todd meynink

Mission: Compressible

Achieving Full-Motion Video
on the Nintendo 64

TODD MEYNINK | When there’s mo surf to be found, Todd's busy pretending to be a sofi-
ware engineer at Amgel Studios. Drop bim a line at todd@angelstudios.com.

36 seplember 2p00 | game developer

ESIDENT EVIL 2 for the Mintendo 64 was the first game on a cartridge-based console system to
deliver full-motion video. Angel Studios’ team brought this two-CD game, comprising 1.2GB
of data, to a single 64MB cartridge. A significant portion of this data was more than 15 min-
utes of cutscene video. Achieving this level of compression, meeting the stringent requirement
of 30Hz playback, and delivering the best video quality possible was a considerable challenge.

To look at this challenge another way, let's put it into numerical perspective. The original rendered frames of
the video sequences were 320x160 pixels at 24-bit color = 153,600 bytesfframe. On the Nintendo 64 RESIDENT
EviL 2's approxdmately 15 minutes of 30Hz video make a grand toral of 15+60300153,600 = 4,147,200,000
bytes of uncompressed data. Our budget on the cartridge was 25,165,824 bytes, so [had to achieve a compres-
sion ratio of 165:1. Worse still, [had to share this modicum of cartridge real estate with the movie andio.

The Playstation version of REsnenT Evie 2 displays its video with the assistance of a proprietary MDEC chip
but hecause the W64 has no dedicated decompression hardware, our challenge was compounded further. To
better understand the magnitude of the implementation hurdles, consider that it is analogous to performing
full-screen MPEG decompression at 30Hz, in software, on a CPU roughly equivalent in power to an Intel 486,
Fortunately, the N64 has a programmable signal processor called an RSP that has the ability to run in parallel
with the CPU.

www.gdmag.com

37

FULL-MOTION VIDEDO

subsample
chromaticity

} Y 150 134 X4 253 094 00 188 290

Discrete Cosine Transform (DCT)
213 152 145)

Cr : :
L2 354 104 0O&
o 134 A8 112 1 27 143 14T e

™

127 23 DA 15h
1M1 N33 1R 204 TP 200 1TE 1N

D& O¥2 245 177 190 204 102 1M

IhE O3k 155 N5 M8 145

D55 D&% 124 08T 102 153

B8 block of image data

A Brief JPEG Primer

n order to simplify the timing and synchronization issues, 1
I chose an MPEG-1-style (henceforth referred to as MPEG) com-
pression scheme for the video content only. (Audio was handled
separately, which I'll discuss later in this article.)

As an introduction to the relatively complex issues of applying
MPEG compression to the video sequences of the game, let me
present a brief primer on JPEG compression.

First, the image is converted from RGE into YChCr. This
process converts the RGE information into luminance informa-
tion {Y) and chromaticity (Ch and Cr):

¥ 02989 05866 0.1145

R
Ch{=|0.1687 -0.3312 05 [
=0.4183 =0.0816| | B

Inverting the cocfficient matrix and applying it to YChCr finds the
inverse transformation. This color model exploits properties of our
visual system. Since the human eye is more sensitive to changes in

Cr 0.3

luminance than color, 1 could devote more of the bandwidth to
represent Y than Cb and Cr In fact, I can halve the size of the
image with no perceptible loss in image quality by storing only the
nonweighted average of each 2%2-pixel block of chromaticity
information. This way the Ch and Cr information is reduced to 235
percent of its original size. If each of the three components (Y, Ch,
Cr) represented 1/3 of the original picture information, the sub-
sampled version now adds up to 1/3 + 1712 + 1112 = 1/2 the orig-
nal size.

