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Abstract

The work presented in this thesis is motivated by the twin goals of increasing the
capacity and the flexibility of the Internet. The Internet is comprised of packet-processing
nodes, called routers, that route packets towards their destinations, and physical links that
transport packets from one router to anotfaving to advances in optical technologies,
such as \&velength Division Multiplexing, the data rates of links have increased rapidly
over the years. Howevaouters have failed to keep up with this pace because they must

perform expensive pgracket processing operations.

Every router is required to perform a forwarding decision on an incoming packet to
determine the packsthext-hop routeiThis is achieved by looking up the destination
address of the incoming packet in a forwarding table. Besides increased packet arrival
rates because of higher speed links, the complexity of the forwarding lookup mechanism
and the lage size of forwarding tables have made routing lookups a bottleneck in the rout-
ers that form the core of the Internet. The first part of this thesis describes fasiceart ef

routing lookup algorithms that attempt to overcome this bottleneck.
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The second part of this thesis concerns itself with increasing the flexibility and func-
tionality of the Internet. faditionally, the Internet provides only a “bestat” service,
treating all packets going to the same destination identiealty servicing them in a first-
come-first-served mannetlowevery Internet Service Providers are seeking ways to pro-
vide differentiated services (on the same network infrastructure)fevett users based
on their diferent requirements and expectations of quality from the Internet. For this,
routers need to have the capability to distinguish and isolatie trafonging to diferent
flows. The ability to classify each incoming packet to determine the flow it belongs to is
called packet classification, and could be based on an arbitrary number of fields in the
packet headeiThe second part of this thesis highlights some of the issues in designing
efficient packet classification algorithms, and describes novel algorithms that enable rout-

ers to perform fast packet classification on multiple fields.
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CHAPTER 1

Introduction

The Internet is comprised of a mesh of routers interconnected by links. Communica-
tion among nodes on the Internet (routers and end-hosts) takes place using the Internet
Protocol, commonly known as.IfP datagrams (packets) travel over links from one router
to the next on their way towards their final destination. Each router performs a forwarding

decision on incoming packets to determine the packetxt-hop router

The capability to forward packets is a requirement for every IP router [3]. Addition-
ally, an IP router may also choose to perform special processing on incoming packets.
Examples of special processing includiefing packets for security reasons, delivering
packets according to a pre-agreed delay guarantee, treating high priority packets preferen-
tially, and maintaining statistics on the number of packets sentfbyeif networks. Such
special processing requires that the router classify incoming packets into one of several
flows— all packets of ddw obey a pre-déied rule and are processed in a similar man-
ner by the route~or example, all packets with the same source IP address may be defined
to form a fow. A flow could also be defed by specit values of the destination IP

address and by specifprotocol values. Throughout this thesis, we will refer to routers
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that classify packets intéofvs asflow-awaie routers. On the other hantg-unaware
routers treat each incoming packet individually and we will refer to thepacset-by-

packetrouters.

This thesis is about two types of algorithms: (1) algorithms that an IP router uses to
decidewhere to forward packets next, and, (2) algorithms that a flow-aware router uses to
classifypackets intoléws ! In particular this thesis is about fast andigent algorithms
that enable routers to process many packets per second, and hence increase the capacity of

the Internet.

This introductory chapter first describes the packet-by-packet router and the method it
uses to make the forwarding decision, and then moves on to descrilb@entrenare
router and the method it uses to classify incoming packetdants.fFinally the chapter
presents the goals and metrics for evaluation of the algorithms presented later in this the-

Sis.

1 Packet-by-packet IP puter and route lookups

A packet-by-packet IP router is a special-purpose packet-switch thatesathss
requirements outlined in RFC 1812 [3] published by the Internet EngineeaskgFbrce
(IETF).2 All packet-switches — by digfition — perform two basic functions. First, a
packet-switch must perform a forwarding decision on each arriving packet for deciding
where to send it next. An IP router does this by looking up the padestination address

in a forwarding table. This yields the address of the next-hop Foanerdetermines the

1. As explained later in this chapttre algorithms in this thesis are meant for the router data-plane (i.e., the datapath of
the packet), rather than the router control-plane which configures and populates the forwarding table.

2. IETF is a lage international community of network equipment vendors, operators, engineers and researchers inter-
ested in the evolution of the Internet Architecture. It comprises of groups workinderemtifareas such as routing,
applications and securitit publishes several documents, called RFCs (Request For Comments). An RFC either over-
views an introductory topic, or acts as a standards specification document.

3. A packet may be sent to multiple next-hop routers. Such packets are called multicast packets and are sent out on mul-
tiple egress ports. Unless explicitly mentioned, we will discuss lookups for unicast packets only
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Figure 1.1 The growth in bandwidth per installed fiber between 1980 and 2005. (Source:
Technologies.)

egress port through which the packet should be sent. This lookup operation is called a
route lookupor anaddress lookumperation. Second, the packet-switch must transfer the
packet from the ingress to the egress port identified by the address lookup operation. This

is calledswitching and involves physical movement of the bits carried by the packet.

The combination of route lookup and switching operations makegsao&et process-
ing in routers a time consuming task. As a result, it has begecuttifor the packet pro-
cessing capacity of routers to keep up with the increased data rates of physical links in the
Internet. The data rates of links have increased rapidly over the years to hundreds of giga-
bits per second in the year 2000 [133] — mainly because of advances in optical technolo-
gies such as WDM (@elength Division Multiplexing). Figure 1.1 shows the increase in

bandwidth periber during the period 1980 to 2005, and Figure 1.2 shows the increase in
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Figure 1.2 The growth in maximum bandwidth of a wide-area-networR\Vrouter port between 19¢
and 2001. Also shown is the average bandwidth per router port, taken overDS&@3, ATIM OC12,
POS OC3, POS OC12, POS 0C48, and POS OC192 ports inANe (Wata courtesy Dell’Oro Grou
Portola \alley, CA)

the maximum bandwidth of a router port in the period 1997 to 2001. Tigesesf high-

light the gap in the data rates of routers and links — for example, in the year 2000, a data
rate of 1000 Gbps is achievable per filvdnile the maximum bandwidth available is lim-

ited to 10 Gbps per router port. Figure 1.2 also shows the average bandwidth of a router
port over all routers — this average is about 0.53 Gbps in the year 2000. The work pre-
sented in the first part of this thesis (Chapters 2 and 3) is motivated by the need to alleviate
this mismatch in the speeds of routers and physical links — in partithéameed to per-

form route lookups at high speeds. High-speed switching [1][55][56][57][58][104] is an

important problem in itself, but is not considered in this thesis.
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1.1 Architecture of a packet-by-packet outer

Figure 1.3 shows a block diagram of the architecture of a typical high speed Itouter
consists of one line card for each port and a switching fabric (such as a crossbar) that inter-
connects all the line cardsyfically, one of the line cards houses a processor functioning
as the central controller for the rout&he path taken by a packet through a packet-by-
packet router is shown in Figure 1.4 and consists of two main functions on the packet: (1)
performing route lookup based on the packdéstination address to identify the outgoing

port, and (2) switching the packet to the output port.
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The routing processor in a router performs one or more routing protocols such as RIP
[33][51], OSPF [65] or BGP [80] by exchanging protocol messages with neighboring
routers. This enables it to maintaincauting tablethat contains a representation of the net-
work topology state information and stores the current information about the best known
paths to destination networks. The router typically maintains a version of this routing table
in all line cards so that lookups on incoming packets can be performed locally on each line
card, without loading the central procesddris version of the central processarouting
table is what we have been referring to as the line séodvarding tablebecause it is
directly used for packet forwarding. There is anothdedhce between the routing table
in the processor and the forwarding tables in the line cards. The prosessibing table
usually keeps a lot more information than the forwarding tables. For example, the for-
warding table may only keep the outgoing port numbeédress of next-hop, and (option-
ally) some statistics with each route, whereas the routing table may keep additional

information: e.g., time-out values, the actual paths associated with the route, etc.

The routing table is dynamic — as links go down and come back up in various parts of
the Internet, routing protocol messages may cause the table to change continuously
Changes include addition and deletion of prefixes, and the modification of next-hop infor-
mation for existing prefixes. The processor communicates these changes to the line card to
maintain up-to-date information in the forwarding table. The need to support routing table
updates has implications for the design of lookup algorithms, as we shall see later in this

thesis.

1.2 Backgound and definition of the route lookup problem
This section explains the background of the route lookup operation by briefly describ-
ing the evolution of the Internet addressing architecture, and the manner in which this

impacts the complexity of the lookup mechanism. This leads us to the formal definition of
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the lookup problem, and forms a background to the lookup algorithms presented thereaf-

ter.

1.2.1 Internet addressing achitecture and route lookups

In 1993, the Internet addressing architecture changeddiass-based addssingto
todays classless addsssingarchitecture. This change resulted in an increase in the com-
plexity of the route lookup operation.efirst briefly describe the structure of IP addresses
and the route lookup mechanism in the original class-based addressing architeeture. W
then describe the reasons for the adoption of classless addressing and the details of the

lookup mechanism as performed by Internet routers.

IP version 4 (abbreviated as IPv4) is the version of Internet Protocol most widely used
in the Internet todayPv4 addresses are 32 bits long and are commonly written in the dot-
ted-decimal notation — for example, 240.2.3.1, with dots separating the four bytes of the
address written as decimal numbers. It is sometimes useful to view IP addresses as 32-bit
unsigned numbers on the number IiIEG,.. %232—15] , which we will refer to as the°
number line. For example, the IP address 240.2.3.1 represents the decimal number
4026663681%240 x 2?1 ox 21 43x 2%+ 1% and the IP address 240.2.3.10 represents
the decimal number 4026663690. Conceptyualiyh IPv4 address is a p@ietid, hostid)
wherenetid identifies a network, anabstididentifies a host on that network. All hosts on
the same network have the sanedid but diferenthostids. Equivalentlythe IP addresses

of all hosts on the same network lie in a contiguous range on the IP number line.

The class-based Internet addressing architecture partitioned the IP address space into
five classes — classés B andC for unicast trdfc, classD for multicast trafic and class
E reserved for future use. Classes were distinguished by the number of bits used to repre-
sent thenetid For example, a clagsnetwork consisted of a 7-metid and a 24-bihos-

tid, whereas a class network consisted of a 21-lietidand an 8-bihostid The first few
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Figure 1.5 The IP number line and the original class-based addressing scheme. (The intervals re
by the classes are not drawn to scale.)

most-significant bits of an IP address determined its class, as showabie T.1 and

depicted on the IP number line in Figure 1.5.

TABLE 1.1. Class-based addressing.

Most
significant : .
Class Range 9 netid hostid
address
bits
A 0.0.0.0 - 0 bits 1-7 bits 8-31
127.255.255.255
B 128.0.0.0 - 10 bits 2-15 bits 16-31
191.255.255.255
C 192.0.0.0 - 110 bits 3-23 bits 24-31
223.255.255.255
D (multicast) 224.0.0.0 - 1110 - -
239.255.255.255
E (reserved for future 240.0.0.0 - 11110 - -
use) 255.255.255.255

The class-based addressing architecture enabled routers to use a relatively simple
lookup operation. yipically, the forwarding table had three parts, one for each of the three
unicast classe&, BandC. Entries in the forwarding table were tuples of the femmstid,
address of next hop>All entries in the same part hadtids of ixed-width — 7, 14 and
21 bits respectively for class@és BandC, and the lookup operation for each incoming
packet proceeded as in Figure 1.6. First, the class was determined from the mast-signif

cant bits of the packet'destination address. This in turn determined which of the three
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Figure 1.6 Typical implementation of the lookup operation in a class-based addressing scheme.

parts of the forwarding table to use. The router then searched for an exact match between
the netid of the incoming packet and an entry in the selected part of the forwarding table.
This exact match search could be performed using, for example, a hashing or a binary

search algorithm [13].

The class-based addressing scheme worked well in the early days of the Internet.
However as the Internet grewwo problems emged — a depletion of the IP address

space, and an exponential growth of routing tables.

The allocation of network addresses xed netid-hostidboundaries (i.e., at thd"s
16" and 24" bit positions, as shown inable 1.1) was too itdxible, leading to a lge
number of wasted addresses. For example, aBlastid (good for216 hostidcks) had to be

allocated to any ganization with more than 254 host$n 1991, it was predicted

1. While one clas€ netidaccommodates 29®stids, the values 0 and 255 are reserved to denote network and broad-
cast addresses respectively
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Figure 1.7 Forwarding tables in backbone routers were growing exponentially between 1988 an
(i.e., under the class-based addressing scheme). (Source: RFC1519 [26])

[44][91][92] that the class B address space would be depleted in less than 14 months, and
the whole IP address space would be exhausted by 1996 — even though less than 1% of

the addresses allocated were actually in use [44].

The second problem was due to the fact that a backbone IP router stored every allo-
catednetidin its routing table. As a result, routing tables were growing exponentaally
shown in Figure 1.7. This placed a high load on the processor and memory resources of

routers in the backbone of the Internet.

In an attempt to slow down the growth of backbone routing tables and allow ritore ef
cient use of the IP address space, an alternative addressing and routing scheme called

CIDR (Classless Inteslomain Routing) was adopted in 1993 [26][81]. CIDR does away
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with the class-based partitioning of the IP address space and aktasto be of arbi-

trary length rather than constraining them to be 7, 14 or 21 bits long. CIDR represents a
netidusing an IRprefix— a prefix of an IP address with a variable length of 0 to 32 signif-
icant bits and remaining wildcard bitéAn 1P prefix is denoted biy/l whereP is the pre-

fix or netid, andl its length. For example, 192.0.1.0/24 is a 24-bitigrdfat earlier
belonged to clas€. With CIDR, an oganization with, sgy300 hosts can be allocated a

32-23

prefix of length 23 (good for =2 =512 hostids) leading to more &tient

address allocation.

This adoption of variable-length pbefs now enables a hierarchical allocation of IP
addresses according to the physical topology of the Internet. A service provider that con-
nects to the Internet backbone is allocated a shorixpiEfie provider then allocates
longer preiikes out of its own address space to other smaller Internet Service Providers
(ISPs) or sites that connect to it, and so on. Hierarchical allocation allows the provider to
aggregate the routing information of the sites that connect to it, before advertising routes

to the routers higher up in the hierarchiais is illustrated in the following example:

Example 1.1:(see Figure 1.8) Consider an ISP P and two sites S and T connecteebto P
instance, sites S and T may be two university campuses usimg®vork infra-
structure for communication with the rest of the Internet. P may itself be connected
to some backbone providekssume that P has been allocated appef2.2.0.0/

22, and it chooses to allocate the prd©2.2.1.0/24 to S and 192.2.2.0/24t0 T
This implies that routers in the backbone (such as R1 in Figure 1.8) only need to
keep one table entry for the pre192.2.0.0/22 with B network as the next-hop,

i.e., they do not need to keep separate routing information for individual sites S and
T. Similarly, Routers inside B’network (e.g., R5 and R6) keep entries to distin-
guish trafic among S and,Tbut not for any networks or sites that are connected
downstreamto S or. T

1. In practice, the shortest prefix is 8 bits long.
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Figure 1.8 Showing how allocation of addresses consistent with the topology of the Internet he
the routing table size small. The prefixes are shown on the IP number line for clarity

The aggregation of prefixes, or “route aggregation,” leads to a reduction in the size of
backbone routing tables. While Figure 1.7 showed an exponential growth in the size of
routing tables before widespread adoption of CIDR in 1994, Figure 1.9 shows that the
growth turned linear thereafter — at least till January 1998, since when it seems to have

become faster than linear again.

1. Itis a bit premature to assert that routing tables are again growing exponéntially, the portion of the plot in Fig-

ure 1.9 after January 1998 fits well with an exponential as well as a quadratic curve. While not known defimétively
increased rate of growth could be because: (1) Falling costs of raw transmission bandwidth are encouraging decreased
aggregation and a finer mesh of granularity; (2) Increasing expectations of reliability are forcing network operators to
make their sites multi-homed.
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Figure 1.9 This graph shows the weekly average size of a backbone forwarding table (source [1:
dip in early 1994 shows the immediatéeef of widespread deployment of CIDR.

Hierarchical aggregation of addresses creates a new problem. When a site changes its
service providerit would prefer to keep its pigf(even though topologicallyt is con-
nected to the new provider). This creates a “hole” in the address space of the original pro-
vider — and so this provider must now create specific entries in its routing tables to allow
correct forwarding of packets to the moved site. Because of the presence atspecif
entries, routers are required to be able to forward packets accordingnoshepecit
route present in their forwarding tables. The same capability is required when a site is
multi-homed, i.e., has more than one connection to an upstream carrier or a backbone pro-

vider. The following examples make this clear:

Example 1.2:Assume that site T in Figure 1.8 with address space 192.2.2.0/24 changed its ISP
to Q, as shown in Figure 1.10. The routing table at router R1 needs to have an addi-
tional entry corresponding to 192.2.2.0/24 pointing te @Etwork. Packets des-



CHAPTER 1 Inwduction 14

Routing table at R1
192.2.0.0/22, R2
200.1.0.0/22, R
192.2.2.0/24, R3

9 Router

192.2.1.0/24192.2.2.0/24 (hole)
- —Pp - —P

192.2.0.0/22 200.11.0.0/22

-

IP Number Line -

Figure 1.10 Showing the need for a routing lookup to find the most specific route in a CIDR envirc

tined to T at router R1 match this more specibute and are correctly forwarded
to the intended destination in T (see Figure 1.10).

Example 1.3:Assume that ISP Q of Figure 1.8 is multi-homed, being connected to the backbone

also through routers S4 and R7 (see Figurg)1The portion of (¥ network iden-
tified with the prefix 2001.1.0/24 is now better reached through router R7. Hence,

the forwarding tables in backbone routers need to have a separate entry for this
special case.

Lookups in the CIDR environment
With CIDR, a route's forwarding table consists of entries of the fermoute-peix,

next-hop-addr>whereroute-peix is an IP prek andnext-hop-addis the IP address of

the next hop. A destination addresatchesa route-prefix if the significant bits of the pre-
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Figure 1.11 Showing how multi-homing creates special cases and hinders aggregation of prefixe

fix are identical to the first few bits of the destination address. A routing lookup operation
on an incoming packet requires the routennd the most spedd route for the packet.
This implies that the router needs to solveltdmgest prefix matching problem, defined

as follows.

Definition 1.1: Thelongest prefix matchingproblem is the mrblem of finding the for-
warding table entry containing the longesepx among all pfixes (in
other forwading table entries) matching the incoming packdéstination
address. This longest gfix is called the longest matchingepik.

Example 1.4:The forwarding table in router R1 of Figure 1.10 is shownahl&@ 1.2. If an
incoming packet at this router has a destination address ofl2DQ, 1t will match
only the prefix 2001.0.0/22 (entry #2) and hence will be forwarded to router R3.
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If the packes destination address is 192.2.2.4, it matches twixesefentries #1
and #3). Because entry #3 has the longest matching,gref packet will be for-
warded to router R3.

TABLE 1.2. The forwarding table of router R1 in Figure 1.10.

Ni?rt]ger Prefix Next-Hop
1. 192.2.0.0/22 R2
2. 200.11.0.0/22 R3
3. 192.2.2.0/24 R3

Difficulty of longest prefix matching

The destination address of an arriving packet does not carry with it the information
needed to determine the length of the longest matching.prsfnce, we cannoird the
longest match using an exact match search algorithm (for example, using hashing or a
binary search procedure). Instead, a search for the longest matching prefix needs to deter-
mine both the length of the longest matchingigraé well as the forwarding table entry
containing the prefix of this length that matches the incoming paakestination address.
One naive longest prefix matching algorithm is to perform 32réifit exact match search
operations, one each for all prefs of lengthi, 1<i<32. This algorithm would require
32 exact match search operations. As we will see later in this thesis, faster algorithms are

possible.

In summarythe need to perform longest pxefatching has made routing lookups
more complicated now than they were before the adoption of CIDR when only one exact
match search operation was required. Chapters 2 and 3 of this thesis will pfegent ef

longest prefix matching algorithms for fast routing lookups.
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2 Flow-aware IP router and packet classification

As mentioned earlierouters may optionally classify packets intmafs for special
processing. In this section, wiest describe why some routers al@\f-aware, and how
they use packet classiition to recognizddws. We also provide a brief overview of the
architecture of flow-aware routerse\then provide the background leading to the formal
deinition of the packet classifation problem. Fast packet clagsition is the subject of

the second part of this thesis (Chapters 4 and 5).

2.1 Motivation

One main reason for the existence of flow-aware routers stems from améSKe to
have the capability of providing @&rentiated services to its usersaditionally, the Inter-
net provides only a “bestfeft” service, treating all packets going to the same destination
identically, and servicing them in @&g$t-come-irst-served manneHowever the rapid
growth of the Internet has caused increasing congestion and packet loss at intermediate
routers. As a result, some users are willing to pay a premium price in return for better ser-
vice from the network. @ maximize their revenue, the ISPs also wish to providerdiit
levels of service at dirent prices to users based on their requirements, while still deploy-

ing one common network infrastructufre.

In order to provide dferentiated services, routers require additional mechanisms.
These mechanisms — admission control, conditioning (metering, marking, shaping, and
policing), resource reservation (optional), queue management and fair scheduling (such as
weighted fair queueing) — requirerst of all, the capability to distinguish and isolate
traffic belonging to diierent users based on service agreements negotiated between the

ISP and its customefhis has led to demand fdod-aware routers that negotiate these

1. This is analogous to the airlines, who also providergifitiated services (such as economy and business class) to dif-
ferent users based on their requirements, while still using the same common infrastructure.
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PAYLOAD L4-PROT| L3-SA| L3-DA | L3-PROT| L2-SA | L2- DA
8b 32b 32b 8b 48b 48b

- > > _
Transport layer header Network layer header Link layer header

L2 = Layer 2 (e.g., Ethernet) DA = Destination Address
L3 = Layer 3 (e.g., IP) SA = Source Address
L4 = Layer 4 (e.g., TCP) PROT = Protocol

SP = Source Port

DP =Destination Port

Figure 1.12 This figure shows some of the header fields (and their widths) that might be u
classifying a packet. Although not shown in this figure, higher layer (e.g., application-layer) fields n
be used for packet classification.

service agreements, express them in ternrsiles or policiesconfgured on incoming

packets, and isolate incoming frafaccording to these rules.

We call a collection of rules or policiegalicy databasgflow classiier, or simply a
classifer.! Each rule spedis a fow that a packet may belong to based on some criteria
on the contents of the packet headsrshown in Figure 1.12. All packets belonging to the
same flow are treated in a similar maniére identified flow of an incoming packet spec-
iflies anactionto be applied to the packet. For example, a firewall router may carry out the
action of eithedenyingor allowing access to a protected network. The determination of
this action is calleghacket classificatior— the capability of routers to identify the action
associated with the “best” rule an incoming packet matches. Packeticdissifallows
ISPs to diferentiate from their competition and gain additional revenue by providing dif-

ferent value-added services tofdient customers.

1. Sometimes, the functional datapath element that classifies packets is referred to as alclassftbesis, however
we will consistently refer to the policy database as a classifier
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Determine next Classify packet | Apply the services| Switch packet
hop address andto obtainaction. | indicated byaction |to outgoing

= outgoing port. on the packet. port. -

Route Lookup | Classification Special Pocessing| Switching

- Line card > Fabric

Figure 1.13 Datapath of a packet through a flow-aware roltete that in some applications, a pat
may need to be classified both before and after route lookup.

2.2 Architecture of a flow-awae router

Flow-aware routers perform a superset of the functions of a packet-by-packet router
The typical path taken by a packet throughoafaware router is shown in Figure 1.13
and consists of four main functions on the packet: (1) performing route lookup to identify
the outgoing port, (2) performing classi#tion to identify theléw to which an incoming
packet belongs, (3) applying the action (as part of the provisioningfefeatifiated ser-
vices or some other form of special processing) based on the result ofoatesif and
(4) switching to the output port. The various forms of special processing in function (3),
while interesting in their own right, are not the subject of this thesis. The following refer-
ences describe a variety of actions that a router may perform: admission control [42],
gueueing [25], resource reservation [6], output link scheduling [18][74][75][89] and bill-
ing [21].

2.3 Background and definition of the packet classification pwblem

Packet clasdifation enables a number of additional, non-befstrehetwork services
other than the provisioning of ééfrentiated qualities of service. One of the well-known
applications of packet classiétion is a irewall. Other network services that require

packet classification include policy-based routingfitrafite-limiting and policing, tréit
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9 Router

Figure 1.14 Example network of an ISP (I$Pconnected to two enterprise networks éd B) and tc
two other ISP networks across a network access point (NAP).

shaping, and billing. In each case, it is necessary to determine Wdichri arriving
packet belongs to so as to determine — for example — whether to forwalteroit,f
where to forward it to, what type of service it should receive, or how much should be

chaged for transporting it.

TABLE 1.3. Some examples of value-added services.

Service Example
Packet Filtering Deny all trafic from ISR; (on interfaceX) destined to E
Policy Routing Send all voice-ovelP trafic arriving from E (on interfaceY) and
destined to kvia a separate ™ network.
Accounting & Billing Treat all video trédfc to E; (via interfaceY) as highest priority and
perform accounting for such tfaf.
Traffic Rate-limiting Ensure that ISPdoes not inject more than 10 Mbps of emaifficaf
and 50 Mbps of total tr&i€ on interfacex.
Traffic Shaping Ensure that no more than 50 Mbps of weldfitta$ sent to ISpPon
interfaceX.

To help illustrate the variety of packet clagg$, let us consider some examples of
how packet classification can be used by an ISP to provigeeaht services. Figure 1.14

shows ISR connected to three di#rent sites: two enterprise networkg &hd &, and a
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Network Access PoifitNAP), which is in turn connected to two other ISPs —|8Rd

ISP;. ISP, provides a number of d#rent services to its customers, as showraine 1.3.

Table 1.4 shows the categories that an incoming packet must beedassd by the

router at interfacX. Note that the classes specified may or may not be mutually exclusive.

TABLE 1.4. Given the rules indble 1.3, the router at interface X must classify an incoming packet into the following

categories.

Service Flow Relevant Packet Fields

Packet Filtering From ISR and going to E Source link-layer address,
destination network-layer address
Traffic rate-limiting Email and from ISR Source link-layer address, source transport
port number
Traffic shaping Web and to ISP Destination link-layer address, destinatian
transport port number
All other packets —

For example, the first and second flow able 1.4 overlap. This happens commoalyd

when no explicit priorities are spdeif, we follow the convention that rules closer to the

top of the list have higher priority
With this background, we proceed to define the problem of packet classification.

Each rule of the classifier hdscomponents. The" component of rul&, denoted as
R[i] , is a regular expression on tH8 field of the packet headeh packetP is said to
matcha particular ruldR, if Oi, thei field of the header d# satisfies the regular expres-
sion R[i] . In practice, a rule component is not a general regular expression — often lim-
ited by syntax to a simple address/mask or operator/number(s) specification. In an address/

mask specitation, a 0 at bit positior in the mask denotes that the corresponding bit in

1. A network access point (NAP) is a network location which acts as an exchange point for Intémenre8P con-
nects to a NAP to exchange frafwith other ISPs at that NAP
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the address is a “ddrcare” bit. Similarlya 1 at bit positiox in the mask denotes that the
corresponding bit in the address is a sigaift bit. For instance, thedt and third most
significant bytes in a packeefd matching the speaftion171.4.3.4/255.0.255 Must

be equal to 171 and 3, respectivelile the second and fourth bytes can have any value.
Examples of operator/number(s) spmeifions areeq 1232andrange 34-9339which

specify that the matchingefd value of an incoming packet must be equal to 1232 in the
former specification, and can have any value between 34 and 9339 (both inclusive) in the
latter specification. Note that a route-prefix can be specified as an address/mask pair where
the mask icontiguous— i.e., all bits with value 1 appear to the left of (i.e., are more sig-
nificant than) bits with value O in the mask. For instance, the mask for an 8-bitipref
255.0.0.0. A route-prif of lengthl can also be spemfl as a range of width equal 26

wheret = 32—1. In fact, most of the commonly occurring spiaifions in practice can

be viewed as range specifications.
We can now formally define packet classification:

Definition 1.2: A classifierC hasN rules, RJ. , 1<j<N, whee Rj consists of thee enti-
ties— (1) A regular expessionRj [i], 1<i<d, on each of the header
fields, (2) A numbemri(Rj), indicating the priority of the rule in the classi-
fier, and (3) An action,aferred to asaction(R) . For an incoming packe?
with the header consided as a d-tuple of point®,,P,,...,P,) , thed-
dimensional packet classificatioproblem is to find the rulg , with the
highest priority among all ruIeRj matching the d-tuple; i.e.,
pri(R) > pri(Rj), Oj#m, 1<j <N, such that, matchesRj [i],
O(1<i<d).Wecall ruleRr_ the best matching rule for packet
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Example 1.5:An example of a classir in four dimensions is shown iralile 1.5. By conven-
tion, the irst rule R1 has the highest priority and rule R7 has the lowest priority
(*" denotes a complete wildcard specification, and ‘gt v’ denotes any value greater
than v). Classitation results on some example packets using this dixsait
shown in Rble 1.6.

TABLE 1.5. An example classifier

Network-layer Network-layer | Transport- | Transport-
Rule destination source (address/ layer layer Action
(address/mask) mask) destination | protocol
R1 152.163.190.69/ 152.163.80.1/ * * Deny
255.255.255.255 255.255.255.255
R2 152.168.3.0/ 152.163.200.157/ eq http udp Deny
255.255.255.0 255.255.255.255
R3 152.168.3.0/ 152.163.200.157/ | range 20-21 udp Permit
255.255.255.0 255.255.255.255
R4 152.168.3.0/ 152.163.200.157/ eq http tcp Deny
255.255.255.0 255.255.255.255
R5 152.163.198.4/ 152.163.161.0/ gt 1023 tcp Permit
255.255.255.255 255.255.252.0
R6 152.163.198.4/ 152.163.0.0/ gt 1023 tcp Deny
255.255.255.255 255.255.0.0
R7 * * * * Permit

TABLE 1.6. Examples of packet classification on some incoming packets using the classiéibleof ®.

