h.
Core::X86::Apic::TaskPriority Ithree[1:0] core[3:0] thread[1:0]; APICx080; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}
Bits | Description
31:8 |Reserved.
7:0 | Priority. Read-write. Reset: 0. This field is assigned by software to set a threshold priority at which the
core is interrupted.

APICx090 [Arbitration Priority] (ArbitrationPriority)
Read-only, Volatile. Reset: 0000 0000h.
Core::X86::Apic::ArbitrationPriority Ithree[1:0] core[3:0] thread[1:0]; APICx090; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}

Bits | Description

31:8 |Reserved.

7:0  |Priority. Read-only,Volatile. Reset: 0. Indicates the current priority for a pending interrupt, or a task or
interrupt being serviced by the core. The priority is used to arbitrate between cores to determine which
accepts a lowest-priority interrupt request.

APICx0A0 [Processor Priority] (ProcessorPriority)
Read-only, Volatile. Reset: 0000 0000h.
Core::X86::Apic::ProcessorPriority lthree[1:0] core[3:0]_thread[1:0]; APICx0AOQ; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}

Bits | Description

31:8 |Reserved.

7:0 | Priority. Read-only,Volatile. Reset: 0. Indicates the core's current priority servicing a task or interrupt,
and is used to determine if any pending interrupts should be serviced. It is the higher value of the task
priority value and the current highest in-service interrupt.

APICx0B0 [End of Interrupt] (EndOfInterrupt)
Write-only.
This register is written by the software interrupt handler to indicate the servicing of the current interrupt is

complete.
Core::X86::Apic::EndOflInterrupt_lthree[1:0] core[3:0] thread[1:0]; APICx0B0; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}

Bits | Description
31:0 |Reserved. Write-only.

APICx0C0 [Reserved] (RemoteRead)

Read-only. Reset: 0000_0000h.

Remote Read is deprecated.
Core::X86::Apic::RemoteRead_Ithree[1:0] core[3:0] thread[1:0]; APICx0CO; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}

Bits | Description
31:0 |Reserved. Read-only. Reset: 0.

48



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

APICx0D0 [Logical Destination] (LocalDestination)
Read-write. Reset: 0000 0000h.
Core::X86::Apic::LocalDestination_Ithree[1:0] core[3:0]_thread[1:0]; APICx0DO0; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:24 |Destination. Read-write. Reset: 0. This APIC's destination identification. Used to determine which
interrupts should be accepted.
23:0 |Reserved.

APICxX0EOQ [Destination Format]| (DestinationFormat)

Read-write. Reset: 0000 _0000h.
Only supported in xAPIC mode.
Core::X86::Apic::DestinationFormat_Ithree[1:0] core[3:0] thread[1:0]; APICXOEQ; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:28 |Format. Read-write. Reset: Oh. Controls which format to use when accepting interrupts with a logical
destination mode.

ValidValues:

Value Description

Oh Cluster destinations are used.
Eh-1h Reserved.

Fh Flat destinations are used.

27:0 |Reserved.

APICx0FO0 [Spurious-Interrupt Vector] (SpuriousInterruptVector)
Reset: 0000_00FFh.
Core::X86::Apic::SpuriousInterruptVector lthree[1:0] core[3:0] thread[1:0]; APICx0F0; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:13 |Reserved.
12 EoiBroadcastDisable: EOI broadcast disable. Read-only. Reset: 0.
11:10 |Reserved.
9 FocusDisable. Read-write. Reset: 0. 1=Disable focus core checking during lowest-priority arbitrated
interrupts.
8 APICSWEn: APIC software enable. Read-write. Reset: 0. 0=SMI, NMI, INIT, LINT[1:0], and Startup
interrupts may be accepted; pending interrupts in Core:: X86::Apic::InService and
Core:: X86::Apic::InterruptRequest are held, but further fixed, lowest-priority, and ExtInt interrupts are
not accepted. All LVT entry mask bits are set and cannot be cleared.
7:0 | Vector. Read-write. Reset: FFh. The vector that is sent to the core in the event of a spurious interrupt.