Second, cach component is broken up into blocks of 8x8 pixcls.
Each 8x8 block can be represented by 64-point values denoted by
this set:

{f[x,y}eﬂﬂ x=7,0€y< ?}

where x and y are the two spatial dimensions. The discrete cosine
transform (DCT) transforms these values to the frequency domain
as ¢ = g{F,.F,), where ¢ is the coefficient and F, and F, are the

USED AS TYPE OF
TYPE REFEREMCE? PREDICTION COMMENTS
Intrapictures | Yes MiA Typically encoded
{l-frames) with a JPEG-like
algarithm. They start
and end each GOP.
Predicted- Yes P=frames
pictures support forward
{P-frames) prediction
from a previous The maotion=-
I-frame. compensaled
Bidirectional | Mo AB-frame is a :'::‘:a':l
{interpolated) forward, backward DCT coded.
pictures ar bidirectional
{B-frames) picture created by
and relative to, other
: | and P frames.
LN

FIGURE 1 (top). A summary of the encoding process.
FIGURE 2 (bottom). GOP encoding methods.

respective spatial frequencies for each direction:

Foo
41.(?{;;; C)- Y ¥ Flxy)-co

P2x+1)on-m]-L‘D
] il

Eyi-'”-u-.n‘]
1&

16

where Clu) = Cly) = K, for w, =0 and 1 otherwise
V2

The output of this equation gives another set of 64 values known
as the DCT coefficients, which is the value of a particular frequen-
cy — no longer the amplitude of the signal at the sampled position
{x,¥). The coctficient corresponding to vector (0,0) is the DC coef-
ficient (the DCT cocfficient for which the frequency is zero in both
dimensions) and the rest are the AC coefficients (DCT coefficients
for which the frequency is nonzero in one or both dimensions).
Because sample values typically vary gradually from point to point
across an image, the DCT processing compresses data by concen-
trating most of the signal in the lower values of the (mp) space.

sepltember 2000 | game developer

Y
1
DCT Coefficient Matrix Guantization Matrix Quantized DCT Coefficient Matrix
196 35 11 $20 83 2
I%0 053 009 003 Oi 001 ool o o0l 0N 001 OO0 DGC 004 DOR OlE 194 0¥ DOA DO 000 OO0 000 OO 52003210
11000060
D1 X 005 DA 001 DO BO1 OOl 001 01 D01 OO01 OO4 DDG DS oG oYl 030 00 002 OO OO0 00O 00O Zigzag 000000 0D
Encodin 5
OI1 D04 00X OO1 001 DOY 01 o o0l OO DO E07 006 DB 00R 016 007 005 DO3 001 00O OOG 000 OO EEEEE:EEE
- 0000 D
054 O0F 002 005 00 001 001 001 | .— | 000 OD4 DOB 008 D6 OT4 014 Ol4 | === | 002 000 000 000 OOG OO0 D00 000 > oooo00O0DD
L y 00000
DN 06& 004 BEA DA D01 BO1 e 004 D0 DOR G146 BEA D14 014 g8 00 D00 000 000 DO OO0 000 000 goooooo0g
D2 004 DO OO1 003 001 001 G0n 054 00 00 B14 DA 074 032 o@D 000 003 00D BO0 00 OO0 000 500 Run Length Encoding
D21 021 D03 061 D02 0O1 pOI 00 004 D08 0OB D14 OM4 DX 03P 0O2 D00 003 00D 000 000 00O 00O 000 & Entropy Encoding
o 00 002 0O D62 001 000 OO0 g D08 D08 o6 BOD 0N D2 D4 GO0 D00 DOD 000 OO0 OO0 000 000 A 4
Compressed
Data

For a typical 88 sample block, many — if not all — of the (mr)
pairs have zero or near-zero coefficients and therefore need not be
encoded. This fact is exploited with run-length encoding,

Next, the 64 outputted values from the DCT are quantized on
a per-clement basis with an 8x8 quantization matrix. The quanti-
zation compresses the data even further by representing DCT
cocfficients with precision no greater than is necessary to achieve
the desired image quality. This tunable level of precision is what
you modify when you move the [PEG compression slider up and
down in Photoshop when you save an image.

