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Abstract

Data intensive applications and computing has emerged as a central area of mod-
ern research with the explosion of data stored world-wide. Applications involv-
ing telecommunication call data records, web pages, online transactions, med-
ical records, stock markets, climate warning systems, etc., necessitate efficient
management and processing of such massively exponential amount of data from
diverse sources. Duplicate detection and removal of redundancy from such multi-
billion datasets helps in resource and compute efficiency for downstream process-
ing. De-duplication or Intelligent Compression in streaming scenarios for ap-
proximate identification and elimination of duplicates from such unbounded data
stream is a greater challenge given the real-time nature of data arrival. Stable
Bloom Filters (SBF) addresses this problem to a certain extent. However, SBF
suffers from a high false negative rate and slow convergence rate, thereby render-
ing it inefficient for applications with low false negative rate tolerances.
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In this work, we present several novel algorithms for the problem of approxi-
mate detection of duplicates in data streams. We propose the Reservoir Sampling
based Bloom Filter (RSBF) combining the working principle of reservoir sam-
pling and Bloom Filters. We also present variants of the novel Biased Sampling
based Bloom Filter (BSBF) based on biased sampling concepts. Using different
updation and biasing mechanisms we propose variants of the same model enabling
the data structure to adapt to various input scenarios. We also propose a random-
ized load balanced variant of the sampling Bloom Filter approach to efficiently
tackle the duplicate detection. In this work, we thus provide a generic frame-
work for de-duplication using Bloom Filters. Using detailed theoretical analy-
sis we prove analytical bounds on the false positive rate, false negative rate and
convergence rate of the proposed structures. We exhibit that our models clearly
outperform the existing methods. We also demonstrate empirical analysis of the
structures using real-world datasets (3 million records) and also with synthetic
datasets (1 billion records) capturing various input distributions.

Keywords: De-duplication, Reservoir Sampling, Bloom Filter, Biased Sampling,
Data streams

1. Introduction and Motivation

Data intensive computing has emerged as a central research theme in the
databases and data streams community. With the tremendous spurt in the amount
of data generated across varied applications, such as information retrieval, online
transaction records, telecommunication call data records (CDR), virus databases,
climate warning systems, web-pages and medical records to name a few, effi-
ciently processing and managing such huge store of data has become a neces-
sity. The problem is further compounded by the presence of spurious duplicates
or redundant informations, leading to wastage to precious store space and com-
pute efficiency. Hence, removal of such duplicates help to improve the resource
utilization and compute power especially in the context of data streams requir-
ing real-time processing at 1 GB/sec or even higher. In this work, we propose
efficient algorithms to tackle the problem of real-time elimination of duplicate
records present in large streaming applications. Formally, this is referred to as
the data de-duplication or Intelligent Compression problem, and we use the terms
interchangeably.

A national telecommunication network generates call data records, (CDR)
storing important information such as the callee number, caller number, duration,
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etc., for future utility. However, redundant or duplicate records may be generated
due to errors in the procedure. Storing of such billions of CDR in real-time in the
central data repository calls for duplicate detection and removal to enhance per-
formance. Typical approaches involving the use of database queries or Bloom Fil-
ter [1] are prohibitively slow or are extremely resource intensive requiring around
20 GB for storing 6 billion CDR. Even disk-based algorithms have a heavy per-
formance impact. Hence, there is a paramount need for deduplication algorithms
involving in-memory operations, real-time performance along with tolerable false
positive, (FP) and false negative, (FN) rates.

The growth of search engines provide another field of application for the dedu-
plication algorithms. The search engines need to regularly crawl the Web to ex-
tract new URLs and update their corpus. Given, a list of extracted URLs, the
search engines needs to perform a probe of its corpus to identify if the current
URL is already present in its corpus [2]. This calls for efficient duplicate detec-
tion, wherein a small performance hit can be tolerated. A high FNR, leading to
recrawling of a URL, will lead to a severe performance degradation of the search
engine and a high FPR, leading to new URLs being ignored, will produce a stale
corpus. Hence a balance in both FPR and FNR needs to be targeted.

Another interesting application for approximate duplicate detection in stream-
ing environment is the detection of fraudulent advertiser clicks [3]. In web adver-
tising domain, for the sake of profit it is possible that the publisher fakes a certain
amount of the clicks (using scripts). The advertising commission necessarily need
to detection such malpractices. Detection of same user ID or click generation IP
in these cases can help minimizing frauds.

Straight-forward approaches to tackle this problem involving pair-wise string
comparisons leads to quadratic time complexity prohibiting real-time performance.
To address this issue, Bloom Filter are typically used in such domains. However,
this involves huge memory requirements for tolerable performance of the algo-
rithms and hence led to disk-based Bloom Filter approaches which again suffers
from reduced throughput due to disk access overhead.

In order to address these challenges, we present the design of novel Bloom
Filter based algorithms based on biased sampling, Reservoir sampling, and load
based sampling. We theoretically analyze the performance of our algorithms and
prove it to outperform the competing methods. We also show exhaustive empirical
results to validate the enhanced performance of our methods in real-time. Using
huge datasets of the order of billions of records, we portray better FPR, FNR and
convergence to stability of the algorithms.

In the next section we present the related work and existing methods in this

3



problem domain, and discuss the various techniques used in this work. Section 3
presents the working details of the Reservoir Sampling based Bloom Filter algo-
rithm, wherein we provide a novel hybrid approach based on Reservoir sampling
coupled with Bloom Filter. To the best our knowledge this is the first such attempt
at combining the two for deduplication applications. It is followed by the bi-
ased sampling based techniques, Biased Sampling based Bloom Filter approaches,
where biased sampling functions are used to operate on the Bloom Filters. Sec-
tion 5 presents a randomized load balanced approach involving the load of each
Bloom Filter to model its response towards each input element. We next present
detailed experimental results on both real and synthetic datasets to exhibit the ef-
ficient performance of the proposed techniques. Finally, Section 7 concludes the
work and provide possible future direction of work in this area.

2. Background and Related Work

Duplicate detection provides a classical problem within the ambit of data stor-
age and databases giving rise to numerous buffering solutions. The advent of
online arrival of data and transactions, detection of duplicates in such streaming
environment using buffering and caching mechanisms [4] corresponds to a naı̈ve
solution given the inability to store all the data arriving on the stream. This led to
the design of fuzzy duplicate detection mechanisms [5, 6].

Management of large data streams for computing approximate frequency mo-
ments [7], element classification [8], correlated aggregate queries [9] and others
with limited memory and acceptable error rates have become a spotlight among
the research community. Bit Shaving, the problem of fraudulent advertisers not
paying commission for a certain amount of the traffic or hits have also been studied
in this context [10]. This prompted the growth of approximate duplicate detection
techniques in the area of both databases and web applications. Redundancy re-
moval algorithms for search engines were first studied in [11, 12, 13]. File-level
hashing was used in storage systems to help detect duplicates [14, 15, 16], but
they provided a low compression ratio. Even secure hashes were proposed for
fixed-sized data blocks [17].

Bloom Filters were first used by TAPER system [18]. A Bloom Filter is a
space-efficient probabilistic bit-vector data structure that is widely used for mem-
bership queries on sets [19]. Typical Bloom Filter approaches involve k compar-
isons for each record, where k is the number of hash functions used per record for
checking the corresponding bit positions of the Bloom Filter array. However, the
efficiency of Bloom Filters come at the cost of a small false positive rate, wherein

4



the Bloom Filter falsely reports the presence of the query element. This occurs
due to hash collision of multiple elements onto a single bit position of the Bloom
Filter. However, there is no false negative. The probability of false positive for a
standard Bloom Filter is given by [20]:

FPR ≈
(
1− e−kn/m

)k
Given n and m, the optimal number of hash functions k = ln 2(m/n).

