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RECAP: SCHEDULING
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GPU Architecture – Fermi:
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Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch
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GPU Latency Hiding: Warp Switching
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OVERLAPPING PROCESSING WITH 

DATA TRANSFERS
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Available engines

CPU GPU
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Available engines

GPUCPU

DMA

DMA
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Standard Processing Flow

1. Copy input data from CPU memory 

to GPU memory

PCIe Bus
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Standard Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

PCIe Bus
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Standard Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

3. Copy results from GPU memory to 

CPU memory

PCIe Bus
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Objective

Tasks not on the critical path should be hidden

i.e. overlapped with other tasks

Critical path is frequently the transfer of result data from GPU to CPU 

e.g. path data
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Objective: Overlap Processing With Transfers

GPUCPU
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DMA



© NVIDIA Corporation 2011

Overlapping Processing With Transfers

Dual DMA engines

Simultaneous CPUGPU and GPUCPU 

data transfer

Fully overlapped with CPU and GPU 

processing time

Activity Snapshot:
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Phase A: No Pipelining

No overlap

Kernel runs on GPU

Transfer data across PCIe from device to host

Post process on CPU
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Phase A: No Pipelining
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Phase B: Batching

No overlap

Preparation for next phase…
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Phase B: Batching
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Phase C: Overlap Kernel and Transfer

Overlap GPU compute with PCIe transfer

Use streams to specify dependencies

K1→T1, K2→T2 etc.
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Phase C: Overlap Kernel and Transfer
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Phase C: Overlap Kernel and Transfer
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Phase D: Overlap Kernel, Transfer and CPU

Overlap GPU compute, PCIe transfer and CPU compute

Use streams to specify K/T dependencies

Use events to specify T/P dependencies

T1→P1, T2→P2 etc.



© NVIDIA Corporation 2011

Phase D: Work Dependencies
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Phase D: Use Double Buffering
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Phase D: Overlap Kernel, Transfer and CPU
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Phase D: Overlap Kernel, Transfer and CPU
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CONCURRENT KERNELS
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Concurrent Kernel Execution

Sequential Kernel Execution Parallel Kernel Execution
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ANALYSIS-DRIVEN OPTIMIZATION
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Performance Optimization Process

Use appropriate performance metric for each kernel
For example, Gflops/s don’t make sense for a bandwidth-bound kernel

Determine what limits kernel performance
Memory throughput

Instruction throughput

Latency

Combination of the above

Address the limiters in the order of importance
Determine how close to the HW limits the resource is being used

Analyze for possible inefficiencies

Apply optimizations

Often these will just fall out from how HW operates
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New in CUDA Toolkit 4.0: Automated 

Performance Analysis using Visual Profiler

Summary analysis & hints

Per-Session

Per-Device

Per-Context

Per-Kernel

New UI for kernel analysis

Identify the limiting factor

Analyze instruction throughput

Analyze memory throughput

Analyze kernel occupancy
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Notes on profiler

Most counters are reported per Streaming Multiprocessor (SM)
Not entire GPU

Exceptions: L2 and DRAM counters

A single run can collect a few counters
Multiple runs are needed when profiling more counters

Done automatically by the Visual Profiler

Have to be done manually using command-line profiler

Counter values may not be exactly the same for repeated runs
Threadblocks and warps are scheduled at run-time

So, “two counters being equal” usually means “two counters within a small 
delta”

See the profiler documentation for more information
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ANALYSIS-DRIVEN OPTIMIZATION: 

IDENTIFYING PERF LIMITERS
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Limited by Bandwidth or Arithmetic?

Perfect instructions:bytes ratio for Fermi C2050:
~4.5 : 1 with ECC on

~3.6 : 1 with ECC off

These assume fp32 instructions, throughput for other instructions varies

Algorithmic analysis:
Rough estimate of arithmetic to bytes ratio

Code likely uses more instructions and bytes than algorithm 
analysis suggests:

Instructions for loop control, pointer math, etc.