Network- Transport- Best
Network- Transport- .
Packet layer layer matching
S layer source S layer
Header | destination destination rule,
address protocol :
address port action
P1 152.163.190.69 | 152.163.80.1 http tcp R1, Deny
P2 152.168.3.21 | 152.163.200.157 http udp R2, Deny
P3 152.168.198.4 | 152.163.160.10 1024 tcp R5, Permit

We can see that routing lookup is an instance of one-dimensional packet classification.
In this case, all packets destined to the set of addresses described by a common prefix may

be considered to be part of the satoe/fEach rule has a route-preés its only compo-
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nent and has the next hop address associated with this prefix as the action. If we define the
priority of the rule to be the length of the route-predietermining the longest-matching

preix for an incoming packet is equivalent to determining the best matching rule in the
classifer. The packet classtfation problem is therefore a generalization of the routing
lookup problem. Chapters 4 and 5 of this thesis will preséctesft algorithms for fast

packet classification in flow-aware routers.

3 Goals and metrics for lookup and classification algorithms

A lookup or classification algorithm preprocesses a routing table or a classifier to com-
pute a data structure that is then used to lookup or classify incoming packets. This prepro-
cessing is typically done in software in the routing procesiscussed in Section 1.1.
There are a number of properties that we desire for all lookup and iclatssif algo-

rithms:

High speed.

Low storage requirements.

Flexibility in implementation.

Ability to handle lage real-life routing tables and classifiers.

Low preprocessing time.

« Low update time.

Scalability in the number of header fields (for classification algorithms only).

Flexibility in specification (for classification algorithms only).

We now discuss each of these properties in detail.

« High speed— Increasing data rates of physical links require faster address look-
ups at routers. For example, links running at OC192c (approximately 10 Gbps)

rates need the router to process 31.25 million packets per second (assuming mini-
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mum-sized 40 byte TCP/IP packetd)e generally require algorithms to perform

well in the worst case, e.g., classify packets at wire-speed. If this were not the

case, all packets (regardless of the flow they belong to) would need to be queued

before the classification function.This would defeat the purpose of distinguishing

and isolating flows, and applying fdifent actions on them. For example, it would

make it much harder to control the delay of a flow through the rdttdre same

time, in some applications, for example, those that do not provide qualities of ser-

vice, a lookup or classification algorithm that performs well iratreragecase

may be acceptable, in fact desirable, because the average lookup performance can

be much higher than the worst-case performance. For such applications, the algo-

rithm needs to process packets at the rate of 3.53 million packets per second for

0OC192c links, assuming an average Internet packet size of approximately 354

bytes [121]. &ble 1.7 lists the lookup performance required in one router port to

TABLE 1.7. Lookup performance required as a function of line-rate and packet size.

. 40-byte 84-byte 354-byte
. Line-rate
Year Line packets packets packets
(Gbps) M M M

(Mpps) (Mpps) (Mpps)

1995-7 T1 0.0015 0.0468 0.0022 0.00053
1996-8 OC3c 0.155 0.48 0.23 0.054
1997-8 OC12c 0.622 1.94 0.92 0.22
1999-2000 OC48c 2.50 7.81 3.72 0.88
(Now) 2000-1 0C192c 10.0 31.2 14.9 3.53
(Next) 2002-3 OC768c 40.0 125.0 59.5 14.1
1997-2000 1 Gigabit- 1.0 N.A. 1.49 0.35

Ethernet

1. In practice, IP packets are encapsulated and framed before being sent on SONET links. The most commonly used

encapsulation method is PPP (Point-to-Point Protocol) in HDLC-like framing. (HDLC stands for High-level Data Link
Control). This adds either 7 or 9 bytes of overhead (1 byte flag, 1 byte address, 1 byte control, 2 bytes protocol and 2 to
4 bytes of frame check sequence fields) to the packet. When combined with the SONET overhead (27 bytes of line and
section overhead in a 810 byte frame), the lookup rate required for 40 byte TCP/IP packets becomes approximately 25.6
Mpps. (Please see IETF RFC 1661/1662 for PPP/HDLC framing and RFC 1619/2615 for PPP ove) SONET
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handle a continuous stream of incoming packets of a given size (84 bytes is the
minimum size of a Gigabit-Ethernet frame — this includes a 64-byte packet, 7-

byte preamble, 1-byte start-of-frame delimitnd 12 bytes of intdrame gap).

« Flexibility in implementation— The forwarding engine may be implemented
either in software or in hardware depending upon the system requirements. Thus,
a lookup or classification algorithm should be suitable for implementation in both
hardware and software. For the highest speeds (e.g., for OC192c in the year
2000), we expect that hardware implementation will be necessary — hence, the

algorithm design should be amenable to pipelined implementation.

« Low storage equirrments— We desire that the storage requirements of the data
structure computed by the algorithm be small. Small storage requirements enable
the use of fast but expensive memory technologies like SRAMs (Synchronous
Random Access Memories). A memoryi@ént algorithm can benefit from an
on-chip cache if implemented in software, and from an on-chip SRAM if imple-

mented in hardware.

« Ability to handle lage real-life routing tables and classifiers- The algorithm

should scale well both in terms of storage and speed with the size of the forward-
ing table or the classifieAt the time of the writing of this thesis, the forwarding
tables of backbone routers contain approximately 98,000 route-prefixes and are
growing rapidly (as shown in Figure 1.9). A lookup engine deployed in the year
2001 should be able to support approximately 400,000-512,000 prefixes in order
to be useful for at least five years. Therefore, lookup and classification algorithms
should demonstrate good performance on current real-life routing tables and clas-

sifiers, as well as accommodate future growth.

e Low preprocessing time— Preprocessing time is the time taken by an algorithm
to compute the initial data structure. An algorithm that supports incremental
updates of its data structure is said tddymamic.” A “static” algorithm

requires the whole data structure to be recomputed each time a rule is added or
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deleted. In general, dynamic algorithms can toleratgtgsreprocessing times

than static algorithms. (The absolute valuetedifvith applications.)

« Low update time— Routing tables have been found to change fairly frequently
often at the peak rate of a few hundred prefixes per second and at the average rate
of more than a few prefixes per second [47]. A lookup algorithm should be able to
update the data structure at least this fast. For classification algorithms, the update
rate difers widely among diérent applications — a very low update rate may be
sufficient in firewalls where entries are added manually or infrequeditiythe
other hand, a classification algorithm must be able to support a high update rate in
so called “stateful” classifiers where a packet may dynamically trigger the addi-

tion or deletion of a new rule or a fine-granularity flow

« Scalability in the number of header fieldisr classification algorithms only) —

A classification algorithm should ideally allow matching on arbitrary fields,
including link-layer network-layertransport-layer and — in some cases — the
application-layer headefsFor instance, URL (universal resource locator — the
identifier used to locate resources on trald/\Wide Web) based classification

may be used to route a usgpackets across afdifent network or to give the user

a different quality of service. Hence, while it makes sense to optimize for the
commonly used header fields, the classification algorithm should not preclude the

use of other header fields.

« Flexibility in specificatior(for classification algorithms only) — A classification
algorithm should support flexible rule specifications, including prefixes, operators
(such as range, less than, greater than, equal to, etc.) and wildcards. Even non-
contiguous masks may be required, depending on the application using classifica-

tion.

1. That is why packet-classifying routers have sometimes been called “layerless switches”.



CHAPTER 1 Inwduction 28

4 Outline of the thesis

This thesis proposes several novel lookup and diestsiin algorithms. There is one
chapter devoted to each algorithm. Each chapter first presents background work related to
the algorithm. It then presents the motivation, key concepts, properties, and implementa-
tion results for the algorithm. It also evaluates the algorithm against the metrics outlined

above and against previous work on the subject.

Chapter 2 presents an overview of previous work on routing lookups. It proposes and
discusses a simple routing lookup algorithm optimized for implementation in dedicated
hardware. This algorithm performs the longestipn@iatching operation in two memory
accesses that can be pipelined to give the throughput of one routing lookup every memory
access. This corresponds to 20 million packets per second with 50 ns DRAMs (Dynamic

Random Access Memories).

With the motivation of high speed routing lookups, Chapter Bielefa new problem
of minimizing the average lookup time while keeping the maximum lookup time bounded.
This chapter then describes and analyzes two algorithms to solve this new problem.
Experiments show an improvement by a factor of 1.7 in the average number of memory
accesses per lookup over those obtained by worst-case lookup time minimization algo-
rithms. Moreoverthe algorithms proposed in this chapter support almost perfect balanc-

ing of the incoming lookup load, making them easily parallelizable for high speed designs.

In Chapter 4, we move on to the problem of multi-field packet classification. Chapter 4
provides an overview of previous work and highlights the issues in designing solutions for
this problem. This chapter proposes and discusses the performance of a novel algorithm

for fast classification on multiple header fields.
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Chapter 5 presents another new algorithm for high speed multi-field packet classifica-
tion. This algorithm is dferent from the one proposed in Chapter 4 in that it supports fast

incremental updates, is otherwise sloveard occupies a smaller amount of storage.

Finally, Chapter 6 concludes by discussing directions for future work in the area of fast

routing lookups and packet classification.
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CHAPTER 2

An Algorithm for Performing

Routing Lookups in Hardware

1 Introduction

This chapter describes a longest prefatching algorithm to perform fast IPv4 route
lookups in hardware. The chapter first presents an overview of previous work on IP look-
ups in Section 2. As we will see, most longest prefix matching algorithms proposed in the
literature are designed primarily for implementation in software. They attempt to optimize
the storage requirements of their data structure, so that the data structure can fit in the fast
cache memories of high speed general purpose processors. As a result, these algorithms do

not lend themselves readily to hardware implementation.

Motivated by the observation in Section 3 of Chapter 1 that the performance of a
lookup algorithm is most often limited by the number of memory accesses, this chapter
presents an algorithm to perform the longest matchingxpoperation for IPv4 route
lookups in hardware in two memory accesses. The accesses can be pipelined to achieve
one route lookup every memory accesg#hV80 ns DRAM, this corresponds to approxi-
mately 20 x 105 packets per second — enough to forward a continuous stream of 64-byte

packets arriving on an OC192c line.
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The lookup algorithm proposed in this chapter achieves high throughput by using pre-
computation and trading fo$torage space with lookup time. This has the sifiecedf
increased update time and overhead to the central procasdanotivates the low-over-

head update algorithms presented in Section 5 of this chapter

1.1 Organization of the chapter

Section 2 provides an overview of previous work on route lookups and a comparative
evaluation of the dferent routing lookup schemes proposed in literature. Section 3
describes the proposed route lookup algorithm and its data structure. Section 4 discusses
some variations of the basic algorithm that make mdigesit use of memornSection 5
investigates how route entries can be quickly inserted and removed from the data struc-

ture. Finally Section 6 concludes with a summary of the contributions of this chapter

2 Background and previous work on moute lookup algorithms

This section begins by brlgfdescribing the basic data structures and algorithms for
longest prefix matching, followed by a description of some of the more recently proposed
schemes and a comparative evaluation (both qualitative and quantitative) of their perfor-
mance. In each case, we provide only an overvieferring the reader to the original ref-

erences for more details.

2.1 Backgiound: basic data structures and algorithms
We will use the forwarding table shown ialdle 2.1 as an example throughout this
subsection. This forwarding table has four pef of maximum width 5 bits, assumed to

have been added to the table in the sequence P1, P2, P3, P4.
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TABLE 2.1. An example forwarding table with four prefixes. The prefixes are written in binary with a *’ denoting
one or more trailing wildcard bits — for instance, 10* is a 2-bit prefix.

Prefix Next-hop
P1 111* H1
P2 10* H2
P3 1010* H3
P4 10101 H4

2.1.1 Linear seach

The simplest data structure is a linked-list of all ipesf in the forwarding table. The
lookup algorithm traverses the list of prefixes one at a time, and reports the longest match-
ing prefx at the end of the traversal. Insertion and deletion algorithms perform trivial
linked-list operations. The storage complexity of this data structurl foreixes is
O(N). The lookup algorithm has time complexi®¢N) and is thus too slow for practical
purposes whem is laige. The insertion and deletion algorithms have time complexity

0O(1), assuming the location of the prefix to be deleted is known.

The average lookup time of a linear search algorithm can be made smaller if the pre-
fixes are sorted in order of decreasing length. For example, with this modification, the pre-
fixes of Table 2.1 would be kept in the order P4, P3, P1, P2; and the lookup algorithm
would be modified to simply stop traversal of the linked-list the first time it finds a match-

ing prefix.

2.1.2 Caching of ecently seen destination adarsses

The idea of cachingirét used for improving processor performance by keeping fre-
guently accessed data close to the CPU [34], can be applied to routing lookups by keeping

recently seen destination addresses and their lookup resutsutescacheA full lookup
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(using some longest pefmatching algorithm) is now performed only if the incoming

destination address is not already found in the cache.

Cache hit rate needs to be high in order to achieve a significant performance improve-
ment. For example, if we assume that a full lookup is 20 times slower than a cache lookup,
the hit rate needs to be approximately 95% or higher for a performance improvement by a
factor of 10. Early studies [22][24][77] reported high cache hit rates wigle lparallel
caches: for instance, Partridge [77] reports a hit rate of 97% with a cache of size 10,000
entries, and 77% with a cache of size 2000 entries. Reference [77] suggests that the cache
size should scale linearly with the increase in the number of hosts or the amount of Inter-
net trafic. This implies the need for exponentially growing cache sizes. Cache hit rates are
expected to decrease with the growth of Interneti¢rakecause of decreasing temporal
locality [66]. The temporal locality of tr€ is decreasing because of an increasing num-
ber of concurrentidws at high-speed aggregation points and decreasing duration of a

flow, probably because of an increasing number of short web transfers on the Internet.

A cache management scheme must decide which cache entry to replace upon addition
of a new entryFor a route cache, there is an additional overhead of flushing the cache on
route updates. Hence, low hit rates, together with cache search and management overhead,
may even degrade the overall lookup performance. Furthermore, the variability in lookup
times of diferent packets in a caching scheme is undesirable for the purpose of hardware
implementation. Because of these reasons, caching has generally fallen out of favor with
router vendors in the industry (see Cisco [120], Juniper [126] and Lucent [128]) who tout

fast hardware lookup engines that do not use caching.



An Algorithm for Performing Routing Lookups in Haare 35

Trie node

next-hop-ptr (if prefix present)

left-ptr right-ptr

Figure 2.1 A binary trie storing the prefixes ofilfle 2.1. The gray nodes store pointers to next-hops
that the actual prefix values are never stored since they are implicit from their position in the trie al
recovered by the search algorithm. Nodes have been named A, B, ..., H in this figure for ease of re

2.1.3 Radix trie

A radix trie, or simply a trie,is a binary tree that has labeled branches, and that is tra-
versed during a search operation using individual bits of the searchheeleft branch of
a node is labeled ‘0’ and the right-branch is labeled ‘1." A nedegpresents a bit-string
formed by concatenating the labels of all branches in the path from the root nad& to
prefix, p, is stored in the node that represents the bit-sfrirfgor example, the prefie

is stored in the left child of the root node.

1. The name trie comes frontrie val, but is pronounced “try”. See Section 6.3 on page 492 of Knuth [46] for more
details on tries.
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A trie for W-bit prefxes has a maximum depth @f nodes. The trie for the example

forwarding table of @ble 2.1 is shown in Figure 2.1.

The longest pret search operation on a given destination address proceeds bitwise
starting from the root node of the trie. The left (right) branch of the root node is taken if
the first bit of the address is ‘0’ (‘1’). The remaining bits of the address determine the path
of traversal in a similar mannéFhe search algorithm keeps track of theigrehcoun-
tered most recently on the path. When the search ends at a null,fghistarost recently
encountered prifis the longest pref matching the keyTherefore,ifding the longest
matching prek using a trie take8v memory accesses in the worst case, i.e., has time

complexity O(W).

The insertion operation proceeds by using the same bit-by-bit traversal algorithm as
above. Branches and internal nodes that do not already exist in the trie are created as the
trie is traversed from the root node to the node representing the new lgegice, inser-
tion of a new prex can lead to the addition of at most other trie nodes. The storage

complexity of aw-bit trie with N prefixes is thu(Nw) .1

An IPv4 route lookup operation is slow on a trie because it requires up to 32 memory
accesses in the worst case. Furthermore, a significant amount of storage space is wasted in
a trie in the form of pointers that are null, and that arehans— paths with 1-degree

nodes, i.e., that have only one child (e.g., path BCEGH in Figure 2.1).

Example 2.1:Given an incoming 5-bit address 1Q1to be looked up in the trie &igure 2.1
the longest préf matching algorithm takes the path ABCE before reaching a null
pointer The last préx encountered on this path, greP2 (10*) in node C, is the
desired longest matching prefix.

1. The total amount of space is, in fact, slightly less theh because prefixes share trie branches near the root node.
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Leaf-pushed trie node

left-ptr or next-hop-ptr right-ptr or next-hop-ptr

Figure 2.2 A leaf-pushed binary trie storing the prefixes ablE 2.1.

As Figure 2.1 shows, each trie node keeps a pointer each to its children nodes, and if it
contains a pref, also a pointer to the actual forwarding table entry (to recover the next-
hop address). Storage space for the pointer can be saved by ‘pushing’ittes poethe
leaves of the trie so that no internal node of the trie contains a prefix. Such a trie is referred
to as a leaf-pushed trie, and is shown in Figure 2.2 for the binary trie of Figure 2.1. Note

that this may lead to replication of the same next-hop pointer at several trie nodes.

2.1.4 ATRICIA L

A Patricia tree is a variation of a trie data structure, with tHerdifice that it has no 1-
degree nodes. Each chain is compressed to a single node in a Patricia tree. Hence, the tra-
versal algorithm may not necessarily inspect all bits of the address consegcskiygling
over bits that formed part of the label of some previous trie chain. Each node now stores

an additional field denoting the bit-position in the address that determines the next branch

1. FATRICIA is an abbreviation for “Practical AlgorithnoRetrieve Information Coded In Alphanumeric”. It is simply
written as “Patricia” in normal text.
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Patricia tree internal node

bit-position

left-ptr right-ptr

Figure 2.3 The Patricia tree for the example routing table abl& 2.1. The numbers inside the inte
nodes denote bit-positions (the most significant bit position is numbered 1). The leaves store the
key values.

to be taken at this node. The original Patricia tree [64] did not have support feesgref
However prefxes can be concatenated with trailing zeroes and added to a Patricia tree.
Figure 2.3 shows the Patricia tree for our running example of the routing table. Since a
Patricia tree is a complete binary tree (i.e., has nodes of degree either 0 or 2), it has exactly
N external nodes (leaves) ahd-1 internal nodes. The space complexity of a Patricia

tree is thusO(N).

Prefixes are stored in the leaves of a Patricia tree. A leaf node may have to keep a lin-
ear list of prakes, because priges are concatenated with trailing zeroes. The lookup
algorithm descends the tree from the root node to a leaf node similar to that in a trie. At
each node, it probes the address for the bit indicated by the bit-pogitibim fthe node.

The value of this bit determines the branch to be taken out of the node. When the algo-
rithm reaches a leaf, it attempts to match the address with the prefix stored at the leaf. This
preix is the desired answer if a match is found. Otherwise, the algorithm has to recur-

sively backtrack and continue the search in the other branch of this pea&nt node.



An Algorithm for Performing Routing Lookups in Haare 39

Hence, the lookup complexity in a Patricia tree is quite high, and can @aéh in the

worst case.

Example 2.2:Give an incoming 5-bit address 1Q1to be looked up in the Patricia tree of Figure
2.3, the longest prefix matching algorithm takes the path ABEG, and compares the
address to the pigfstored in leaf node G. Since it does not match, the algorithm
backtracks to the parent node E and tries to compare the address toithe pref
stored in leaf node.Since it does not match again, the algorithm backtracks to the
parent node B and finally matches prefix P2 in node D.

Instead of storing priedes concatenated with trailing zeros as above, a longest pref
matching algorithm may also form a data structure Witldifferent Patricia trees — one
for each of thew prefix lengths. The algorithm searches for an exact match in each of the
trees in decreasing order of pxeengths. Theifst match found yields the longest pxef
matching the given address. One exact match operation on a Patricia tree(\fgkeme.
Hence, a longest prefix matching operation on this data structure witD(akze time and

still have O(N) storage complexity

2.1.5 Path-compessed trie

A Patricia tree loses information while compressing chains because it remembers only
the label on the last branch comprising the chain — the bit-string represented by the other
branches of the uncompressed chain is lost. Unlike a Patricia trie, a path-compressed trie
node stores the complete bit-string that the node would represent in the uncompressed
basic trie. The lookup algorithm matches the address with this bit-string before traversing
the subtrie rooted at that node. This eliminates the need for backtracking and decreases
lookup time to at mostv memory accesses. The storage complexity rem@iNg. The

path-compressed trie for the example forwarding tablebler2.1 is shown in Figure 2.4.

Example 2.3:Give an incoming 5-bit address 1I01to be looked up in the path-compressed trie
of Figure 2.4, the longest prefix matching algorithm takes path AB and encounters
a null pointer on the right branch at node B. Hence, the most recently encountered
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Path-compressed trie node
variable-length bitstring next-hop (if prefix present)| bit-position
left-ptr | right-ptr

Figure 2.4 The path-compressed trie for the example routing tabl@lple 2.1 Each node is represen
by (bitstring,next-hop,bit-position).

prefix P2, stored in node B, yields the desired longest matching prefix for the given
address.

2.2 Previous work on route lookups

2.2.1 Early lookup schemes

The route lookup implementation in BSD unix [90][98] uses a Patricia tree and avoids
implementing recursion by keeping explicit parent pointers in every node. Reference [90]
reports that the expected length of a search on a Patricia tred wibh-preiix entries is
1.44logN. This implies a total of 24 bit tests and 24 memory accessds f008, 000
prefixes. Doeringer et al [19] propose thaamic pefix triedata structure — a variant of
the Patricia data structure that supports non-recursive search and update operations. Each
node of this data structure has six fields — five fields contain pointers to other nodes of the
data structure and one field stores a bit-index to guide the search algorithm as in a Patricia

tree. A lookup operation requires two traversals along the tree, the first traversal descends
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the tree to a leaf node and the second backtracksdahfe longest pref matching the
given address. The insertion and deletion algorithms as reported in [19] need to handle a

number of special cases and seerfadift to implement in hardware.

2.2.2 Multi-ary trie and controlled prefix expansion

A binary trie inspects one bit at a time, and potentially has a depthfof W-bit
addresses. The maximum depth can be decreas®#dikdy inspectingk bits at a time.
This is achieved by increasing the degree of each internal nafie The resulting trie is
called a2k-way or 2k-ary trie, and has a maximum @i/ k levels. The number of bits
inspected by the lookup algorithm at each trie nd&ges referred to as the stride of the
trie. While multi-ary tries have been discussed previously by researchers (e.g., see page
496 of [46], page 408 of [86]), the first detailed exposition in relation to prefixes and rout-

ing tables can be found in [97].

Prefixes are stored in a multi-ary trie in the following manner: If the length of a prefix
is an integral multiple ok, saymk, the prefix is stored at level of the trie. Otherwise, a
prefix of length that is not a multiple &fneeds to bexpandedo form multiple prefixes,
all of whose lengths are integer multipleskofFor example, a prefix of lengi+-1 needs

to be expanded to two prefixes of lengtleach, that can then be stored imkaary trie.

Example 2.4:The 4-ary trie to store the prefixes in the forwarding tableabie 2.lis shown in
Figure 2.5. While préfes P2 and P3 are stored directly without expansion, the
lengths of prakes P1 and P4 are not multiples of 2 and hence theseesreked
to be expanded. P1 expands to form the prefixgaRd P3, while P4 expands to
form prefixes P4and P4. All prefixes are now of lengths either 2 or 4.

Expansion of prekes increases the storage consumption of the multi-ary trie data
structure because of two reasons: (1) The next-hop corresponding tix ageef to be
stored in multiple trie nodes after expansion; (2) There is a greater number of unused

(null) pointers in a node. For example, there are 8 nodes, 7 branchesx and = 9
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4-ary trie node:

next-hop (if prefix present)

ptrO0 | ptrO1 | ptrl0 | ptrll

Figure 2.5 A 4-ary trie storing the prefixes ofible 2.1. The gray nodes store pointers to next-hops.

null pointers in the binary trie of Figure 2.1, while there are 8 nodes, 7 branches, and
8x4-7 = 25 null pointers in the 4-ary trie of Figure 2.5. The decreased lookup time
therefore comes at the cost of increased storage space requirements. The degree of expan-

sion controls this trade-obf storage versus speed in the multi-ary trie data structure.

Each node of the expanded trie is represented by an array of pointers. This array has
size2* and the pointer at indgxof the array represents the branch numbgraad points

to the child node at that branch.

A generalization of this idea is to havefdient strides at each level of the (expanded)

trie. For example, a 32-bit binary trie can be expanded to createl@¥elexpanded trie

with any of the following sequence of strides: 10,10,8,4; or 8,8,8,8, and so on. Srinivasan
et al [93][97] discuss these variations in greater detail. They propose an elegant dynamic
programming algorithm to compute the optimal sequence of strides that, given a forward-
ing table and a desired maximum number of levels, minimizes the storage requirements of
the expanded trie (called a fixed-stride trie) data structure. The algorithm rQ(&4D)

time, whereD is the desired maximum depth. Howewapdates to axed-stride trie

could result in a suboptimal sequence of strides and need costly re-runs of the dynamic

programming optimization algorithm. Furthermore, implementation of a trie whose strides
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depend on the properties of the forwarding table may be too complicated to perform in

hardware.

The authors [93][97] extend the idea further by allowing each trie node to have a dif-
ferent stride, and call the resulting trie a variable-stride trie. They propose another
dynamic programming algorithm, that, given a forwarding table and a maximummiepth
computes the optimal stride at each trie node to minimize the total storage consumed by
the variable-stride trie data structure. The algorithm rum(litWZD) time for a forward-

ing table withN prefixes.

Measurements in [97] (see page 61) report that the dynamic programming algorithm
takes 1 ms on a 300 MHz Pentium-Il processor to compute an optimal fixed-stride trie for
a forwarding table with 38,816 prefixes. This table is obtained from the MAE-EAST NAP
(source [124]). W will call this forwarding table the reference MAE-EAST forwarding
table as it will be used for comparison of thdetiént algorithms proposed in this section.

This trie has a storage requirement of 49 Mbytes for two levels and 1.8 Mbytes for three
levels. The dynamic programming algorithm that computes the optimal variable-stride trie
computes a data structure that consumes 1.6 Mbytes for 2 levels in 130 ms, and 0.57

Mbytes for 3 levels in 871 ms.

2.2.3 Level-compessed trie (LC-trie)

We saw earlier that expansion compresses the number of levels in a trie at the cost of
increased storage space. Space is especially wasted in the sparsely populated portions of
the trie, which are themselves better compressed by the technique of path compression
mentioned in Section 2.1.5. Nilsson [69] introduces the LC-trie, a trie structure with com-
bined path and level compression. An LC-trie is created from a binary trie as follows.
First, path compression is applied to the binary trie. Second, everyrtbdeis rooted at

a complete subtrie of maximum deitis expanded to create2é-degree node’. The
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leaves of the subtrie rooted at noden the basic trie become th2& children ofv'. This
expansion is carried out recursively on each subtrie of the basic trie This is done with the
motivation of minimizing storage while still having a small number of levels in the trie.

An example of an LC-trie is shown in Figure 2.6.

The construction of an LC-trie foM prefxes takesO(NlogN) time [69]. Incremental
updates are not supported. Reference [97] notes that an LC-trie is a special case of a vari-
able-stride trie, and the dynamic programming optimization algorithm of [97] would
indeed result in the LC-trie if it were the optimal solution for a given set akesefThe
LC-trie data structure consumes 0.7 Mbytes on the reference MAE-EAST forwarding
table consisting of 38,816 prefixes and has 7 levels. This is worse than the 4-level optimal

variable-stride trie, which consumes 0.4 Mbytes [97].

2.2.4 The Lulea algorithm

The Lulea algorithm, proposed by Degermark et al [17], is motivated by the objective
of minimizing the storage requirements of their data structure, so that it cathé L1-
cache of a conventional general purpose processor (e.g., Pentium or Alpha processor).
Their algorithm expands the 32-bit binary trie to a three-level leaf-pushed trie with the
stride sequence of 16, 8 and 8. Each level is optimized sepavsetiscuss some of the

optimizations in this subsection and refer the reader to [17] for more details.

The frst optimization reduces the storage consumption of an array when a number of
consecutive array elements have the same value; i.e., the@edistinct elements in the
array of sizeM, with Q«M. For example, an 8-element array that has values
ABBBBCCD could be represented by two arrays: one abyagrr, stores the 8 bits
1100101, and the second arraglarr, stores the actual pointer values ABCD. The value
of an element at a locatignis accessed by first counting the number of bits that are ‘1’ in

bitarr[1..j] , sayp, and then accessinglarr[p] .
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Binary trie
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Path-compressed trie

Level-compressed trie

Figure 2.6 An example of an LC-trie. The binary trie is first path-compressed (compressed nc
circled). Resulting nodes rooted at complete subtries are then expanded. The end result is a trie
nodes of diferent degrees.
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Hence, an array ¥l V-bit elements, withQ of them containing distinct values, con-
sumesMV bits when the elements are stored directly in the aaryM + QV bits with
this optimization. The optimization, howeyeomes with two costs incurred at the time
the array is accessed: (1) the appropriate number of bits that are ‘1’ need to be counted,

and (2) two memory accesses need to be made.