In the third step (ignoring the detail that the DC components are
difference-encoded), all of the quantified coefficients are ordered
into a “zigzag” sequence. Since most of the information in a typi-
cal 8x8 block is stored in the top-left corner, this approach maxi-
mizes the effectiveness of the subsequent run-length encoding step.
Then the data from all blocks is encoded with a Huffman or arith-
metic scheme. Figure 1 summarizes this encoding process.

Both JPEG and MPEG are “lossy™ compression schemes, mean-
ing that the original image can never be reproduced exactly after
being compressed. Information is lost during JPEG compression at
several points: chromaticity subsampling, quantization, and float-
ing-point inaccuracy during the DCT.

Motion Picture Compression

PEG compression attempts to reduce the spatial redundancy in

a single still image. In contrast to a single frame, video consists
of a stream of images (frames) arriving at a constant rate (typical-
ly 30Hz). If you examine consecutive frames in a movie, you'll
generally find that not much changes from one frame to the next.
MPEG exploits this temporal redundancy across frames, as well
as spatial redundancy within a frame.

To deal with temporal redundancy, MPEG divides the frames
up into groups, cach referred to as a “group of pictures,” or GOP.
The size of the GOP has a direct effect on the quality of the com-
pressed images and the degree of compression. A GOP's size rep-
resents one of the many trade-offs inherent to this process. If the
GOP is too small, not all the temporal redundancy will be elimi-
nated. On the other hand, if it is too large, images at the start of

www.gdmag.com

the GOP will look substantally different from images toward the
end (imagine a scene change partway through), which will
adversely affect the guality of reconstrocted images.

To improve compression, frames are often represented by com-
posing chunks of nearby “reference™ frames. The frames within a
GOP are generally encoded via one of three methods, as shown in
Figure 2.

Figure 3 shows the different frames and their roles and relation-
ships. This example introduces an intracoded picture (I-frame)
every eight frames. The sequence of intrapictures (1), predicted pic-
tures (P), and bidirectional pictures (B) is IBEEPEEBL. When GOP
size is varied, only the number of B-frames on either side of the
P-frame ever changes. Note that this sequence represents the play-
back sequence and is not necessarily the order in which frames are
stored. Storing frames 1,2,3,4,5.6.78 as 1,5.2.3.4.9.6,7.8 would
make sense since the I- and P-frames are read first, facilitating con-
struction of B-frames as soon as possible and reducing the number
of frames that need to be kept around in order to decode the
stream successfully.

Prediction and interpolation are employed in a technique

FIGURE 3. Relationships between the |-, B-, and P-frames.

39

FULL-MOTIOGN VIDED

called “motion compensation.™ Prediction
assumes that the current picture can be
muodeled as a transformation of the pic-
ture at some previous time. Interpolated
pictures work similarly with past and
future references, combined with a correc-
tion term.

It makes no sense to use an entire image
to model motion within a frame, so mod-
eling motion must be done with smaller
blocks. MPEG uses a macro-block consisi-
ing of 16x16 pixels (think of a macro-
block as four of our §x8 DCT blocks).
This approach illustrates another trade-off
between the guality of the image and the
amount of information needed to represent
the image. An estimate of per-pixel motion
would look best, but would be way o
big, while a quarter-image black would
look preety ordinary but take up very lirtle
space. In a bidirectionally coded picture,
each 16%16 macro-block can be of type
intra, forward predicred, backward pre-
dicted, or average. Note that the 16x16
block used for compensation need not lie
on a 16x16-pixel boundary.