APICx100 [In-Service] (InService)

Read-only, Volatile. Reset: 0000_0000h.
The in-service registers provide a bit per interrupt to indicate that the corresponding interrupt is being serviced by

the core. The first 16 InServiceBits of the first Core::X86::Apic::InService register are reserved.
Core::X86::Apic::InService Ithree[1:0] core[3:0] thread[1:0] n0; APICx100; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}
Core:: X86::Apic::InService lthree[1:0] core[3:0] thread[1:0] nl; APICx110
Core:: X86::Apic::InService lthree[1:0] core[3:0] thread[1:0] n2; APICx120
Core::X86::Apic::InService Ithree[1:0] core[3:0] thread[1:0] n3; APICx130
Core:: X86::Apic::InService lthree[1:0] core[3:0] thread[1:0] n4; APICx140

[1:0]

[1:0]

[1:0]

Core:: X86::Apic::InService lthree _core[3:0] thread[1:0] nS5; APICx150
Core::X86::Apic::InService Ithree _core[3:0] thread[1:0] n6; APICx160
Core:: X86::Apic::InService_lthree _core[3:0] thread[1:0] n7; APICx170

:0
:0
:0
:0
:0
:0

Bits |Description

31:0 |InServiceBits. Read-only,Volatile. Reset: 0. These bits are set when the corresponding interrupt is being
serviced by the core.

49



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

APICx180 [Trigger Mode] (TriggerMode)

Read-only, Volatile. Reset: 0000 0000h.

The trigger mode registers provide a bit per interrupt to indicate the assertion mode of each interrupt. The first 16
TriggerModeBits of the each thread's APIC[1F0:180] registers are reserved.

Core:: X86::Apic::TriggerMode lthree[1:0] core[3:0] thread[1:0] n0; APICx180; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}
Core::X86::Apic::TriggerMode_lthree[1:0] core[3:0] thread[1:0] nl; APICx190

Core:: X86::Apic::TriggerMode lthree[1:0] core[3:0] thread[1:0] n2; APICx1A0

Core:: X86::Apic::TriggerMode lthree[1:0] core[3:0] thread[1:0] n3; APICx1B0

Core::X86::Apic::TriggerMode_lthree[1:0] core[3:0] thread[1:0] n4; APICx1CO

Core:: X86::Apic::TriggerMode lthree[1:0] core[3:0] thread[1:0] n5; APICx1DO0

Core:: X86::Apic::TriggerMode lthree[1:0] core[3:0] thread[1:0] n6; APICX1E0

Core::X86::Apic::TriggerMode_lthree[1:0] core[3:0] thread[1:0] n7; APICx1F0

Bits |Description
31:0 |TriggerModeBits. Read-only,Volatile. Reset: 0. The corresponding trigger mode bit is updated when an
interrupt is accepted. 1=Level-triggered interrupt. 0=Edge-triggered interrupt.

APICx200 [Interrupt Request] (InterruptRequest)

Read-only. Reset: 0000_0000h.

The interrupt request registers provide a bit per interrupt to indicate that the corresponding interrupt has been
accepted by the APIC. The first 16 RequestBits of the first Core:: X86:: Apic::InterruptRequest register are

reserved.
Core::X86::Apic::InterruptRequest_lthree[1:0] core[3:0] thread[1:0] n0; APICx200; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]], 000h}
Core:: X86::Apic::InterruptRequest _Ithree[1:0] core[3:0] thread[1:0] nl; APICx210
Core::X86::Apic::InterruptRequest_lthree[1:0] core[3:0] thread[1:0] n2; APICx220
Core:: X86::Apic::InterruptRequest_lthree[1:0] core[3:0] thread[1:0] n3; APICx230
Core:: X86::Apic::InterruptRequest _Ithree[1:0] core[3:0] thread[1:0] n4; APICx240
]_core[
] _coref
|_core[

Core::X86::Apic::InterruptRequest_lthree[1:0] core[3:0] thread[1:0] n5; APICx250
Core::X86::Apic::InterruptRequest_lthree[1:0] core[3:0] thread[1:0] n6; APICx260
Core:: X86::Apic::InterruptRequest _Ithree[1:0] core[3:0] thread[1:0] n7; APICx270

Bits | Description

31:0 |RequestBits. Read-only. Reset: 0. The corresponding request bit is set when the an interrupt is accepted
by the APIC.