Counting Bloom Filters [21] were introduced to support the scenario where
the contents of a set change over time, due to insertions and deletions. In this
approach the bits were replaced by small counters which were updated with the
insert and delete of elements. However, the support for deletion operations from
the structure gave rise to false negatives, where an element was wrongly reported
as absent from the set. To meet the needs of varied application scenarios, a large
number of Bloom Filter variants were proposed such as the compressed Bloom
Filter [22], space-code Bloom Filter [23], and spectral Bloom Filter [24] to name
a few. Even window model of Bloom Filters were proposed [3] such as landmark
window, jumping window, sliding window [25], etc. These models operated on a
definite amount of history of objects observed in the stream to draw conclusions
for processing of future elements of the stream. Parallel variants of Bloom Filters
were also explored.

Bloom Filters have been applied even to network related applications such as
finding heavy flows for stochastically fair blue queue management [26], packet
classification [27], per-flow state management and longest prefix matching [28].
Multiple Bloom Filters in conjunction with hash tables have been studied to rep-
resent items with multiple attributes accurately and efficiently with low false pos-
itive rates [29]. Bloomjoin used for distributed joins have also been extended to
minimize network usage for query execution based on database statistics. Bloom
Filters have also been used for speeding up name-to-location resolution process [30].

An interesting Bloom Filter structure proposed recently is the Stable Bloom
Filter, SBF [31]. It provides a stable performance guarantee on a very large
stream. This constant performance is of huge importance for de-duplication ap-
plications. SBF works by continuously evicting stale information from the Bloom
Filters. Although it achieves a tight upper bound on FPR, the stability of the algo-
rithm is reached theoretically at infinite stream length. In this work we present a
combination of Bloom Filter and Reservoir sampling and show that the proposed
method provides lower FNR, comparable FPR, but above all converges to stability
much faster as compared to SBF.
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Finding the number of distinct elements in a stream was explored in [32]. The
problem of synopsis maintenance [33, 34] has been studied in great detail for its
extensive application in query estimation [35]. Many synopsis methods such as
sampling, wavelets, histograms and sketches have been designed for approximate
query answering. A comprehensive survey of stream synopsis methods can be
found in [36]. An important class of synopsis construction methods is the Reser-
voir sampling [37]. This sampling method has great appeal as it generates a sam-
ple of original multi-dimensional data and can be used with various data mining
applications.

In Reservoir sampling one maintains a reservoir of size n from the data stream.
After the first n points have been added to the reservoir, subsequent elements are
inserted into the reservoir with an insertion probability given by n/t for the tth

element of the stream. An interesting characteristic of this algorithm is that it is
extremely easy to implement and that all subsets of data are equi-probable to be
present in the reservoir. Each data point is also associated with a bias function
representing its probability to be inserted into the reservoir. Hence, the procedure
can inherently capture changing behavior of the stream with different such biasing
functions.

A memory-less temporal bias functions for streams for evolving streams have
been proposed in [38]. Apart from O(1) processing time per stream element,
incorporating the bias results in upper bounds of reservoir sizes limiting the max-
imum space requirement to nearly constant in most cases even for an infinitely
long data stream. In this work we present several biased sampling techniques on
the Bloom Filters, and also propose a randomized load balanced biasing scheme
for the de-duplication problem.

3. Reservoir Sampling based Bloom Filter (RSBF) Approach

In this section, we propose the design and working model of the Reservoir
Sampling based Bloom Filter (RSBF) for de-duplication in large data streams.
RSBF intelligently combines the concepts of reservoir sampling techniques [39]
and that of Bloom Filter approach. To the best of our knowledge, such an integra-
tion has not been proposed so far in the literature.

RSBF comprises k Bloom Filters, each of size s bits and are initially set to
0. On arrival of a new element, e it is hashed to one of the s bits in each of the
k Bloom Filters with the help of k different uniform random hash functions. The
existence of the element is verified by checking whether these k bit positions are
set. If all the k bit positions are set to 1, then RSBF reports the element to be
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duplicate, else to be distinct. RSBF directly inserts the initial s elements of the
stream into the structure by setting the corresponding k bit positions in the Bloom
Filter. Each element ei, for i > s, is then first probed against the Bloom Filter
structure to determine the duplicate or distinct status. If ei is reported as distinct,
it is inserted in the structure with probability pi = s/i (insert probability) where i
is the current length of the stream and s is the the size of each of the Bloom filter.

However, with the increase in the number of bits set in the Bloom Filters,
RSBF would suffer from a high rate of false positives wherein a distinct element
is falsely reported as duplicate. As the length of the stream increases, it can be
observed that the probability of an element being a duplicate increases (since the
elements are drawn from a finite universe). The reservoir sampling method im-
plicitly helps to prevent such a scenario by increasingly rejecting elements from
being inserted into the structure (as the insert probability decreases). Insertion of
elements from a possibly infinite stream would inevitable lead to the setting of
nearly all the bits of RSBF to 1, thereby incurring a high false positive rate (FPR).
To alleviate this problem, whenever an element is inserted into RSBF, the algo-
rithm also deletes k randomly uniformly chosen bit (one from each Bloom Filter)
by setting it to 0. It should be observed that such deletion operation invariables
leads to the presence of false negatives, where a duplicate element is reported as
distinct.

Applications involving duplicate detection demand low tolerance for both false
positive as well as false negative rates (FNR). We observed that the use of reser-
voir sampling helps to keep the false positive rate significantly lower. However,
the repeated rejection of elements (possibly distinct) with increase in the stream
length may result in an increase of the FNR, thereby degrading the performance
of RSBF. In order to address this problem, we introduce a weak form of biasing
on the reservoir sampling operation performed on the stream elements. When
the insert probability of an element decreases beyond a specified threshold, p∗

and is reported as distinct by probing its bits, the element is inserted. This novel
combination of reservoir sampling with thresholding thus helps to reduce FNR to
acceptable limits. This procedure also helps RSBF to dynamically adapt itself to
an evolving stream.

We emphasize that along with observing a low FPR and FNR, RSBF also
exhibits faster convergence to stability, as compared to that of SBF, as the setting
and deletion of k bits lead to a near constant number of 1’s and 0’s in the structure.
The pseudo-code for the working of RSBF is presented in Algorithm 1 and its
structure is diagrammatically represented by Fig. 1. In the following section, we
provide a detailed theoretical analysis of RSBF, and later provide empirical results
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to validate our claims.
Algorithm 1: RSBF (S)

Require: Threshold FPR (FPRt), Memory in bits (M ), and Stream (S)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPRt.
Construct k Bloom filters each having M/k bits of memory.
iter ← 1
for each element e of S do

Hash e into k bit positions, H = h1, · · · , hk.
if all bit positions in H are set then
Result← DUPLICATE

else
Result← DISTINCT

end if
if iter ≤ s then

Set all the bit positions in H .
else

if (s/iter) ≤ p∗ then
for all positions hi in H do

if hi = 0 then
Find a bit in ith bloom filter which is set to 1, and reset to 0.
Set the bit at hi position to 1

end if
end for

else
With probability (s/iter) insert e by setting all the bit positions in H .
If e was decided to be inserted then randomly reset one bit positions
from each of the k Bloom filters.

end if
end if
iter ← iter + 1

end for

3.1. General Framework
In this section we present a generic framework for analyzing the false positive

rate (FPR) and the false negative rate (FNR) of our proposed Bloom Filter based
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Figure 1: The working model of RSBF.

algorithms.
The event of a false positive (FP) occurs when a distinct element of the stream

is reported as duplicate. A false negative (FN) event occurs when a duplicate
element of the stream is reported as distinct. Now we consider the scenarios under
which FP or FN can take place. Assume em+1, the (m+1)th element of the stream
to have arrived, and is hashed to Hm+1 = h1, h2, ..., hk positions where hi ∈ [1, s]
for the ith Bloom Filter. em+1 will be reported as a duplicate if all the bit positions
in Hm+1 are already set to 1. Let Xm+1 be the probability of this event. If at
least one of the bit positions in Hm+1 is 0, then em+1 will be reported as distinct.
Also, let us denote by Ym+1 the probability that em+1 is actually a distinct element.
Hence, we have