The Lulea algorithm applies this idea to the root node of the trie that contains
216 = 64K pointers (either to the next-hop or to a node in the next level). As we saw in
Section 2.2.2, pointers at several consecutive locations could have the same value if they
are the next-hop pointers of a shorter préfat has been expanded to 16 bits. Storage
space can thus be saved by the optimization mentioned above. In order to decrease the
cost of counting the bits in the 64K-wide bitmap, the algorithm divides the bitmap into 16-
bit chunks and keeps a precomputed sum of the bits that are ‘1’ in anothghasea\ptr

of size (64K) /16 = 4K bits.

The second optimization made by the Lulea algorithm eliminates the need to store the
64K-wide bitmap. They note that the 16-bit bitmap values are not arbiimatgad, they
are derived from complete binary trees, and hence are much fewer in number (678 [17])
than the maximum possibR—*}G. This allows them to encode each bitmap by a 10-bit num-
ber (called codeword) and use another auxiliary table, calégrtable a two-dimensional
array of sizel0, 848 = 678 x 16. maptable[c][j] gives the precomputed number of bits
that are ‘1’ in the 16-bit bitmap corresponding to codewoiwkfore the bit-positioi.
This has the net fefct of replacing the need to count the number of bits that are ‘1’ with an

additional memory access inteaptable

The Lulea algorithm makes similar optimizations at the second and third levels of the
trie. These optimizations decrease the data structure storage requirements to approxi-

mately 160 Kbytes for the reference forwarding table with 38,81&psef— an average
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of only 4.2 bytes per prefix. Howevéhe optimizations made by the Lulea algorithm have
two disadvantages:
1. It is difficult to support incremental updates in the (heavily-optimized) data

structure. For example, an addition of a new prefix may lead to a change in all the
entries of the precomputed artagse ptr

2. The benefits of the optimizations are dependent on the structure of the forward-
ing table. Hence, it is ditult to predict the worst-case storage requirements of
the data structure as a function of the number of prefixes.

2.2.5 Binary seach on prefix lengths

The longest prefix matching operation can be decomposetVvirwact match search
operations, one each on pxek of fxed length. This decomposition can be viewed as a
linear search of the spade..W of prefx lengths, or equivalently binary-trie levels. An
algorithm that performs a binary search on this space has been proposealiibygél et
al [108]. This algorithm uses hashing for an exact match search operation among prefixes

of the same length.

Given an incoming address, a linear search on the space o Iprejths requires

probing each of th& hash tables, ...H,,,, — which requiresVV hash operations arwl

W
hashed memory accesseshe binary search algorithm [108] storesl—ip not only the
prefixes of lengthj, but also the internal trie nodes (calledrkersin [108]) at level;.

The algorithmifst probesH If a node is found in this hash table, there is no need to

w/2:
probe tabled,...H,, ,_,. If no node is found, hash tables, ,, ,...H,need not be
probed. The remaining hash tables are similarly probed in a binary search.nfdmner
require®(logW) hashed memory accesses for one lookup operation. This data structure
has storage complexi@(NW) since there could be up Yo markers for a prefix — each

internal node in the trie on the path from the root node to the prefix is a niRRekerence

1. A hashed memory access tak¥$) time on average. Howevehe worst case could B&N) in the pathological
case of a collision among @l hashed elements.



An Algorithm for Performing Routing Lookups in Haare 48

[108] notes that not alW markers need actually be kept. Only thgw markers that
would be probed by the binary search algorithm need be stored in the corresponding hash
tables — for instance, an IPv4 prefix of length 22 needs markers only for prefix lengths 16

and 20. This decreases the storage complexi@(XibogW) .

The idea of binary search on trie levels can be combined witix psgfansion. For
example, binary search on the levels ofkaary trie can be performed in time

O(log (W/K)) and storag®(N2" + Nlog (W/K)).

Binary search on trie levels is an elegant idea. The lookup time scales logarithmically
with address length. The idea could be used for performing lookups in IPv6 (the next ver-
sion of IP) which has 128-bit addresses. Measurements on IPv4 routing tables [108], how-
ever, do not indicate signi¢ant performance improvements over other proposed
algorithms, such as trie expansion or the Lulea algorithm. Incremental insertion and dele-
tion operations are also not supported, because of the several optimizations performed by

the algorithm to keep the storage requirements of the data structure small [108].

2.2.6 Binary seach on intervals represented by pefixes

We saw in Section 1.2 of Chapter 1 that eachxprepresents an interval (a contigu-
ous range) of addresses. Because longeixpeefepresent shorter intervalsding the
longest prak matching a given address is equivalentindihg the narrowest enclosing
interval of the point represented by the address. Figure 2.7(a) represents the prefixes in the
example forwarding table ofable 2.1 on a number line that stretches from address 00000
to 11111. Preix P3 is the longest prief matching address 10100 because the interval
[10100...10101] represented by P3 encloses the point 10100, and is the narrowest such

interval.

The intervals created by the prefs partition the number line into a set of disjoint

intervals (called basic intervals) between consecutive end-points (see Figure 2.7(b)).
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P4
-
P3
-
P2 P1
-y - -
-y PO -
: | | | | | |
I I I I I I
00000 10000 10100 101011011 11100 11111
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00000 10000 10100 1010110111 11100 11111
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Figure 2.7 (not drawn to scale) (a) shows the intervals represented by prefixedté 2.1 Prefix PO i
the “default” prefix. The figure shows that finding the longest matching prefix is equivalent to finc
narrowest enclosing interval. (b) shows the partitioning of the number line into disjoint intervals
from (a). This partition can be represented by a sorted list of end-points.

Lampson et al [49] suggest an algorithm that precomputes the longestfprefvery

basic interval in the partition. If we associate every basic interval with its left end-point,
the partition could be stored by a sorted list of left-endpoints of the basic intervals. The
longest prak matching problem then reduces to the problemrafifg the closest left
end-point in this list, i.e., the value in the sorted list that is tlgee$rvalue not greater

than the given address. This can be found by a binary search on the sorted list.

Each prak contributes two end-points, and hence the size of the sorted list is at most
2N+ 1 (including the leftmost point of the number line). One lookup operation therefore
takesO(log (2N)) time andO(N) storage space. It is againfaifilt to support fast incre-
mental updates in the worst case, because insertion or deletion of a (shotigamef

change the longest matching fixes of several basic intervals in the partitiom our

1. This should not happen too often in the average case. Also note that the binary search tree itself needs to be updated
with up to two new values on the insertion or deletion of a prefix.
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simple example of Figure 2.7(b), deletion of ptdf2 requires changing the associated

longest matching prefix of two basic intervals to PO.

Reference [49] describes a modified scheme that uses expansion at the root and imple-
ments a multiway search (instead of a binary search) on the sorted list in order to (1)
decrease the number of memory accesses required and (2) take advantage of the cache-
line size of high speed processors. Measurements for a 16-bit expansion at the root and a
6-way search algorithm on the reference MAE-EAST forwarding table with 38,816 entries
showed a worst-case lookup time of 490 ns, storage of 0.95 Mbytes, build time of 5.8 s,
and insertion time of around 350 ms on a 200 MHz Pentium Pro with 256 Kbytes of L2

cache.

TABLE 2.2. Complexity comparison of the @#rent lookup algorithms. A -’ in the update column denotes that
incremental updates are not supported. A ‘-’ in the row corresponding to the Lulea scheme denotes that it
is not possible to analyze the complexity of this algorithm because it is dependent on the structure of the
forwarding table.

. Lookup Storage Update-
Algorithm complexit complexit time
plexity plexity complexity
Binary trie W NW W
Patricia W2 N W
Path-compressed trie W N W
Multi-ary trie W/ k ZKNW/k -
LC-trie W/ k 2kNW/ k -
Lulea scheme - - -
Binary search on logW NlogW -
lengths
Binary search on inter{ log (2N) N -
vals
Theoretical lower logW N -
bound [102]
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2.2.7 Summary of pevious algorithms

Table 2.2 gives a summary of the complexities, aalnlel2.3 gives a summary of the
performance numbers (reproduced from [97], page 42) of the algorithms reviewed in Sec-
tion 2.2.1 to Section 2.2.6. Note that each algorithm was developed with a software imple-
mentation in mind.

TABLE 2.3. Performance comparison of fdifent lookup algorithms.

Worst-case lookup Storage requirements (Kbytes) on

Algorithm time on 300 MHz the reference MAE-EAST
9 Pentium-II with 15ns forwarding table consisting of
512KB L2 cache (ns).| 38,816 pefixes, taken fom [124].
Patricia (BSD) 2500 3262
Multi-way fixed-stride 298 1930
optimal trie (3-levels)
Multi-way fixed stride 428 660
optimal trie (5 levels)
LC-trie - 700
Lulea scheme 409 160
Binary search on 650 1600
lengths
6-way search on inter- 490 950
vals

2.2.8 Pevious work on lookups in hardwae: CAMs

The primary motivation for hardware implementation of the lookup function comes
from the need for higher packet processing capacity (at OC48c or OC192c speeds) that is
typically not obtainable by software implementations. For instance, almost all high speed
products from major router vendors today perform route lookups in hardwaseftware
implementation has the advantage of being mieselfie, and can be easily adapted in

case of modifications to the protocol. Howeveseems that the need for flexibility within

1. Forinstance, the OC48c linecards built by Cisco [120], Juniper [126] and Lucent [128] use silicon-based forwarding
engines.
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the IPv4 route lookup function should be minimal — IPv4 is in such widespread use that
changes to either the addressing architecture or the longagtmeg€hing mechanism

seem to be unlikely in the foreseeable future.

A fully associative memoryor content-addressable memory (CAM), can be used to
perform an exact match search operation in hardware in a single clock cycle. A CAM
takes as input a search kepmpares the key in parallel with all the elements stored in its
memory arrayand gives as output the memory address at which the matching element
was stored. If some data is associated with the stored elements, this data can also be
returned as output. Now longest prefix matching operation on 32-bit IP addresses can be
performed by an exact match search in 32 separate CAMs [45][52]. This is clearly an
expensive solution: each of the 32 CAMs needs to be big enough ta\sfmedxes in
absence of apriori knowledge of the prefix length distribution (i.e., the number of prefixes

of a certain length).

A better solution is to use a ternary-CAM (TCAM), a more flexible type of CAM that
enables comparisons of the input key with variable length elements. Assume that each ele-
ment can be of length from 1 W bits. A TCAM stores an element asval( mask pair;
whereval andmaskare eactW-bit numbers. If the element ¥ bits wide,1<Y<W, the
most significanty bits of theval field are made equal to the value of gtement, and the
most significanty bits of themaskare made ‘1. The remainingWw-Y) bits of themask
are ‘0.” Themaskis thus used to denote the length of an element. The leasicaghif
(W=Y) bits ofval can be set to either ‘0’ or ‘1," and are “dboare” (i.e., ignored).For
example, ifw = 5, a preix 10* will be stored as the pair (1000Q,aD0). An element

matches a given input key by checking if those bitgabfor which themaskbit is ‘1’ are

1. In efect, a TCAM stores each hit of the element as one of three possible values (0,1,X) where X represents a wild-
card, or a dort’care bit. This is more powerful than needed for storing prefixes, but we will see the need for this in Chap-
ter 4, when we discuss packet classification.
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Figure 2.8 Showing the lookup operation using a ternary-CAMdéhotes the set of prefixes of lengtl

identical to those in the keln other words,al, mask matches an inplteyif (val & m)

equals key& m), where & denotes the bitwise-AND operation amdenotes thenask

A TCAM is used for longest priegf matching in the manner indicated by Figure 2.8.
The TCAM memory array stores prefixes @al,(mash pairs in decreasing order of prefix
lengths. The memory array compares a given input key with each element. It follows by
defnition that an elemenwél, mask matches the key if and only if it is a predf that
key. The memory array indicates the matched elements by setting corresponding bits in
the N-bit bitvector matched_bvto ‘1.” The location of the longest matching pxefan

then be obtained by using arbit priority encoder that takes matched_bwas input, and
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outputs the location of the lowest bit that is ‘1’ in the bitvecidris is then used as an

address to a RAM to access the next-hop associated with this prefix.

A TCAM has the advantages of speed and simpli¢itywever there are two main

disadvantages of TCAMs:

1. ATCAM is more expensive and can store fewer bits in the same chip area as
compared to a random access memory (RAM) — one bit in an SRAM typically
requires 4-6 transistors, while one bit in a TCAM typically requifle§3 transis-

tors (two SRAM cells plus at least 3 transistors [87]). A 2 Mb TCAM (biggest
TCAM in production at the time of writing) running at 50-100 MHz costs about
$60-$70 todaywhile an 8 Mb SRAM (biggest SRAM commonly available at the
time of writing) running at 200 MHz costs about $20-$40. Note that one needs at
least 512K x 32b = 16 Mb of TCAM to support 512K prefixes. This can be
achieved today bglepth-cascadinga technique to increase the depth of a CAM)
eight ternary-CAMs, further increasing the system cost. Newer TCAMs, based on
a dynamic cell similar to that used in a DRAM, have also been proposed [130],
and are attractive because they can achieve higher densities. One, as yet unsolved,
issue with such DRAM-based CAMs is the presence of hard-to-detect soft errors
caused by alpha particles in the dynamic memory tells.

2. A TCAM dissipates a lge amount of power because the circuitry of a TCAM

row (that stores one element) is such that electric current is drawn in every row
that has an unmatched prefix. An incoming address matches anhposfixes,

one of each length — hence, most of the elements are unmatched. Because of this
reason, a TCAM consumes a lot of power even undardheal mode of opera-

tion. This is to be contrasted with an SRAM, where the normal mode of operation
results in electric current being drawn only by the element accessed at the input
memory address. At the time of writing, a 2 Mb TCAM chip running at 50 MHz
dissipates about 5-8 watts of power [127][131].

1. Detection and correction of soft errors is easieamiom accesdynamic memories, because only one row is

accessed in one memory operation. Usualte keeps an error detection/correction code (EC) with each memory row

and verifies the EC upon accessing a.rbiis does not apply in a CAM because all memory rows are accessed simulta-
neouslywhile only one result is made available as output. Hence, ificudtito verify the EC for all rows in one search
operation. One possibility is to include the EC with each element in the CAM and require that a match be indicated only
if both the element and its EC match the incoming key and the expected EC. This approach however does not take care
of elements that should have been matched, but do not because of memory errors. Also, this mechanism does not work
for ternary CAM elements because of the presence of wildcarded bits.
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An important issue concerns fast incremental updates in a TCAM. As elements need
to be sorted in decreasing order of prééngths, the addition of a prefmay require a
large number of elements to be shifted. This can be avoided by keeping unused elements
between the set of pieés of lengthi andi +1. However that wastes space and only
improves the average case update time. An optimal algorithm for managing the empty

space in a TCAM has been proposed in [88].

In summary TCAMs have become denser and faster over the years, but still remain a

costly solution for the IPv4 route lookup problem.

3 Proposed algorithm

The algorithm proposed in this section is motivated by the need for an inexpensive and
fast lookup solution that can be implemented in pipelined hardware, and that can handle
updates with low overhead to the central procesEBbis sectionifst discusses the
assumptions and the key observations that form the basis of the algorithm, followed by the

details of the algorithm.

3.1 Assumptions

The algorithm proposed in this section is spec¢d IPv4 and does not scale to IPv6,
the next version of IRt is based on the assumption that a hardware solution optimized for
IPv4 will be useful for a number of years because of the continued popularity of IPv4 and
delayed widespread use of IPv6 in the Internet. IPv6 was introduced in 1995 to eliminate
the impending problem of IPv4 address space exhaustion and uses 128-bit addresses
instead of 32-bit IPv4 addresses. Our assumption is supported by the observation that IPv6
has seen only limited deployment to date, probably because of a combination of the fol-

lowing reasons:
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1. ISPs are reluctant to convert their network to use an untested techmpaldgy
ularly a completely new Internet protocol.

2. The industry has meanwhile developed other techniques (such as network
address translation, or NA132]) that alleviate the address space exhaustion
problem by enabling reuse of IPv4 addresses inside administrative domains (for
instance, lage portions of the networks in China and Microsoft are behind net-
work elements performing NIA.

3. The addressing and routing architecture in IPv6 has led to new technical issues
in areas such as multicast and multi-homing. & not discuss these issues in
detail here, but refer the reader to [20][125].

3.2 Observations

The route lookup scheme presented here is based on the following two key observa-

tions:

1. Because of route-aggregation at intermediate routers (mentioned in Chapter 1),
routing tables at higher speed backbone routers cdetaientries with mfixes

longer than 24-bitsThis is verified by a plot of prefix length distribution of the
backbone routing tables taken from tdXNAP on April 11, 2000 [124], as

shown in Figure 2.9 (note the logarithmic scale on the y-axis). In this example,
99.93% of the prefixes are 24-bits or less. A similar prefix length distribution is
seen in the routing tables at other backbone routers. Also, this distribution has
hardly changed over time.

2. DRAM memory is cheapnd continues to get cheaper by a factor of approxi-
mately two every yeab4 Mbytes of SDRAM (synchronous DRAM) cost around
$50 in April 2000 [129]. Memory densities are following MosriEw and dou-
bling every eighteen months. The net result is thatge lamount of memory is
available at low cost. This observation provides the motivation for trading of
large amounts of memory for lookup speed. This is in contrast to most of the pre-
vious work (mentioned in Section 2.2) that seeks to minimize the storage require-
ments of the data structure.
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Figure 2.9 The distribution of prefix lengths in th& KX routing table on April 1, 2000. (Source: [124]
The number of prefixes longer than 24 bits is less than 0.07%.
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Figure 2.10 ProposedIR-24-8-BASICarchitecture. The next-hop result comes from eifii&r24 or
TBLlong

3.3 Basic scheme

The basic scheme, call@R-24-8-BASICmakes use of the two tables shown in Fig-

ure 2.10. The first table (callddBL24) stores all possible route-prefixes that are up to, and
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If longest prefix with this 24-bit prefix is < 25 bits long:

| 0 | Next-hop |
1 bit 15 bits

If longest prefix with this 24 bits prefix is > 24 bits long:
| 1 | Index into 2nd table TBLIong |
1 bit 15 bits

Figure 2.11 TBL24entry format

including, 24-bits long. This table ha&*2ntries, addressed from 0 (corresponding to the
24-bits being 0.0.0) t@* -1 (255.255.255). Each entry TTBL24 has the format shown

in Figure 2.1. The second tabldBLlong stores all route-prides in the routing table

that are longer than 24-bits. This scheme can be viewed as a fixed-stride trie with two lev-
els: the first level with a stride of 24, and the second level with a stride & &ilWefer

to this as a (24,8) split of the 32-bit binary trie. In this sense, the scheme can be viewed as

a special case of the general scheme of expanding tries [93].

A prefix, X, is stored in the following manner:Xfis less than or equal to 24 bits long,
it need only be stored ifBL24 the first bit of such an entry is set to zero to indicate that
the remaining 15 bits designate the next-hop. If, on the other hand,Xrefienger than
24 bits, theifst bit of the entry indexed by thest 24 bits ofX in TBL24is set to one to

indicate that the remaining 15 bits contain a pointer to a set of entfi&diang

In effect, route-prakes shorter than 24-bits are expanded; e.g. the routexpref
128.23.0.0/16 will have®*~*® = 256 entries associated with it IMBL24 ranging from
the memory address 128.23.0 through 128.23.255. All 256 entries will have exactly the
same contents (the next-hop corresponding to the route-p2§.23.0.0/16). By using

memory ineficiently, we can find the next-hop information within one memory access.

TBLlongcontains all route-prefixes that are longer than 24 bits. Each 24-bit prefix that

has at least one route longer than 24 bits is alloczited 256 entries inTBLlIong Each
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entry inTBLlongcorresponds to one of the 256 possible longer prefixes that share the sin-
gle 24-bit prek in TBL24 Note that because only the next-hop is stored in each entry of
the second table, it need be only 1 byte wide (under the assumption that there are fewer

than 255 next-hop routersthis assumption could be relaxed for wider memory

Given an incoming destination address, the following steps are taken by the algorithm:

1. Using the first 24-bits of the address as an index into the firstiBh24 the
algorithm performs a single memory read, yielding 2 bytes.

2. If the first bit equals zero, then the remaining 15 bits describe the next-hop.

3. Otherwise (i.e., if the first bit equals one), the algorithm multiplies the remain-
ing 15 bits by 256, adds the product to the last 8 bits of the original destination
address (achieved by shifting and concatenation), and uses this value as a direct
index intoTBLIong which contains the next-hop.

3.3.1 Examples

Consider the following examples of how route lookups are performed using the t&lide in

ure 2.12

Example 2.5:Assume that the following routes are already in the table: 10.54.0.0/16,
10.54.34.0/24, 10.54.34.192/26. Thstfroute requires entries BL24that cor-
respond to the 24-bit prefixes 10.54.0 through 10.54.255 (except for 10.54.34). The
second and third routes require that the second table be used (because both of them
have the samargt 24-bits and one of them is more than 24-bits long). So, in
TBL24 the algorithm inserts a ‘1’ bit, followed by an index (in the example, the
index equals 123) into the entry corresponding to the 10.54.34 prefix. In the second
table, 256 entries are allocated starting with memory locdt®3n« 256 . Most of
these locations are filled in with the next-hop corresponding to the 10.54.34 route,
but 64 of them (those fronG123 x 256) + 192 to (123 x 256) + 255) are flled
in with the next-hop corresponding to the route-prefix 10.54.34.192.

We now consider some examples of packet lookups.

Example 2.6:If a packet arrives with the destination address 10.54.22.147rgh24 bits are
used as an index infBBL24 and will return an entry with the correct next-hop

(A).
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TBL24 TBLlong
Entry Entry .
Number Contents Number Contents Forwarding &ble
(10.54.0.0/16, A)
: : (10.54.34.0/24, B)
10.53.258- |— - 123*256 | B (10.54.34.192/26, Q)
10.54.0 | 0| A 123*256+1|| B
10.54.1 | O A 123*256+2| B
10.54.33||0[ A 123*256+191 B ﬁ56 etngites
1054341123 123*256+192C af5%§.340
remix
10.54.35]0] A 123*256+195C P
10.54.255 0| A 123*256+25% G
10.55.0 |- |— - 124*256 | G

Figure 2.12 Example with three prefixes.

Example 2.7:1f a packet arrives with the destination address 10.54.34.14irsh@4 bits are
used as an index into thiest table, which indicates that the second table must be
consulted. The lower 15 bits of tAi@L24entry (123 in this example) are com-
bined with the lower 8 bits of the destination address and used as an index into the
second table. After two memory accesses, the table returns the next-hop (B).

Example 2.8:If a packet arrives with the destination address 10.54.34TB£4indicates that
TBLlongmust be consulted, and the lower 15 bits offtBe24entry are combined
with the lower 8 bits of the address to form an index into the second table. This
time the next-hop (C) associated with the prefix 10.54.34.192/26 (C) is returned.

The size of second memory that stores the taBldongdepends on the number of
routes longer than 24 bits required to be supported. For example, the second memory
needs to be 1 Mbyte in size for 4096 routes longer than 24 bits (to be precise, 4096 routes
that are longer than 24 bits and have distinct 24-bit prefixesye#& from Figure 2.9 that

the number of routes with length above 24 is much smaller than 4096 (only 31 for this



An Algorithm for Performing Routing Lookups in Haare 61

router). Because 15 bits are used to indexTigblong 32K distinct 24-bit-prefixed long

routes with prefixes longer than 24 bits can be supported with enough memory

As a summarywe now review some of the pros and cons associated wilif&:24-

8-BASICscheme

Pros

1. Except for the limit on the number of distinct 24-bit-prefixed routes with length
greater than 24 bits, this infrastructure will support an unlimited number of route-
prefixes.

2. The design is well suited to hardware implementation. A reference implementa-
tion could, for example, stofieBL24in either of-chip, or embedded SDRAM and
TBLlongin on-chip SRAM or embedded-DRAM. Although (in general) two

memory accesses are required, these accesses are in separate memories, allowing
the scheme to be pipelined. When pipelined, 20 million packets per second can be
processed with 50ns DRAM. The lookup time is thus equal to one memory access
time.

3. The total cost of memory in this scheme is the cost of 33 Mbytes of DRAM (32
Mbytes forTBL24and 1 Mbyte foifBLIong, assuming BLlongis also kept in
DRAM. No special memory architectures are required.

Cons

1. Memory is used inétiently.

2. Insertion and deletion of routes from this table may require many memory
accesses, and ad@roverhead to the central proces3iis is discussed in detail
in Section 5.

4 Variations of the basic scheme

The basic schem®IR-24-8-BASIC consumes a lge amount of memonyhis sec-
tion proposes variations of the basic scheme with lower storage requirements, and
explores the trade-bbetween storage requirements and the number of pipelined memory

accesses.
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4.1 ScheméIR-24-8-INT: adding an intermediate “length” table

This variation is based on the observation that very few prefixes in a forwarding table
that are longer than 24 bits are a full 32 bits long. For example, there are no 32-bit prefixes
in the prefix-length distribution shown in Figure 2.9. The basic scheiRe24-8-BASIC
allocates an entire block of 256 entries in tabBi longfor each prek longer than 24
bits. This could waste memory — for example, a 26-bitiprefuires only226_24 =4

entries, but is allocated 29@®LIlongentries in the basic scheme.

The storage &tiency (amount of memory required per prgtan be improved by
using an additional level of indirection. This variation of the basic scheme, DdiRed4-
8-INT, maintains an additional “intermediate” tabl&Lint,as shown in Figure 2.13. An
entry inTBL24that pointed to an entry ifBLlIongin the basic scheme now points to an
entry inTBLint Each entry infBLint corresponds to the unique 24-bit preepresented
by theTBL24entry that points to it. Therefor€BLint needs to b& entries deep to sup-

port M prefixes that are longer than 24 bits and have distinct 24-bit prefixes.

Assume that an entrg, of TBLint corresponds to the 24-bit ppefg. As shown in
Figure 2.14, entrye contains a 21-bit indexelld into tableTBLlIong and a 3-bipreix-
lengthfield. The indexitld stores an absolute memory addresEBhlongat which the
set ofTBLlongentries associated withbegins. This set diBLlongentries was always of
size 256 in the basic scheme, but could be smaller in this sdDiétr24-8-INT The size
of this set is encoded in tipeefix-lengthfield of entrye. Theprefix-lengthfield indicates
the longest pref in the forwarding table among the set of pres that have therst 24-
bits identical tog. Three bits are sfi€ient because the length of this prefix must be in the
range 25-32. Thpreix-lengthfield thus indicates how many entriesTiBLIongare allo-

cated to this 24-bit prefiy. For example, if the longest prefix is 30 bits long, thempthe
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TBLlong
Entry # Contents
325 —
325+1 || —
TBL24 TBLint f
Entry # Contents 325+31|| — I
: : Len Tz
Entrvj# Ir.1dex 305432 | A S8
' ' . H TLO
10.78.4%5 1| 567 —— 567l 6| 325 325+33| B _3%
' ' : 325+34| A =
¢ O
: < o
@-l—‘
325+47| A
Forwarding Bble — 325+48| —
(10.78.45.128/26, A : :
(10.78.45.132/30, B : :
325+63| —
Figure 2.13 SchemeDIR-24-8-INT
index into 2nd table max length
21 bits 3 bits

Figure 2.14 TBLintentry format.

fix-lengthfield will store30-24 = 6, andTBLlongwill have 26 = 64 entries allocated to

the 24-bit prefixq.

Example 2.9:(see Figure 2.13) Assume that two pres 10.78.45.128/26 and 10.78.45.132/30
are stored in the table. The entry in tabBL 24 corresponding to 10.78.45 will
contain an index to an entry TBLint (the index equals 567 in this example). Entry
567 inTBLintindicates a length of 6, and an index im@Llong(the index equals
325 in the example) pointing to 64 entries. One of these entries,rﬂ(cbmnum-
bered 25 to 30 of prief10.78.45.132/30 are 100001, i.e., 33), contains the next-
hop for the 10.78.45.132/30 route-fxeEntry 32 and entries 34 through 47 (i.e.,
entries indicated by 10**** except 100001) contain the next-hop for the



An Algorithm for Performing Routing Lookups in Haare 64

10.78.45.128/26 route. The other entries contain the next-hop value for the default
route.

The schem®IR-24-8-INTimproves utilization of tabl@BLlong by an amount that
depends on the distribution of the length of prefixes that are longer than 24-bits. For exam-
ple, if the lengths of such pmeés were uniformly distributed in the range 25 to 32, 16K
such prefixes could be stored in a total of 1.05 Mbytes of mefmbiyis becaus€BLint

would require 16Kx3B=0.05MB, and TBLlong would require

(16K) x E Z zig/ax 1byte= 1IMB of memory In contrast, the basic scheme would
18

require16K x 28 x 1byte = 4MB to store the same number of prefixes. Howehermod-
ification to the basic scheme comes at the cost of an additional memory access, extending

the pipeline to three stages.

4.2 Multiple table scheme

The modifcations that we consider next split the 32-bit space into smaller subspaces
So as to decrease the storage requirements. This can be viewed as a special case of the gen-
eralized technique of trie expansion discussed in Section 2.2.2. Howevebjective
here is to focus on a hardware implementation, and hence on the constraints posed by the
worst-case scenarios, as opposed to generating an optimal sequence of strides that mini-

mizes the storage consumption for a given forwarding table.

The frst scheme, calleBIR-21-3 extendgshe basic schemBIR-24-8-BASIGo use
three smaller tables instead of ongyéatable TBL24 and one small tabl@BLlong. As
an example, tableBBL24andTBLIongin schemeDIR-24-8-BASICare replaced by &2
entry table (the ‘ifst” table, TBLirst21), another 31 entry table (the “second” table,
TBLsec2), and a 2° entry table (the “third” tableTBLthird20). The frst 21 bits of the

packets destination address are used to indexTibirst21, which has entries of width
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. . 0 . .
First (2" entry) table Second EJ|I| x 2"Ftable Third table TBLthird20
TBLfirst21 TBLsec20
Use firstn bits of Use index “i” concatenated Use index " concatenated
destination address with next m bits of with last 32-n-m bits of destination
as index. destination address as index.  address as index into this table.
Entry # Contents Entry # Contents Entry # Contents
first n bits/| 1 | Index i i concatenated| 1| Index j j concatenated Next-hop
with next with last
m bits 32-n-m bits

Figure 2.15 Three table scheme in the worst case, where the prefix is longent#tmankits long. In this
case, all three levels must be used, as shown.