A cost function typically evaluates
which macro block(s) from which image
represents the current block in the current

JPEG Compression/

Decompression Steps

JPEG Compression

1. Preparation of data blocks
(RGBE-—+YChCr)

2. Source encoding
* Discrete cosine transform (DCT)
* Quantization

3. Entropy encoding
* Run-length enceding
* Huffman or arithmetic coding

JPEG Decompression
1. Entropy decoding
* Huffman or arithmetic coding
= Run-length coding
2. Source decoding
* Daguantization
nverse discrete cosine transform
(1IDCT)
3. Preparalion for display

(YChCr—+RGE)

image. This cost function measures the
mismatch between a block and each pre-
dictor candidate. Clearly an exhaustive
search, in which all possible motion vec-
tors are considered, would give the best
result, but that would be extremely expen-
sive computationally. Figure 4 shows the
relative sizes of the different frame types.

Implementation

y first step to implement the full-

motion video for the Né4 version of
ResmeNT Evie 2 was to develop a PC-
based compression/decompression plat-
form that could be debugged and tuned
easily. This let me experiment with differ-
ent GOP sizes, bit rates, and other van-
ables. It quickly became apparent that this
optimization challenge would be a war
between image size, image quality, and
decoding complexity.

There were severe memory constraints.
As you probably know, without an expan-
sion pack, the N&4 has only 4MB of RAM.
This memory is divided up among program
n:n:l:, h:ap, 5taclt, textures, frame huffcrs,
the Z-buffer, and so on. For a large game,
it’s likely that there will be room for only
twao frame buffers at any reasonable resolu-
tion and color depth. Keep in mind also
that you need space to hold the necessary
reference frames (I-frames and P-frames) in
memory to compute the predicted frames.
This requirement came down to three
frames (LLPI) of YChCr dara ar 24-bit
color. Obviously the resolution of the video
dictates exactly how much RAM this
requIres.

I tested many different parameter set-
tings, the most fundamental of which was
bit rate. A higher bit rate naturally led to
higher quality. Unfortunately, simply rais-
ing the bit rate to a point where accept-
able guality was exhibited across the
board required too much storage space.
In our case, a quick calculation gives us
our target mean compressed frame size:
25,165,824 bytes / 27,000 frames = 932
bytes per frame.

Higher resolution improved the image
quality up to a point, but it quickly fell off
after that. The reason for the falloff is that
only a limited number of bits are available

to describe all the pixels in a frame. While
a high-resolution movie may look good

I=frame

P-frame

B-frame
S Storage size (linear scale)

FIGURE 4. Relative sizes between |-, B-, and
P=frames.

when little in the scene is changing, rapid
motion or a scene change may not be ade-
quately described at the same bit rate. This
artifact becomes extremely noticeable
when the boundaries of motion blocks are
discontinuous, which gives the movie a
“blocky™ look. Additionally, increasing the
resolution means more macro-hlocks,
more mverse DCTs, more motion compen-
sation, more color space conversion, and
generally more decoding me. It quickly
became apparent to us that displaying
movies encoded at the source resolution
would not be possible at 30Hz.

Since movies would be displayed at a
lower resolution than the source, we need-
ed a mechanism for scaling the decoded
frames back up to full-screen resolution.
We tried pixel doubling, but the results
were unsatisfactory even on an NTSC
screen (which hides a lot of the larger
“pixel™ defmition). Next [tried using the
N&4"s recteopy routine (part of the Ne4d's
software library) with bilinear interpola-
tiom. This approach gave better results and
remained in place until [tried a custom
microcode routine — which in turn gave
way to a reduced screen resolution, which
the RDP scaled up automatically for free.
Reduced resolution also gave the added
bonus of reducing memory requirements
for the frame buffers.

I tried decoding the movies to both 16-
bit RGB and 32-bit RGEA frame buffers.
The 32-bit image gave superior results,
especially across gradations of color,
though at the time the performance hit
didn’t justify the extra memory and process-
ing requirements. The target color depth
had several implications. Foremost were
the increased memory requirements of the
frame buffers. At the tme [was evaluaring

this approach, running at source resolution
and color depth would not have been pos-

sepltember 2000 | game developer

Full-motion video stills from Resipent EviL 2 for Néd.

sible given the memory constraints. A sec-
ondary implication was the increase in
computing time required to process the
larger frames, further hampered by the
MN&4's less-than-stellar memory perform-
ance. At this point, [had movies running at
low resolution at 30Hz and roughly within
the size requirements, but the image qualiey
left a lot to be desired and this problem
needed to be addressed. | began to think

about optimization.