Xm+1 = P (all bit positions in Hm+1 are 1 when em+1 arrived) (3.1)
Ym+1 = P (em+1 is actually a distinct element) (3.2)

Assume FPRm+1 and FNRm+1 denotes the probability that m + 1th element of
the stream is a FP and FN respectively, which we show to be determined by the
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quantities Xm+1 and Ym+1. So,

FPRm+1 = P (em+1 is actually distinct).P (em+1 is reported duplicate)

= P (em+1 is actually distinct).P (all bit positions in Hm+1

are 1 when em+1 arrived)

= Ym+1.Xm+1 (3.3)
FNRm+1 = P (em+1 is actually a duplicate).P (em+1 is reported distinct)
= P (em+1 is actually a duplicate).P (not all bit positions in

Hm+1 are 1 when em+1 arrived)

= (1− Ym+1).(1−Xm+1) (3.4)

For simplicity of analysis, we consider the probability of two more events: (i) the
algorithm correctly predicts em+1 as duplicate, (ii) the algorithm correctly predicts
em+1 as distinct. Let us denote by DUPm+1 and DISm+1 the probability of the
event (i) and (ii) respectively. Thus, the expression for DUPm+1 and DISm+1 are,

DUPm+1 = P (em+1 is actually duplicate).P (em+1 is reported duplicate)

= P (em+1 is actually duplicate).P (all bit positions in Hm+1

are 1 when em+1 arrived)

= (1− Ym+1).Xm+1 (3.5)

DISm+1 = P (em+1 is actually a distinct).P (em+1 is reported distinct)
= P (em+1 is actually a distinct).P (not all bit positions in

Hm+1 are 1 when em+1 arrived)

= Ym+1.(1−Xm+1) (3.6)

We assume that elements of the stream are uniformly randomly drawn from a
finite universe Γ, with |Γ| = U . Then the probability that em+1 is indeed a distinct
element, Ym+1, is,

Ym+1 =

(
U − 1

U

)m

(3.7)

It can be observed that as U−1 ≤ U , Ym+1 tends to 0 as the stream length, m tends
to infinity. Hence inherently the FPR for the algorithms tend to 0 with increase
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in the stream length. This can be attributed to the fact that the probability of an
incoming element to be distinct decreases with stream length as the elements of
the stream are drawn from a finite universe. However to ensure low FNR for large
streams, Xm+1 must tend to 1 as m increases. We later show that this property is
maintained by our proposed algorithms, thereby attaining a very low FNR as well
as very low FPR on large data streams.

3.2. Analysis of RSBF
A detailed analysis of the FPR, FNR, and convergence rate of RSBF is pro-

vided in our previous work [39]. However, the impact of p∗ was left as future work
in that contribution. We now provide the complete analysis of RSBF including the
factor p∗. Recall that for RSBF without p∗, we have

FPRm+1 =

(
U − 1

U

)m

.

[
1− ks

m
+

([
1− 1

e

]
.
s

m

)k
]

(3.8)

FNRm+1 ≈ O

(
k

U

)
(3.9)

From equation (3.8), we observe that the right multiplicative factor tends to 1 as
the stream length m reaches infinity. However, the left multiplicative factor tends
to 0 as U − 1 < U . Hence with increasing stream length, the FPR decreases and
nearly becomes constant. From equation (3.9) we observe that the FNR becomes
constant as the stream length increases. We next present the analysis for the RSBF
in the presence of p∗ and show that RSBF with p∗ also exhibits same property. We
use the generic framework discussed earlier to perform the analysis.

We now derive the expression for Xm+1 and use it for computing FPRm+1

and FNRm+1. Assume that em+1, the (m + 1)th element of the stream hashes
to Hm+1 = h1, h2, ..., hk positions where each hi ∈ [1, s] for the ith Bloom filter.
Since all the Bloom filters are identically processed, we perform the analysis for
one Bloom filter and then extends the analysis for k Bloom Filters. Assume l is
the last iteration when hi bit position of the ith Bloom filter made a transition from
0 to 1 and thereafter it was never reset. The bit position hi will not be reset after
the lth iteration under the following two conditions:
(i) ej(l + 1 ≤ j ≤ m) is not inserted by RSBF, or,
(ii) ej(l + 1 ≤ j ≤ m) is selected for insertion but some bit position other than hi

is selected for deletion from ith Bloom filter.
We now define three different sequential phases in the RSBF algorithm: (i)

Phase 1: During this phase all the elements of the stream is inserted into the
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Bloom filter structure. This phase continues to run till sth element of the stream
is processed. (ii) Phase 2: This phase starts after Phase 1 and during this phase
distinct reported elements are inserted into the Bloom filter with probability s/i
where i is the current iteration. This phase ends when p∗ starts operating. (iii)
Phase 3: During this phase the insertion probability of an element fall below p∗

and hence the distinct elements are always inserted into the Bloom Filters. We
denote the position of the stream from which the effect of p∗ starts taking place
by p, and assume m + 1 > p.

hi is set to 1 for the last time in the lth iteration and after that it is not reset.
We denote the probability of this event by P l

trans. Also we denote by NRp
l the

probability that hi was not reset from iteration l to p when l > s. Let NRm
l

capture the probability that hi is not reset in iterations from l to m when l > p. l
can be in one of the three phases that we have defined above.

If l lies in the Phase 1, (1 ≤ l ≤ s)

P l
trans = P (el chooses hi).P (hi was never reset thereafter) (3.10)

= P (el chooses hi).NRp
s.NRm

p

If l lies in the Phase 2, (s ≤ l ≤ p)

P l
trans = P (el is reported distinct).P (el is inserted).P (el chooses hi). (3.11)

P (hi was never reset thereafter)

= (1−Xl)
(s
l

)(1

s

)
.NRp

l .NRm
p

= (1−Xl)

(
1

l

)
.NRp

l .NRm
p

If l lies in the Phase 3, (p ≤ l ≤ m)

P l
trans = P (el is reported distinct). (3.12)

P (el chooses hi).P (hi was never reset thereafter)

= (1−Xl)

(
1

s

)
.NRm

l
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We now derive the expressions for NRp
s .

NRp
s = P (hi was not reset after it was set before sth iteration) (3.13)

=

p∏
i=s+1

P (ei was reported duplicate) + P (ei was reported distinct).

[P (ei was not inserted) + P (ei was inserted)

P (Some other bit position than hi was selected for deletion)]

=

p∏
i=s+1

(
Xi + (1−Xi)

((
1− s

i

)
+

s

i
.
s− 1

s

))

=

p∏
i=s+1

(
Xi + (1−Xi)

(
1− 1

i

))
Similarly NRp

l where s ≤ l < p is as follows, 5

NRp
l =

p∏
i=l+1

(
Xi + (1−Xi)

(
1− 1

i

))
(3.14)

Expressions for NRm
p and NRm

l are similarly derived for p ≤ l < m.

NRm
p =

m∏
i=p+1

(
Xi + (1−Xi)

(
1− 1

s

))
(3.15)

NRm
l =

m∏
i=l+1

(
Xi + (1−Xi)

(
1− 1

s

))
(3.16)

It should be noted that after crossing the point p, all the distinctly reported
data points are inserted and each time an insertion takes place, deletion occurs.
We now derive the expression for Xm+1. Since the value of l can vary, we sum
over all possible values of l in the different ranges. The probability that hi was set
in during the first s iterations is given by

{
1−

(
1− 1

s

)s}. Therefore we get, for
((m + 1) > p)

Xm+1 = [A1−s + As−p + Ap−m]k (3.17)
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where

A1−s =

{
1−

(
1− 1

s

)s}
{NRp

s}
{
NRm

p

}
(3.18)

As−p =

p∑
l=s+1

{
(1−Xl)

1

l

}
{NRp

l }
{
NRm

p

}
(3.19)

Ap−m =
m∑

l=p+1

{
(1−Xl) .