Address pattern may result in more memory fetches

Two ways to investigate:

Use the profiler (quick, but approximate)

Use source code modification (more accurate, more work intensive)
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A Note on Counting Global Memory Accesses

Load/store instruction count can be lower than the number of 
actual memory transactions

Address pattern, different word sizes

Counting requests from L1 to the rest of the memory system 
makes the most sense

Caching-loads: count L1 misses

Non-caching loads and stores: count L2 read requests

Note that L2 counters are for the entire chip, L1 counters are per SM

Some shortcuts, assuming “coalesced” address patterns:
One 32-bit access instruction -> one 128-byte transaction per warp

One 64-bit access instruction -> two 128-byte transactions per warp

One 128-bit access instruction -> four 128-byte transactions per warp
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Analysis with Profiler

Profiler counters:
instructions_issued, instructions_executed

Both incremented by 1 per warp

“issued” includes replays, “executed” does not

gld_request, gst_request
Incremented by 1 per warp for each load/store instruction

Instruction may be counted if it is “predicated out”

l1_global_load_miss, l1_global_load_hit, global_store_transaction
Incremented by 1 per L1 line (line is 128B)

uncached_global_load_transaction
Incremented by 1 per group of 1, 2, 3, or 4 transactions

Better to look at L2_read_request counter (incremented by 1 per 32B transaction; 
per GPU, not per SM)

Compare:
32  * instructions_issued /* 32 = warp size */

128B * (global_store_transaction + l1_global_load_miss)
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Analysis with Modified Source Code

Time memory-only and math-only versions of the kernel
Easier for codes that don’t have data-dependent control-flow or addressing

Gives you good estimates for:

Time spent accessing memory

Time spent in executing instructions

Compare the times taken by the modified kernels
Helps decide whether the kernel is mem or math bound

Compare the sum of mem-only and math-only times to full-kernel 
time

Shows how well memory operations are overlapped with arithmetic

Can reveal latency bottleneck
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Some Example Scenarios

mem math full

Memory and latency bound

Poor mem-math overlap: 

latency is a problem

mem math full

Math-bound

Good mem-math 

overlap: latency likely 

not a problem

(assuming instruction 

throughput is not low 

compared to HW theory)

mem math full

Memory-bound

Good mem-math 

overlap: latency likely 

not a problem

(assuming memory 

throughput is not low 

compared to HW theory)

mem math full

Balanced

Good mem-math 

overlap: latency likely 

not a problem

(assuming memory/instr

throughput is not low 

compared to HW theory)

time
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Source Modification

Memory-only:
Remove as much arithmetic as possible

Without changing access pattern

Use the profiler to verify that load/store instruction count is the same

Store-only:
Also remove the loads (to compare read time vs. write time)

Math-only:
Remove global memory accesses

Need to trick the compiler:
Compiler throws away all code that it detects as not contributing to stores

Put stores inside conditionals that always evaluate to false

– Condition should depend on the value about to be stored (prevents 
other optimizations)

– Condition outcome should not be known to the compiler



© NVIDIA Corporation 2011

Source Modification for Math-only

__global__ void fwd_3D( ..., int flag)
{

...
value = temp + coeff * vsq;
if( 1 == value * flag )

g_output[out_idx] = value;
}

If you compare only 

the flag, the compiler 

may move the 

computation into the 

conditional as well
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Source Modification and Occupancy

Removing pieces of code is likely to affect register count

This could increase occupancy, skewing the results

See slide 23 to see how that could affect throughput

Make sure to keep the same occupancy

Check the occupancy with profiler before modifications

After modifications, if necessary add shared memory to match the 

unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)
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Case Study: Limiter Analysis

Analysis:
Instr:byte ratio = ~2.66

32*18,194,139 / 128*1,708,032

Good overlap between math and mem:

2.12 ms of math-only time (13%) are 
not overlapped with mem

App memory throughput: 62 GB/s

HW theory is 114 GB/s, so we’re off

Conclusion:
Code is memory-bound

Latency could be an issue too

Optimizations should focus on memory 
throughput first

math contributes very little to total time 
(2.12 out of 35.39ms)

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0
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Summary: Limiter Analysis

Rough algorithmic analysis:

How many bytes needed, how many instructions

Profiler analysis:

Instruction count, memory request/transaction count

Analysis with source modification:

Memory-only version of the kernel

Math-only version of the kernel

Examine how these times relate and overlap
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Questions?