Rewriting the Algorithm
in Microcode

¥ decompression algorithm was writ-
M ten in C, and its computation time
was spread over a large portion of the
source. | was not going to reap large bene-
fits from optimizing code with MIPS
Assembly withoot a Herculean effort and
far more time than 1 had. While I had
never dealt with the &4’ signal processor
(the R5P) before, 1 knew that its vector
nature and potential to run in parallel held
the keys to improved performance. (For a

www.gdmag.com

walk-through of the process of calling
microcode programs, DMA-ing data in
and out of micro-memory, passing argu-
ments, and more, refer to Mark DeLoura’s
article, “Putting Curved Surfaces to Work
on the Nintendo 64,” November 1999.)

After getting a simple “add 2 to this
number™ function to work, I began to port
portions of the C-based decoding code
over to microcode. This task was by no
means simple. The only avenue for debug-
ging the microcode was to crash the RSP
at various places and read the data cache
to verify that things up to that particular
point were working correctly. This process
was very laborious.

A direct resule of the difficulties of devel-
oping microcode was that 1 would only
have time to rewrite a finite number of rou-
tines. A fixed-point rewrite of the inverse
discrete cosine transform seemed like an
obvious choice. After several painstaking
days of coding and venfying this routine, it
was ready for prime time. Unfortunately,
the rewrite actually caused the routine to
perform more slowly. My investigation

revealed that a cache issue was causing this
problem. As each block of pixel data is read
and prepped for decode, it becomes resident
in the CPU's data cache. For the RSP to
process it, the data must be DMA'd from
main memory to the R5Fs DMEM. Afrer
processing, it must then be DMA'd back
into main memory. The CPU's cache doesn®t
know that this potentially asynchronous
process has modified the data, so those
cache lines must be “invalidated™ and
rercad to ensure that the CPU is operating
on up-to-date data. The bottom line was
that all this extra memory thrashing was
swamping any benefit gained by the effi-
ciency of the RSPs SIMD instructions.

My next stop was the motion compen-
sation code. Unfortunately, the amount of
code required to handle all the different
kinds of motion compensation was prohib-
itive. The RSP’s lack of a shift instruction
didn’t promise a clean implementation.
Clearly, the code which finally brought the
decompressed image to the screen (without
further CPU intervention) stood to gain
the most benefit.

Rewriting the color-space conversion
{CSC) routines to take advantage of the
BSP's vector architecture proved to be
quite successful. The RSP was uniquely
suited to this sort of task. Once the RSP
had performed the conversion, the RGB
data could be DMA'd from DMEM direct-
Iy to the frame buffer, avoiding the earlier
caching problems. This bought a notice-
able performance increase and provided a
corresponding increase in image quality,
but I was still a long way from the quality
of the original FMV.

The Epiphany

t this point, my implementation was
A getting closer to my goal, but prob-
lems remained. First, the image quality was
still not as good as I had hoped. Second, the
data files required to support this inade-
quate quality were already substannially
over their size budget. And finally, the
decoding still took too long and 1 couldn’t
sce an easy way to improve it — especially
since | was trying to also reduoce the bit rate.

Then the idea struck me: what if [

skipped every other frame and interpolated
at run time? [knew if I could get this
approach to work, it would simultaneously

41

FULL-MOTION VIDEDO

L

Displey — I oo SUNSNS eSS
b FBA FBE e

init page fip init page il init fli
Evenls on nexi retrace on nepﬂg g Dll'l naﬁgr:u'a?:e
| | | | 1 | | | | 1 | | | h__
T T T T 1 T T T 1} 1 T T
Time YUV inte AVG ¥UVinte AVG YUV inte AVG
{&0Hz FBE into FBA FEE into FBA FBEB into FBA
intervals)
Rsp —p——f= = | i —_— : —
e,
lask completion Runs i |
il ns in paralle
cPU . i . ; . ! . . . i . . .
decode frame 1 decode frame 2 decode frame 3 decode frame &
ramwd 5

FIGURE 5. A processing time line.

halve the bit rate and double the decoding
time. I was banking on the hope that it
would be difficult to differentiate data
decoded ar 30Hz from data decoded at
15Hz with interpolation.