APICx280 [Error Status] (ErrorStatus)

Writes to this register trigger an update of the register state. The value written by software is arbitrary. Each write
causes the internal error state to be loaded into this register, clearing the internal error state. Consequently, a
second write prior to the occurrence of another error causes the register to be overwritten with cleared data.
Core::X86::Apic::ErrorStatus_Ithree[1:0] core[3:0] thread[1:0]; APICx280; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}

Bits | Description

31:8 |Reserved.

7 IllegalRegAddr: illegal register address. Read-write. Reset: 0. This bit indicates that an access to a

nonexistent register location within this APIC was attempted. Can only be set in xAPIC mode.
6 RevdlllegalVector: received illegal vector. Read-write. Reset: 0. This bit indicates that this APIC has
received a message with an illegal vector (00h to OFh for fixed and lowest priority interrupts).
5 SentlllegalVector. Read-write. Reset: 0. This bit indicates that this APIC attempted to send a message
with an illegal vector (00h to OFh for fixed and lowest priority interrupts).
4 Reserved.
3 RcvAcceptError: receive accept error. Read-write. Reset: 0. This bit indicates that a message received
by this APIC was not accepted by this or any other APIC.
2 SendAcceptError. Read-write. Reset: 0. This bit indicates that a message sent by this APIC was not
accepted by any APIC.
1:0 |Reserved.

APICx300 [Interrupt Command Low] (InterruptCommandLow)
| Reset: 0000_0000h. |

50



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

Core:: X86::Apic::InterruptCommandLow _Ithree[1:0] core[3:0] thread[1:0]; APICx300; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}

Bits

Description

31:20

Reserved.

19:18

DestShrthnd: destination shorthand. Read-write. Reset: 0.

Description: Provides a quick way to specify a destination for a message.
If all including self or all excluding self is used, then destination mode is ignored and physical is
automatically used.

ValidValues:

Value Description

00b No shorthand (Destination field).

01b Self.

10b All including self.

11b All excluding self. (This sends a message with a destination encoding of all 1s, so if
lowest priority is used the message could end up being reflected back to this APIC.)

17:16

RemoteRdStat. Read-only. Reset: 00b.

ValidValues:
Value Description

00b Read was invalid.

01b Delivery pending.

10b Delivery complete and access was valid.
11b Reserved.

15

TM: trigger mode. Read-write. Reset: 0. 0=Edge triggered. 1=Level triggered. Indicates how this
interrupt is triggered.

14

Level. Read-write. Reset: 0. 0=Deasserted. 1=Asserted.

13

Reserved.

12

DS: interrupt delivery status. Read-only. Reset: 0. 0=Idle. 1=Send pending. In xAPIC mode this bit is
set to indicate that the interrupt has not yet been accepted by the destination core(s). Software may
repeatedly write Core::X86::Apic::InterruptCommandLow without polling the DS bit; all requested IPIs
are delivered.

11

DM: destination mode. Read-write. Reset: 0. 0=Physical. 1=Logical.

10:8

MsgType. Read-write. Reset: 0. The message types are encoded as follows:

Valid Values:

Value Description
000b Fixed

001b Lowest Priority.
010b SMI

011b Reserved.

100b NMI

101b INIT

110b Startup

111b External interrupt.

7:0

Vector. Read-write. Reset: 0. The vector that is sent for this interrupt source.

APICx310 [Interrupt Command High] (InterruptCommandHigh)

Read-write. Reset: 0000 _0000h.

Core:: X86::Apic::InterruptCommandHigh lthree[1:0] core[3:0]_thread[1:0]; APICx310; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}

Bits | Description

31:24 |DestinationField. Read-write. Reset: 0. The destination encoding used when
Core:: X86::Apic::InterruptCommandLow[DestShrthnd] is 00b.

23:0 |Reserved.

51



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

APICx320 [LVT Timer] (TimerLvtEntry)
Reset: 0001 _0000h.
Core:: X86::Apic:: TimerLvtEntry Ithree[1:0] core[3:0] thread[1:0]; APICx320; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:18 |Reserved.
17 Mode. Read-write. Reset: 0. 0=One-shot. 1=Periodic.
16 |Mask. Read-write. Reset: 1. 0=Not masked. 1=Masked.
15:13 |Reserved.
12 |DS: interrupt delivery status. Read-only,Volatile. Reset: 0. 0=Idle. 1=Send pending. (Indicates that the
interrupt has not yet been accepted by the core.)
11 Reserved.
10:8 | MsgType: message type. Read-write. Reset: 000b. See2.1.10.2.1.14 [Generalized Local Vector Table].
7:0 | Vector. Read-write. Reset: 00h. Interrupt vector number.