19 bits! As before, theiffst bit of the entry will indicate whether the rest of the entry is

used as the next-hop identifier or as an index into another T&ils€c21n this scheme).

If the rest of the entry imBLirst21is used as an index into another table, this 18-bit
index is concatenated with the next 3 bits (bit numbers 22 through 24) of the pdelset’
tination address, and is used as an indexTiBiosec21. TBLsecZ1as entries of width 13
bits. As before, the first bit indicates whether the remaining 12-bits can be considered as a
next-hop identifigror as an index into the third tabMBLthird20). If used as an index, the
12 bits are concatenated with the last 8 bits of the pac#testination address, to index
into TBLthird20. TBLthird20, like TBLIong contains entries of width 8 bits, storing the

next-hop identifier

The schem®IR-21-3corresponds to a (21,3,8) split of the trie. It could be general-
ized to theDIR-n-mscheme which corresponds tq@ m, 32—n—m) split of the trie for

generaln andm. The three tables iDIR-n-mare shown in Figure 2.15.

1. Word-lengths, such as those which are not multiples of 4, 8, or 16, are not commonly availdkdbipnmoémories.
We will ignore this issue in our examples.



An Algorithm for Performing Routing Lookups in Haare 66

DIR-21-3 has the advantage of requiring a smaller amount of memory:
(221 m9) + (221 13) + (2298) = 9MB. One disadvantage of this scheme is an increase
in the number of pipeline stages, and hence the pipeline compkmdther disadvantage
is that this scheme puts another constraint on the number of prefixes — in addition to only
supporting 4096 routes of length 25 or greater with distinct 24-bitxpsefthe scheme
supports onI;Q18 preixes of length 22 or greater with distinct 21-bit pre$. It is to be
noted, howeverthat the decreased storage requirements edBle€1-3to be readily

implemented using on-chip embedded-DRAM.

The scheme can be extended to an arbitrary number of table levels between 1 and 32 at

TABLE 2.4. Memory required as a function of the number of levels.

Minimum memory
Number of . .
Bits used per level requirement
levels
(Mbytes)
3 21,3 and 8 9
4 20,2,2and 8 7
5 20,1,1,2and 8 7
6 19,1,1,1,2and 8 7

the cost of an additional constraint per table level. This is showalle 2.4, where we
assume that at each level, oah$ prefixes can be accommodated by the next higher level
memory table, except the last table, which we assume supports only 408@ref
Although not shown in the table, memory requirements vary ggnily (for the same
number of levels) with the choice of the actual number of bits to use per leltd. 24
shows only thédowestmemory requirement for a given number of levels. For example, a

three level (16,8,8) split would require 105 Mbytes with the same constraintabfes T

1. IBM offers 128 Mb embedded DRAM of total sizE3Imnf using 0.18 u semiconductor process technology [122] at
the time of writing.
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2.4 shows, increasing the number of levels achieves diminishing memory savings, coupled

with increased hardware logic complexity to manage the deeper pipeline.

5 Routing table updates

Recall from Section 1.1 of Chapter 1 that as the topology of the network changes, new
routing information is disseminated among the routers, leading to changes in routing
tables. As a result, one or more entries must be added, updated, or deleted from the for-
warding table. The action of modifying the table can interfere with the process of forward-
ing packets- hence, we need to consider the frequency and overhead caused by changes
to the table. This section proposes several techniques for updating the forwarding table
and evaluates them on the basis of (1) overhead to the central proaed4@) number of

memory accesses required per routing table update.

Measurements and anecdotal evidence suggest that routing tables change frequently
[47]. Trace data collected from a major ISP backbone rbirtdicates that a few hundred
updates can occur per second. A potential drawback of the 16-million2iRr24-8-
BASICscheme is that changing a single preéin afect a lage number of entries in the
table. For instance, inserting an 8-bit preh an empty forwarding table may require
changes t@™® consecutive memory entries.ifWthe trace data, if every routing table

change dected2™® entries, it would lead to millions of entry changes per seéond!

Because longer prefixes create “holes” in shorter prefixes, the memory entries required

to be changed on a prefupdate may not be at consecutive memory locations. This is

1. The router is part of the Sprint network running BGP-4. The trace had a total of 3737 BGP routing updates, with an
average of 1.04 updates per second and a maximum of 291 updates per second.

2. In practice, of course, the number of 8-bit prefixes is limited to just 256, and it is extremely unlikely that they will all
change at the same time.
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10.45.0.0/16
10.0.0.0/8 .
0.0.0 10.0.0 10.45.0 10.45.255 10.255.255 255.255.25!
“Hole” in 10/8

caused by 10.45.0.0/16

Figure 2.16 Holes created by longer prefixes require the update algorithm to be careful to avo
while updating a shorter prefix.

illustrated in Figure 2.16 where a route-pxedf 10.45.0.0/16 exists in the forwarding
table. If the new route-pref10.0.0.0/8 is added to the table, we need to modify only a
portion of the 36 entries described by the 10.0.0.0/8 route, and leave the 10.45.0.0/16

“hole” unmodified.

We will only focus on techniques to update thegéaFBL24table in theDIR-24-8-
BASICscheme. The small@BLIongtable requires less frequent updates and is ignored in

this discussion.

5.1 Dual memory banks

This technique uses two distinct ‘banks’ of mememgsulting in a simple but expen-
sive solution. Periodicallythe processor creates and downloads a new forwarding table to
one bank of memonrypuring this time (which in general will take much longer than one
lookup time), the other bank of memory is used for forwarding. Banks are switched when
the new bank is readyhis provides a mechanism for the processor to update the tables in
a simple and timely manneand has been used in at least one high-performance router

[76].
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5.2 Single memory bank

It is possible to avoid doubling the memory by making the central processor do more
work. This is typically achieved as follows: the processor keeps a software copy of the
hardware memory contents and calculates the hardware memory locations that need to be
modified on a prefix update. The processor then sends appropriate instructions to the hard-
ware to change memory contents at the idewtifocations. An important issue to con-
sider is the number of instructions that misivffrom the processor to the hardware for
every preiik update. If the number of instructions is too high, performance will become
limited by the processowe now describe three tifent update techniques, and compare
their performance when measured by the number of update instructions that the processor

must generate.

5.2.1 Update mechanism 1Row-update

In this technique, the processor sends one instruction for each modified memory loca-
tion. For example, if a prief of 10/8 is added to a table that already has appdf
10.45.0.0/16 installed, the processor will s&a836 —256 = 65280 separate instructions,
each instructing the hardware to change the contents of the corresponding memory loca-

tions.

While this technique is simple to implement in hardware, it places a huge burden on

the processgis experimental results described later in this section. show

5.2.2 Update mechanism 2Subrange-update

The presence of “holes” partitions the range of updated entries into a series of inter-
vals, which we call subranges. Instead of sending one instruction per memoyyhentry
processor canrfd the bounds of each subrange, and send one instruction per subrange.
The instructions from the processor to the linecards are now of the fdremgeX mem-

ory entries starting at memory adghsyY to have the new contenfs where X is the
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number of entries in the subrangejs the starting entry numheandz is the new next-
hop identifer. In our example above, the updates caused by the addition of a new route-
prefx in this technique are performed with just two instructions: s instruction

updating entries 10.0.0 through 10.44.255, and the second 10.46.0 through 10.255.255.

This update technique works well when entries have few “holes”. Howmaary
instructions are still required in the worst case: it is possible (though unlikely) in the
pathological case that every other entry needs to be updated. Hence, an 8-bit prefix would

require up to 32,768 update instructions in the worst case.

5.2.3 Update mechanism 30One-instruction-update

This technique requires only one instruction from the processor for each updated pre-
fix, regardless of the number of holes. This is achieved by simply including an additional
5-bit length feld in every memory entry indicating the length of the igref which the
entry belongs. The hardware now uses this information to decide whether a memory entry

needs to be modified on an update instruction from the processor

Consider again the example of a routing table containing the prefixes 10.45.0.0/16 and
10.0.0.0/8. The entries in the “hole” created by the 10.45.0.0/1& poeftain the value
16 in the 5-bit lengthi¢ld; the other entries associated with the 10.0.0.0/&prehtain
the value 8. Hence, the processor only needs to send a single instruction for each pref
update. This instruction is of the fornmnsSert aY-bit long prefix starting in memory at
to have the new contents; or “delete theY-bit long peix starting in memory ax .”
The hardware then examin2&'—Y entries beginning with entr¥. On an insertion, each
entry whose length field is less than or equat is updated to contain the valde Those
entries with length field greater thanare left unchanged. As a result, “holes” are skipped

within the updated range. A delete operation proceeds similarly
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10.1.192.010.1.192.255

Depth 3. J
10.1.0.0 {5 ?10.1.255.255
Depth 2........... I S [
}

10.0.0.0 } 10.255.255.255
. .
}

Figure 2.17 Example of the balanced parentheses property of prefixes.

This update technique reduces overhead at the cost of an additionaiefdtitdt
needs to be added to all 16 million entries in the table, which is an additional 10 Mbyte
(about 30%) of memonAlso, unlike the Row- and Subrange-update techniques, this
technique requires a read-modify-write operation for each scanned €hisycan be
reduced to a parallel read and write if the markaddfis stored in a separate physical

memory

5.2.4 Update mechanism 40ptimized One-instruction-update

This update mechanism eliminates the need to store a leagthnf each memory
entry, and still requires the processor to send only one instruction to the hardware. It does

so by utilizing structural properties of prefixes, as explained below

First note that for any two distinct ppeds, either one is completely contained in the
other or the two prefixes have no entries in common. This structure is very similar to that
of parenthetical expressions where the scope of an expression is delimited by balanced
opening and closing parentheses: for example, the characters “{” and “}" used to delimit
expressions in the ‘C’ programming language. Figure 2.17 shows an example with three

“nested” prefixes.

The hardware needs to know the length of thebpteat a memory entry belongs to

when deciding whether or not the memory entry needs to beigohdif the previous
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Depth=4

Depth=3 [ -------- } ..
Depth =2  ====ermsees { ...... } _ ! { ______________ }

Depth = 1{_fA ----- ?B ------------------------------ j

Figure 2.18 This figure shows five prefixes, one each at nesting depths 1,2 and 4; and two pr
depth 3. The dotted lines show those portions of ranges represented by prefixes that are also o
ranges of longer prefixes. Prefixes at depths 2, 3 and 4 start at the same memory entry A
corresponding parenthesis markers are moved appropriately

One-instruction-update mechanism, the length is explicitly stored in each memory entry
However the balanced parentheses property of prefixes allows the calculation of the nest-
ing depth of a memory entry as follows. The central processor provides the hardware with
the location of thdirst memory entry to be updated. Assume that this entry is at a nesting
depthd. The hardware performs a sequential scan of the memaaaykeeps track of the

number of opening and closing parentheses seen so far in the scan. Since each opening
parenthesis increases the nesting depth, and each closing parenthesis decreases the nesting
depth, the hardware can calculate the nesting depth of each memoramraimodify it if

the depth igl. The sequential scan stops when the hardware encounters the closing paren-

thesis at nesting depth

Under this technique, each entryTiBL24is categorized as one of the following
types: an opening parenthesis (start ofigye& closing parenthesis (end of pxgfno
parenthesis (middle of pigJ, or both an opening and closing parenthesis (if thaxpref
contains only a single entry). This information is represented by a 2-bit meslkleinf

each entry

Care must be taken when a single entrfBL.24 corresponds to the start or end of

multiple prefixes, as shown in Figure 2.282-bit encoding is not sfi€ient to describe all
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| |
I I | I I 10,255 baosba (05 101255.254/p3
| 10'(()5%/)22 | | 10,2565.252/22(4) [ —— (P9) (P6)
I— —_— 10.255.240/20
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Figure 2.19 Definition of the prefix and memory start and end of prefixes. Underlined PS (PE) in
that this prefix-start (prefix-end) is also the memory-start (memory-end) marker

the prefixes that begin and end at a memory location ‘A.” The problem is readily fixed by
shifting the opening and closing markers to the start (end) of the first (last) entry in mem-

ory that the prefix &cts. The update algorithm is described in detail below

We first define two terms prefix-start (PSandmemory-start (MS)f a prefix.PSp),
the preix-start of a prak p, is deined to be the memory entry where the pref sup-
posedto start in memory (for example, both 10.0.0.0/8 and 10.0.0.0/24 are supposed to
start at 10.0.0MSp), the memory start of a piefp, is the frst memory entry which
actually has the entry corresponding to pregdixn memoryMSp) may or may not be the
same a(p) . These two entries are fdifent for a prefixp if and only if a longer prefix
thanp starts atPSp). In the same wawe deine the prak- and memory-endsPE and
ME) of a prefix. HencayiS(p) is the first memory entry which hasas the deepest (long-

est) prefix covering it, andE(p) is the last.
Example 2.10:If we have prékes p1(10/8) and p2(10.0.0.0/288pl) = PYp2) = 10.0.0;

MS(p1) = 10.0.1;MS(p2) = 10.0.0;ME(pl) = PE(pl) = 10.255.255.255,
ME(p2) = PE(p2) = 10.0.0.255.
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1. Initialize a depth-counter ( DC) to zero.
2. Write the start-marker on m.

3. Scan each memory entry starting with m, until either DC reaches
zero, of, PE(p) is reached (i.e., the memory entry just scanned

has a ‘1’ in its last (24-Y) bits). At each location, perform in

order: (a) If entry has start marker, increment DC by 1.(b) If

DC equals 1, update this entry to denote the next-hop Z. (c) If

entry has an end-marker, decrement DC by 1.

4. After completion of (3), put an end marker on the last memory
entry scanned. If a total of only one memory entry ( m) was

scanned, put a start-and-end marker on m.

Figure 2.20 The optimized One-instruction-update algorithm executlpdate(m,)2).

Example 2.11: Figure 2.19 shows another detailed example with several routegsiedlong
with their prefix and memory starts and ends.

Now, instead of putting the start/end markers on the prefix start/end entries, this update
mechanism puts thearkers on the memory start/end entri€bus when the hardware
encounters a markeit can uniquely determine that exactlye preix has started or
ended. This takes care of the problem that multiplexa®imay start or end at the same

memory location. The exact algorithm can now be formalized:

Assume that the new update is to be carried out starting with memoryefarya v -
bit prefix, p, with new next-hogz . First, the processor determines the first memory entry
saym, afterX whose next-hop should changezias a result of this update. The proces-
sor then issuesneinstructionUpdate(m,¥Z) to the hardware, which then executes the

steps shown in Figure 2.20.

The algorithm can be intuitively understood as follows: if the hardware encounters a
start-marker while scanning the memory in order to add a new pteénows that it is

entering a deeper pefand stops updating memory until it again reaches thexpaef
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which it started. The end condition guarantees that any start-marker it sees will mark the
start of a deeper prefix thah(and is hence not to be updated). A formal proof of correct-

ness of this algorithm is provided in Appendix A.

If a prefix is updated, the start and end markers may need to be changed. For instance,
if the entry 10.255.240/20 (p7) is deleted in Figure 2.19, the end-marker for p1 has to be
moved from point D to point E. Again this can be achieved in one instruction if the pro-
cessor sends an indication of whether to move the start/end marker in conjunction with the
relevant update instruction. Note that at most one start/end marker of any other pref
(apart from the one which is being updated) needs to be changed. This observation enables
the algorithm to achieve all updates (additions/deletions/mgatidns) in only one pro-

cessor instruction.

5.3 Simulation results
The behavior of each update technique was simulated with the same sequence of rout-
ing updates collected from a backbone raoutée trace had a total of 3737 BGP routing

updates, with an average of 1.04 updates per second and a maximum of 291 updates per

second. The simulation results are shownahld& 2.5

TABLE 2.5. Simulation results of diérent routing table update techniques.

Undate Number of instructions Number of memory
pda from processor per accesses per second (avg/
Technique
second (avg/max) max)
Row 43.4/17545 43.4/17545
Subrange 1.14/303 43.4/17545
One-instruction 1.04/291 115.3/40415

1. For the one-instruction-update (optimized technique) we assume that the extra 2-bits to store the opening/closing
marker fields mentioned above aet stored in a separate memory



An Algorithm for Performing Routing Lookups in Haare 76

The results corroborate the intuition that the row-update technique puge dladen
on the processoAt the other extreme, the one-instruction-update technique is optimal in
terms of the number of instructions required to be sent by the prad@ssanless a sep-
arate marker memory is used, the one-instruction technique requires more than twice as
many memory accesses as the other update techniques. Hahesvstill represents less
than 0.2% of the routing lookup capacity achievable by the lookup algorithm. This simula-
tion suggests that the subrange-update technique performs well by both measures. The
small number of instructions from the processor can be attributed to the fact that the rout-
ing table contained few holes. This is to be expected for most routing tables in the near
term. But it is too early to tell whether routing tables will become more fragmented and

contain more holes in the future.

6 Conclusions and summary of contributions

The main contribution of this chapter is an algorithm to perform one IPv4 routing
lookup operation in dedicated hardware in the time that it takes to execute a single mem-
ory access (when pipelined), and no more than two memory acces$etha/throughput
of one memory access rate, approximately 20 million lookups can be completed per sec-

ond with 50 ns DRAMSs (or even faster with upcoming embedded-DRAM technology).

Furthermore, this is the only algorithm that we know of that supports an unlimited
number of prefixes that are less than or equal to 24 bits long. Since a very small proportion
(typically less than 0.1%) of all prefixes in a routing table are longer than 24 bits (see Sec-
tion 3.2), this algorithm supports, practically speaking, routing tables of unlimited size.
The algorithm operates by expanding the ipesf and trading-dfcheap memory for
speed. ¥t, the total memory cost today is less than $25, and will (presumably) continue to

halve each yearor those applications where low cost is paramount, this chapter
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described several multi-level variations on the basic scheme that utilize memory more

efficiently.

Another contribution of this chapter is the design of several hardware update mecha-
nisms. The chapter proposed and evaluated two update mechanisms (Subrange-update and
One-instruction-update) that perfornfiekently and quickly in hardware, with little bur-

den on the routing processor and low interference to the normal forwarding function.
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CHAPTER 3

Minimum average and bounded
worst-case routing lookup time

on binary search trees

1 Introduction

Most work on routing lookups [17][31][69][93] has focused on the development of
data structures and algorithms for minimizing the worst-case lookup time, given a for-
warding table and some storage space constraints. Minimizing the worst-case lookup time
is attractive because it does not require packets to be queued before lookup. This enables
simplicity and helps bound the delay of the packet through the rélgeever it sufices
to minimize the average lookup time for some types ofi¢tafuch as “best-&drt” traf-
fic.1 This presents opportunities for higher overall lookup performance because an aver-
age case constraint is less stringent than the worst-case constraint. This chapter presents
two such algorithms for minimizing the average lookup time — in partidolakup algo-

rithms that adapt their binary search tree data structure based on the observed statistical

1. Best-efort traffic comprises the highest proportion of Internefficabday This is generally expected to continue to
remain true in the near future.
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properties of recent lookup results in order to achieve higher performance. The exact
amount of performance improvement obtained using the proposed algorithms depends on
the forwarding table and the tfiaf patterns. For example, experiments using one set of
parameters show a reduction of 42% in the average number of memory accesses per
lookup than those obtained by worst-case lookup time minimization algorithms. Another
benett of these algorithms is the “neperfect” load balancing property of the resulting

tree data structures. This enables, for example, doubling the lookup speed by replicating
only the root node of the tree, and assigning one lookup engine each to the left and right

subtrees.

As we saw in Chapter 2, most lookup algorithms use a tree-based data structure. A nat-
ural question to ask is: “What is the best tree data structure for a given forwarding table?”.
This chapter considers this question in the context of binary search trees as constructed by
the lookup algorithm discussed in Section 2.2.6 of Chapter 2. The two algorithms pro-
posed in this chapter adapt the shape of the binary search tree constructed by the lookup
algorithm of Section 2.2.6 of Chapter 2. The tree is redrawn based on the statistics gath-
ered on the number of accesses toixgsfin the forwarding table, with the aim of mini-
mizing the average lookup time. Howeyv#re use of a binary search tree data structure
brings up a problem — depending on the distribution ofipeafcess probabilities, it is
possible for the worst-case depth of a redrawn binary search tree to e asstar— 1,
wherem is the total number of forwarding table entries, and is close to 98,000 [136] at the
time of writing. The worst-case lookup time can not be completely neglected — if it takes
very long to lookup even one incoming packet, gdarumber of packets arriving shortly
thereafter must be queued until the packet has completed its lookup. Practical router
design considerations (such as silicon and board real-estate resources) limit the maximum
size of this queue, and hence make bounding the worst-case lookup time highly desirable.

Bounding the worst-case performance also enables bounding packet delay in the router
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and hence in the network. It is the objective of this chapter to devise algorithms on binary
search trees thatinimize the averag®okup time whilekeeping the worst-cadeokup

time smallerthan a pre-specified maximum.

The approach taken in this chapter has a limitation that it cannot be used in some hard-
ware-based designs where the designer desires a fixed routing lookup time for all packets.
The approach of this chapter can only be used when the router designer wants to minimize
the average, subject to a maximum lookup time. Thus, the designer should be willing to
buffer incoming packets before sending them to the lookup engine in order to absorb the

variability in the lookup times of dérent packets.

1.1 Organization of the chapter

Section 2 sets up the formal minimization problem. Sections 3 and 4 describe the two
proposed algorithms and analyze their performance. Section 5 discusses the load balanc-
ing characteristics of these algorithms, and Section 6 provides experimental results on
publicly available routing tables and a packet trace. Section 7 discusses related work, and

Section 8 concludes with a summary and contributions of this chapter

2 Problem statement

Recall that the binary search algorithm [49], discussed in Section 2.2.6 of Chapter 2,
views each prefix as an interval on the IP number line. The union of the end points of these
intervals partitions the number line into a set of disjoint intervals, called basic intervals
(see, for example, Figure 2.7 of Chapter 2). The algorithm precomputes the longest prefix
for every basic interval in the partition, and associates every basic interval with its left
end-point. The distinct number of end-points fopreixes is at mosh = 2m. These
end-points are kept in a sorted list. Given a pdanton the number line representing an

incoming packet, the longest prefix matching problem is solved by using binary search on
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11 12 13 14 I5 16
1 | P5 | | P4I |
I | | P3 -t I
P2 | P1 |- | <
|< Il Il Il Il >|

0000 0001 0010 0O11 0100 0101 0110 OmM1 1000 1001 1010 1011 1100 1101 1110 1111

Figure 3.1 The binary search tree corresponding to the forwarding tablakie B.1. The bit-strings
bold are the binary codes of the leaves.

the sorted list toifmd the end-point in the list that is closest to, but not greaterRhan
Binary search is performed by the following binary tree data structure: the leaves (external
nodes) of the tree store the left end-points in order from left to right, and the internal nodes
of the tree contain suitably chosen values to guide the search process to the appropriate
child node. This binary search tree farpreixes takesO(m) storage space and has a

maximum depth ob(log (2m)).1

Example 3.1:An example of a forwarding table with 4-bit prefixes is showraipld 3.1, and the
corresponding partition of the IP number line and the binary search tree is shown
in Figure 3.1.

1. All logarithms in this chapter are to the base 2.
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TABLE 3.1. An example forwarding table.

. Interval Interval
Prefix ) .
start-point end-point
P1 * 0000 111
P2 00* 0000 oon
P3 1* 1000 111
P4 101 101 101
P5 001* 0010 oonn

The key idea used in this chapter is that the average lookup time in the binary search
tree data structure can be decreased by making use of the frequency with which a certain
forwarding table entry is accessed in the roltés note that most routers already main-
tain such peentry statistics. Hence, minimizing routing lookup times by making use of
this information comes at no extra data collection cost. A natural question to ask is:
‘Given the frequency with which the leaves of a tree are accessed, what is the best binary
search tree — i.e., the tree with the minimum average depte®ing it this way the
problem is readily recognized to be one of minimizing the average weighted depth of a
binary tree whose leaves are weighted by the probabilities associated with the basic inter-
vals represented by the leaves. The minimization is to be carried over all possible binary

trees that can be constructed with the given number and weights of the leaves.

This problem is analogous to the design @itieint codes (see Chapter 5 of Cover and
Thomas [14]), and so we brigfexplain here the relationship between the two problems.
A binary search tree is referred to asayphabetic teg and the leaves of the tree the
tersof that alphabet. Each leaf is assigned a binary codeword depending on its position in
the tree. The length of the codeword of a symbol is equal to the depth of the corresponding

leaf in the tree. For the exampleRigure 3.1 the codeword associated with interlials
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15 16
1/32 1/32
11110 11111

Figure 3.2 The optimal binary search tree (i.e., one with the minimum average weighted
corresponding to the tree igure 3.1when leaf probabilities are as shown. The binary codeword
shown in bold.

000 and that associated with interi&lis 101, where a bit in the codeword is 0 (respec-

tively 1) for the left (respectively right) branch at the corresponding node.

A prefx code satisés the property that no two codes are igesf of each otheAn
alphabeticcode is a pref code in which then letters are ordered lexicographically on
the leaves of the resulting binary tree. In other words, if |&tteppears before lett& in
the alphabet, then the codeword associated with Istteas a value of smaller magnitude
than the codeword associated with leBemDesigning a code for an alphabet is equivalent

to constructing a tree for the letters of the alphabéh ¥etter corresponding to an inter-
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val, the lookup problem translates to: “Find a minimum average length alphabeic pref

code (or tree) for am -letter alphabet.”

Example 3.2:If the intervald1 throughl6 in Figure 3.1are accessed with probabilities 1/2, 1/4,
1/8, 1/16, 1/32 and 1/32 respectivelyen the best (i.e., optimal) alphabetic tree
corresponding to these probabilities (or weights) is shown in Figure 3.2. The code-
word forll is now 0 and that db is 11110. Sincell is accessed with a greater
probability thanl5, it has been placed higher up in the tree, and thus has a shorter
codeword

The average length of a general prefix code for a given set of probabilities can be min-
imized using the Hdiman coding algorithm [39]. Howevdduffman’s algorithm does not
necessarily maintain the alphabetic order of the input data set. This causes implementa-
tional problems, as simple comparison queries are not possible at internal nodes to guide
the binary search algorithm. Instead, at an internal node offenbluftree, one needs to
ask for memberships in arbitrary subsets of the alphabet to proceed to the next level.
Because this is as hard as the original search problem, it is not feasible tofosaniduf

algorithm.

As mentioned previouslyve wish to bound the maximum codeword length (i.e., the
maximum depth of the tree) to make the solution useful in practice. This can now be better
understood: an optimal alphabetic tree fotetters can have a maximum depth (the root
is assumed to be at depth 0)rof 1 (see, for instance, Figure 3.2 with= 6). This is
unacceptable in practice because we have seen tha@m, and the value o, the size
of the forwarding table, could be as high as 98,000 [136]. Furthermore, any change in the
network topology or in the distribution of incoming packet addresses can lead ge a lar
increase in the access frequency of a deep leaf. It is therefore highly desirable to have a
small upper bound on the maximum depth of the alphabetic tree. Therefore, well-known

algorithms for inding an optimal alphabetic tree such as those in [27][36][37] which do
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15 16
1/8 1/16 1/32 1/32
1100 1101 1110 111

Figure 3.3 The optimal binary search tree with a depth-constraint of 4, corresponding to theFigperé
3.1

not incorporate a maximum depth-constraint cannot be used in this ¢hapténg. Here

is an example to understand this last point hetter

Example 3.3:The alphabetic tree in Figure 3.2 is optimal if the intervals 11 through 16 shown in
the binary tree of Figure 3dre accessed with probabilities {1/2, 1/4, 1/8, 1/16, 1/
32, 1/32} respectivelyFor these probabilities, the average lookup time is 1.9375,
while the maximum depth is 5. If we impose a maximum depth-constraint of 4,
then we need to redraw the tree to obtain the optimal tree that has minimum aver-
age weighted depth and has maximum depth no greater than 4. This tree is shown
in Figure 3.3 where the average lookup time is calculated to be 2.

The general minimization problem can now be stated as follows:

1. 1.9375 = 10(1/2) +20(1/4) +30(1/8) +40(1/16) +50(1/32) +50(1/32)
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n
Choose{li}in_1 in order to minimizeC = Z I Op;, such thatl, <D 0i, and
: - : =1 . .
{Ii}in_ , divesrise to an alphabetic tree fointervals wherep, is the access probability
of thei™ interval, and; is the length of its codeword, i.e., the number of comparisons

required to lookup a packet in th8 interval.

The smallest possible value Gf is the entropy [14]H(p), of the set of probabilities
{p;} , whereH(p) = —z p,logp; . It is usually the case that is lager thanH(p) for
depth-constrained alpkllabetic tréd@inding fast algorithms for computing optimal depth-
constrained binary trees (without the alphabetic constraint) is known to be a hard problem,
and good approximate solutions are appearing only now [59][60][61], almost 40 years
after the original Hdfman algorithm [39]. Imposing the alphabetic constraint renders the
problem harder [27][28][35][109]. Still, an optimal algorithm, proposed by Larmore and
Przytycka [50], inds the best depth-constrained alphabetic tre@(m®logn) time.