1

s

}
{NRm

l } (3.20)

The probability of an FNR at point m+ 1 where (m+ 1) < p follows directly
from the above expression,

Xm+1 =
[
A

′

1−s + A
′

s−m

]k
(3.21)

where

A
′

1−s =

{
1−

(
1− 1

s

)s}{
NRm′

s

}
(3.22)

A
′

s−m =

p∑
l=s+1

{
(1−Xl)

1

l

}{
NRm′

l

}
(3.23)

(3.24)

The terms NRm′
s and NRm′

l are obtained by carrying out similar analysis as
before.

NRm′

s =
m∏

i=s+1

(
Xi + (1−Xi)

(
1− 1

i

))
(3.25)

NRm′

l =
m∏

i=l+1

(
Xi + (1−Xi)

(
1− 1

i

))
(3.26)

Careful observation of the expression for Xm+1 provides the following recur-
rence relation, If m ≤ p,

Xm+1 =

[
(Xm)

1
k

{
Xm + (1−Xm)

(
1− 1

m

)}
+ (1−Xm) .

1

m

]k
(3.27)

14



Else (m > p)

Xm+1 =

[
(Xm)

1
k

{
Xm + (1−Xm)

(
1− 1

s

)}
+ (1−Xm) .

1

s

]k
(3.28)

In the following lemma we show that X is monotonically increasing and con-
verges to 1. As FNRm+1 = (1−Ym+1).(1−Xm+1) 3.1, RSBF exhibits very low
FNR with increase in stream length. We later present empirical results to validate
the claim that X converges to 1 along with a fast convergence rate.

Theorem 3.1. For RSBF X monotonically increases and converges to 1. There-
fore FNR tends to 0 with increase in stream length.

Proof. From Eq. (3.21) and Eq. (3.27) we observe that, X1 = 0 and X2 = 1
mk .

Hence, using Eq. (3.27) and Eq. (3.28) we have, For m ≤ p(
Xm+1

Xm

) 1
k

= Xm + (1−Xm)(1− 1

m
) +

1

X
1
k
m

.(1−Xm).
1

m

= 1− (1−Xm).
1

m
+ (1−Xm).

1

m.X
1
k
m

= 1 + (1−Xm).
1

m
.(X

− 1
k

m − 1) (3.29)

For m > p(
Xm+1

Xm

) 1
k

= Xm + (1−Xm)(1− 1

s
) +

1

X
1
k
m

.(1−Xm).
1

s

= 1− (1−Xm).
1

s
+ (1−Xm).

1

s.X
1
k
m

= 1 + (1−Xm).
1

s
.(X

− 1
k

m − 1) (3.30)

We observe that the right hand side of both Eq. (3.29) and Eq. (3.30) is greater
than 1 when Xm < 1. Therefore for Xm ≤ 1, Xm+1 ≥ Xm where the equality
holds only if Xm = 1. Hence X monotonically increases and converges to 1. As
such, FNR tends to 0 as the stream length increases.
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4. Biased Sampling based Bloom Filter (BSBF) and its Variants

In this section, we propose variants of the Bloom Filter approach for de-
duplication purposes. We put forth several versions of the biased sampling tech-
niques with detailed analysis of their performance. We further show that these
structures can efficiently handle evolving data streams, providing improved per-
formance over the state-of-art. Later we exhibit empirical results to validate our
claims. It can be observed that the various modifications discussed are modelled
to handle various distributions of the input stream.

The Biased Sampling based Bloom Filter (BSBF) approach works on similar
lines as that of RSBF, albeit with a small variation on the insertion criteria. BSBF
inserts into its structure all the elements arriving on the stream and reported as
distinct, whereas the RSBF in contrast uses the insert probability based on reser-
voir sampling. The insertion follows the same steps as that of RSBF, i.e., k bits
are set to 1, one from each Bloom Filter, based on k uniform hash functions. As
discussed in the earlier sections, the unbounded insertion of elements leads to an
increase in the FPR of the structure. To tackle this problem, BSBF on every in-
sertion deletes k randomly uniformly selected bits, one from each of the k Bloom
Filters, thereby leading to a balance between the FPR and FNR encountered. This
deletion procedure is the same as that followed by RSBF. It must be noted that
the chosen bit for deletion might have already been set to 0. As such, we argue
in similar lines as that of RSBF for nearly a constant number of 1’s and 0’s in
the BSBF structure. Hence, BSBF also exhibits the attractive property of faster
convergence to stability, just like that of RSBF.

Since the insertion of elements in the BSBF is not restricted, with change in
the nature of the input stream, BSBF also updates the bit signature of the elements
stored. Hence, we can observe that BSBF implicitly captures the biased nature of
the stream and dynamically adapts itself. We next present the theoretical analysis
for the performance of BSBF. Algorithm 2 depicts the pseudo-code of the working
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of BSBF.
Algorithm 2: BSBF (S)

Require: Threshold FPR (FPRt), Memory in bits (M ), and Stream (S)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPRt.
Construct k Bloom filters each having M/k bits of memory.
for each element e of S do

Hash e into k bit positions, H = h1, · · · , hk.
if all bit at positions H are set then

Result← DISTINCT
else

Result← DUPLICATE
end if
if e is DISTINCT then

Randomly select k bit positions hatH = ĥ1, ĥ2, ..., ĥk one each from the
k Bloom filters.
Reset all bits in Ĥ to 0.
Set all the bits in H to 1.

end if
end for

4.1. Analysis of BSBF
The probability of FPR or FNR at em+1 depends on the value of Xm+1, the

probability that all bit positions in Hm+1 are 1 when em+1 arrives. Using the
framework discussed earlier in section 3.1 and the values of FPRm+1 and FNRm+1,
we now derive the expression of Xm+1 for BSBF .

The (m + 1)th element of the stream, em+1 hashes to Hm+1 = h1, h2, ..., hk

positions, where each hi ∈ [1, s] for the ith Bloom filter. Initially all the bits of the
Bloom filters are set to 0. Since all the Bloom filters are identical and independent,
we first consider only a single Bloom filter and later extend our arguments for all
the k Bloom Filters. We assume l to be the last iteration whence the hth

i bit position
of the ith Bloom filter makes the last transition from 0 to 1, and thereafter hi is
never reset. A bit in the Bloom filter is reset by BSBF only when some element
is inserted. Hence, hi should not be reset in an iteration j, (l + 1 ≤ j ≤ m) if ej
is not inserted (that is ej is reported as duplicate) or if ej is selected for insertion
and some other bit position is chosen for reset. The probability of some other bit
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position to be chosen is given by
(
1− 1

s

)
. We denote the probability of such a

transition by P
(l)
trans. Hence,

P
(l)
trans = P (l is the last iteration when hi is set to 1 thereafter it was never reset)

= P (el was reported distinct).P (el chooses hi).P (hi was never reset thereafter)

= P (el was reported distinct).P (el chooses hi)

{
m∏

i=l+1

[P (ei was reported duplicate)

+P (ei was reported distinct).(1− 1

s
)

]}
= {(1−Xl).Yl + (1−Xl)(1− Yl)} .

1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)(1−

1

s
)

]}
(4.1)

Since this transition can happen in any iteration from 1 to m, l ∈ [1,m]. As the
same analysis holds for all the k Bloom filters, we obtain the expression for Xm+1

as follows,

Xm+1 =

[
m∑
l=1

{(1−Xl).Yl + (1−Xl)(1− Yl)} .
1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)(1−

1

s
)

]}]k

=

[
m∑
l=1

(1−Xl).
1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)(1−

1

s
)

]}]k
(4.2)

Carefully observing the right hand side of the above equation, the following re-
currence relation for Xm+1 holds,

Xm+1 =

[
(Xm)

1
k

{
Xm + (1−Xm).(1− 1

s
)

}
+ (1−Xm).

1

s

]k
(4.3)

In the next lemma we show that X is monotonically increasing and converges to
1. As FNRm+1 = (1 − Ym+1).(1 − Xm+1) 3.1, BSBF exhibits very low FNR
with increase in stream length. We later present empirical result to validate the
claim that X converges to 1 along with a fast convergence rate.