APICx330 [LVT Thermal Sensor] (ThermalLvtEntry)

Reset: 0001 _0000h.

Interrupts for this local vector table are caused by changes in Core::X86::Msr::PStateCurLim[CurPstateLimit] due

to SB-RMI or HTC.
Core::X86::Apic::ThermalLvtEntry Ithree[1:0] core[3:0] thread[1:0]; APICx330; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]], 000h}

Bits |Description
31:17 |Reserved.
16  |Mask. Read-write. Reset: 1. 0=Not masked. 1=Masked.
15:13 |Reserved.
12 DS: interrupt delivery status. Read-only,Volatile. Reset: 0. 0=Idle. 1=Send pending. (Indicates that the

interrupt has not yet been accepted by the core.)

11 Reserved.
10:8 |MsgType: message type. Read-write. Reset: 000b. See2.1.10.2.1.14 [Generalized Local Vector Table].
7:0 | Vector. Read-write. Reset: 00h. Interrupt vector number.

APICx340 [LVT Performance Monitor]| (PerformanceCounterLvtEntry)

Reset: 0001 _0000h.
Interrupts for this local vector table are caused by overflows of:
*  Core::X86::Msr::PERF LEGACY _ CTL(Performance Event Select [3:0])].

*  Core::X86::Msr::PERF CTL(Performance Event Select [5:0])].

Core::X86::Apic::PerformanceCounterLvtEntry Ithree[1:0] core[3:0] thread[1:0]; APICx340; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]],
000h}

Bits | Description
31:17 |Reserved.

16  |Mask. Read-write. Reset: 1. 0=Not masked. 1=Masked.
15:13 |Reserved.

12 |DS: interrupt delivery status. Read-only,Volatile. Reset: 0. 0=Idle. 1=Send pending. Indicates that the
interrupt has not yet been accepted by the core.

11 Reserved.
10:8 | MsgType: message type. Read-write. Reset: 000b. See2.1.10.2.1.14 [Generalized Local Vector Table].
7:0 | Vector. Read-write. Reset: 00h. Interrupt vector number.

APICx350 [LVT LINT|1:0]] (LVTLINT)

Reset: 0001 _0000h.
Core::X86::Apic::LVTLINT lthree[1:0] core[3:0] thread[1:0] n0; APICx350; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}
Core::X86::Apic:LVTLINT lIthree[1:0] core[3:0] thread[1:0] nl; APICx360

Bits | Description

52



AMDA
54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh

31:17 |Reserved.

16 Mask. Read-write. Reset: 1. 0=Not masked. 1=Masked.

15 TM: trigger mode. Read-write. Reset: 0. 0=Edge. 1=Level.

14  |RmtIRR. Read-only,Volatile. Reset: 0. If trigger mode is level, remote
Core::X86::Apic::InterruptRequest is set when the interrupt has begun service. Remote
Core:: X86::Apic::InterruptRequest is cleared when the end of interrupt has occurred.
13 Reserved. Read-write. Reset: 0.
12 DS: interrupt delivery status. Read-only, Volatile. Reset: 0. 0=Idle. 1=Send pending. (Indicates that the
interrupt has not yet been accepted by the core.)

11 Reserved.
10:8 | MsgType: message type. Read-write. Reset: 000b. See2.1.10.2.1.14 [Generalized Local Vector Table].
7:0 | Vector. Read-write. Reset: 00h. Interrupt vector number.

APICx370 [LVT Error] (ErrorLvtEntry)
Reset: 0001 _0000h.
Core::X86::Apic::ErrorLvtEntry lIthree[1:0] core[3:0] thread[1:0]; APICx370; APIC={Core::X86::Msr:: APIC_ BAR[ApicBar[47:12]], 000h}
Bits |Description
31:17 |Reserved.
16  |Mask. Read-write. Reset: 1. 0=Not masked. 1=Masked.
15:13 |Reserved.
12 DS: interrupt delivery status. Read-only,Volatile. Reset: 0. 0=Idle. 1=Send pending. (Indicates that the
interrupt has not yet been accepted by the core.)
11 Reserved.
10:8 | MsgType: message type. Read-write. Reset: 000b. See 2.1.10.2.1.14 [Generalized Local Vector Table].
7:0 | Vector. Read-write. Reset: 00h. Interrupt vector number.