At first | considered using triple buffer-
ing to decode two frames, and then inter-
polating between the two to generate the
intermediate frame. But memory restric-
tions quickly ruled out this approach and
any of its variants.

I eventually found the solution. In it, the
RSP average routine effectively swaps in a
new frame without a page flip by beating
the retrace Bun down to the bottom of the
screen thanks to some fast microcode.
From a conceptual standpoint, this ricky
timing allowed me to achieve triple buffer-
ing with only two buffers. (See Figure 5, a
processing time line, and Figure 6, a UML
state machine that runs the CPU thread in
parallel with the RSP}

With this approach, each frame had
almost 1/15th of a second to decode. Skip-
ping every other frame halved the memory
footprint. This made the inclusion of all
the clips possible, and also allowed us to
improve the quality with the space left
over. And we still had extra decoding time
to burn, which we put to good use by
increasing the movie resolution to further
improve image quality.

It wouldn't have been possible to imple-
ment this solution without a scheduler.
The scheduler used was part of a sophisti-
cated operating system written by fellow
team members Chris Fodor and Jamie
Briant. In addition to supporting multi-
processing and mult-threading, it provided
detailed information about and manage-
ment of the N&4's hardware. This was piv-
otal to taking full advantage of the
machine. Once 1 fleshed out the algorithm,
implementation with the 05's scheduler
was straightforward.

Continuous
Improvement

hortly after we implemented this sys-

tem, we created a demo for E3 1999,
It was very gratifying to walk past Cap-
com’s booth and hear people arguing over
whether thq,' Were p!aving the game on an
MNé&4 or a Playstation. Unfortunately, the
video guality on the N&4 was still notice-
ably below that of the original Playstation
game.

One of the reasons for this was that
smooth color Erad:itnts were not rcpruduc-
ing well. I experimented with a cheap form
of dithering as a postprocessing step.
(Credit goes to Alex Ehrath, my fellow
RE2-N&4 programmer, for this idea) As
YChCr data was converted to 16-bir RGE,

I kept track of the lower-order bits that
were being masked off, added these lower-
order bits to the following pixel before it
was masked off, and so on. The red, green,
and blue channels were processed inde-
pendently. While this technique provided a
noticeable improvement when the frames
were considered in isplation, differences
from frame to frame made it look as if
there were some sort of static interference
when they were played as a movie. The
modulation of the interpolated frames only
amplified this problem.

The bad reproduction of gradients was
especially noticeable in dark areas. To com-
pensate for this, [experimented with
EAMMa COTrection as 3 Preprocessing step
prior to encoding. My goal was to even out
the perceived difference in intensity between
dark colors and lighter colors. Unfortunate-
Iy, this approach just gave the movies a
washed-out look.

Mext, | tackled the age-old challenge of
trying to make the image on the NTSC dis-
play resemble those shown on an RGBE
monitor. We drew ten vertical bars across
the screen, moving from black to gray to
white as an intensity reference image. On an
MWTSC screen, the middle bar looked more
red than gray, even on expensive reference
muonitors. After several iterations, we moved
to Photoshop and applied a combination of

color boosting, contrastfbrightness adjust-

sepltember 2000 | game developer

&
b 4
MSTATE_|

.
— I

[frame 0 is sitting in FBA.
frame 1 has been decoded]
b 4

MSTATE_FINISH_DECODE

do / RSP : YUV -= FEB

I

[retrace and decode complete]
Y

MSTATE_AVERAGE

do / RSP : avg => FBA

[retrace]

o SN
(.