Lemma 1. X monotonically increases and converges to 1. Therefore FNR tends
to 0 with increase in stream length.
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Proof. From Eq. (4.2) we observe that, X1 = 0 and X2 = 1
sk

. Hence, using
Eq. (4.3) we have,(

Xm+1

Xm

) 1
k

= Xm + (1−Xm)(1− 1

s
) +

1

X
1
k
m

.(1−Xm).
1

s

= 1− (1−Xm).
1

s
+ (1−Xm).

1

s.X
1
k
m

= 1 + (1−Xm).
1

s
.(X

− 1
k

m − 1) (4.4)

We observe that the right hand side of Eq. (4.4) is greater than 1 when Xm < 1.
Therefore for Xm ≤ 1, Xm+1 ≤ Xm. Hence X monotonically increases and
converges to 1. As such, FNR tends to 0 as the stream length increases.

4.2. BSBF with Single Deletion
One of the major problems of deletion from a Bloom Filter arises from the fact

that multiple elements may be mapped to a single bit position. Hence the deletion
of that bit position (reset to 0) in practice tends to delete multiple elements from
the structure. Counting Bloom Filters try to alleviate this problem to a certain
extend, but with enormous space requirements. The heart of the problem lies in
the fact that the history regarding the elements which map to a bit position is not
stored in such structures. This invariably leads to a higher FNR. This provides the
basic motivation for this variant of BSBF, BSBF with Single Deletion (BSBFSD).

The working of the BSBFSD is in close similarity with that of BSBF. The
insertion procedure follows exactly the same steps as that of BSBF. However, with
each insertion into the structure, we uniformly randomly select one Bloom Filter
from which the bit needs to be deleted. Within this selected Bloom Filter, we again
uniformly randomly choose a bit position to be set to 0. Hence BSBFSD performs
deletion in a conservative manner so as to preserve as many element signature as
possible. This leads to an improved performance based on FNR criteria. However,
since most of the bits are set to 1 as the stream length increases, BSBFSD incurs
a higher FPR compared to BSBF. However, certain application like federal crime
record corpuses require extremely low or zero FNR (but can compromise with
relatively higher FPR tolerance), making BSBFSD particularly suitable for such
scenarios. Next we provide theoretical results claiming that the trade-off between
FPR and FNR of both the BSBF and BSBFSD are better paid-off than that of SBF.
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The pseudo-code for BSBFSD is provided in Algorithm 3.

Algorithm 3: BSBFSD(S)

Require: Threshold FPR (FPRt), Memory in bits (M ), and Stream (S)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPRt.
Construct k Bloom filters each having M/k bits of memory.
for each element e of S do

Hash e into k bit positions, H = h1, · · · , hk.
if all bit at positions H are set then

Result← DISTINCT
else

Result← DUPLICATE
end if
if e is DISTINCT then

Randomly select a Bloom filter Bi

Randomly select a bit ĥi from the Bth
i Bloom Filter

Reset ĥi to 0.
Set all the bits in H to 1.

end if
end for

4.3. Analysis of BSBFSD
It can be observed that the FPR and FNR analysis of BSBFSD is similar to

that of BSBF. BSBFSD differs from BSBF in the way deletion of bits take place.
In BSBF whenever a new data element is inserted into the Bloom filters, one
randomly chosen bit was reset from each of the Bloom filters. In BSBFSD, af-
ter insertion we randomly select one Bloom filter and then randomly reset one
bit from the selected Bloom filter. The probability that the bit hi is not reset in
an iteration involving the insertion of some element is

(
1
k
.
(
1− 1

s

)
+ (1− 1

k
)
)

or(
1− 1

ks

)
. Hence the expression for Xm+1 becomes,

Xm+1 =

[
m∑
l=1

(1−Xl).
1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)(1−

1

ks
)

]}]k

=

[
(Xm)

1
k

{
Xm + (1−Xm).(1− 1
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)

}
+ (1−Xm).

1

s

]k
20



Similar to the analysis shown in Section 4.1, X monotonically increases to 1. The
expression for Xm+1

Xm
is,

(
Xm+1

Xm

) 1
k

= Xm + (1−Xm)(1− 1

ks
) +

1

X
1
k
m

.(1−Xm).
1

s

= 1 + (1−Xm).
1

s
.(X

− 1
k

m − 1

k
) (4.5)

Using similar arguments from Lemma 1, Xm+1 ≥ Xm for Xm ≤ 1 (monotoni-
cally increasing) and converges to 1.

5. Randomized Load Balanced Biased Sampling based Bloom Filter

In this section we consider a further variation of the biased sampling based
Bloom Filter approach, the Randomized Load Balanced Biased Sampling based
Bloom Filter (RLBSBF). The main aim of this approach is to keep the load (num-
ber of 1s) in each of the Bloom Filter below a certain ratio (probabilistically) of
its total space, thereby containing the FPR and FNR achieved to a low value. This
would further ensure the stability of the Bloom Filter performance by keeping the
count of 0 and 1 nearly constant.

The insertion procedure of an element arriving in the data stream remains the
same as that of the other algorithms discussed earlier. That is, when a distinct el-
ement arrives, it is inserted into the Bloom Filters by appropriately setting the bit
positions. However, there is a major difference in the deletion procedure. When-
ever an element is inserted, we independently access each of the Bloom Filters
and based on its current load factor probabilistically decide whether to delete (re-
set) a random bit or not. This approach intuitively tries to restrict FPR to a small
value by limiting the number of 1s in each Bloom Filter, along with deleting as
less history as possible to obtain a low FNR as well.

Formally, RLBSBF stores the load (the number of bits set) in each of the
Bloom Filters to decide the probability of deletion of a bit after the insertion of an
element. When an element e is reported as distinct by the algorithm, we insert e
into the Bloom Filters. Like before, this is done by setting the bits is H to 1. But
instead of performing deterministic deletion from the Bloom Filters, we perform
randomized deletion from the Bloom Filters. From each filter we first select a
random bit position and then reset it with probability Lm+1(i)/s, where Lm+1(i)
denotes the load of the ith Bloom filter when em+1 arrived. The detailed algorithm
is given in Algorithm 4.
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Empirically we observed (results shown later) that this approach in turn en-
forces a low FPR and the lowest FNR for the competing algorithms. The efficient
performance of RLBSBF can be attributed to the prevention of the number of set
bits in each Bloom filter from becoming high, reducing the FPR, and on the other
hand, performing load based deletion of bits (lesser deletion events) curbing down
the FNR.

Algorithm 4: RLBSBF (S)

Require: Threshold FPR (FPRt), Memory in bits (M ), and Stream (S)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPRt.
Construct k Bloom filters each having M/k bits of memory.
for each element e of S do

Hash e into k bit positions, H = h1, · · · , hk.
if all bit at positions H are set then

Result← DISTINCT
else

Result← DUPLICATE
end if
if e is DISTINCT then

for all Bloom filter Bi do
Select a random bit position ĥi.
Reset ĥi with probability L(i)/s where L(i) is the number of ones in
the Bloom filter Bi.

end for
Set all the bits in H to 1.

end if
end for

5.1. Analysis of RLBSBF
For computing the probability of FNR and FPR of RLBSBF, we initially eval-

uate the expected load of the Bloom Filters at any iteration. Let Li
m+1 denotes the

expected number of bits set in the ith Bloom Filter when element em+1 arrives and
is hashed to hi bit position of the ith Bloom Filter. We are interested in finding out
the probability of hi being already set to 1 for all i ∈ [1, k]. This gives us Xm+1,
which in turn determines the FPR and FNR.