Despite its optimalitythe algorithm is complicated andféiilt to implement

In light of this, our goal is tarid a practical and provably good approximate solution
to the problem of computing optimal depth-constrained alphabetic trees. Such a solution
should be simpler tarfd than an optimal solution. More importantiyshould be much
simpler to implement. Also, as the probabilities associated with the intervals induced by
routing preixes change and are not known exadtlgloes not seem to make much sense
to solve the problem exactly for an optimal solution. As we will seg laer of the two
nearoptimal algorithms proposed in this chapter can be analytically proved to be requir-
ing no more than two extra comparisons per lookup when compared to the optimal solu-
tion. In practice, this discrepancy has been found to be less than two (for both of the
approximate algorithms). Hence, we refer to them as algorithnmeetoptimal depth-

constrained alphabeticees and describe them next.

1. The lower bound of entropy is achieved in general when there are no alphabetic or maximum depth-constraints.

2. The complexity formul®(nDlogn) has lage constant factors, as the implementation requires using a listgd-mer
able priority queues with priority queue operations suateéeste _min, mee, findetc.
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3 Algorithm MINDPQ

We first state two results fromeving [1L4] as lemmas that we will use to develop
algorithm MINDPQ. Theifst lemma states a necessary andigeht condition for the
existence of an alphabetic code with spedifcodeword lengths, and the second pre-
scribes a method for constructing good, retimal trees (which are not depth-con-

strained).

Lemma 3.1(The Characteristic Inequality)There exists an alphabetic code with codeword

- -
lengthsl, if and only ifs <1, wheres, = c(s, _,,2 I() +2

c(a,b) = [a/blb.

k, Sp = 0, andc is defned by

Proof: For a complete proof, seeld]. The basic idea is to construatanonicalcoding
tree, a tree in which the codewords are chosen lexicographically using the lengthrs
instance, suppose that= 4 for somei, and in drawing the canonical tree viredfthe
codeword corresponding to letteto be 0010. Ifi,  , = 4, then the codeword for letter

i +1 will be chosen to be 0Q1if I, , = 3, the codeword for letter+ 1 is chosen to be
010; and ifl; ., = 5, the codeword for letteir+ 1 is chosen to be 0Q0. Clearly the
resulting tree will be alphabetic an@dhg's result verifies that this is possible if and only

if the characteristic inequality defined above is satisfied by the lehgths

The next lemma (also from 14]) considers the construction of good, reptimal
codes. Note that it does not produce alphabetic trees with prescribed maximum depths.

That is the subject of this chapter

Lemma 3.2The minimum average lengtk, of an alphabetic code am letters, where the

min’
ith letter occurs with probability, satisfes: H(p) < C, < H(p) + 2—p; —p,,,- Therefore,

there exists an alphabetic treemretters with average code length within 2 bits of the entropy of
the probability distribution of the letters.
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Proof: The lower boundH(p), is obvious. For the upper bound, the code lehgtf the
K" letter occurring with probabilitp, is chosen to be:

_ E [—Iogpk‘| k=1,n
E[—Iogpk1+1 2<ksn-1

The proof in [14] verifies that these lengths satisfy the characteristic inequality of Lemma
3.1, and shows that a canonical coding tree constructed with these lengths has an average

depth satisfying the upper bound.

We now return to our original problem ahdling nearoptimal depth-constrained
alphabetic trees. Léd be the maximum allowed depth. Since the given set of probabili-

ties {p,} might be such that . = min {p,} < Z_D, a direct application of Lemma 3.2

min
could yield a tree where the maximum depth is higher thamo work around this prob-
lem, we transform the given probabilitipg into another set of probabilitieg such that
Anin = Min {q,} 2 22 This allows us to apply the following variant of the scheme in

Lemma 3.2 to obtain a neaptimal depth-constrained alphabetic tree with leaf probabili-

tiesq,.

Given a probability vectog, such thaty . > 2_D, we construct a canonical alpha-

betic coding tree with the codeword length assignment ta' thietter given by:

mi n(|’—|oqu‘|, D) k=1,n

(3.1)
min(|’—|oqu_|+1, D) 2<ksn-1

0
I =&
k — O
0
Each codeword is clearly at mdstbits long and the tree thus generated has a maxi-
mum depth oD . It remains to be shown that these codeword lengths yield an alphabetic
tree. By Lemma 3.1 it sfifes to show that thelr(} satisfy the characteristic inequality

This verification is deferred to Appendix B later in the thesis.
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Proceeding, if the codeword lengths are given{q*;} , the resulting alphabetic tree

has an average length 2pk';' Now,
* 1., Py _
Zpklk < Zpklogq— +2= Zpklogq— - Zlokloglok+ 2=D(pllg) +H(p) +2 (3.2)
k k

whereD(p || g) is the ‘relative entropy’ (see page 22 of [14]) between the probability
distributionsp andq, andH(p) is the entropy of the probability distributign In order to

minimize kaL, we must therefore choosfeg} , given {p;} , so as to minimize

D(pllag).

3.1 The minimization problem

We are thus led to the following optimization problem:

Given {p;} , choose{q;} in order to minimizeDPQ = D(pllq) = Zpilog(pi/qi) sub-
. -D_. !
jecttoy q =1,9=20Q0=2 "i.

|Z | |

Observe that the cost functi@p || g) is convex in(p, q) (see page 30 of [14]). Fur-
ther, the constraint set is convex and compact. In fact, we note that the constraint set is
defined bylinear inequalities. Minimizing convex cost functions with linear constraints is
a standard problem in optimization theory and is easily solved by using Lagrange multi-

plier methods (see, for example, Section 3.4 of Bertsekas [5]).

Accordingly define the Lagrangean
L@ AW = Y plog(p/a) + 3 A (Q-a) +upy ¢-17

Setting the partial derivatives with respectjtdo zero alq? , we get:

FRNCRE
=000 q = —— 3.3)
P9, O ' H=N
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Putting this back in LA W, we get the dual:
G, ) = Z (p;log (L=A;) +A;Q) + (1-p) . Now minimizing G(A, ) subject toA; >0

|
andp>A0i gives:

G P;
2=00Yy —=1
ou ,Zu—hi
G _ . _ b
a—)\i_om 0 Q——-——u_)\_,

which combined with the constraint thgt> 0 gives us)\: = max(0, u - p,;/ Q) . Substitut-

ing this in Equation 3.3, we get

qi* = max(p,/ 1, Q)
(3.4)

To finish, we need to solve Equation 3.4 fior= u* under the constraint that
n *
z d; = 1. The desired probability distribution is theq:} . It turns out that we can find
i=1
an explicit solution foul, using which we can solve Equation 3.4 by an algorithm that

takesO(nlogn) time andO(n) storage space. This algorithm first sorts the original proba-

bilities {p;} to get{ﬁi} such that{ 61} is the lagest and{ |5n} the smallest probability

Call the transformed (sorted) probability distributi{)q;E} . Then the algorithm solves
for pUJ such thatrF(uD = 0 where:

ku,\

n ~ pl
F(W) =.z q-1= ZH+(n_ku)Q_1 (3.5)

i=1 i=1
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P/Q Py_1/Q pk;+ /Q p;“/Q pk;_l/Q P,/ QP;/Q

Figure 3.4 Showing the position offl and(u.

Here,ku is the number of letters with probability greater tHar®Q) , and the second

equality follows from Equation 3.4. Figure 3.4 shows the relationship betweem ku'

For all letters to the left af in Figure 3.4,q: = Q and for othersq: = ﬁi/p.

Lemma 3.3F(u) is a monotonically decreasing functionpof

Proof: First, it is easy to see thatyif increases in the intervap,, ,/Q.p,/Q H,ie.,
such thaIku does not changes(u) decreases monotonicallgimilarly, if p increases
from p,/Q-¢gto p/Q+e SO thatk, decreases by 1, it is easy to verify tivt)

decreases.

The algorithm uses Lemma 3.3 to do a binary searcO((ogn) time) for finding the
half-closed interval that containg, i.e., a suitable value of such that
wO[p/Qp,_/Q H andF(p /Q) =0 andF(p,_,/Q) <0.! The algorithm then knows
the exact value of, = K and can I(glirectly solve fqu* using Equation 3.5 to get an
explicit formula to calculat@ll = éz 5@/ (1- (n=K) Q) . Putting this valuerpi* in
Equation 3.4 then gives the transformed set of probabil{tbé@ . Given such{ g;} , the
algorithm then constructs a canonical alphabetic coding tree dstinyith the codeword
lengthsl, U as chosen in Equation 3.1. This tree clearly has a maximum depth of no more

thanD, and its average weighted depth is worse than the optimal algorithm by no more
ku

1. Note thatO(n) time is spent by the algorithnﬁin the calculationgf f)i anyway so a simple linear search can be
implemented to find the interv{lpr/Q, P,_1/Q- =1
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than 2 bits. @ see this, let us refer to the codeword lengths in the optimal tr{alé)pé;s.
Then Cop = Zpklk = H(p) + D(p l 2_'Ept). As g0 has been chosen to be such that
D(pllgd <D(pllq) for all probability distributionsy in the set{q;:q;2Q} , it follows
from Equation 3.2 that_ ndpq < H(P) + D(p lgh +2< Copt *2- This proves the following

main theorem of this chapter:

Theorem 3.1Given a set oh probabilities{ p;} in a specied ordey an alphabetic tree with a
depth-constrainD can be constructed i@(nlogn) time andO(n) space such that the average
codeword length is at most 2 bits more than that of the optimal depth-constrained alphabetic tree.
Further if the probabilities are given in sorted ordarch a tree can be constructed in linear time.

4 Depth-constrained weight balanced &e (DCWBT)

This section presents a heuristic algorithm to generateoptianal depth-constrained
alphabetic trees. This heuristic is similar to the weight balancing heuristic proposed by
Horibe [35] with the modi€ation that the maximum depth-constraint is never violated.
The trees generated by this heuristic algorithm have been observed to have even lower
average weighted depth than those generated by algorithm MINDPQ. Also, the implemen-
tation of this algorithm turns out to be even simpspite its simplicityit is unfortu-

nately hard to prove optimality properties of this algorithm.

We proceed to describe the normal weight balancing heuristic of Horibe, and then
describe the moddation needed to incorporate the constraint of maximum depth. First,
we need some terminology a tree, suppose the leaves of a particular[subtree correspond
to letters numbered throught — we say that the weight of the subtreeispi . The root
node of this subtree is said to represent the probabiliiesy{ | ;, ..., ri)t:};rdenoted by
{p;} t . Thus, the root node of an alphabetic tree has weight 1 and represents the proba-

i=r

bility distribution {p} "
i=1
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In the normal weight balancing heuristic of Horibe [35], one constructs a tree such that
the weight of the root node is split into two parts representing the weights of its two chil-
dren in the most balanced manner possible. The weights of the two children nodes are then
split recursively in a similar mannén general, at an internal node representing the prob-
abilities {p,...p;} , the left and right children are taken as representing the probabilities

{p,---pg and {pg, ;---p} , r<s<t,if s is such that
t

Sh- 3

i=r i=s+1

u

30- 3

i=r i=u+1

A(r,t) = = min|]u(rsu<t)

This ‘top-down’ algorithm clearly produces an alphabetic tree. As an example, the
weight-balanced tree corresponding=igure 3.1is the tree shown in Figure 3.2. Horibe
[35] proves that the average depth of such a weight-balanced tree is greater than the
entropy of the underlying probability distributigrp,} by no more thaz— (n+2)p_..,

wherep_. is the minimum probability in the distribution.

Again this simple weight balancing heuristic can produce a tree of unbounded maxi-

=2 ("D 4n4

mum depth. For instance, a distributiofp,} such thatp_
p, = 27 Ois<is n—1, will produce a highly skewed tree of maximum depthl. Fig-

ure 3.2 is an instance of a highly skewed tree on such a distributeonoW propose a
simple modifcation to account for the depth constraint. The medli&lgorithm follows
Horibe's weight balancing heuristic, constructing the tree in the normal top-down weight
balancing manner until it reaches a node such that if the algorithm were to split the weight
of the node further in the most balanced manther depth-constraint would be violated.
Instead, the algorithm splits the node maintaining as much balance as it can while respect-

ing the depth-constraint. In other words, if this node is at dep#presenting the proba-
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bilities {p,...p,}, the algorithm takes the left and right children as representing the
probabilities{p,...p} and{p,,,...p} , ass<b, if s is such that

S

Sh- 3 b

i=r i=s+1

u

Sh- 3 e

i=r i=zu+1

Ar,t) = ,

= MNg,a<u<b)

anda = t—2P-9-1 andb = r + 2P ~9-1 Therefore, the idea is to use the weight balanc-

ing heuristic as far down into the tree as possible. This implies that any node where the
modified algorithm is unable to use the original heuristic would be deep down in the tree.
Hence, the total weight of this node would be small enough so that approximating the
weight balancing heuristic does not cause any substari@at &f the average path length.

For instance, Figure 3.5 shows the depth-constrained weight balanced tree for a maximum

depth-constraint of 4 for the treefiigure 3.1

As mentioned above, we have been unable to come up with a provably good bound on
the distance of this heuristic from the optimal solution, but its conceptual and implementa-
tional simplicity along with the experimental results (see next section) suggest its useful-

ness.

Lemma 3.4A depth-constrained weight balanced tree (DCWBT nfdeaves can be constructed
in O(nlogn) time andO(n) space.

Proof: At an internal node, the signedfdifence in the weights between its two subtrees is
a monotonically increasing function of thefdiience in the number of nodes in the left
and right subtrees. Thus a suitable split may be found by binary sea@togm) time at
every internal nodé.Since there are—1 internal nodes in a binary tree withleaves,

the total time complexity i©(nlogn). The space complexity is the complexity of storing

the binary tree and is thus linear

S S

1. Note that we may need accesonpi, 01<r,s<n. This can be obtained by precomputi@ p;; 0l<s<nin
linear time and space. i=r i=1
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13 14 15 16
1/8 1/16 1/32 1/32
1100 1101 1110 1111

Figure 3.5 Weight balanced tree fdfigure 3.1with a depth-constraint of 4. The DCWBT heuristic
applied in this example at node v (labelé®Q@).

5 Load balancing

Both of the algorithms MINDPQ and DCWBT produce a binary search tree that is
fairly weight-balanced. This implies that such a tree data structure caiicenty paral-
lelized. For instance, if two separate lookup engines for traversing a binary tree were
available, one engine can be assigned to the left-subtree of the root node and the second to
the right-subtree. Since the work load is expected to be balanced among the two engines,
we can get twice the average lookup rate that is possible with one engine. Thgemnear
fect load-balancing’ helps achieve speedup linear in the number of lookup engines, a fea-
ture attractive in parallelizable designs. The scalability property can be extended — for
instance, the average lookup rate could be made 8 times higher by having 8 subtrees, each

being traversed by a separate lookup engine running at 1/8th the aggregate lookup rate
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T1 T2 T3 T4 T5 T6 T7 T8

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Figure 3.6 Showing 8-way parallelism achievable in an alphabetic tree constructed using als
MINDPQ or DCWBT

(see Figure 3.6). Itis to be remembered, howeakat only theaveragelookup rate is bal-
anced among the dérent engines, and hence, afbuis required to absorb short-term

bursts to one particular engine in such a parallel architecture.

6 Experimental results

A plot at CAIDA [12] shows that over 80% of the frafis destined to less than 10%
of the autonomous systems — hence, the amount &ttimvery non-uniformly distrib-
uted over prexes. This provides some real-life evidence of the possible itet@ibe
gained by optimizing the routing table lookup data structure based on the access frequency
of the table entries.cTdemonstrate this claim, we performed experiments using tge lar

default-free routing tables that are publicly available at IPMA [124], and another smaller

table available at VBNS [B].
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A knowledge of the access probabilities of the routing table entries is crucial to make
an accurate evaluation of the advantages of the optimization algorithms proposed in this
chapter However there are no publicly available packetficafraces with non-encrypted
destination addresses that access these tables. Fortuwat@hgre able tarfd one trace
of about 2.14 million packet destination addresses at NLANR [134]. This trace has been
taken from a dierent network locationHix-West)and thus does not access the same rout-
ing tables as obtained from IPMA. Still, as the default-free routing tables should not be too
different from each othethe use of this trace should give us valuable insights into the
advantages of the proposed algorithms. In addition, we also consider the ‘uniform’ distri-
bution in our experiments, where the probability of accessing a particular prefix is propor-
tional to the size of its interval, i.e., an 8-bit long préfs a probability of access twice

that of a 9-bit long prefix.

Table 3.2 shows the sizes of the three routing tables considered in our experiments,
along with the entropy values of the uniform probability distribution and the probability
distribution obtained from the trace. Also shown is the number of memory accesses
required in an unoptimized binary search (denoted as “Unopt_srch”), which simply is
[ log (#Intervals) .

TABLE 3.2. Routing tables considered in experiments. Unopt_srch is the number of memory accesses required in a
naive, unoptimized binary search tree.

. Number of | Number of Entropy Entropy | Unopt_s
Routing table : ) :
prefixes intervals (uniform) (trace) rch
VBNS [118] 1307 2243 4.41 6.63 12
MAE_WEST 24681 39277 6.61 7.89 16
[124]
MAE_EAST 43435 65330 6.89 8.02 16
[124]
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Figure 3.7 Showing how the average lookup time decreases when the worst-case depth-con
relaxed: (a) for the “uniform” probability distribution, (b) for the probability distribution derived b
2.14 million packet trace available from NLANR. X_Y in the legend means that the plot rel
algorithm Y when applied to routing table X.

Figure 3.7 plots the average lookup query time (measured in terms of the number of
memory accesses) versus the maximum depth-constraint value for theferentliprob-
ability distributions. Thesadures show that as the maximum depth-constraint is relaxed
from [ logm7] to higher values, the average lookup time falls qujckhd approaches the
entropy of the corresponding distribution (sedl€ 3.2). An interesting observation from
the plots (that we have not been able to explain) is that the simple weight-balancing heu-
ristic DCWBT almost always performs better than the ogdéimal MINDPQ algorithm,

especially at higher values of maximum depth-constraint.

6.1 Tree reconfigurability

Because routing tables and prefix access patterns are not static, the data-structure build
time is an important consideration. This is the amount of time required to compute the
optimized tree data structure. Our experiments show that even for the bigger routing table
at MAE_EAST the MINDPQ algorithm takes about 0.96 seconds to compute a new tree,
while the DCWBT algorithm takes about 0.40 secohdibe build times for the smaller
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VBNS routing table are only 0.033 and 010deconds for the MINDPQ and DCWBT

algorithms respectively

Computation of a new tree could be needed because of two reasons: (1) change in the
routing table, or (2) change in the access pattern of the routing table entries. As mentioned
in Chapter 2, the average frequency of routing updates in the Internet today is of the order
of a few updates per second, even though the peak value can be up to a few hundred
updates per second. Changes in the routing table structure can be managed by batching
several updates to the routing table and running the tree computation algorithm periodi-
cally. The change in access patterns is harder to predict, but there is no reason to believe
that it should happen at a very high rate. Indeed, if it does, there is no benefit to optimizing
the tree anywayln practice, we expect that the long term access pattern will not change a
lot, while a small change in the probability distribution is expected over shorter time
scales. Hence, an obvious way for updating the tree would be to keep track of the current
average lookup time as measured by the last few packet lookups in the andtdo a
new tree computation whenever thidelis from the tree's average weighted depth (which
is the expected value of the average lookup time if the packets were obeying the probabil-
ity distribution) by more than some configurable threshold amount. The tree could also be

recomputed at fixed intervals regardless of the changes.

To investigate tree recagtrability in more detail, the packet trace was simulated
with the MAE_EAST routing table. For simplicjtye divided the 2.14 million packet
destination addresses in the trace into groups, each group consisting of 0.5M packets. The
addresses were fed one at a time to the simulation andehtseff updating the tree sim-
ulated after seeing the last packet in every group. The assumed initial condition was the

‘equal’ distribution, i.e., every tree leaf, which corresponds to axpreérval, is equally

1. These experiments were carried out by implementing the algorithms in C and running ds\elusercess under
Linux on a 333 MHz Pentium-II processor with 96 Mbytes of memory
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Figure 3.8 Showing the probability distribution on the MAE_EAST routing table: (a) “Unifc
probability distribution, i.e., the probability of accessing an interval is proportional to its length,
derived from the packet trace. Note that the “Equal” Distribution corresponds to a horizontal line at

5.

likely to be accessed by an incoming packet. Thus the initial tree is simply the complete

tree of depth logm]. The tree statistics for the MINDPQ trees computed for every group

are shown in dble 3.3 for (an arbitrarily chosen) maximum lookup time constraint of 22

memory acCesses.

TABLE 3.3. Statistics for the MINDPQ tree constructed at the end of every 0.5 million packets in the 2.14 million
packet trace for the MAE_EAST routing table. All times/lengths are specified in terms of the number of
memory accesses to reach the leaf of the tree storing the interval. The worst-case lookup time is denoted
by luWbrst, the average look up time by kgf\ the standard deviation by luSd. and the average weighted
depth of the tree by WtDepth.

PktNum luwWorst luAvg luSd Entropy WitDepth
0-0.5M 16 15.94 0.54 15.99 15.99
0.5-1.0M 22 9.26 4.09 7.88 9.07
1.0-1.5M 22 9.24 4.1 7.88 9.11
1.5-2.0M 22 9.55 4.29 7.89 9.37

2.0-2.14M 22 9.38 4.14 7.92 9.31

The table shows how computing a new tree at the end oifshgroup brings down

the average lookup time from 15.94 to 9.26 memory accesses providing an improvement
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in the lookup rate by a factor of 1.72. This improvement is expected to be greater if the
depth-constraint were to be relaxed furthigne statistics show that once tlmstftree

update (at the end of the last packet of tist §roup) is done, the average lookup time
decreases significantly and the other subsequent tree updates do not considerably alter this
lookup time. In other words, the access pattern changes only slightly across groups. Figure
3.8(b) shows the probability distribution derived from the trace, and also plots the ‘equal’
distribution (which is just a straight line parallel to the x-axis). Also shown for comparison

is the ‘uniform’ distribution in Figure 3.8(a). Experimental results showed that the distri-
bution derived from the trace was relatively unchanging from one group to greotter

therefore only one of the groups is shown in Figure 3.8(b).

7 Related work

Early attempts at using statistical properties comprised caching recently seen destina-
tion addresses and their lookup results (discussed in Chapter 2). The algorithms consid-
ered in this chapter adapt the lookup data structure based on statistical properties of the
forwarding tabletself, i.e., the frequency with which each forwarding table entry has been
accessed in the past. Intuitivelye expect that these algorithms should perform better
than caching recently looked up addresses because of two reasons. First, the statistical
properties of accesses on a forwarding table are relatively more static (as we saw in Sec-
tion 6.1) because these properties relate taxaethat are aggregates of destination
addresses, rather than the addresses themselves. Second, caching provides only two dis-
crete levels of performance (good or bad) for all packets depending on whether they take
the slow or the fast path. Hence, caching performs poorly when only a few packets take
the fast path. In contrast, an algorithm that adapts the lookup data structure itself provides
a more continuous level of performance for incoming packets, from the fastest to the

slowest, and hence can provide a higher average lookup rate.
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Since most previous work on routing lookups has focussed on minimizing worst-case
lookup time, the only paper with a similar formulation as ours is by Cheung and McCanne
[10]. Their paper also considers the frequency with which a certain efccessed to
improve the average time taken to lookup an address. Howeftetence [10] uses a trie
data structure answering the question of “how to redraw a trie to minimize the average
lookup time under a given storage space constraint,” while the algorithms described here
use a binary search tree data structure based on the binary search algorithm [49] discussed
in Section 2.2.6 of Chapter 2. Thus, the methods and the constraints imposed in this chap-
ter are diferent. For example, redrawing a trie typically entails compressing it by increas-
ing the degree of some of its internal nodes. As seen in Chapter 2, this can alter its space
consumption. In contrast, it is possible to redraw a binary search tree without changing the
amount of space consumed by it, and hence space consumption is not a constraint in this

chaptets formulation.

While it is not possible to make a direct comparison with [10] because of e dif
nature of the problems being solved, we can make a comparison of the complexity of
computation of the data structures. The complexity of the algorithm in [10] is stated to be
O(DnB) whereB is a constant around 10, abd= 32, which makes it abou20n. In
contrast, both the MINDPQ and the DCWBT algorithms are of compl&Xiiogn) for
n prefixes, which, strictly speaking, is worse tt@n) . However including the constants
in calculations, these algorithms have complegi(€nlogn), where the constant factar
is no more than 3. Thus even for verygkawvalues oh, sayz17 = 128K, the complexity

of these algorithms is no more théén.

8 Conclusions and summary of contributions

This chapter motivates and ohefs a new problem — that of minimizing the average

routing lookup time while still keeping the worst case lookup time bounded — and pro-
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poses two neawptimal algorithms for this problem using a binary search tree data struc-
ture. This chapter explores the complexggrformance and optimality properties of the
algorithms. Experiments performed on data taken from routing tables in the backbone of
the Internet show that the algorithms provide a performance gain up to a factor of about
1.7. Higher lookup rates can be achieved with low overhead by parallelizing the data

structure using its “negoerfect” load balancing property

Finding good depth-constrained alphabetic andidaih trees are problems of inde-
pendent interest, e.g., in computationallffoént compression and coding. The general
approach of this chaptealthough developed for alphabetic trees for the application of
routing lookups, turns out to be equally applicable for solving related problems of inde-
pendent interest in Information theory — suchiadihg depth-constrained Hfuman
trees, and compares favorably to recent work on this topic (for example, Mildiu and Laber
[59][60][61] and Schieber [85]). Since this extension is tangential to the subject of this

chapterit is not discussed here.



105

CHAPTER 4

Recursive Flow Classification:
An Algorithm for Packet

Classification on Multiple Fields

1 Introduction

Chapters 2 and 3 described algorithms for routing lookups. In this chapter and the next

we consider algorithms for multi-field packet classification.

This chapter presents an algorithm for fast packet cleasdn on multiple header
fields. The algorithm, though designed with a hardware realization in mind, is suitable for
implementation in software as well. As we will see from the overview of previous work
on packet classgation algorithms in Section 2, the packet clasation problem is
expensive to solve in the worst-case — theoretical bounds state that solutions to multi-
field classifcation either require storage that is geometric, or a number of memory

accesses that is polylogarithmic, in the number of classification rules. Hence, most classi-

1. The packet classification problem was introduced in Chapter 1: its motivation described in Section 2.1, problem defi-
nition in Section 2.3 and the metrics for classification algorithms in Section 3.
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fication algorithms proposed in the literature [7][23][96] are designed to work well for two
dimensions (i.e., with two headeelfls), but do not perform as well in multiple dimen-

sions. This is explained in detail in Section 2.

This chapter makes the observation that classifiers in real networks have considerable
structure and redundancy that can be exploited by a practical algorithm. Hence, this chap-
ter takes a pragmatic approach, and proposes a heuristic algorithm, caIIJeCR%EGI-
sive Flow Classi€ation), that seems to work well with a selection of clasifin use
today With current technologyt appears practical to use the proposed classification algo-
rithm for OC192c line rates in hardware and OCA48c rates in software. Howevstor-
age space and preprocessing time requirements becayeefdarclassiers with more
than approximately 6000 fodield rules. For this, an optimization of the basic RFC algo-
rithm is described which decreases the storage requirements of aedassitaining

15,000 foutfield rules to below 4 Mbytes.

1.1 Organization of the chapter

Section 2 overviews previous work on classifion algorithms. Section 3 describes
the proposed algorithm, RFC, and Section 4 discusses experimental results of RFC on the
classifiers in our dataset. Section 5 describes variations of RFC to hagdieclassifiers.
Section 6 compares RFC with previous work described in Section 2, and feadtion 7

concludes with a summary and contributions of this chapter

2 Previous work on classification algorithms

Recall from Section 3 of Chapter 1 that a classification algorithm preprocesses a given
classifer to build a data structure, that is then usednib the highest priority matching

rule for every incoming packet. &\Wvill assume throughout this chapter that rules do not

1. This is not to be confused with “Request for Comments”.
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carry an explicit priorityield, and that the matching rule closest to the top of the list of
rules in the classifier is the highest priority matching rule viM work with the following

example classifier in this section.

Example 4.1:The classifielC shown in Bble 4.1 consists of six rules in two fields (dimensions)
labeledF1 andF2. All field specifications are prefixes of maximum length 3 bits.
As per convention, rule priorities are ordered in decreasing order from top to bot-
tom of the classifier

TABLE 4.1. An example classifier

Rule F1 F2
R1 00* 00*
R2 0 01*
R3 1* 0
R4 00* 0*
R5 0 1*
R6 * 1*

2.1 Range lookups

Algorithms that perform clasgfation in multiple dimensions often use a one-dimen-
sional lookup algorithm as a primitive. If the field specifications in a particular dimension
are all preikes, a lookup in this dimension usually involves eitledihg all matching
preixes or the longest matching pref— this could be performed using any of the algo-
rithms discussed in Chapters 2 and 3. Howea®we will see in Section 3.2, field specifi-
cations can be arbitrary ranges. Hence, it will be useful to@¢he following range

lookup problem for a dimension of widthl bits.

Definition 1.1: Given a set o disjoint rangesG = {G, = [I;,u]} thatform a partition
of the number Iin¢0,2W—1] , 1.e,,l; andu, are such that

=0l <u, 1l =u+1lu = 2W—1; the range lookup mblem is to find
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the rangeG,, (and any associated information) that contains an incoming

point P.

We have already seen one algorithm to solve the range lookup problem — the binary
search algorithm of Section 2.2.6 in Chapter 2 builds a binary search tree on the endpoints
of the set of ranges. &¢tould also solve the range lookup problem by first converting each
range to a set of maximal ppefs, and then solving the ppefnatching problem on the
union of the prefixes thus created. The conversion of a range to prefixes uses the observa-
tion that a prefix of length corresponds to a randé u] where the(W-s) least signif-
icant bits ofl are all 0 and those af are all 1. Hence, if we split a given range into the
minimum number of subranges satisfying this propeveyarrive at a set of maximal pre-
fixes equivalent to the original rangeble 4.2 lists examples of some range to prefix con-
versions for 4-bit fields.