APICx380 [Timer Initial Count] (TimerInitialCount)
Read-write, Volatile. Reset: 0000 _0000h.
Core:: X86::Apic::TimerInitialCount lthree[1:0] core[3:0] thread[1:0]; APICx380; APIC={Core::X86::Msr::APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:0 |Count. Read-write,Volatile. Reset: 0. The value copied into the current count register when the timer is
loaded or reloaded.

APICx390 [Timer Current Count] (TimerCurrentCount)
Read-only, Volatile. Reset: 0000_0000h.

Core::X86::Apic:: TimerCurrentCount _lthree[1:0] core[3:0] thread[1:0]; APICx390; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}

Bits | Description

31:0 |Count. Read-only,Volatile. Reset: 0. The current value of the counter.

APICxX3EQ [Timer Divide Configuration] (TimerDivideConfiguration)
Read-write. Reset: 0000 _0000h.

Core::X86::Apic::TimerDivideConfiguration_lthree[1:0] core[3:0] thread[1:0]; APICx3E0; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}

Bits | Description
31:4 |Reserved.
3:0 |Div[3:0]. Read-write. Reset: 0. Div[2] is unused.
ValidValues:
Value Description
0000b Divide by 2.
0001b Divide by 4.
0010b Divide by 8.
0011b Divide by 16.

53



AMDA

54945 Rev 1.14 - April 15, 2017 PPR for AMD Family 17h Models 00h-OFh
0111b- Reserved.
0100b
1000b Divide by 32.
1001b Divide by 64.
1010b Divide by 128.
1011b Divide by 1.
1111b- Reserved.
1100b

APICx400 [Extended APIC Feature] (ExtendedApicFeature)

Read-only. Reset: 0004 0007h.

Core::X86::Apic::ExtendedApicFeature lthree[1:0] core[3:0] thread[1:0]; APICx400; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description

31:24 |Reserved.

23:16 |ExtLvtCount: extended local vector table count. Read-only. Reset: 04h. This specifies the number of
extended LVT registers (Core:: X86::Apic::ExtendedInterruptLvtEntries) in the local APIC.

15:3 | Reserved.

2 ExtApicldCap: extended APIC ID capable. Read-only. Reset: 1. 1=The processor is capable of
supporting an 8-bit APIC ID, as controlled by Core::X86:: Apic::Extended ApicControl[ ExtApicldEn].
1 SeoiCap: specific end of interrupt capable. Read-only. Reset: 1. 1=The
Core:: X86::Apic::SpecificEndOfInterrupt is present.

0 IerCap: interrupt enable register capable. Read-only. Reset: 1. This bit indicates that the
Core::X86::Apic::InterruptEnable are present. See2.1.10.2.1.8 [Interrupt Masking].

APICx410 [Extended APIC Control] (ExtendedApicControl)

Read-write. Reset: 0000 0000h.

Core::X86::Apic::ExtendedApicControl lthree[1:0] core[3:0] thread[1:0]; APICx410; APIC={Core::X86::Msr:: APIC_BAR[ApicBar[47:12]] , 000h}
Bits | Description
31:3 |Reserved.

2 ExtApicldEn: extended APIC ID enable. Read-write. Reset: 0. 1=Enable 8-bit APIC ID;
Core::X86::Apic::Apicld[Apicld] supports an 8-bit value; an interrupt broadcast in physical destination
mode requires that the IntDest[7:0]=11111111b (instead of xxxx_1111b); a match in physical destination
mode occurs when (IntDest[7:0] == Apicld[7:0]) instead of (IntDest[3:0] == Apicld[3:0]).

1 SeoiEn. Read-write. Reset: 0. 1=Enable SEOI generation when a write to
Core::X86::Apic::SpecificEndOfInterrupt is received.
0 IerEn. Read-write. Reset: 0. 1=Enable writes to the interrupt enable registers.

APICx420 [Specific End Of Interrupt] (SpecificEndOfInterrupt)
Read-write. Reset: 0000 _0000h.

Core::X86::A