We assume l to be the last iteration when hi was set to 1 and after that it
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was never reset. hi will not be reset in an iteration j(l + 1 ≤ j ≤ m) if one the
following events occur: (i) ej was reported as duplicate and hence not inserted into
the Bloom Filter, (ii) ej was inserted into the Bloom filter and with probability 1−
Li
m+1

s
no bits were reset in the ith Bloom Filter, (iii) ej was inserted into the Bloom

Filter and with probability Li
m+1

s
deletion from ith Bloom Filter was performed, but

some bit other than hi was chosen for deletion with probability
(
1− 1

s

)
. It can be

observed that this argument applies to all the k bloom filters, and that l can vary
from 1 to m. Therefore, the expression of Xm+1 for the RLBSBF algorithm is as,

Xm+1 = P (all bit positions in Hm+1 are 1 when em+1 arrived)

=

[
m∑
l=1

P (l is the last iteration when hi is set to 1, thereafter it was never reset)

]k

=

[
m∑
l=1

P (el was reported distinct).P (el chooses hi).P (hi was never reset thereafter)

]k

=

[
m∑
l=1

(1−Xl).
1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)

(
(1−
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m+1

s
) +

Li
m+1

s
(1− 1

s
)

)]}]k

=

[
m∑
l=1

(1−Xl).
1

s
.

{
m∏

i=l+1

[
Xi + (1−Xi)(1−

Li
m+1

s2
)

]}]k
(5.1)

=

[
(Xm)

1
k

{
Xm + (1−Xm).(1−

Li
m+1

s2
)

}
+ (1−Xm).

1

s

]k
(5.2)

We now find the expected load, Li
m+1 of the ith Bloom Filter at the time when

em+1 arrived. Let us associate an indicator random variable Ij with each bit j of
the Bloom filters. Ij is 1 if j = 1, otherwise 0. Also let Zi be random variable
such that Zi =

∑s
j=1 Ij . Therefore E[Zi] will give us the expected load of the ith
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Bloom filter.

Li
m+1 = E[Zi]

=
s∑

j=1

E[Ij]

=
s∑

j=1

P (jth bit was set to 1 when em+1 arrived)

6. Experiments and Results

In this section we empirically compare the performances of SBF, RSBF, BSBF,
BSBFSD and RLBSBF algorithms against various parameters like memory, stream
size, percentage of distinct elements in the stream etc. We measure the per-
formances on real dataset containing clickstream data (obtained from http://
www.sigkdd.org/kddcup/index.php?section=2000&method=data)
having around 3M elements as well as on uniformly and randomly generated
datasets with upto 1B records. In all experiments p∗ for RSBF has been set to
0.03. Also we present experimental results for choosing the value of k for BSBF,
BSBFSD and RLBSBF algorithms. We show that our proposed algorithms are
comparable or outperforms SBF with respect to FPR and FNR while exhibiting
better stability and faster convergence properties.

6.1. Setting of Parameters
In this section we present the rationale behind setting of the parameter k (the

number of Bloom filters) for the various proposed algorithms. Given a fixed mem-
ory space M , we experimentally search for an optimal value of k such that an
overall low FPR and FNR is attained.

For RSBF, we have shown in our previous work [39] that

k =
ln (FPRt)

ln
(
1− 1

e

) (6.1)

We also observed that with increase in k FPR decreases, but FNR is minimized
when k = 1. As a trade-off we set k as the arithmetic mean of 1 and that obtained
in (6.1). The threshold FPR FPRt is set to 0.1.

We now present the performance of BSBF algorithm under various parametric
settings of k. We chose a uniform random dataset of size 1B with 60% distinct
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element. We also vary the memory size from 8MB to 512MB and analyze the FPR
and FNR. From Table 1 we observe that BSBF exhibits low FNR and high FPR
for k = 1. As we increase the value of k, FPR decreases while FNR increases.
The increase is FNR is attributed to the fact that by increasing the the value of
k, more element signatures are being deleted from the Bloom Filter structures.
(Every time some element is inserted, one bit from each of the k Bloom filter is
reset to 0). The decrease in FPR is due to the increase in the signature length of
an element in the Bloom Filter. We observe that for k = 2, both FPR and FNR
attains a acceptably balanced limit. Hence for performance evaluation of BSBF
algorithm, we set k = 2 for the result of our experimental setup. We also observe
that if higher memory space is available, then BSBF attains very low FNR (3.4%)
and FPR (6.4%) for k = 1. Hence depending on the application specifications
BSBF can be modeled to perform efficiently.

Algorithm:BSBF, Dataset:1B , Distinct:60%
Space k=1 k=2 k=3 k=4 k=5

8 MB
% FPR 75.979 35.4924 15.2961 6.95161 3.28054
% FNR 9.20901 59.0297 82.0828 91.5512 95.7754

128 MB
% FPR 21.0883 11.9472 6.67181 3.47978 1.76989
% FNR 9.83893 34.7514 59.2496 75.1262 84.1857

512 MB
% FPR 6.46215 1.82011 0.777613 0.386642 0.205833
% FNR 3.34108 13.5658 27.7512 43.4681 56.9057

Table 1: Synthetic Dataset of 1B elements (60% distinct)

We next present the performance of BSBFSD algorithm across various para-
metric setting of k. We use the some random dataset of size 1B with 60% distinct
element and vary the memory size from 8MB to 512MB. From Table 2, we ob-
serve that BSBFSD exhibits increasing FNR and decreasing FPR for increasing
k when the memory size is high (128MB and 512MB). The decrease in FPR is
due to increase in the signature length of an element in the Bloom Filter with in-
creasing k. But as a trade-off FNR increases, as chances of more elements being
mapped to a point of deletion increases. We observe that for k = 2, both FPR
and FNR attains a reasonably balanced limit. Hence we set k = 2 for BSBFSD
algorithm’s performance analysis.

Finally, we present the performance of RLBSBF algorithm across various
parametric setting of k. We use the same random dataset of size 1B with 60%
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Algorithm:BSBFSD, Dataset:1B , Distinct:60%
Space k=1 k=2 k=3 k=4 k=5

8 MB
% FPR 75.9827 78.6056 81.2512 83.3572 85.0294
% FNR 9.2090 7.8180 6.4065 5.3588 4.5864

128 MB
% FPR 21.0876 15.5928 15.2615 16.4467 18.2903
% FNR 9.8405 17.7438 22.9224 26.2752 28.3608

512 MB
% FPR 6.4618 1.9692 1.0095 0.6880 0.5590
% FNR 3.3399 6.8855 9.9011 12.6723 15.1324

Table 2: Synthetic Dataset of 1B elements (60% distinct)

distinct element and again vary the memory size from 8MB to 512MB. From Ta-
ble 3, we observe that RLBSBF exhibits similar performance as above. Likewise
we set k = 2.

Algorithm:RLBSBF, Dataset:1B , Distinct:60%
Space k=1 k=2 k=3 k=4 k=5

8 MB
% FPR 81.4726 52.9291 30.2439 17.3562 10.1282
% FNR 5.3103 40.466 66.0585 80.3262 88.3195

128 MB
% FPR 22.8676 16.3554 12.3957 8.56757 5.5645
% FNR 2.4337 15.0161 35.6592 55.2835 69.3118

512 MB
% FPR 6.6563 2.07884 1.0555 0.6773 0.4828
% FNR 0.2553 1.98971 6.1959 13.3911 23.2844

Table 3: Synthetic Dataset of 1B elements (60% distinct)

6.2. Quality Comparison
In this section we present the variation of FPR and FNR along with conver-

gence to stability for SBF, RSBF, BSBF, BSBFSD and RLBSBF with increasing
number of records in the input stream. We present graph based analysis of FPR
and FNR performances of our algorithms in comparison with SBF for 1B data
with 15% distinct element. Fig. 2 shows the graph for FPR and FNR when 128MB
memory space is available. We observe that all the algorithms achieve quite low
FPR in the range of 1%-2%. Also the FPR becomes stable at around 300M-350M
data points for almost all the variations. However we observe a sharp contrast in
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FNR level. While SBF exhibits nearly 45% FNR, RLBSBF exhibits less than 1%
FNR which is almost 70x times improvement. Other variations also exhibit strong
improvements in the FNR performance in comparison with SBF. We also observe
that for BSBF, BSBFSD and RLBSBF the FNR level keeps on decreasing as the
stream length increases. This validates our theoretical claim about low FNR for
these algorithms. Fig. 3 presents the FPR and FNR for 1B random dataset with
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Figure 2: FPR and FNR Performances.