TABLE 4.2. Examples of range to prefix conversions for 4-bit fields.

Range Constituent maximal prefixes
[4,7] 01**
[3,8] 0011, 01**, 1000
[1,14] 0001, 001*, 01**, 10**, 1.0*, 1110

It can be seen that a range olvabit dimension can be split into a maximum of
2W-2 maximal prefixes.Hence, the range lookup problem can be solved using a prefix
matching algorithm, but with the storage complexity increased by a fackw oFeld-
mann and Muthukrishnan [23] show a reduction of the range lookup problem to the prefix
matching problem with an increase in storage complexity by only a constant factor of 2.
However as we will see latethis reduction cannot be used in all multi-dimensional clas-

sification schemes.

1. For example, the rang[d, 2V 2] is splitinto2W -2 prefixes. An example of this is the last row able 4.2 with
W =4,
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2.2 Bounds fom Computational Geometry

There is a simple geometric interpretation of the packet dlzegtsoin problem. \§
have seen that a prefepresents a contiguous interval on the number line. Simikarly
two-dimensional rule represents an axes-parallel rectangle in the two-dimensional euclid-
ean space of sizéWl x 2W2, wherew, andW, are the respective widths of the two
dimensions. Generalizing, a ruledndimensions representsiadimensional hyperrectan-
gle in d-dimensional space. A clagsif is therefore a collection of rectangles, each of
which is labeled with a priorityAn incoming packet header represents a point with coor-
dinates equal to the values of the head#ds$ corresponding to the dimensions. For

example, Figure 4.1 shows the geometric representation of the ielasgsifable 4.1.

Rules of higher priority overlay those of lower priority in the figure.

Given this geometric representation, classifying an arriving packet is equivalent to
finding the highest priority rectangle among all rectangles that contain the point represent-
ing the packet. If higher priority rectangles are drawn on top of lower priority rectangles
(as in Figure 4.1), this is equivalent toding the topmost visible rectangle containing a
given point. For example, the packet represented by the point,B{OLin Figure 4.1

would be classified by rulg; .

There are several standard problems in ie&dfof computational geometry
[4][79][84], such as ray-shooting, point location and rectangle enclosure, that resemble
packet classitation. Point location in a multi-dimensional space requiretirfig the
enclosing region of a point, given a sehoh-overlappingegions. Since the hyperrectan-
gles in packet clasgifition could be overlapping, packet classifion is at least as hard
as point location. The best bounds for point locatioi inectangular regions andl
dimensions in the worst-case, fde 3, are O(logN) time with O(Nd) spacel, or

O((logN) d_1) time andO(N) space [73][79]. Clearly this is impracticably slow for classi-

1. The time bound fod < 3 is O(loglogN) [73] but has lage constant factors.
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Figure 4.1 Geometric representation of the two-dimensional classifierbleT4.1. An incoming pac}
represents a point in the two dimensional space, for instancd, B(@1 Note that R4 is completely hidc
by R1 and R2.

fication in a high speed router — with just 100 rules andlds}, N space is about 100

Mbytes; andlogN) 9-1is about 350 memory accesses.

2.3 Linear seach

As in the routing lookup problem, the simplest data structure is a linked-list of all the
classifcation rules, possibly stored in sorted order of decreasing priorities. For every
arriving packet, each rule is evaluated sequentially until a rule is found that matches all the
relevant felds in the packet headathile simple and storagefafient, this algorithm
clearly has poor scaling properties: the time to classify a packet grows linearly with the

number of ruleg.

2.4 Ternary CAMs

We saw in Section 2.2.8 of Chapter 2 how ternary CAMs (TCAMS) can be used for
performing longest pred matching operations in dedicated hardware. TCAMs can simi-
larly be used for multi-dimensional classétion with the modi€tation that each row of

the TCAM memory array needs to be wider than 32 bits — the required width depends on

1. Practical evidence suggests that this data structure can support a performance between 10,000 and 30,000 packets per
second using a 200 MHz CPU with a few hundred 4-dimensional classification rules.
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the number ofiélds used for classtfation, and usually varies between 128 and 256 bits
depending on the application. An increasing number of TCAMSs are being used in the
industry at the time of writing (for at least some applications) because of their simplicity
speed (the promise of classification in a single clock-cycle), improving dearsityossi-

bly absence of competitive algorithmic solutions. While the same advantages and disad-
vantages as discussed in Chapter 2 hold for a classification TCAM, we look again at a few

issues specifically raised by classification.

 Density. The requirement of a wider TCAM further decreases its depth for a
given densityHence, for a 2 Mb 256-bit wide TCAM, at most 8K classification
rules can be supported. As a TCAM row stores a (value, maskjgraje specifi-
cations need to be split into mask specifications, further bringing down the num-
ber of usable TCAM entries by a factor(@w-2) % in the worst case fai-
dimensional classification. Even if only two 16-bit dimensions specify ranges
(which is quiet common in practice with the transport-layer source and destination

port number fields), this is a multiplicative factor of 900.

« Power. Power dissipated in one TCAM row increases proportionally to its
width.

In summary classifcation makes worse the disadvantages of existing TCAMs.
Because of these reasons, TCAMs will probably still remain unsuitable in the near future
for the following situations: (1) Lge classifiers (256K-1M rules) used for microflow rec-
ognition at the edge of the network, (2) garclassiers (128-256K rules) used at edge
routers that manage thousands of subscribers (with a few rules per subscriber), (3)
Extremely high speed (greater than 200-250 Mpps) classification, and (4) Software-based
classifcation that may be required for adarnumber of dimensions, for instance, more

than 8.
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search path

F1-trie

F2-tries

R2

Figure 4.2 The hierarchical trie data structure built on the rules of the example classifalef4T1. The
gray pointers are the “next-trie” pointers. The path traversed by the query algorithm on an incomin
(000, 010) is also shown.

2.5 Hierarchical tries

A d-dimensional hierarchical radix trie is a simple extension of the radix trie data
structure in one dimension (henceforth called a 1-dimensional trie), and is constructed
recursively as follows. Il equals 1, the hierarchical trie is identical to the 1-dimensional
radix trie studied before in Section 2.1.3 of Chapter 2. i greater than 1, we first con-
struct a 1-dimensional trie on say dimenskdn called theF1-trie. Hence, thd=1-trie is
a ‘trie’ on the set of prefixe$Rj 1} » belonging to dimensioR1 of all rules in the classi-
fier, C = {RJ.} : whereRj = {Rijjz} . For each pref, p, in the 1-dimensionat1-trie,
we recursively construct @ - 1) -dimensional hierarchical trie‘l’,p, on those rules which
exactly specifyp in dimensionF1, in other words, on the set of ruIeRj:le = p}. Prefix
p is linked to the trieTID using another pointer called the next-trie poink@r instance,
the data structure in two dimensions is comprised ofvérie and severaF2-tries
linked to nodes in th&1-trie. The storage complexity of the data structure foNamle

classifer is O(NdW) . The hierarchical trie data structure for the example classif
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Table 4.1 is shown in Figure 4.2. Hierarchical tries are sometimes called “multi-level

tries,” “backtracking-search tries,” or “trie-of-tries.”

A classifcation query on an incoming packet,, v,, ..., v,) proceeds recursively on

o o
each dimension as follows. The query algoritinst traverses the 1-dimensiorfal -trie

based on the bits i, in the usual manneAt eachF1-trie node encountered during this
traversal, the algorithm follows the next-trie pointer (if non-null) and recursively traverses
the (d - 1) -dimensional hierarchical trie stored at that node. Hence, this query algorithm
encounters a rule in its traversal if and only if that rule matches the incoming packet, and it
need only keep track of the highest priority rule encountered. Because of its recursive
nature, the query algorithm is sometimes referred to as a backtracking search algorithm.
The query time complexity fod -dimensions isO(V\/d). Incremental updates can be car-

ried out in O(dZV\/) time since each of the-prefix components of the updated rule is
stored in exactly one location at maximum depw) in the data structure. As an exam-

ple, the path traversed by the clagsifion query algorithm for an incoming packet

(000,010) is also shown in Figure 4.2.

2.6 Set-pruning tries

A set-pruning trie [106] is similar to a hierarchical trie but with reduced data structure
guery time obtained by eliminating the need for doing recursive traversals. This is
achieved by replicating rules at several nodes in the data structure as follows. Consider a
d-dimensional hierarchical trie consisting of Bb-trie and severald — 1) -dimensional
hierarchical tries. Le§ be the set of nodes representing prefixes longer than a priefix
the F1-trie. A set-pruning trie is similar to this hierarchical trie except that the rules in the
(d-1)-dimensional hierarchical trie linked to a prep in the F1-trie are “pushed
down,” i.e., replicated in théd — 1) -dimensional hierarchical tries linked to all the nodes
in S. This “pushing-down” of prefixes is carried out recursively (during preprocessing) on

the remainingd-1) dimensions in the set-pruning trie data structure.
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search path F1-trie

1 F2-tries

R6

R2

Figure 4.3 The set-pruning trie data structure built on the rules of example classifiablef 4.1. Th
gray pointers are the “next-trie” pointers. The path traversed by the query algorithm on an incomir
(000, 010) is also shown.

The query algorithm for an incoming packegt,, v,, ..., vy) now need only traverse
the F1-trie to ind the longest matching prefof v, , follow its next-trie pointer (if non-
null), traverse thé=2-trie to ind the longest matching piefof v,, and so on for all
dimensions. The manner of replication of rules ensures that every matching rule will be
encountered in this path. The query time complexity reducegdy) at the expense of
an increased storage complexityca(NddV\/) since a rule may need to be replicaa}:(dld)
times — for every dimensiok, the K" preix component of a rule may be longer than
O(N) otherk™" prefx components of other rules in the classifUpdate complexity is

O(Nd), and hence, this data structure is, practically speaking, static.

The set-pruning trie for the example classifier albl€ 4.1 is shown in Figure 4.3. The
path traversed by the query algorithm on an incoming packet (000,010) is also shown.
Note that replication may lead to pretomponents of diérent rules being allocated to

the same trie node. When this happens, only the highest priority rule need be stored at that
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F1-trie

F2-tries

Figure 4.4 Showing the conditions under which a switch pointer is drawn from node w to node
pointers out of nodes s and r to trigsahd T, respectively are next-trie pointers.

node — for instance, both R5 and R6 are allocated to xiadehe F2-trie of Figure 4.4,

but the nodex stores only the higher priority rule R5.

2.7 Grid-of-tries
The grid-of-tries data structure, proposed by Srinivasan et al [95], is an optimization of
the hierarchical trie data structure for two dimensions. This data structure avoids the mem-
ory blowup of set-pruning tries by allocating a rule to only one trie node as in hierarchical
tries. Howeverit still achievesO(W) query time by using pre-computation and storing a
switch pointerin some trie nodes. A switch pointer is labeled ‘0’ or ‘1’ and guides the
search process in the manner described bélae conditions which must be satisfied for
a switch pointer labeled (b =0’ or ‘1) to exist from a nodev in the trieT , to a node
x of another trieT, are (see Figure 4.4):
1. T, andT,, are distinct tries built on the prefix components of dimensin
FurthermoreT, andT,  are respectively pointed to by the next-trie pointers of

two distinct nodes, say ands of the same trieT, built on prefix components of
dimensionF1.
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search path

F1-trie

F2-tries

Figure 4.5 The grid-of-tries data structure built on the rules of example classifiebie #.1. The grs
pointers are the “next-trie” pointers, and the dashed pointers are the switch pointers. The path tra
the query algorithm on an incoming packet (000, 010) is also shown.

2. The bit-string that denotes the path from the root node towdderie T con-
catenated with the bit is identical to the bit-string that denotes the path from the
root node to node in the trieT, .

3. Nodew does not have a child pointer labekedand

4. Nodes in trie T is the closest ancestor of nodéhat satisfies the above condi-

tions.

If the query algorithm traverses path¥(s, root (T,),y, ) andu2(r, root (T, ), w) for

an incoming packet on the hierarchical trie, the query algorithm need only traverse the
pathU(s, r, root (T, ), w, X) on a grid-of-tries data structure. This is because pathand
U2 are identical (by condition 2 above) tilll terminates at node becausev does not
have a child branch labeldd (by condition 3). The use of another pointealled a
“switch pointer” from nodew directly to nodex allows the grid-of-tries query algorithm
to traverse all branches that would have been traversed by the hierarchical trie query algo-
rithm without the need to ever backtrack. This new algorithm examines each bit of the
incoming packet header at most once. Hence, the time complexity red @9 tavhile

storage complexity oD(NW) remains identical to that of 2-dimensional hierarchical tries.
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However adding switch pointers to the hierarchical trie data structure makes incremental
updates diicult to support, so the authors recommend rebuilding the data structure (in
time O(NW)) in order to carry out updates [95]. The grid-of-tries data structure for the
example classér of Table 4.1 $ shown in Figure 4,5long with an example path tra-

versed by the query algorithm.

Reference [95] reports a memory usage of 2 Mbytes on a idassifitaining 20,000
rules in two dimensions comprising destination and source IP prefixes, when the stride of
the destination preftrie is 8 bits and that of the source prdfies is 5 bits. The worst
case number of memory accesses is therefore 9. The classifier was constructed by using a
publicly available routing table for the destination IP dimension and choosingegref

from this routing table randomly to form the source IP dimension.

Grid-of-tries is a good data structure for two dimensional classification occupying rea-
sonable amount of memory and requiring a few memory accesses. It can be used as an
optimization for the last two dimensions of a multi-dimensional hierarchical trie, hence
decreasing the classification time complexity by a factowdb O(vad_l) in d dimen-
sions, in the same amount of stora@®dw) . As with hierarchical and set-pruning tries,
grid-of-tries requires range specifications to be split into prefixes before the data structure

is constructed.

2.8 Crosspoducting

Crossproducting [95] is a packet clagsifion solution suitable for an arbitrary num-
ber of dimensions. The idea is to classify an incoming packetimensions by compos-

ing the results of separate 1-dimensional range lookups in each dimension as follows.

The preprocessing step to construct the data structure comprises computing the set of
ranges,G,, of sizes, = |Gk|, projected by rule specdfations in each dimension

k,1<ks<d. Let rL, 1<j<s,, denote the;‘th range inG, . A crossproduct table of size
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1 3 Crosspioduct Table
r r il 1.1
— 111 o) | R1
| ® 110 (rll,rzz) R2
ry IR5 R6 101 i [ RS
|
100 ) [ —
o1 r2,r,2
iy (15129 R2
010 %A | RS
| RL 001 r3r) | R3
000 (I’13,I'22) R3
0000 0 1010 0]_1100 101 110111 (r13,r23) R5

Figure 4.6 The table produced by the crossproducting algorithm and its geometric representatic
two-dimensional classifier ofable 4.1.

d
|‘| s, is then constructed, and the best matching rule for each entry
k=1

i i
Erll, r22, rddE; 1<i, <s,1<ksd in this table is precomputed and stored.

Classifcation query on an incoming packet,, v, ...,v,) first performs a range

|
lookup in each dimensiok to identify the rangekk containing pointv, . The tuple

L)

Dl,rz,

|
rddE is then directly looked up in the crossproduct tabjeto access the pre-

computed best matching rule.

Example 4.5:The crossproduct table for the example classdf Table 4.1is shown in Figure
4.6. The iigure also illustrates the geometric interpretation of crossproducting.
There is one entry in the crossproduct table for each rectangular cell in the grid cre-
ated by extending the sides of each original rectangle representing a rule. The
query algorithm for an example incoming packet B(@H0) accesses table entry
. 2 .
with the addres&l,rg) accessing rule R5

We have seen that prefixes give rise to at moa8N ranges, hence, < 2N, andC; is
of sizeO(Nd). The lookup time i(dt,, ) wheret, is the time complexity of doing a

range lookup in one dimension. Crossproducting is a suitable solution for very small clas-
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sifiers only because of its high worst case storage compl&atierence [95] proposes

using an on-demand crossproducting scheme together with caching forezkassifger

than 50 rules inive dimensions. Crossproducting is a static solution since addition of a
rule could change the set of projected ranges and necessitate re-computing the crossprod-

uct table.

2.9 Bitmap-intersection

The bitmap-intersection classiition scheme, proposed by Lakshman and Stiliadis
[48], is based on the observation that the set of rélethat match a packet headisrthe
intersection ofd sets,S, whereS is the set of rules that match the packet inithe
dimension alone. While crossproducting precompgtesd stores the best matching rule
in S, this scheme comput&sand the best matching rule on the flg., during each clas-

sification operation.

In order to compute intersection of setogfntly in hardware, each set is encoded as
an N-bit bitmap with one bit corresponding to each of theules. The set of matching
rules is then the set of rules whose corresponding bits are ‘1’ in the bitmap. Adadassif
tion query on a packek, proceeds in a fashion similar to crossproductingrsy per-
forming separate range lookups in each ofd¢tdimensions. Each range lookup returns a
bitmap encoding the set of matching rules (precomputed for each range) in that dimen-
sion. Thed sets are intersected (by a simple hardware boolean AND operation) to give the
set of rules that match. The best matching rule is then computed from this set. See Fig-

ure 4.7 for the bitmaps corresponding to the example classifiabtd 7.1.

Since each bitmap i8 bits wide, and there a®N) of ranges in each of tiiedimen-
sions, the total amount of storage space consurr@(dilktz) . The classification time com-
plexity is O(dt,, +dN/w) wheret,, is the time to do one range lookup amds the

memory width so that it takes/w memory operations to access one bitmameTlcom-
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Dimension 1 Dimension 2

! | {R1,R2,R4,R5,R6} 110111 b | {R1,R3,R4} 101100
r” | {R2,R5,R6} 01001 r,” | {R2,R3,R4} 011000
r,® | {R3,R6} 001001 r;°> | {R5,R6} 000111

Query on P(011,010): 010011 Dimension-1 bitmap
000111 Dimension-2 bitmap

00001 Intersected bitmap

R5 Best matching rule

Figure 4.7 The bitmap tables used in the “bitmap-intersection” classification scheme for the ¢
classifier of Bble 4.1. See Figure 4.6 for a description of the ranges. Also shown is classification
an example packet P(D1110).

plexity can be brought down by a factordfy using parallelism in hardware to lookup

each dimension independently in parallel. Incremental updates are not supported. The
same scheme can be implemented in software, but the classification time is expected to be
higher because of the unavailability of hardware-specific features, such as parallelism and

bitmap-intersection.

Reference [48] reports that the scheme could support up to 512 rules with a 33 MHz
FPGA device andve 1 Mbit SRAMs, classifying one million packets per second. The
scheme works well for a small number of rules in multiple dimensions, batstrom a
guadratic increase in storage space and a linear increase in memory bandwidth require-
ments (and hence in clags#tion time) with the size of the clagsif A variation is
described in [48] that decreases the storage requirement at the expense of increased classi-

fication time.

2.10 Tuple space seaih
The idea of the basic tuple space search algorithm (Suri et al [96]) is to decompose a
classifcation query into a number of exact match queries. The algoritsimfaps each

d-dimensional rule into a-tuple whose'™ component stores the length of the pref
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Rule [ Specification| Tuple Tuple[Hash BRble Entrieg
R1 (00*,00%) (2,2) (0,1 {R6}

R2 (0**,01%) (1,2) (1,1) {R3,R5}

R3 (1**,0**) (1,1) (1,2) {R2}

R4 (00*,0**) (2,1) (2,1) {R4}

Rs | (0*1%) (1,1) 22 {Ry

R6 (***’ 1**) (0 , 1)

Figure 4.8 The tuples and associated hash tables in the tuple space search scheme for thi
classifier of able 4.1.

specified in theé™' dimension (the scheme supports only prefix specifications). Hence, the
set of rules mapped to the same tuple are of a fixed and known length, and thus stored in a
hash table for exact match query operations. A cleag8dn query is carried out by per-
forming exact match operations on each of the hash tables corresponding to all possible
tuples in the classdr. The tuples and their corresponding hash tables for the example
classifier ofTable 4.1are shown in Figure 4.8. A variation of the basic algorithm uses heu-
ristics to avoid searching all hash tables using ideas similar to those used in the “binary
search on prefix lengths” lookup scheme mentioned in Section 2.2.5 of Chapter 2 (see [96]

for details).

Classification time in the tuple space search scheme is equal to the time neadled for
hashed memory accesses, whidres the number of tuples in the clas=if The scheme
usesO(N) storage since each rule is stored in exactly one hash table. Incremental updates
are supported and require just one hashed memory access to the hash table associated with
the tuple of the modified rule. In summgattye tuple space search algorithm performs well
for multiple dimensions in the average case if the number of tuples is small. Hptever
use of hashing makes the time complexity of searches and updates non-deterministic.
Also, the number of tuples could be verygrup toO(Wd), in the worst case. Further-
more, since the scheme supports only prefixes, the storage complexity increases by a fac-

tor of O(Vvd) for generic rules as each range could be split &) preixes in the
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F1-trie

-—p <> o> - -
R1 R2 R5 R6 R3
R4

Figure 4.9 The data structure of Section 2.for the example classifier ofifile 4.1 The search path
example packet P(Q@1110) resulting in R5 is also shown.

manner explained in Section 2.1. This is one example where the rangetdrpreffor-
mation technique of [23] cannot be applied becauseeddisf are looked up simulta-

neously

2.11 A 2-dimensional classification schemedm Lakshman and Stiliadis [48]

Lakshman and Stiliadis [48] propose a 2-dimensional cleasdn algorithm where
one dimension, sak1, is restricted to having prgfspecifcations, while the second
dimension,F2, is allowed to have arbitrary range spieaifions. The data structurest
builds anF1-trie on the prexes of dimensiorF1, and then associates a & of non-
overlapping ranges to each trie node that represents prefpjx. These ranges are created
by the end-points of possibly overlapping projections on dimerstoof those ruless ,
that specify exactly in dimensionF1. A range lookup data structure (e.g., an array or a
binary search tree) is then constructed®nand associated with trie node The data

structure for the example classifierTable 4.1is shown in Figure 4.9.
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Given a pointP(v,,v,), the query algorithm proceeds downwards from the root of the
trie according to the bits of, in the usual manneAt every trie nodew, encountered
during this traversal, a range lookup is performed on the associated data s@ctline
range lookup operation returns the rang&jn containingv,, and hence the best match-
ing rule, sayr ,, within the setS, that matches poir. The highest priority rule among
the rules{ R} for all trie nodesv encountered during the traversal is the desired highest

priority matching rule in the classifier

The query algorithm takes tim@WlogN) because a range lookup needs to be per-
formed (inO(logN) time) at every trie node in the path from the root to a null node in the
F1-trie. This can be improved ©(W + logN) using a technique calldthctional cascad-
ing borrowed from Computational Geometry [4]. This techniqgue augments the data struc-
ture such that the problem of searching for the same point in several sorted lists is reduced
to searching in only one sorted list plus accessing a constant number of elements in the
remaining lists. The storage complexityQ@\NW) because each rule is stored only once in
the data structure. Howevdhe use of fractional cascading renders the data structure

static.

2.12 Area-based quadtee

The Area-based Quadtree (AQT) data structure proposed by Buddhikot et al [7] for
classifcation in two dimensions supports incremental updates that can be tradetth of
classifcation time by a tunable paramet&he preprocessing algorithnnst builds a
guadtree [4], a tree in which each internal node has four children. The parent node of a
guadtree represents a two dimensional space that is decomposed into four equal sized
guadrants, each of which is represented by a child of that node. The original two dimen-
sional space is thus recursively decomposed into four equal-sized quadrants till each quad-

rant has less than or equal to one rule in it (see Figure 4.10 for an example of the
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Figure 4.10 An example quadtree constructed by spatial decomposition of two-dimensional spax
decomposition results in four quadrants.

decomposition process). A set of rules is then allocated to each node of the quadtree in the

manner described next.

A rule is said to cross a quadrant in dimengiohit completely spans the dimension-
j of the area represented by that quadrant. For instance, rule R6 spans in both dimensions
the quadrant represented by the root node (the complete 2-dimensional space) of Figure
4.11, while rule R5 does not. If we divide the 2-dimensional space into four quadrants,
rule R5 crosses the north-west quadrant in both dimensions while rule R2 crosses the
south-west quadrant in dimensién-. The set of rules crossing the quadrant represented

by a node in dimensiok is called the k-crossing filter set-CFS)” of that node.

Two instances of the same data structure are associated with each quadtree node —
one each for storing the ruleskrCFS k = 1, 2). Since rules in crossingtér sets span
at least one of the two dimensions, only the range specified in the other dimension need be
stored in the data structure. The clasatfon query proceeds by traversing the quadtree
according to the bits in the given packet — looking at two bits at a time, formed by trans-

posing one bit from each dimension. The query algorithm does two 1-dimensional look-
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Figure 4.11 The AQT data structure for the classifier efble 4.1. The label of each node denotes
CFS, 2-CFS}. Also shown is the path traversed by the query algorithm for an incoming packet P(0
yielding R1 as the best matching rule.

ups (one for each dimension &RCFS) at each quadtree node traversed. Figure 4.1

shows the AQT data structure for the example classifiealoie.1.

Reference [7] also proposes afi@ént incremental update algorithm that enables
AQT to achieve the following bounds fof two-dimensional rulesO(NW) space com-

plexity, O(aW) search time an®(a%/N) update time for a tunable integral parameter

2.13 Fat Inverted Segment ilee (FIS-tree)
Feldmann and Muthukrishnan [23] propose the FIS-tree data structure for two dimen-
sional classification as a modification of the segment tree data struceufestdescribe

the segment tree data structure, and then the FIS-tree data structure.

A segment tree [4] stores a 0f line segments (possibly overlapping) to answer
gueries such asnding the highest priority line segment containing a given pofi ef
ciently. It consists of a balanced binary search tree on the end points of the line segments
in S. Each nodew, of a segment tree represents a ra@ge— leaves represent the orig-

inal line segments i, and parent nodes represent the union of the ranges represented by
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Figure 4.12 The segment tree and the 2-level FIS-tree for the classifietbté 7.1.

their children. A line segment is allocated to a nadé it containsG,, but does not con-

tain G The highest priority line segment among all the line segments allocated to

parent(w) *
a node is precomputed and stored at the node. The search algorithm for finding the highest
priority line segment containing a given point traverses the segment tree downwards from
the root, and calculates the highest priority of all the precomputed segments encountered
at each node during its traversal. Figure 4.12 shows the segment tree for the line segments

created by th&1 -projections of the rules of classifier iafle 4.1.

An FIS-tree is a segment tree with two maxdifions: (1) The segment tree is com-
pressed (made “fat” by increasing the degree to more than two) in order to decrease its
depth so that it occupies a given number of leVe[®) Pointers are set up inverted, i.e.,
go from child nodes to the parent to help the search process describedihel@hassifi-
cation data structure for 2-dimensional classsf consists of an FIS-tree on dimension

F1, and a range lookup data structure associated with each node of the FIS-tree. An



Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields 127

instance of the range lookup data structure associated withwvnod¢he FIS-tree stores
the ranges formed by the2-projections of those claswf rules whose=1-projections

were allocated tov.

A classifcation query on a given poi(v,,v,) first solves the range lookup problem
in dimensionF1. This returns a leaf node of the FIS-tree representing the range contain-
ing the pointv, . The query algorithm then follows the parent pointers from this leaf node
up towards the root node, carrying out 1-dimensional range lookups in the associated
range lookup data structures at each node traversed. The algonidigndomputes the

highest priority rule containing the given point at the end of the traversal.

The search time complexity for drlevel FIS-tree iO((I + 1)t ) with a storage
space complexity o@(ln1+ 1/') , Wheret,, is the time taken to carry out a 1-dimensional
range lookup. Storage space can be tradedithh search time by suitably tuning the
parametet . Several variations to the FIS-tree are needed in order to support incremental
updates — even then, it is easier to support inserts than deletes [23]. The static FIS-tree
can be extended to multiple dimensions by building hierarchical FIS-trees, but the bounds
obtained are similar to other data structures studied edRiease see [23] for details on

supporting updates in FIS trees and multi-dimensional static FIS trees).

Extensive measurements on real-life 2-dimensional classifre reported in [23]
using the static FIS-tree data structure. These measurements indicate that two levels suf-
fice in the FIS tree for 4-60K rules with a storage consumption of less than 5 Mbytes. One
classifcation operation requires fewer than 15 memory accesses. ger tdassiers
containing up to one million 2-dimensional rules, at least 3 levels are required with a stor-
age consumption of approximately 100 Mbytes, while one claasiébn operation

requires fewer than 18 memory accesses.
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2.14 Summary of pevious work

Table 4.3 gives a summary of the complexities of the multi-dimensional classification
algorithms reviewed in this chaptéost proposed algorithms work well for two dimen-
sions, but do not extend to multiple dimensions. Others have either non-deterministic
search time (e.g., tuple space search), or do not scale toietadaxjer than a few hun-
dred rules (e.g., crossproducting or bitmap-intersection). This is not surprising since theo-
retical bounds tell us that multi-dimensional clagsifion has poor worst-case
performance, in either storage or time complexity
TABLE 4.3. Comparison of the complexities of previously proposed multi-dimensional classification algorithms on a

classifier withN rules andd W -bit wide dimensions. The results assume that each rule is stored in

O(1) space and taked(1) time go determine whether it matches a packet. This table ignores the
multiplicative factor of (2W-2) = in the storage complexity caused by splitting of ranges to prefixes.

. Worst-case time Worst-case storage
Algorithm . )
complexity complexity
Linear Search N N
Hierarchical tries Wd NdW
Set-pruning tries dw NddW
Grid-of-tries Wd— 1 NdW
Crossproducting dw Nd
Bitmap-intersection (W + N/memwidth) d dN2
Tuple space search N N
FIS-tree (I+1)w I x N1+ 1/1
Ternary CAM 1 N
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3 Proposed algorithm RFC (Recursive Flow Classification)

3.1 Backgiound

The RFC algorithm is motivated by the observation that real-life dirssdontain a
large amount of structure and redundancy that can be exploited by a pragmaticaiassif
tion algorithm. RFC works well for a selection of multi-dimensional real-life classif
available to us. W proceed to describe the observed characteristics of these real-life clas-

sifiers and a description of the structure present in them.