Erein-:.a]

MSTATE_DISPLAY_AVERAGE

do / schedule page flip for
next retrace
FBA <-> FBB

Erein-:.u]

e L N

|
{WM

[movie cancel or movie done]

Y
W

FIGURE &. A UML state machine that runs the
CPU thread in parallel with the RSP

www.gdmag.com

ments and level altering images prior to
encoding until we felt we had a combina-
tion that improved the final image quality
substantially.

Finally, in another attempt to improve
color gradient reproduction, I retried a pre-
viously rejected technique. In carlier tests,
the full 24-bit color output had looked
marginally better, but extra computation
and memory requirements had ruled it cut.
Now that the color space conversion had
been moved to microcode, and a multi-pro-
cessing approach had bought us much
longer decoding times, 1 could get 24-bit
color with little extra cost. A single day's
coding brought startling results, and when
combined with the improved color from
the Photoshop preprocessing, the true-color
output improved the display guality dra-
matically. Colors were reproduced even
more vibrantly and patchy blotches became
smoothly transitioning gradients. At last, |
had achieved what I was after To down-
load an archive containing the final CSC
microcode, go to the Game Developer web

sibe at www.gdmag. com.

Scripting and
Synchronization
with Audio

F ortunately, both Leon and Claire’s (the
two main player-characters in BE2)
games shared many sections of video, which
I factored out into shared “video clips.™
This substantial task resulted in hundreds of
clips ranging in length from a minute to a
second. Movie playback was then achieved
by replaying a sequence of clips. The ability
to “hold™ on a particular frame while the
frame counter ticked by provided some
additional compression. These sequences of
movie clips and holds were played back
through scripts that bestowed a substantial
amount of flexibility.

Audio compression and playback was
handled separately from the video. Audio
clips were triggered on particular frames.

Dividing movies into clips gave us the
ability to vary the bit rate according to con-
tent. Fast action meant larger changes from
frame to frame, which led to more compres-
sion artifacts requiring higher bit rares
compensate. Conversely, relatively calm
scenes could be encoded at a much lower

hit rate.

Changes in scenes at low bit rates were
problematic when they occurred between
Hrames. Until the next I-frame swimg by,
the sudden change caused the remainder of
the GOP to display with highly noticeable
compression artifacts. Quality could be pre-
served across changes in scene at low bit

rates by making new clips with cuts on the
scene change boundaries.

An Industry First

I f we were to do another similar N64
project, we would definitely implement
the same technology and tricks I've
described here to any video sequences
used. However, many of these techniques
can be applicd on any platform where file
size is 2 major concern. For instance, fac-
toring out all common “film™ sequences
and replaying individual clips back to back
¥ia a seript to re-create the original can
afford a large space savings. Ensuring the
clips are built on scene-change boundaries
allows you to lower the bit rate and still
maintain quality. Also, compensating for
loss of color saturation and levels due to
compression prior to encoding can yield a
result closer to the onginal.

Bringing full-motion video to the N64 is
challenging both in terms of achieving the
Necessary compression to support video on
a cartr.i.dg: system and the software
required to play the compressed data back
in real time. Relentlessly trying and retry-
ing everything brought us a great result
and an industry first: high-quality video on
a cartridge-based console. &

. Fl= Discuss this articla in 1

‘j Gamasutra's Connection!
E - www.gamasulra com/discuss/gdmag

FOR MORE INFORMATION

BOOKS

Raghavan, 5. V. and 5. K. Tripathi.
Metworked Multimedia Systems. Upper
Sadile River, N_J.: Prentice Hal, 1998,

Foley, J. 0., and others. Cormputer Graphics:
Prindples and Practice, 2nd ed. Reading,
Mass.: Addison-Wesley, 1906

WEE RESOURCES

WWRLITIDEE.ONE

43