256MB memory space. FPR for all the algorithms falls within a small range of
0.4%-0.6%, however FNR varies from 30% for SBF to 0.2% for RLBSBF. Also
the curves provide empirical evidence for our theoretical results that FNR tends
to zero as we increase the stream length. SBF does not exhibit this property and
its FNR increases as the stream length increases. Fig. 4 shows that as we increase
memory space from 256MB to 512MB, FNR further drops to a very low limit
(less than 1%) for BSBF, BSBFSD, RLBSBF. RSBF also achieves an improve-
ment of 2x in terms of FNR over SBF. FPR of all the algorithm stabilizes at a very
low level and remains comparable.

We next compare the FPR and FNR of the proposed algorithms for the 1B syn-
thetic random dataset but with 60% distinct element. We vary the memory size
from 128MB to 512MB. To emphasize the comparability of FPR and large im-
provements of FNR between SBF and our algorithms, we have plotted the graphs
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using natural scale. Fig. 5 shows FPR and FNR comparison for 128MB memory
space. Although SBF exhibits good FPR, it has a very poor FNR(70%). RLBSBF
curbs down the FNR to almost 10% while losing merely 3% on FPR. As evi-
dent from the graph, the gain over FNR dominates the loss over FPR. Also BSBF
and BSBFSD attain stability in FNR ratio from around 500M data points. Fig. 6
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depicts the FPR and FNR of various algorithm for 1B data(60% distinct) when
256MB memory space is used. We observe that the gap in FPR among the algo-
rithms have been reduced significantly. The range of FPR for the algorithms lies
between 4%-7%. But the difference in FNR achieved by the algorithms is very
high. RSBF, BSBF, BSBFSD and RLBSBF provides an improvement of 2x, 2.5x,
5x and 10x respectively. We also observe a similar FNR stability trend as previ-
ously for 128MB memory. Finally Fig. 7 shows that the FPR of the algorithms
converges to a very low limit when 512MB memory space is used. But the differ-
ence in FNR level only keeps on improving in favor of our proposed algorithms.
This also shows the scalability aspect of our algorithms. As we increase the mem-
ory space, RSBF, BSBF, BSBFSD and RLBSBF improves in performance much
faster than SBF.

Figs. 8, 9 and 10 compare the FPR and FNR of the various algorithms with
increasing distinct percentage in data stream keeping the memory space fixed at
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Figure 9: FPR and FNR Performances.
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512MB. We generate three uniform random dataset of 695M elements with 15%,
60% and 90% distinct element. We observe that the proposed algorithms outper-
forms SBF in FNR and convergence rates with comparable FPR.

Fig. 8 shows FPR for all the algorithm is almost similar and stable for 695M
dataset with 15% distinct element. For FNR, our algorithms completely outper-
form SBF. Fig. 9 represents the FPR and FNR scenario for 60% distinct data
stream of size 695M with 512MB size. We observe that at 695M data point, none
of the algorithms have achieved stability in terms of FPR. In terms of FNR only
BSBF, BSBFSD and RLBSBF are inching towards stability while SBF is far way
off from stability. Fig. 10 shows the situation for 90% distinct element with simi-
lar trends as discussed above. Hence our proposed algorithms always outperform
SBF comprehensively in terms of FNR and also attain comparable of FPR and
stability.

We next exhibit the stability of our algorithms. We compute the load of the
Bloom Filter structure at every point of the stream. We define load as the num-
ber of 1’s in the Bloom Filters normalized by the total memory space in bits.
We present the load graph for various algorithms for 1B data with 15% distinct.
Fig. 11 shows the load graph when 256MB memory space is allocated and when
512MB memory is used. It can be observed from the graph that all the algorithms
nearly attain stability when 300M-400M data points have been processed. Also,
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as we increase the memory space from 256MB to 512MB, the stability is reached
faster. The convergence rate of the algorithms are similar to each other.
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Figure 11: Stability Performance.

6.3. Detailed Analysis
In this section, we present detailed experimental analysis of the various algo-

rithms that we have designed in the previous sections. We compare the perfor-
mance of various algorithms against variation of memory used and percentage of
distinct elements in the stream. In the following comparisons we have set k = 2
for RSBF, BSBF, BSBFSD, RLBSBF algorithms.

Table 4 presents the FPR and FNR with 695M records with 15% distinct el-
ement in the stream. The memory size varies from 64MB to 512MB for the un-
derlying Bloom Filter based data structures. Here we observe that although SBF
performs reasonably well in terms of FPR for low memory (64MB), FNR degrades
to an unacceptable limit (53.26%). For 64MB memory, RLBSBF keeps the FPR
and FNR to very low limits (FPR of 3.7% and FNR of 1.3%). But for 128MB
memory all the five algorithms exhibits comparable FPR with lowest being SBF
(0.74%) and highest being RLBSBF(1.08%). But FNR for BSBF, BSBFSD and
RLBSBF improve drastically compared to that of SBF. For example, RLBSBF
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gains an improvement of 100x times over SBF in terms of FNR! This behavior
continues for higher memory size and for 512MB memory, all the four proposed
algorithms outperform SBF comprehensively in term of FNR while keeping the
FPR level competitive. For example RLBSBF attains an improvement of 600x in
respect to FNR when compared to SBF while FPR level for both remains almost
the same.

Dataset:695M , Distinct:15%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 1.9319 2.6276 3.2569 3.5475 3.7064
% FNR 53.2681 35.9014 8.7547 3.3299 1.3453

128 MB
% FPR 0.7414 0.8903 1.0128 1.0530 1.0821
% FNR 37.7853 23.126 3.888 1.7048 0.3773

256 MB
% FPR 0.2384 0.2637 0.2822 0.2881 0.2924
% FNR 23.8930 13.5047 1.8199 0.8551 0.1010

512 MB
% FPR 0.0688 0.0719 0.0747 0.0753 0.0759
% FNR 12.9392 7.3674 0.8794 0.4267 0.0262

Table 4: Synthetic Dataset of 695M elements (15% distinct)

Table 5 presents the FPR and FNR with 695M records with 60% distinct el-
ement in the stream. The memory size varies from 64MB to 512MB. For 8MB
memory, as before SBF outperforms other algorithm in terms of FPR. But an FNR
of 70.832% makes SBF unsuitable for all practical purposes. As we increase the
memory size to 128MB, 256MB and 512MB, we observe sharp fall in the FPR
level of all the algorithms. For 512MB, all the algorithms offers FPR that is in
the range of 0.8%-1.07%. But in terms of FNR, our proposed algorithms outper-
forms SBF significantly. Notably, RLBSBF achieves an improvement of around
24 times in terms of FNR compared to SBF. We also observe that with increase
in memory space, FNR of RLBSBF falls sharply to a very low limit. For exam-
ple, if we double the memory space from 128MB to 256MB and then 256MB to
512MB, FNR of RLBSBF drops 3 times in each occasion, hence performing the
best among the algorithms in terms of FNR.

We present the FPR and FNR of 695M records with 90% distinct element
in Table 6. The memory size again varies from 64MB to 512MB. For various
memory size, the algorithms exhibits similar trends as before with all the proposed
variations providing large improvements in terms of FNR over SBF while keeping
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Dataset:695M , Distinct:60%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 6.7672 12.2408 16.0723 22.4491 22.7214
% FNR 70.832 52.8855 39.9809 19.9394 20.2164

128 MB
% FPR 4.3075 6.7265 8.0154 9.7951 10.4734
% FNR 57.9713 39.2682 28.6708 14.7555 9.8051

256 MB
% FPR 2.0861 2.7654 3.0816 3.4335 3.6588
% FNR 42.0788 25.7648 17.7509 9.0574 3.4843

512 MB
% FPR 0.8151 0.9189 0.9779 1.0331 1.0775
% FNR 24.2902 15.2035 9.8819 4.9892 1.0236

Table 5: Synthetic Dataset of 695M elements (60% distinct)

the FPR at comparable level. For example at the cost of 1.5x times worse FPR
(from 1.6% to 2.2%), RLBSBF attains an improvement of 13x time in FNR over
SBF.