3.2 Characteristics of eal-life classifiers

We collected 793 packet classis from 101 diferent ISP and enterprise networks
with a total of 41,505 rules. For privacy reasons, sensitive information such as IP
addresses were sanitized while preserving the relative structure in théers&fch
network provided up to ten separate classifiers foergiht serviced.We found the classi-

fiers to have the following characteristics:

1. The classifiers do not contain agamumber of rules. Only 0.7% of the classifi-
ers contain more than 1000 rules, with a mean of 50 rules. The distribution of the
number of rules in a classifier is shown in Figure 4.13. The relatively small num-
ber of rules per classifier should not come as a surprise: in most networks today
rules are configured manually by network operators, and it is a non-trivial task to
ensure correct behavior if the classifier becomelar

2. The syntax of these classifiers allows a maximum of 8 header fields to be speci-
fied: source/destination network-layer address (32-bits), source/destination trans-
port-layer port numbers (16-bits for TCP and UDP), type-of-servioS]Tield

1. We wanted to preserve the properties of set relationship, e.g. inclusion, among the rules, or their fields. A 32-bit IP
addres90.pl.p2.p3s sanitized as follows: (a) A random 32-bit numbd@ic1.c2.c3s first chosen, (b) a random permu-

tation of the 256 numbers 0...255 is then generated feg®({0..255](c) Another random numb&between 0 and 255

is generated: these randomly generated numbers are common for all the rules in the, ¢#ssHietP address with
bytes:perm[(p0 " c0 + 0 * s) % 256perm[(pl ~ c1 + 1 * s) % 256perm[(p2 ~ c2 + 2 * s) % 2564ndperm[(p3 " ¢c3

+ 3 * s) % 256]is then returned as the sanitized transformation of the original IP address,weeotes the exclusive-

or operation. This transformation preserves set relationship across bytes but not necessarily within a byte. Hence, some
structure present in the original classifier may be lost. Howesehave since had access to some of the original classi-
fiers, with results similar to those shown in this chapter

2. In the collected dataset, classifiers fofedént services are made up of one or more ACLs (access control lists). An
ACL rule can have one of two actions, “deny” or “permit”. In this discussion, we will assume that each ACL is a sepa-
rate classifiera common case in practice.
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Figure 4.13 The distribution of the total number of rules per classifiete the logarithmic scale on b
axes.

(8-bits), protocol field (8-bits), and transport-layer protocol flags (8-bits) with a
total of 120 bits. 17% of all rules in the dataset have 1 field specified, 23% have 3

fields specified and 60% have 4 fields specified.

3. The transport-layer protocol field is restricted to a small set of values: in our
dataset, this field contained only the following values:, PR, ICMP, IGMP,
(E)IGRR GRE and IPINIPor the wildcard *' (i.e., the set of all transport proto-
cols).

4. The transport-layer address fields have a wide variety of specifications. Many
(10.2%) of them areangespecifications — such as ‘range 20-24’ or ‘gt 1023,
which means all values greater than 1023. In particiarspecification ‘gt 1023’
occurs in about 9% of the rules. Splitting this range into prefixes results in six
constituent maximal prefixes: 1024-2047, 2048-4095, 4096-8191, 8192-16383,
16384-32767, 32768-65535. Thus, converting all range specifications to prefix
specifications could result in adgrincrease in the size of a classifier

1. If afield is not specified, the wildcard specification is assumed. Note that this is determined by the syntax of the rule
specification language.
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5. Approximately 14% of all classifiers had at least one rule with a non-contiguous
mask, and 10.2% of all rules had non-contiguous masks. A non-contiguous mask
means that the bits that are ‘1’ in the mask are not contiguous. For example, a
specification of 137.98.217.0/8.22.160.80 has a non-contiguous mask, which is
surprising. One suggested reason for this is that some network operators choose a
specific numbering/addressing scheme for their routers. This observation indi-
cates that a packet classification algorithm cannot always rely on a network-layer
address specification to be a prefix.

6. It is common for diferent rules in the same classifier to share a number of field
specifications. Sharing occurs because a network operator frequently wants to
specify the same policy for a pair of communicating groups of hosts or subnet-
works — for instance, the network operator may want to prevent every host in one
group of IP addresses from accessing any host in another group of IP addresses.
Given the limitations of a simple address/mask syntax specification, a separate
rule must be written for each pair in the two (or more) groups. This observation is
used in an optimization of the basic algorithm, described later in Section 5.1.

7. We found that 15% of the rules were redundant. ARuig said to be redundant
if one of the following conditions hold (here, we think of a relas the set of all
packet headers which could maRlt (a) There exists a rule appearing earlier
thanR in the classifier such th& is a subset of . Thus, no packet will ever
matchR, i.e.,R is redundant. & call thisbackwad redundancy —#.8% of the
rules were found to be backward redundant. (b) There exists @ appearing
afterR in the classifier such that @ is a subset of , (i) R andT have the same
actions, and (iii) For each ruk¢ appearing in betweeR andT in the classifier
eitherV is disjoint fromR, or V has the same action Bs We call thisforward
redundancy —¥.2% of the rules were forward redundant. In this cRsean be
eliminated to obtain a new smaller classifiepacket matchingR in the original
classifier will matcht in the new classifiebut will yield the same action.

3.3 Observations about the structue of the classifiers
To illustrate the structure we found in our dataset, we start with an example 2-dimen-
sional classiér containing three rules. Figure 4.14(a) shows three such rectangles, where

each rectangle represents a rule with a range of values in each dimension. Ther classif

contains three explicitly defined rules, and the default rule (represented by the background
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Figure 4.14 Some possible arrangements of three rectangles (2-dimensional rules). Eeremttyi
shaded rectangle comprises one region. The total number of regions indicated includes tl
background region.

rectangle). The arrangement of the three rules in Figure 4.14(a) is such that four distinct
regions, diferently shaded, are created (including the white background region¥e# dif

ent arrangement could create five regions, as in Figure 4.14(b), or seven regions, as in Fig-
ure 4.14(c). A classifation algorithm must keep a record of each region and be able to
determine the region to which each newly arriving packet belongs. Intujtthhelyager

the number of regions that the clamsifcontains, the more storage is required, and the

longer it takes to classify a packet.

Even though the number of rules is the same in each of the three cases in Figure 4.14,
the task of the classification algorithm becomes progressively harder as it needs to distin-
guish more regions. In general, it can be shown that the number of regions crelted by
rules ind dimensions can b@(Nd). Such a worst case example for two dimensions is

shown in Figure 4.15.

We analyzed the structure in our dataset and found that the number of overlapping
regions is considerably smaller than the worst case. 8@adlgiffor the biggest classr
with 1733 rules, the number of distinct overlapping regions in four dimensions was found
to be 4316, compared to approximate}aQ}1 regions for the worst possible combination
of rules. Similarly the number of overlapping regions was found to be relatively small in

each of the classdrs in the dataset. This is because rules originate from ispeaities
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Figure 4.15 A worst case arrangement KfrectanglesN/2 rectangles span the first dimension, anc
remainingN/2 rectangles span the second dimension. Each of the black squares is a distinct re(
total number of distinct regions is therefou®/ 4+ N+1 = O(NZ) .

of network operators and agreements betwedardiit networks. For example, the opera-
tors of two diferent networks may specify several policies relating to the interaction of
the hosts in one network with the hosts in the offleis implies that rules tend to be clus-
tered in small groups instead of being randomly distributed. As we will see, the proposed

algorithm exploits this structure to simplify its task.

3.4 The RFC algorithm

Classifying a packet can be viewed as mapg@rats in the packet header Tobits of
classID(an identifer denoting the rule, or actign¥hereT = logN, T «S, in a manner dic-
tated by theN classifer rules. A simple and fast, but unrealistic, way of doing this map-
ping might be to precompute the valuelaksIDfor each of the® different packet header
values. This would yield the answer in one step (i.e., one memory access) but would
require too much memaryhe main aim of RFC is to perform the same mapping but over
several stages. As shown in Figure 4.16, RFC performs this mapping recursively — in

each stage the algorithm performeduction mapping one set of values to a smaller set.

The RFC algorithm haB phaseswhere each phase consists of a set of parallel mem-

ory lookups. Each lookup is a reduction in the sense that the value returned by the memory
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Figure 4.16 Showing the basic idea of Recursive Flow Classification. The reduction is carriec
multiple phases, with a reduction in ph&adeing carried out recursively on the image of the phasé&he
example shows the mapping % bits to2 bits in 4 phases.

lookup is shorter (is expressed in fewer bits) than the index of the memory access. The

algorithm, as illustrated in Figure 4.17, operates as follows:

1. In the first phase (phase @),fields of the packet header are split up into multi-
ple chunks that are used to index into multiple memories in parallel. For example,
the number of chunks equals 8 in Figure 4.17. Figure 4.18 shows an example of
how the fields of a packet may be split into chunks. Each of the parallel lookups
yields an output value that we will caljiD. (The reason for calling this identifier
eqID will become clear shortly). The contents of each memory are chosen so that
the result of the lookup is narrower than the index, i.e., requires fewer bits.

2. In subsequent phases, the index into each memory is formed by combining the
results of the lookups from earlier phases. For example, the results from the look-
ups may be concatenated to form a wider index — we will consider another way
to combine them later

3. After successive combination and reduction, we are left with one result from the
memory lookup in the final phase. Because of the way the memory contents have
been precomputed, this value corresponds toléissiDof the packet.
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Figure 4.17 Packet flow in RFC.

DstL4 portg, .| 4 port L4 protocol and flags

Dst LIT% addr Src L:3 addr
Width(bits) 16 16 16 16 16 16 16
Chunk# 6 5 4 3 2 1 0

Figure 4.18 Example chopping of the packet header into chunks for the first RFC phase. L3 and |
to the network-layer and transport-layer fields respectively

For the above scheme to work, the contents of each memoirlletafter suitably

preprocessing the clageif To illustrate how the memories are populated, we consider a
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simple example based on the classifierabl& 4.4.

TABLE 4.4. An example 4-dimensional classifier

Dst L3 (value/mask)| Src L3 (value/mask) Dst L4 L4 protocol
152.163.190.69/ 152.163.80.1/ * *
255.255.255.0 255.255.255.255
152.168.3.0/ 152.163.200.157/ eq http udp
255.255.255.0 255.255.255.255
152.168.3.0/ 152.163.200.157/ range 20-21 udp
255.255.255.0 255.255.255.255
152.168.3.0/ 152.163.200.157/ eq http tcp
255.255.255.0 255.255.255.255
152.168.3.198.4/ 152.163.160.0/ gt 1023 tcp
255.255.255.255 255.255.252.0
152.163.198.4/ 152.163.36.0/ gt 1023 tcp
255.255.255.255 255.255.255.0

We will see how the 24 bits used to express the two chunks: chunk #4 (L4, i.e., trans-
port-layer protocol) and chunk #6 (Dst L4, i.e, transport-layer destination) are reduced to
just three bits by Phases 0 and 1 of the RFC algoritherstév/t with chunk #6, which con-
tains the 16-bit transport-layer destination address. The column corresponding to the
transport-layeriéld in Table 4.4 partitions the set of all possible chunk values into four
sets: (a) {20, 21} (b) {http (=80)} (c) {>1023} (d) {all remaining numbers in the range O-
65535}. The four sets can be encoded using twodbitdhrough11. We call these two bit
values theequivalence class ID&qlDs) of the respective sets. The memory correspond-
ing to chunk #6, in Phase 0, is indexed usingﬂﬁ?edifferent values of 16-bit wide chunk
#6. In each memory locatian, we place theqID for the set containing the value. For
example, the value in the memory locatzinis 00, denoting the set {20,21}. In this way
a 16-bit to 2-bit reduction is obtained for chunk #6 in Phase 0. Simifaelgolumn corre-
sponding to 8-bit transport-layer protocol iable 4.4 consists of three sets: (a) {tcp} (b)

{udp} (c) {all remaining protocol values in the range 0-255} — which can be encoded
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using two-biteqlDs. Hence, chunk #4 undgres an eight-bit to two-bit reduction in Phase
0.

In the second phase (Phase 1), we consider the combination of the transport-layer Des-
tination and protocol chunksale 4.4 shows that the five sets corresponding to the com-
bination of these chunks are: (a) {({80}, {udp})} (b) {({20-21}, {udp})} (c) {({80},

{tcpP} (d) {({gt 1023}, {tcp})} (e) {all remaining crossproducts of the two columns}.

The fve sets can be represented using 24iDs. The index into the memory in Phase 1

is constructed by concatenating the two 2ehiDsfrom Phase 0. Hence, Phase 1 reduces
the number of bits from four to three. If we now consider the combination of both Phase 0
and Phase 1, wéenfl that 24 bits have been reduced to just 3 bits. Hence, the RFC algo-
rithm uses successive combination and reduction to map the long original packet header to

a short classID.

We will now see how a classifier is preprocessed to generate the values to be stored in
the memory tables at each phase. In what follows, we will use theCleamk Equiva-
lence Se{CES) to denote a set mentioned in the example above, e.g., each of the three
sets: (a) {tcp} (b) {udp} (c) {all remaining protocol values in the range 0-255} is said to
be a Chunk Equivalence Set because if there are two packets Watkrdijprotocol val-
ues lying in the same set (and having otherwise identical headers), the rules of the classi-
fier do not distinguish between them. Each CES can be constructed in the following

manner

First phase (Phase Q)The process of constructing a CES in a single dimension is
similar to the procedure mentioned earlier for constructing non-overlapping basic inter-
vals from the projections of the rules onto this dimension. Therdifce lies in that two
non-contiguous ranges may now form a part of the same CES. Consiazt ehfunk of

sizeb bits, and those component(s) of the rules in the classibrresponding to this
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Figure 4.19 An example of computing the four equivalence classes EO...E3 for chunk #6 (corres|
to the 16-bit transport-layer destination port number) in the classifiabdé 7.4.

chunk. Project the rules in the clagsifon the number lin€0,2” — 1] . Each component
projects to a set of (not necessarily contiguous) intervals on the number line. The end
points of all the intervals projected by these components form a set of non-overlapping
intervals. o points in the same interval always belong to the same equivalence set. Also,
two intervals are in the same equivalence set if exactly the same rules project onto them.
As an example, consider chunk #6 (destination L4 port) of the classifiabie 4.4. The
intervals,10...14, and the constructed equivalence sgfs,.E3 are shown in Figure 4.19.

The RFC table kept in the memory for this chunklisd with the correspondingqlDs.

Thus, in this exampla@able[20] = 00, table[23] = 11, etc. The pseudocode for comput-

ing theeqIDs in Phase 0 is shown in Figure 4.20.

To facilitate the calculation @&fqlDs for subsequent RFC phases, we assigiass bit-
map (CBM) for each CES. The CBM has one bit for each rule in the ¢tassihd indi-
cates those rules that contain the corresponding CES. For example, EO in Figure 4.19 will
have the CBM101000, indicating that the first and the third rules of the classifieabier
4.4 contain EO in chunk #6. Note that the class bitmaptiphysically stored in the RFC
table: it is just used to facilitate the calculation of the stergDsby the preprocessing

algorithm.

Subsequent phasesA chunk in a subsequent phase is formed by a combination of
two (or more) chunks obtained from memory lookups in previous phases. If, for example,

the resulting chunk is of width bits, we again create equivalence sets such thah tib
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/* Phase 0, Chunkof width b bits*/
for each rulel in the classifier
begin b
project theith component ofl onto the number lin¢0,2” — 1] , marking the start and end points of
each of its constituent intervals.
endfor
/* Now scan through the number line looking for distinct equivalence classes */
bmp := 0; /* all bits of bmp are initialised to ‘0’ */
for nin 0..2-1
begin
if (any rule starts or ends at n)
begin
update bmp;
if (bmp not seen earlier)
begin
eq := new_equivalence_class();
eg->cbm := bmp;
endif
endif
else eq :=the equivalence class whose cbm is bmp;
table_0_j[n] = eg->ID; /* fill ID in the rfc table*/
endfor

Figure 4.20 Pseudocode for RFC preprocessing for chumi Phase 0.

packet header values that are not distinguished by the rules of thaeerléediting to the

same CES. Hence, (20,udp) and (21,udp) will be in the same CES in the classdldeof T

4.4 in Phase 1. The new equivalence sets for a phase are determined by computing all pos-
sible intersections of equivalence sets from the previous phases being combined. Each dis-
tinct intersection is an equivalence set for the newly created chunk. The pseudocode for

this preprocessing is shown in Figure 4.20.

3.5 A simple complete example of RFC

Realizing that the preprocessing steps are involved, we present a complete example of

RFC operation on a clagsif, showing how preprocessing is performed to determine the
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/* Assume that chunk i is formed by combining m distinct chunks c1, c2, ..., cm of phases p1,p2, ...,
pm where p1, p2, ..., pm <j*
indx := 0; /* indx runs through all the entries of the RFC table, table_j_i */
listEqgs := nil;
for each CES, cleq, of chunk c1
for each CES, c2eq, of chunk c2
for each CES, cmeq of chunk cm
begin
intersectedBmp := cleg->cbm & c2eq->cbm & ... & cmeg->cbm;/* bitwise ANDing */
neweq := searchList(listEgs, intersectedBmp);
if (not found in listEqs)
begin
[* create a new equivalence class */
neweq := new_Equivalence_Class();
neweq->cbm := bmp;
add neweq to listEgs;
endif
/* Fill up the relevant RFC table contents.*/
table_j_i[indx] := neweq->ID;
indx++;
endfor

Figure 4.21 Pseudocode for RFC preprocessing for chumi Phasg .

contents of the memories, and how a packet is looked up. The example is based on a 4-
field classifier of @ble 4.5 and is shown in Figure 4.22.

TABLE 4.5. The 4-dimensional classifier used in Figure 4.22.

Chunk#0 Chunk#1 Chunk#2 Chunk#3 Chunk#4 Chunk#5
Rule# (Src L3 bits (Src L3 bits (Dst L3 bits (Dst L3 bits (L4 protocol) | (DstnL4)[16
31..16) 15..0) 31..16) 15..0) [8 bits] bits]
RO 0.83/0.0 0.77/0.0 0.0/0.0 4.6/0.0 udp (17) *
R1 0.83/0.0 1.0/0.255 0.0/0.0 4.6/0.0 udp range 20 30
R2 0.83/0.0 0.77/0.0 0.0/255.255 0.0/255.255 * 21
R3 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * 21
R4 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * *

4 Performance of RFC

In this section, we look at the performance obtained by the RFC algorithm on the clas-
sifiers in our dataset. First, we consider the storage requirements of RFC. Then we con-

sider its performance to determine the rate at which packets can be classified.
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Figure 4.22 This figure shows the contents of RFC tables for the example classif@lef4l5. The sequence of acce:
made by the example packet have also been shown using big gray arrows. The memory locations accessed in tl
have been marked in bold.
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4.1 RFC preprocessing

As our dataset has a maximum of foelds, the chunks for Phase O are created as
shown in Bble 4.6.

TABLE 4.6. Packet header fields corresponding to chunks for RFC Phase 0.

Chunk# Field (subfield)

Source L3 address (most significant 16-bits)

Source L3 address (least significant 16-bits)

Destination L3 address (most significant 16-bits)

Destination L3 address (most significant 16-bits)

L4 protocol and flags

ga| bl W[ DN|F]| O

L4 destination port number

The performance of RFC (storage requirements and ¢tadgih time) can be tuned
with two parameters: (i) The number of phagesand (ii) The reduction tree used for a
given P. For instance, two of the several possible reduction treeR foi3 andP = 4
are shown in Figure 4.23 and Figure 4.24 respecti(Elyr P = 2, there is only one
reduction tree possible.) When there is more than one reduction tree possible for a given
value of P, the algorithm chooses a tree based on two heuristics: (i) Given a clatbsfier
maximum amount of pruning of the search space is likely to be obtained by combining
those chunks together which have the most “correlation.” As an example, the combination
of chunk 0 (most significant 16 bits of the source network address) and chunk 1 (least sig-
nificant 16 bits of the source network address) in the toy example of Figure 4.22 would
result in only 3eqIDs, while the combination of chunk 0 and chunk 4 (destination trans-
port port number) would result inggIDs. (ii) The algorithm combines as many chunks as
it can without causing unreasonable memory consumption. Following these heuristics, we
find that the “best” reduction tree fer= 3 istree_Bin Figure 4.23, and the “best” reduc-

tion tree forP = 4 istree_Ain Figure 4.24
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0 0
2 2
Chunk# ClassID Chunk# ClassID
5
Phase 0 Phase1l Phase?2 Phase 0 Phase 1l Phase 2
tree A tree B

Figure 4.23 Two example reduction trees for three phases in RFC.
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Chunk#3 ClassID Chunk# ClassID
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Phase (Phase Phase ZPhase 3 Phase (Phase Phase ZPhase 3
tree_A tree_ B

Figure 4.24 Two example reduction trees for four phases in RFC.

We now look at the performance of RFC on our dataset.i@@uigbal is to keep the
total storage consumption small. The storage requirements for each of ourectassif
plotted in Figure 4.25, Figure 4.26 and Figure 4.27 for 2, 3 and 4 phases respé&bgvely
graphs show how memory usage increases with the number of rules in each classifier
practical purposes, it is assumed that memory is only available in widths of 8, 12 or 16

bits. Hence, arqlD requiring 13 bits is assumed to occupy 16 bits in the RFC table.

As we might expect, the graphs show that storage requirements decrease with an

increase in the number of phases from three to Fowever this comes at the expense of

1. These reduction trees gave better performance results over other trees for a vast majority of the classifiers in our
experiments.
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Figure 4.25 The RFC storage requirement in Megabytes for two phases using the dataset. Thi
case of RFC with two phases is identical to the Crossproducting method of [95].

two additional memory accesses, illustrating the trafleaifveen memory consumption

and lookup time in RFC.

Like most algorithms in the literature, RFC does not support quick incremental
updates, and may require rebuilding the data structure in the worst case. It turns out, how-
ever that rebuilding is only necessary in the case of the addition of a new rule. Deletion of
existing rules can be simply handled by changing the chunk equivalence sgi3sah
the final phase. The performance of an implementation of such an incremental delete algo-

rithm on random deletes is shown in Figure 4.28.

Our second goal is to keep the preprocessing time small — this is useful when updates
necessitate rebuilding the data structure. Figure 4.29 plots the preprocessing time required

for both three and four phases of REThese graphs indicate that, if the data structure is

1. The case P=2 is not plotted: it was found to take hours of preprocessing time because of the unwieldy size of the RFC
tables.
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Figure 4.26 The RFC storage requirement in Kilobytes for three phases using the dataset. The r
tree used itree_Bin Figure 4.23.

rebuilt on the addition of every rule, RFC may be suitable if (and only if) the rules change
relatively slowly — for example, not more than once every few seconds. Thus, RFC may
be suitable in environments where rules are changed infrequently; for example, if they are

added manuallyor on a router reboot.

Finally, note that there are some similarities between the RFC algorithm and the bit-
map-intersection scheme of [48]; each distinct bitmap in [48] corresponds to a CES in the
RFC algorithm. Also, note that when there are just two phases, RFC corresponds to the
crossproducting method described in [95]. RFC ifed#int from both these schemes in
that it generalizes the concept of crossproducting to make storage requirements feasible
for larger classitrs, along with a lookup time that scales better than that of the bitmap-

intersection approach.
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Figure 4.27 The RFC storage requirement in Kilobytes for four phases using the dataset. The r
tree used isree_Ain Figure 4.24.

4.2 RFC lookup performance

The RFC lookup operation can be performed in hardware or in softwWegewill dis-

cuss the lookup performance in each case separately

4.2.1 Lookups in hardwae

An example hardware implementation for the tree_Bin Figure 4.23 (three phases)
is illustrated in Figure 4.30 for fouiefds (six chunks in Phase 0). This design is suitable
for all the classifiers in our dataset, and uses two 4 Mbit SRAMs and two 4-bank 64 Mbit
SDRAMSs clocked at 125 MHZ.The design is pipelined such that a new lookup may

begin every four clock cycles.

1. Note that preprocessing is always performed in software.
2. These devices are in production in industry at the time of writing. In fact, even bigger and faster devices are available
at the time of writing — see for example, reference [137].
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Figure 4.28 This graph shows the average amount of time taken by the incremental delete algc
milliseconds on the classifiers available to us. Rules deleted were chosen randomly from the. dias
average is taken over 10,000 delete operations, and although not shown, variance was found to t
1% for all experiments. This data is taken on a 333 MHz Pentium-Il PC running the Linux of
system.

The pipelined RFC lookup proceeds as follows:

1. Pipeline Stage 0: Phase (Clock cycles 1-4)in the first three clock cycles,
three accesses are made to the two SRAM devices in parallel to yielddhsix
of Phase 0. In the fourth clock cycle, #wDs from Phase 0 are combined to
compute the two indices for the next phase.

2. Pipeline Stage 1: Phase(Clock cycles 5-8)The SDRAM devices can be

accessed every two clock cycles, but we assume that a given bank can be accessed
again only after eight clock cycles. By keeping the two memories for Phase 1 in
different banks of the SDRAM, we can perform the Phase 1 lookups in four clock
cycles. The data is replicated in the other two banks (i.e. two banks of memory
hold a fully redundant copy of the lookup tables for Phase 1). This allows Phase 1
lookups to be performed on the next packet as soon as the current packet has com-
pleted. In this wayany given bank is accessed once every eight clock cycles.
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Figure 4.29 The preprocessing times for three and four phases in seconds, using the set of ¢
available to us. This data is taken by running the RFC preprocessing code on a 333 MHz Penti
running the Linux operating system.
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Figure 4.30 An example hardware design for RFC with three phases. The registers for holding da
pipeline and the on-chip control logic are not shown. This design achieves OC192c rates in the w
for 40 byte packets. The phases are pipelined with 4 clock cycles (at 125 MHz clock rate) per
stage.
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3. Pipeline Stage 2: Phase @lock cycles 9-12)0nly one lookup is to be made.
The operation is otherwise identical to Phase 1.

This design classifies approximately 30 million packets per second (to be exact, 31.25
million packets per second with a 125 MHz clock) with a total memory cost of approxi-
mately $40" This is fast enough to process minimum length TCP/IP packets at OC192

rates.
Discussion of how RFC exploits the structw in real-life classifiers

We saw in Section 3.3 that rules in real-life classifiers form a small number of overlap-
ping regions and tend to cluster in small groups. The idea behinedihetionsteps used
in the RFC algorithm is to quickly narrow down thegksearch space to smaller sub-
spaces containing these clusters. In order to do this without consuming too much storage,
the reduction is carried out on small-sized chunks. Howekerwhole packet header
needs to be looked at in order to prune the search space completely to arrive at the best
matching rule — this is the purpose of t@mbinationsteps used in the RFC algorithm
that incrementally combine a few chunks at a time till the whole packet header has been
considered. Because the rules form a small number of overlapping regions, combining
results of the reduction steps creates chunks that are still small enough to keep the total

storage requirements reasonable.
Discussion of hardwae implementation of RFC

We have seen that lower bounds to the multi-field packet classification problem imply
that any solution will be either too slpar will consume a lgre amount of storage in the
worst case. Given that it is fidult to design hardware around an engine with unpredict-

able speed, RFC takes the approach of ensuring bounded worst-casieatiassiime.

1. At the time of writing, SDRAMSs are available at approximately $1.0 per megabyte, and SRAMs at $12 for a 4 Mbit
device running at 125 MHz 19][129].
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[* pktFields][i] stores the value of field i in the packet header */
for (each chunk numbered chkNum of phase 0)
egNums[0][chkNum] = contents of appropriate rfc table at memory location pktFields[chkNum’
for (phaseNum = 1..numPhases-1)
for (each chunk numbered chkNum in Phase phaseNum)
begin
/* chd stores the number and description about this chyracents chkParents[0..numChkParents-
17/
chd = parent descriptor of (phaseNum, chkNum);
indx = egqNums[phaseNum of chkParents[0]][chkNum of chkParents[0]];
for (i=1..chd->numChkParents-1)
begin
indx = indx * (total #qIDs of chd->chkParents[i]) + egNums[phaseNum of chd->chkPar
ents[i]][chkNum of chd->chkParents][i]];
[*** Alternatively: indx = (indx << (#bits of equivID of chd->chkParents[i])) * (eqNums[phase
Num of chkParents[i]][chkNum of chkParents[i]] ***/
endfor
egNums[phaseNum][chkNum] = contents of appropriate rfc table at address indx
endfor
endfor

return (eqNums[numPhases-1][0]); /* this contains the desired classID */

Figure 4.31 Pseudocode for the RFC lookup operation.

This has the side-#efct of making it dificult to accurately predict the storage requirements

of RFC as a function of the size of the classifier — the performance of RFC is determined
by the structure present in the clagsifEven though pathological sets of rules do not
seem to appear in practice, RFC storage requirements could scale geometrically with the
number of rules in the worst case. This lack of characterization of the precise storage
requirements of RFC as a function of only the number of rules in a classifier is a disadvan-

tage to designers implementing RFC in hardware.

4.2.2 Lookups in softwae

Figure 4.31 shows the pseudocode to perform RFC lookups. When written in ‘C,’
approximately 30 lines of code are required to implement RFC. When compiled on a 333
MHz Pentium-II PC running Widows NT we found that the worst case path for the code

took (140clk+9t ) time for three phases, ar(d46clk + 11t ) for four phases, where
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t., is the memory access time, asikl equals 3 nd.With t.. = 60ns, this corresponds to

0.96us and 1.1us for three and four phases respectivélyis implies that RFC can clas-

sify close to one million packets per second in the worst case for this dataset. The average
lookup time was found to be approximately 50% faster than the worst casble-4T7

shows the average time taken per packet clessdn for 100,000 randomly generated
packets for some classifiers in the dataset.

