
© NVIDIA Corporation 2011

Advanced Topics in CUDA

Cliff Woolley, NVIDIA

Developer Technology Group

© NVIDIA Corporation 2011

RECAP: SCHEDULING

© NVIDIA Corporation 2011

GPU Architecture – Fermi:

CUDA Core

Floating point & Integer unit

IEEE 754-2008 floating-point

standard

Fused multiply-add (FMA)

instruction for both single and

double precision

Logic unit

Move, compare unit

Branch unit

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

© NVIDIA Corporation 2011

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1 T2 T3 T4

© NVIDIA Corporation 2011

GPU Latency Hiding: Warp Switching

T
im

e

© NVIDIA Corporation 2011

OVERLAPPING PROCESSING WITH

DATA TRANSFERS

© NVIDIA Corporation 2011

Available engines

CPU GPU

© NVIDIA Corporation 2011

Available engines

GPUCPU

DMA

DMA

© NVIDIA Corporation 2011

Standard Processing Flow

1. Copy input data from CPU memory

to GPU memory

PCIe Bus

© NVIDIA Corporation 2011

Standard Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

PCIe Bus

© NVIDIA Corporation 2011

Standard Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

3. Copy results from GPU memory to

CPU memory

PCIe Bus

© NVIDIA Corporation 2011

Objective

Tasks not on the critical path should be hidden

i.e. overlapped with other tasks

Critical path is frequently the transfer of result data from GPU to CPU

e.g. path data

© NVIDIA Corporation 2011

Objective: Overlap Processing With Transfers

GPUCPU

DMA

DMA

© NVIDIA Corporation 2011

Overlapping Processing With Transfers

Dual DMA engines

Simultaneous CPUGPU and GPUCPU

data transfer

Fully overlapped with CPU and GPU

processing time

Activity Snapshot:

SDT

Kernel 0

Kernel 1

Kernel 2

Kernel 3

CPU

CPU

CPU

CPU

SDT0

SDT0

SDT0

SDT0

GPU

GPU

GPU

GPU

SDT1

SDT1

SDT1

SDT1

© NVIDIA Corporation 2011

Phase A: No Pipelining

No overlap

Kernel runs on GPU

Transfer data across PCIe from device to host

Post process on CPU

© NVIDIA Corporation 2011

Phase A: No Pipelining

© NVIDIA Corporation 2011

Phase B: Batching

No overlap

Preparation for next phase…

© NVIDIA Corporation 2011

Phase B: Batching

© NVIDIA Corporation 2011

Phase C: Overlap Kernel and Transfer

Overlap GPU compute with PCIe transfer

Use streams to specify dependencies

K1→T1, K2→T2 etc.

© NVIDIA Corporation 2011

Phase C: Overlap Kernel and Transfer

© NVIDIA Corporation 2011

Phase C: Overlap Kernel and Transfer

© NVIDIA Corporation 2011

Phase D: Overlap Kernel, Transfer and CPU

Overlap GPU compute, PCIe transfer and CPU compute

Use streams to specify K/T dependencies

Use events to specify T/P dependencies

T1→P1, T2→P2 etc.

© NVIDIA Corporation 2011

Phase D: Work Dependencies

© NVIDIA Corporation 2011

Phase D: Use Double Buffering

© NVIDIA Corporation 2011

Phase D: Overlap Kernel, Transfer and CPU

© NVIDIA Corporation 2011

Phase D: Overlap Kernel, Transfer and CPU

© NVIDIA Corporation 2011

CONCURRENT KERNELS

© NVIDIA Corporation 2011

Concurrent Kernel Execution

Sequential Kernel Execution Parallel Kernel Execution

T
im

e

Kernel 1 Kernel 1 Kernel 2

Kernel 2 Kernel 3

Kernel 3

Ker

4

nel
Kernel 5

Kernel 5

Kernel 4

Kernel 2

Kernel 2

© NVIDIA Corporation 2011

ANALYSIS-DRIVEN OPTIMIZATION

© NVIDIA Corporation 2011

Performance Optimization Process

Use appropriate performance metric for each kernel
For example, Gflops/s don’t make sense for a bandwidth-bound kernel

Determine what limits kernel performance
Memory throughput

Instruction throughput

Latency

Combination of the above

Address the limiters in the order of importance
Determine how close to the HW limits the resource is being used

Analyze for possible inefficiencies

Apply optimizations

Often these will just fall out from how HW operates

© NVIDIA Corporation 2011

New in CUDA Toolkit 4.0: Automated

Performance Analysis using Visual Profiler

Summary analysis & hints

Per-Session

Per-Device

Per-Context

Per-Kernel

New UI for kernel analysis

Identify the limiting factor

Analyze instruction throughput

Analyze memory throughput

Analyze kernel occupancy

© NVIDIA Corporation 2011

Notes on profiler

Most counters are reported per Streaming Multiprocessor (SM)
Not entire GPU

Exceptions: L2 and DRAM counters

A single run can collect a few counters
Multiple runs are needed when profiling more counters

Done automatically by the Visual Profiler

Have to be done manually using command-line profiler

Counter values may not be exactly the same for repeated runs
Threadblocks and warps are scheduled at run-time

So, “two counters being equal” usually means “two counters within a small
delta”

See the profiler documentation for more information

© NVIDIA Corporation 2011

ANALYSIS-DRIVEN OPTIMIZATION:

IDENTIFYING PERF LIMITERS

© NVIDIA Corporation 2011

Limited by Bandwidth or Arithmetic?