Dataset:695M , Distinct:90%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 8.5028 16.3502 20.6486 31.104 30.1024
% FNR 73.134 55.0285 45.7102 24.1625 26.8786

128 MB
% FPR 6.3252 10.6716 11.9222 15.7484 16.6894
% FNR 61.1759 41.9224 36.5123 20.3118 16.4363

256 MB
% FPR 3.5908 5.0678 5.3168 6.3016 6.8635
% FNR 45.4987 28.179 25.3195 13.8078 7.0784

512 MB
% FPR 1.6058 1.8497 1.8911 2.0783 2.2248
% FNR 26.6313 16.9302 15.3766 8.1061 2.3059

Table 6: Synthetic Dataset of 695M elements (90% distinct)

Table 7 presents the FPR and FNR with 1B records with 15% distinct element
in the stream. The memory size varies from 64MB to 512MB for the underlying
Bloom Filter based data structures. Here we observe that SBF performs very
poorly in terms of FNR for low memory size. For 64MB memory, RLBSBF
keeps the FPR and FNR to very low limits and achieves almost 30x improvement
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over SBF in FNR while losing only 2.5x in FPR. As the memory size increases,
FPR for all our algorithms becomes stable at a very low thresholds (0.1%−0.2%)
similar to that of SBF. But the gain in FNR performance is enormous. While
SBF has a FNR of 17.1336% for 512MB memory, RSBF attains 10.2015% FNR,
nearly a 2x improvement. BSBF, BSBFSD, RLBSBF observes an improvement
of 17x times, 27x times and 317x times respectively.

Dataset:1B , Distinct:15%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 2.9156 4.2891 5.5775 6.3441 6.6755
% FNR 60.8981 43.1705 13.7096 4.6175 2.5795

128 MB
% FPR 1.2608 1.6079 1.9023 2.0181 2.0930
% FNR 45.9566 29.5540 5.9096 2.4357 0.7400

256 MB
% FPR 0.4413 0.5059 0.5572 0.5727 0.5849
% FNR 30.8269 18.1142 2.6956 1.2296 0.2026

512 MB
% FPR 0.1341 0.1431 0.1506 0.1526 0.1543
% FNR 17.1336 10.2015 1.2846 0.6139 0.0535

Table 7: Synthetic Dataset of 1B elements (15% distinct)

Table 8 presents the FPR and FNR with 1B records with 60% distinct element
in the stream. The memory size varies, as before, from 64MB to 512MB for the
underlying Bloom Filter based data structures. Here also we observe FNR for
SBF degrades to an unacceptable limit for 64MB or 128MB memory size. For
64MB memory, RLBSBF keeps the FPR and FNR to reasonable limits. But as
the memory size increases, FPR for all our algorithms becomes stable at a very
low point (1% − 2%) similar to that of SBF. But FNR performance is improved
drastically for all our algorithms. While SBF has a FNR of 30.2739% for 512MB
memory, RSBF attains an FNR of 20.2770%, nearly a 1.5 times improvement.
BSBF, BSBFSD, RLBSBF observes an improvement of 2.5 times, 5 times and 30
times respectively. This improvements come at the cost of 2 time more FPR in the
worst case (RLBSBF).

Table 9 presents the FPR and FNR with 1B records with 90% distinct ele-
ment in the stream. The memory size varies, as before, from 64MB to 512MB.
Here also we observe that at low memory only RLBSBF has both FPR and FNR
at around 50%. All other algorithm exhibits either very poor FPR or very poor
FNR. However as the memory size increases, FPR for all our algorithms becomes
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Dataset:1B , Distinct:60%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 7.8507 15.0561 20.7283 31.3858 30.044
% FNR 75.7271 58.6734 44.9042 21.0835 25.7526

128 MB
% FPR 5.6378 9.5676 11.9472 15.5928 16.3554
% FNR 65.2456 46.6885 34.7514 17.7438 15.0161

256 MB
% FPR 3.1629 4.5557 5.2369 6.0937 6.5378
% FNR 50.5726 32.6139 23.2001 11.9067 6.2079

512 MB
% FPR 1.4504 1.6747 1.82011 1.9692 2.0788
% FNR 30.2739 20.2770 13.5658 6.8855 1.9897

Table 8: Synthetic Dataset of 1B elements (60% distinct)

stable at 2% − 4% similar to that of SBF. While SBF attains a FPR of 2.72%,
RSBF, BSBF, BSBFSD and RLBSBF also attains a FPR that is comparable with
that of SBF. But the gain in FNR performance is huge. While SBF has a FNR of
32.8335% for 512MB memory, RSBF has 22% FNR, nearly a 1.5 times improve-
ment. BSBF, BSBFSD, RLBSBF observes an improvement of 1.5 times, 3 times
and 8 times respectively.

Dataset:1B , Distinct:90%
Space SBF RSBF BSBF BSBFSD RLBSBF

64 MB
% FPR 9.2617 18.6342 25.0083 40.5501 36.7959
% FNR 77.5273 60.3738 49.2073 23.8819 31.0134

128 MB
% FPR 7.5909 13.8357 16.4207 23.192 23.5977
% FNR 68.0553 49.2204 41.7178 22.89 22.2474

256 MB
% FPR 5.0231 7.7876 8.3846 10.4808 11.3415
% FNR 54.0293 35.2653 31.2527 17.2991 11.5338

512 MB
% FPR 2.7427 3.2263 3.33317 3.7953 4.1133
% FNR 32.8335 22.3998 20.2695 10.8729 4.2852

Table 9: Synthetic Dataset of 1B elements (90% distinct)

Hence, we observe that for both synthetic and real datasets of upto 1 billion
records and varying percentage of distinct elements, the proposed algorithms in
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this work clearly outperforms SBF in terms of FNR, attaining an improvement of
more than 300x times in certain cases. Also, for reasonable amount of memory
FPR performance of all the algorithms turn out to be similar. Coupled with en-
hanced convergence rates compared to that of SBF, we present novel and efficient
algorithms for the de-duplication problem.

7. Conclusions and Future Work

Real-time de-duplication or data redundancy removal for streaming datasets
poses a challenging problem. In this work we have presented novel Bloom Filter
based algorithms to tackle the problem efficiently. Using a novel combination of
reservoir sampling and Bloom Filters we have proposed RSBF to obtain enhanced
FNR and faster convergence to stability at comparable FPR with that of SBF. We
further proposed BSBF encompassing a biased sampling method with Bloom Fil-
ters to obtain better FNR for varied applications requiring very low FNR tolerance.
Variations of BSBF have also been presented in this work with different deletion
designs to counter the effects to multiple element deletion in Bloom Filters. Fi-
nally a randomized load balanced algorithms has also been presented to provide a
balanced performance on both the FPR and FNR fronts. These features make the
proposed algorithms extremely efficient and applicable to real life scenarios.

Using detailed theoretical results, we have proven the enhanced performance
of the proposed algorithms in terms of FNR and convergence rates (stability). We
demonstrate real-time in-memory DRR using both real and synthetically gener-
ated datasets of upto 1 billion records. We show FNR improvement over a vast
range from 2x to 300x over existing results. To the best of our knowledge this
work achieves the best FNR and convergence rates known with the same memory
requirements as that of the competing algorithms. In future, we hope to study
the effects of other biasing and sampling functions to further decrease the FNR.
Investigations over the use of other structures and parallelizing the proposed algo-
rithms may in turn lead to further enhancement and advancements in the field of
parallel data redundancy removal research.
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