Perfect instructions:bytes ratio for Fermi C2050:
~4.5 : 1 with ECC on

~3.6 : 1 with ECC off

These assume fp32 instructions, throughput for other instructions varies

Algorithmic analysis:
Rough estimate of arithmetic to bytes ratio

Code likely uses more instructions and bytes than algorithm
analysis suggests:

Instructions for loop control, pointer math, etc.

Address pattern may result in more memory fetches

Two ways to investigate:

Use the profiler (quick, but approximate)

Use source code modification (more accurate, more work intensive)

© NVIDIA Corporation 2011

A Note on Counting Global Memory Accesses

Load/store instruction count can be lower than the number of
actual memory transactions

Address pattern, different word sizes

Counting requests from L1 to the rest of the memory system
makes the most sense

Caching-loads: count L1 misses

Non-caching loads and stores: count L2 read requests

Note that L2 counters are for the entire chip, L1 counters are per SM

Some shortcuts, assuming “coalesced” address patterns:
One 32-bit access instruction -> one 128-byte transaction per warp

One 64-bit access instruction -> two 128-byte transactions per warp

One 128-bit access instruction -> four 128-byte transactions per warp

© NVIDIA Corporation 2011

Analysis with Profiler

Profiler counters:
instructions_issued, instructions_executed

Both incremented by 1 per warp

“issued” includes replays, “executed” does not

gld_request, gst_request
Incremented by 1 per warp for each load/store instruction

Instruction may be counted if it is “predicated out”

l1_global_load_miss, l1_global_load_hit, global_store_transaction
Incremented by 1 per L1 line (line is 128B)

uncached_global_load_transaction
Incremented by 1 per group of 1, 2, 3, or 4 transactions

Better to look at L2_read_request counter (incremented by 1 per 32B transaction;
per GPU, not per SM)

Compare:
32 * instructions_issued /* 32 = warp size */

128B * (global_store_transaction + l1_global_load_miss)

© NVIDIA Corporation 2011

Analysis with Modified Source Code

Time memory-only and math-only versions of the kernel
Easier for codes that don’t have data-dependent control-flow or addressing

Gives you good estimates for:

Time spent accessing memory

Time spent in executing instructions

Compare the times taken by the modified kernels
Helps decide whether the kernel is mem or math bound

Compare the sum of mem-only and math-only times to full-kernel
time

Shows how well memory operations are overlapped with arithmetic

Can reveal latency bottleneck

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full

Memory and latency bound

Poor mem-math overlap:

latency is a problem

mem math full

Math-bound

Good mem-math

overlap: latency likely

not a problem

(assuming instruction

throughput is not low

compared to HW theory)

mem math full

Memory-bound

Good mem-math

overlap: latency likely

not a problem

(assuming memory

throughput is not low

compared to HW theory)

mem math full

Balanced

Good mem-math

overlap: latency likely

not a problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

© NVIDIA Corporation 2011

Source Modification

Memory-only:
Remove as much arithmetic as possible

Without changing access pattern

Use the profiler to verify that load/store instruction count is the same

Store-only:
Also remove the loads (to compare read time vs. write time)

Math-only:
Remove global memory accesses

Need to trick the compiler:
Compiler throws away all code that it detects as not contributing to stores

Put stores inside conditionals that always evaluate to false

– Condition should depend on the value about to be stored (prevents
other optimizations)

– Condition outcome should not be known to the compiler

© NVIDIA Corporation 2011

Source Modification for Math-only

__global__ void fwd_3D(..., int flag)
{

...
value = temp + coeff * vsq;
if(1 == value * flag)

g_output[out_idx] = value;
}

If you compare only

the flag, the compiler

may move the

computation into the

conditional as well

© NVIDIA Corporation 2011

Source Modification and Occupancy

Removing pieces of code is likely to affect register count

This could increase occupancy, skewing the results

See slide 23 to see how that could affect throughput

Make sure to keep the same occupancy

Check the occupancy with profiler before modifications

After modifications, if necessary add shared memory to match the

unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)

© NVIDIA Corporation 2011

Case Study: Limiter Analysis

Analysis:
Instr:byte ratio = ~2.66

32*18,194,139 / 128*1,708,032

Good overlap between math and mem:

2.12 ms of math-only time (13%) are
not overlapped with mem

App memory throughput: 62 GB/s

HW theory is 114 GB/s, so we’re off

Conclusion:
Code is memory-bound

Latency could be an issue too

Optimizations should focus on memory
throughput first

math contributes very little to total time
(2.12 out of 35.39ms)

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

© NVIDIA Corporation 2011

Summary: Limiter Analysis

Rough algorithmic analysis:

How many bytes needed, how many instructions

Profiler analysis:

Instruction count, memory request/transaction count

Analysis with source modification:

Memory-only version of the kernel

Math-only version of the kernel

Examine how these times relate and overlap

© NVIDIA Corporation 2011

Questions?