TABLE 4.7. Average time to classify a packet using a software implementation of RFC.

Number of rules in Average time per

classifier classification (ns)
39 587
113 582
646 668
827 611
1112 733
1733 621

The pseudocode in Figure 4.31 calculates the indices into each memory using multi-
plication/addition operations aylDs from previous phases. Alternativetiie indices can
be computed by simple concatenation. This has fieetadf increasing the memory con-
sumed because the tables do not remain as tightly pAckisen the simpler processing,
we might expect the classition time to decrease at the expense of increased memory
usage. Indeed the memory consumed grows approximately by a factor of two for the clas-
sifiers we have considered. Surprisingle saw no signifant reduction in classiation
times. VW believe that this is because the processing time is dominated by memory access

time as opposed to the CPU cycle time.

1. The performance of the lookup code was analyzed usingé/[L38], an Intel performance analyzer for processors
of the Pentium family
2. Not packing rfc tables in memories may in fact be desirable to accomodate newly added rules in the classifier
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4.3 Larger classifiers

To estimate how RFC might perform with future glar classiers, we synthesized
large artificial classifiers. Wused two dferent ways to create @& classifiers (given the

importance of the structure, it did not seem meaningful to generate rules randomly):

1. A large classifier can be created by concatenating classifiersfirmedif ser-

vices, but belonging to the same network, into a single clas3ifiexis actually
desirable in scenarios where only one set of RFC tables is desired for the whole
network. In such cases, the classID obtained would have to be combined with
some other information (such as the classifier ID) to obtain the correct intended
action. By only concatenating classifiers from the same network, we were able to
create classifiers such that the biggest classifier had 3896 rules. For each classifier
created, we measured the storage requirements of RFC with both three and four
phases. This is shown in Figure 4.32.

2. To create even lger classifiers, we concatenated all the classifiers of a few (up

to ten) diferent networks. The performance of RFC with four phases is plotted as
the ‘Basic RFC’ curve in Figure 4.35.e/found that RFC frequently runs into

storage problems for classifiers with more than 6000 rules. Employing more
phases does not help as we must combine at least two chunks in every phase, and

finish with one chunk in the final phak&n alternative way to processgerclas-
sifiers would be to split them into two (or more) parts and construct separate RFC
tables for each part. This would of course come at the expense of doubling the

number of memory accesses.

5 Variations

Several variations and improvements of RFC are possible. First, it is easy to see how

RFC can be extended to process gdanumber of fields in each packet header

Second, we can possibly speed up RFC by taking advantage of fast lookup algorithms

that ind longest matching priges in oneitld. Note that in our examples, we use three

1. With six chunks in Phase 0, we could have increased the number of phases to a maximum of six. However we found
no appreciable improvement by doing so.

2. For Phase 0, we need not lookup memory twice for the same chunk if we use wide memories. This would help us
access the contents of both the RFC tables in one memory access.
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Figure 4.32 The memory consumed by RFC for three and four phases on classifiers creatediby
all the classifiers of one network.

memory accesses each for the source and destination network-layer address lookups dur-
ing the first two phases of RFC. This is necessary because ofgaalanber of non-con-
tiguous address/mask spémtions. If only prakes are allowed in the spdcttion, one

can use a more sophisticated and faster algorithm for looking up in one dimension, for

instance, one of the algorithms described in Chapter 2.

Third, we can employ the technique described below to decrease the storage require-

ments for lage classifiers.

5.1 Adjacency goups

Since the size of RFC tables depends on the number of chunk equivalence classes, we
try to reduce this number by nggng two or more rules of the original classifas
explained belowWe find that each additional phase of RFC further increases the amount

of compaction possible on the original classifier
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First we dehe some notation. @/call two distinct ruleR andS, with R appearing
first in the classifierto beadjacent in dimension if all of the following three conditions
are satiséd: (1) Both rules have the same action, (2) All butithdield have the exact
same specification in the two rules, and (3) All rules appearing in beveeds in the
classifer have either the same action or are disjoint fRrfi.e., do not overlap witiR).
Two rules are simply said to laeljacentif they are adjacent in some dimension. Adja-
cency can also be viewed in the following wayedt each rule withl fields as a boolean
expression ofd (multi-valued) variables. Each rule is a conjunction (logical-AND) of
these variables.Wo rules are now defed to be adjacent if they are adjacent vertices in

the d -dimensional hypercube created by the symbolic representation offthkls.

Example 4.3:For the example clasif of Table 4.8, R2 and R3 are adjacent in the dimension
corresponding to the transport-layer Destinatieldf Similarly R5 is adjacent to
R6 (in the dimension network-layer Source), but not to Réef@ifit actions), or to
R7.

TABLE 4.8. An example classifier in four dimensions. The column headings indicate the names of the corresponding
fields in the packet headégt N’ in a field specification specifies a value strictly greater fhan

Network-layer Network-layer Transport- | Transport
Rule | destination (address/ source (address/ layer -layer Action
mask) mask) destination | protocol
R1 152.163.190.69/ 152.163.80.1/ * * Deny
255.255.255.255 255.255.255.255
R2 152.168.3.0/ 152.163.200.157/ eq http udp Permit
255.255.255.0 255.255.255.255
R3 152.168.3.0/ 152.163.200.157/ | range 20-21 udp Permit
255.255.255.0 255.255.255.255
R4 152.168.3.0/ 152.163.200.157/ eq http tcp Deny
255.255.255.0 255.255.255.255
R5 152.163.198.4/ 152.163.161.0/ gt 1023 tcp Permit
255.255.255.255 255.255.252.0
R6 152.163.198.4/ 152.163.0.0/ gt 1023 tcp Permit
255.255.255.255 255.255.252.0
R7 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 * * Permit
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R(al,bl,c1,d1)

S(al,bl,c2,d1)
T(a2,b1,c2,d1) Merge along | RS(al,bl,c1+c2,d1) Merge along

U(a2,b1.c1,d1) Dimension 3§ TU(a2,bl,cl1+c2,d1) Dimension 1 RSTU(al+a2,b1,cl+c2,d1)
a2,bl.cl, 01, )
_> VW(al,b1,c3+c4,d2) VWXY(al+a2,b1,c3+c4,d2)

V(al,bl,c4,d2) XY(@2bl,c3+ca,d2) | 00—
W(al,b1,c3,d2) : Assume: :
X(a2,b1,c3,d2) Carry out an RFC Phasq . :
Assume:chunks 1 and 2 are combi d (al+a2,bl) reduces to m-l
Y(a2,bl,c4,d2) and also chunks 3 and 4 are combifed.(c1+c2,d1) reduces to n1,

(c3+c4,d2) reduces to n2:

RSTU(m1,n1)

| RSTUVWXY(m1,n1+n2)
Merge along | VYWXY(m1,n2)

: Continue with RFC ...

Y

Dimension 2

Figure 4.33 This example shows how adjacency groups are formed on a clagsfibrrule is denote
symbolically byRuleName(value-of-field1, value-of-field2,.A)l rules shown are assumed to have
same action. '+’ denotes a logical OR.

Two rulesR andsS that are adjacent in dimensiorare meged to form a new rul@
with the same action & (or S). T has the same specifications as thaR ¢br S) for all
fields except that of théh, which is simply thdogical-OR of thei'™ field speciications
in R andS. The third condition above ensures that the relative priority of the rules in

betweenR andsS will not be afected by this meing.

An adjacency goupis defined recursively as: (1) Every rule in the original classifier is
an adjacency group, and (2) Every gext rule that is created by ngarg two or more

adjacency groups is an adjacency group.

The classikr is compacted as follows. Initia)lgvery rule is in its own adjacency
group. Next, adjacent rules are combined to create a new smaller claBlifies imple-

mented by iterating over all fields in turn, checking for adjacency in each dimension. After
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Figure 4.34 The memory consumed by RFC for three phases with the adjacency group optin
enabled on classifiers created by gieg all the classifiers of one network. The memory consumed
basic RFC scheme for the same set of classifiers is plotted in Figure 4.35.

these iterations are completed, the resulting ciassifill not have any more adjacent

rules. As each RFC phase collapses some dimensions, groups which were not adjacent in
earlier phases may become so in later stages. In thjglveayumber of adjacency groups,

and hence the size of the compacted clagssifeeps on decreasing with every phase. An

example of this operation is shown in Figure 4.33.

Note that there is no change in the actual lookup operation: the equivalence class iden-
tifiers now represent bitmaps which keep track of adjacency groups rather than the origi-
nal rules. The beni$ of the adjacency group optimization are demonstrated in Figure
4.34 (using 3 RFC phases on 10hé&aclassifiers created by concatenating all the classifi-
ers belonging to one network) and in Figure 4.35 (using 4 RFC phases on geenl&s-
sifiers created by concatenating all the classifof a few diferent networks together)

respectively With this optimization, the storage requirements of RFC for a 15,000 rule
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Figure 4.35 The memory consumed with four phases with the adjacency group optimization ene
the lage classifiers created by concatenating all the classifiers of a fewedifnetworks. Also shown
the memory consumed when the optimization is not enabled (i.e. the basic RFC scheme). N
absence of some points in the “Basic RFC” curve. For those classifiers, the basic RFC scheme
much memory/preprocessing time.

classifer decreases to only 3.85 MB. The intuitive reason for the reduction in storage is
that several rules in the same classitommonly share a number of spaations for

many fields (an observation mentioned in Section 3.2).

However the storage space savings come at a cost. Although theietasglfcor-
rectly identify the action for each arriving packet, it cannot tell which rule in the original
classifer it matched — as the rules have beengeeérto form adjacency groups, the dis-
tinction between each rule has been lost. This may be undesirable in applications that wish

to maintain matching statistics for each rule.



Recursive Flow Classification: An Algorithm for Packet Classification on Multiple Fields

158

TABLE 4.9. A qualitative comparison of some multi-dimensional classification algorithms.

Scheme

Pros

Cons

Sequential evalu-
ation

Good storage and update require-
ments. Suitable for multiple fields.

High classification time.

Grid-of-tries and
FIS-tree

Good storage requirements and fas
lookup rates for two fields. Suitable fg
big 2-dimensional classifiers.

t  Results in two dimensions do not
r extend as well to more than two fields.
Not suitable for non-contiguous mask

g

Crossproducting

Fast accesses. Suitable for multiple
fields. Can be adapted to rules with
non-contiguous masks.

Large memory requirements. Suitab
without caching for small classifiers up
to 50 rules.

9]

Bitmap-intersec-

Suitable for multiple fields. Can be

Large memory size and memory bangd-

tion adapted to rules with non-contiguous width required. Comparatively slow
masks. lookup rate. Hardware only
Tuple space Suitable for multiple fields. Fast aver- Non-deterministic and high classifica
search age classification and update time. tion time.

Recursive flow
classification

Suitable for multiple fields. Supportg
rules with non-contiguous masks. Re

sonable storage requirements for real- having more than 6000 rules without

life classifiers. Fast classification.

High preprocessing time and memory
a-requirements for lge classifiers (i.e.

adjacency group optimization).

6 Comparison with related work

Table 4.9 shows a qualitative comparison of RFC with previously proposed schemes

for doing packet classification.

7 Conclusions and summary of contributions

It is relatively simple to perform packet classification at high speeds using excessively

large amounts of storage, or at low speeds with small amounts of storage. When matching

multiple fields simultaneous)ytheoretical bounds show that it isfaiilt to achieve both

high classitation rate and modest storage in the worst case. This chapter shows that real

classifers exhibit a considerable amount of structure and redundandyntroduces for

the frst time the idea of using simple heuristic algorithms to solve the multi-dimensional

packet classification problem.
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The contribution of this chapter is the first proposed algorithm, RFC, that deliberately
attempts to exploit this structure. RFC appears to perform well with the selection of real-
life classifiers available to us. A hardware implementation of RFC can classify minimum-
sized IP packets at OC192c rates with commercial memories commonly available today
while a software implementation can classify at OC48c rates. This chapter also shows that
while the basic RFC scheme may consumegelamount of storage for tg fourfield
classifiers (with more than 6000 rules), the structure and redundancy in the classifiers can
be further exploited with an optimization of the basic RFC scheme. This optimization

makes RFC practical for classifiers containing up to approximately 15,000 rules.
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CHAPTER 5

Hierarchical Intelligent Cuttings:
A Dynamic Multi-dimensional

Packet Classification Algorithm

1 Introduction

We saw in the previous chapter that real-life classfexhibit structure and redun-
dancy that can be exploited by simple algorithms. One such algorithm RFC, was described
in the previous chapteRFC enables fast clagsdtion in multiple dimensions. However
its data structure (reduction tree) hasxad shapeindependent of the characteristics of

the classifier

This chapter is motivated by the observation that an algorithm capable of adapting its
data structure based on the characteristics of the classifier may be better suited for exploit-
ing the structure and redundancy in the classilee such classification algorithm, called

HiCuts (Hierarchical Intelligent Cuttings), is proposed in this chapter
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HiCuts discovers the structure while preprocessing the dkxsaifd adapts its data
structure accordinglyThe data structure used by HiCuts is a decision tree on the set of
rules in the classifieClassification of a packet is performed by a traversal of this tree fol-
lowed by a linear search on a bounded number of rules. As computing the optimal deci-
sion tree for a given search space is known to be an NP-complete problem [40], HiCuts

uses simple heuristics to partition the search space in each dimension.

Configuration parameters of the HiCuts algorithm can be tuned to trageeoy time
against storage requirements. On 40 real-life-tiarensional classérs obtained from
ISP and enterprise networks with 100 to 1733 rlileiSuts requires less than 1 Mbyte of
storage. The worst case query time is 12, and the average case query time is 8 memory
accesses, plus a linear search on 8 rules. The preprocessing time can be somgémes lar
—uptoa minuté — but the time to incrementally update a rule in the data structure is

less than 100 milliseconds on average.

1.1 Organization of the chapter

Section 2 describes the data structure built by the HiCuts algorithm, including the heu-
ristics used while preprocessing the classifSection 3 discusses the performance of
HiCuts on the classér dataset available to us. Final8ection 4 concludes with a sum-

mary and contributions of this chapter

1. The dataset used in this chapter is identical to that in Chapter 4 except that small classifiers having fewer than 100
rules are not considered in this chapter

2. Measured using thiame() lynx system call in user level ‘C’ code on a 333MHz Pentium-1l PC, with 96 Mbytes of
memory and 512 Kbytes of L2 cache.
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Tree

Figure 5.1 This figure shows the tree data structure used by HiCuts. The leaf nodes store a ma>
binth classification rules.

2 The Hierarchical Intelligent Cuttings (HiCuts) algorithm

2.1 Data structure

HiCuts builds a decision tree data structure (shown in Figure 5.1) such that the internal

nodes contain suitable information to guide the clasgibn algorithm, and the external

nodes (i.e., the leaves of the tree) store a small number of rules. On receiving an incoming
packet, the classification algorithm traverses the decision tree to arrive at a leaf node. The
algorithm then searches the rules stored at this leaf node sequentially to determine the best
matching rule. The tree is constructed such that the total number of rules stored in a leaf
node is bounded by a small numbehich we calbinth (for ‘bin-threshold’). The shape
characteristics of the decision tree — such as its depth, the degree of each node, and the
local search decision to be made by the query algorithm at each node — are chosen while

preprocessing the classifi@and depend on the characteristics of the classifier
Next, we describe the HiCuts algorithm with the help of the following example.

Example 5.1:Table 5.1 shows a clagsif in two 8-bit wide dimensions. The same classif
illustrated geometrically in Figure 5.2. A decision tree is constructed by recur-
sively partitioning the two-dimensional geometric space. This is shown in Figure
5.3 with a binth of 2. The root node of the tree represents the complete two-dimen-
sional space of sizé8 X 28. The algorithm partitions this space into foequal

1. We will use the terms ‘partition’ and ‘cut’ synonymously throughout this chapter
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Figure 5.2 An example classifier in two dimensions with seven 8-bit wide rules.

sized geometric subspaces by cutting acrostllémension. The subspaces are
represented by each of the four child nodes of the root node. All child nodes,
except the node labeled A, have less than or equmhtio rules. Hence, the algo-
rithm continues with the tree construction only with node A. The geometric sub-
space of siz@6 X 28 at node A is now partitioned into two equal-sized subspaces
by a cut across dimensioh. This results in two child nodes, each of which have
two rules stored in them. That completes the construction of the decision tree, since
all leaf nodes of this tree have less than or equaihtt rules

TABLE 5.1. An example 2-dimensional classifier

Rule Xrange Yrange

R1 0-31 0-255

R2 0-255 128-131
R3 64-71 128-255
R4 67-67 0-127

R5 64-71 0-15

R6 128-191 4-131

R7 192-192 0-255

We can now generalize the description of the HiCuts algorithindimensions as fol-

lows. Each internal node,, of the tree represents a portion of the geometric search space
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(256+256,x,4) )

Cut across X

(64*256,Y,2)

Cut across
R4 R2
R5 R3

Figure 5.3 A possible HiCuts tree with binth = 2 for the example classifier in Figure 5.2. Each
denotes an internal node with a tuple [B(v), dim(C(v)), np(C(v))C. Each square is a leaf node wt
contains the actual classifier rules.

— for example, the root node represents the complete geometric spadenensions.

The geometric space at nodas partitioned into smaller geometric subspaces by cutting
across one of thd dimensions. These subspaces are represented by each of the child
nodes ofv. The subspaces are recursively partitioned until a subspace has no more than

binth number of rules — in which case, the rules are allocated to a leaf node.

More formally we associate the following entities with each internal nodé the

HiCuts data structure for @&dimensional classifier:

+ A hyperrectangleB(v) , which is ad-tuple of ranges (i.e., intervalg]i, r,],

[0, - [1grgl)- This rectangle defines the geometric subspace stoved at

« A cut C(v), defined by two entities. (X = dim(C(v)), the dimension across
which B(v) is partitioned. (2np(C(v)), the number of partitions @&(v), i.e., the
number of cuts in the intervél,r ] . Hence, the cuC(v), dividesB(v) into

smaller rectangles which are then associated with the child nodes of

« A set of rulesCRY(v). If v is a child ofw, thenCRSYv) is defined to be the sub-
set of CRSw) that ‘collides’ withB(v), i.e., every rule iiCRSw) that spans, cuts

or is contained irB(v) is also a member @RYv) . CRY(root) is the set of all
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rules in the classifiekMe call CRSv) the colliding rule set of, and denote the

number of rules ICRYv) by NumRules(V) .

As an example of twaV-bit wide dimensions, the root node represents a rectangle of
size2Vx 2V The cuttings are made by axis-parallel hyperplanes, which are simply lines
in the case of two dimensions. The cubf a rectangleB is described by the number of
equal-sized intervals created by partitioning one of the two dimensions. For example, if
the algorithm decides to cut the root node acrossrgtadfmension intdD intervals, the
root node will haveD children, each with a rectangle of si%@W/DEx oW associated

with it.

2.2 Heuristics for decision tee computation

There are many ways to construct a decision tree for a given clagxifigrg prepro-
cessing, the HiCuts algorithm uses the following heuristics based on the structure present

in the classifier:

1. A heuristic that chooses a suitable number of interval ap(€) , to make at an
internal node. A lage value ofnp(C) will decrease the depth of the tree, hence
accelerating query time at the expense of increased stoxabalance this trade-
off, the preprocessing algorithm follows a heuristic that is guided and tuned by a
pre-determined space measure functpmf() . For example, the definition
spmf(n) = spfac x n, wherespfacis a constant, is used in the experimental results
in Section 3. W also define apace measeaifor a cutC(v) as:

np(C(v)) . _ h
sm(C(v)) = Z NumRules (child,) +np (C(v)) ,wherechlldj denotes th¢

i=1

child node of node . HiCuts makes as many cuttingssasf() allows at a cer-
tain node, depending on the number of rules at that node. For instp(@e))
could be chosen to be thedast value (using a simple binary search) such that
sm(C(v)) < spmf(NumRules(v)) . The pseudocode for such a search algorithm is
shown in Figure 5.4.

2. A heuristic that chooses the dimension to cut across, at each internal node. For
example, it can be seen from Figure 5.2 that cutting acrossakis Would be



Hierarchical Intelligent Cuttings: A Dynamic Multi-dimensional Packet Classification Algorithml67

/* Algorithm to do binary search on the number of cuts to be made at n@é¢éteen the number of cuts are

such that the corresponding storage space estimate becomes more than what is allowed by the spaceme
sure functiorspmf() we end the search. Note that it is possible to do smarter variations of this search algo-
rithm.*/

n = numRules(v);
nump = max(4, sqrt(n)); /* arbitrary starting value of number of partitions to make at this node */
for (done=0;done == 0;)
{
sm(C) =0;
for each rule rin R(v)
{ sm(C) += number of partitions colliding with rule r; }
sm(C) += nump;
if (sm(C) < spmf(n))
{
nump = nump * 2; /* increase the number of partitions in a binary search fashion */
}
else { done = 1;}

}

/* The algorithm has now found a value of nump (the number of children of this node) that fits the storage
requirements */

Figure 5.4 Pseudocode for algorithm to choose the number of cuts to be made at.node

less beneficial than cutting across the X-axis at the root node. There are various
methods to choose a good dimensi@)Minimizing maxj(NumRuIes(chiIdj)) in

an attempt to decrease the worst-case depth of thé€liy@eeating

0 EPD(C(V)) M
EﬂumRules(childj)/E Z NumRules (child,) % as a probability distribution

i=1
with np(C) elements, and maximizing the entropy of the distribution. Intuitively
this attempts to pick a dimension that leads to the most uniform distribution of
rules across nodes, so as to create a balanced decisido)tkd@imizing sm(C)
over all dimensiongd) Choosing the dimension that has thgéast number of
distinct components of rules. For instance, in the classifiealde™.1, ruleR3
andR5 share the same rule component inXhdimension. Hence, there are 6
components in th& dimension and 7 components in thelimension. The use of
this heuristic would dictate a cut across dimendidor this classifier
3. A heuristic that maximizes the reuse of child nodes.Hae observed in our

experiments that in real classifiers, many child nodes have identical colliding rule
sets. Hence, a single child node can be used for each distinct colliding rule set,
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Figure 5.5 An example of the heuristic maximizing the reuse of child nodes. The gray regions cor
to children with distinct colliding rule sets.

while other child nodes with identical rule sets can simply point to this node. Fig-
ure 5.5 illustrates this heuristic.

4. A heuristic that eliminates redundancies in the colliding rule set of a node. As a
result of the partitioning of a node, rules may become redundant in some of the
child nodes. For example, in the classifier abl€ 5.1, ifR6 were higher priority
thanR2, thenR2 would be made redundant B in the third child of the root
node labeled B (see Figure 5.3). Detecting and eliminating these redundant rules
can decrease the data structure storage requirements at the expense of increased
preprocessing time. In the experiments described in the next section, we invoked
this heuristic when the number of rules at a node fell below a threshold.

3 Performance of HiCuts

We built a simple software environment to measure the performance of the HiCuts
algorithm. Our dataset consists of 40 classsfcontaining between 100 and 1733 rules
from real ISP and enterprise networks. For each classafdata structure is built using
the heuristics described in the previous section. The preprocessing algorithm is tuned by
two parameters: (inth, and (2)spfac —used in the space measure funcspmf(),

defined aspmf(n) = spfac xn.

Figure 5.6 shows the total data structure storage requirementmtbr= 8 and
spfac = 4. As shown, the maximum storage requirement for any clasgfapproxi-

mately 1 Mbyte, while the second highest value is less than 500 Kbytes. These small stor-
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Figure 5.6 Storage requirements for four dimensional classifiers for binth=8 and spfac=4.

age requirements imply that in a software implementation of the HiCuts algorithm, the

whole data structure would readily fit in the L2 cache of most general purpose processors.

For the same parametetsrith = 8 andspfac = 4), Figure 5.7 shows the maximum
and average tree depth for the classifin the dataset. The average tree depth is calcu-
lated under the assumption that each leaf is accessed in proportion to the number of rules
stored in it. As shown in Figure 5.7, the worst case tree depth for any classifier is 12, while
the average is approximately 8. This implies that — in the worst case — a total of 12
memory accesses are required, followed by a linear search on 8 rules to complete the clas-
sification. Hence, a total of 20 memory accesses are required in the worst case for these

parameters.

The preprocessing time required to build the decision tree is plotted in Figure 5.8. This

figure shows that the highest preprocessing time is 50.5 seconds, while the next highest
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Figure 5.7 Average and worst case tree depth for binth=8 and spfac=4.

value Is approximately 20 seconds. All but four classthave a preprocessing time of

less than 8 seconds.

The reason for the fairly lge preprocessing time is mainly the number and complex-
ity of the heuristics used in the HiCuts algorithne ¥pect this preprocessing time to be
acceptable in most applications, as long as the time taken to incrementally update the tree
remains small. In practice, the update time depends on the rule to be inserted or deleted.
Simulations indicate an average incremental update time between 1 and 70 milliseconds
(averaged over all the rules of a classifier), and a worst case update time of nearly 17 sec-

onds (see Figure 5.9).
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Figure 5.8 Time to preprocess the classifier to build the decision tree. The measurements we
using thetime() linux system call in user level ‘C’ code on a 333 MHz Pentium-Il PC with 96 Mbyt
memory and 512 Kbytes of L2 cache.
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Figure 5.9 The average and maximum update times (averaged over 10,000 inserts and ¢
randomly chosen rules for a classifier). The measurements were taken usimgheux system call i
user level ‘C’ code on a 333 MHz Pentium-II PC with 96 Mbytes of memory and 512 Kbytes of L2
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Figure 5.10 Variation of tree depth with parameters binth and spfac for a classifier with 1733 rule:

3.1 \ariation with parameters binth and spfac

Next, we show the &fct of varying the comjuration parameteisinth andspfacon
the data structure for the ¢pgast 4-dimensional classf available to us containing 1733
rules. W carried out a series of experiments where pararbgtidgrtook the values 6, 8
and 16; and parametspfactook the values 1.5, 4 and 8eWhake the following, some-
what expected, observations from our experiments:

1. The HiCuts tree depth is inversely proportional to kmitith andspfac. This is
shown in Figure 5.10.

2. As shown in Figure 511 the data structure storage requirements are directly
proportional tospfacbut inversely proportional tointh.
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Figure 5.11 Variation of storage requirements with paramebénth andspfacfor a classifier with 172
rules.

3. The preprocessing time is proportional to the storage requirements, as shown in
Figure 5.12.

3.2 Discussion of implementation of HiCuts

Compared with the RFC algorithm described in Chapter 4, the HiCuts algorithm is
slower but consumes a smaller amount of storage. As with RFC, it seémstdd char-
acterize the storage requirements of HiCuts as a function of the number of rules in the
classifer. However given certain design constraints in terms of the maximum available
storage space or the maximum available claesgibn time, HiCuts seems to provide
greater lexibility in satisfying these constraints by allowing variation of the two parame-

ters,binth andspfac
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Figure 5.12 Variation of preprocessing times witinth andspfacfor a classifier with 1733 rules. T
measurements were taken using the time() linux system call in user level ‘C’ code on a 333 MHz
Il PC with 96 Mbytes of memory and 512 Kbytes of L2 cache.

4 Conclusions and summary of contributions

The design of multild classiication algorithms is hampered by worst-case bounds
on query time and storage requirements that are so onerous as to make generic algorithms
unusable. So instead we must search for characteristics of real-lifeietagbift can be
exploited in pursuit of fast algorithms that are also spafteiezft. Similar to Chapter 4,
this chapter resorts to heuristics that, while hopefully well-founded in a solid understand-

ing of todays classifiers, exploit the structure of classifiers to reduce query time and stor-

age requirements.

While the data structure of Chapter 4 remains the same for all classifiers, HiCuts goes
a step further in that it attempts to compute a data structure that varies depending on the

structure of the class#fr — the structure is itself discovered and utilized while prepro-
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cessing the classifieFhe HiCuts algorithm combines two data structures for better perfor-
mance — a tree and a linear search data structure — each of which would not be as useful
separatelyThe resulting HiCuts data structure is the only data structure we know of that
simultaneously supports quick updates along with small deterministic iciassif time

and reasonable data structure storage requirements.



Hierarchical Intelligent Cuttings: A Dynamic Multi-dimensional Packet Classification Algorithml76




177

CHAPTER 6

Future Directions

As we saw in Section 1 of Chapter 1, the packet processing capacity of IP routers
needs to keep up with the exponential increase in data rates of physical links. This chapter
sets directions for future work by proposing the characteristics of what we believe would

be ‘ideal’ solutions to the routing lookup and packet classification problems.

1 ldeal routing lookup solution

We believe that an ideal routing lookup engine (we restrict our scope to IPv4 unicast

forwarding) hasll of the following characteristics:

« Speed:An ideal solution achieves one routing lookup in the time it takes to com-
plete one access in a (random-access) memory in the worst-case. This characteris-

tic implies that an ideal solution lends itself to pipelining in hardware.

 Storage: The data structure has little or no overhead in storing prefixes. In other
words, the storage requirements are negzly bits, or betterfor N prefixes in
the worst-case. A less stringent, though acceptable, characteristic could be that the

storage requirements scale no worse than linearly with the size of the forwarding
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table. If the backbone forwarding tables continue to grow as rapidly as we saw in
Section 1.2.1 of Chapter 1, exponentially decreasing transistor feature sizes will
enable implementations of an ideal routing lookup solution to continue to grace-

fully meet the demands posed by future routing table growth.

« Update rate: Based on current BGP update rates, an ideal solution supports at
least 20,000 updates per secbimithe worst case. Furthermore, updates are
atomic in that they do not cause interleaved search operations to give incorrect

results.

 Feasibility of implementation: Implementations of an ideal lookup solution
should be feasible with current technolpgyg., should not consume an unreason-
able number of chips, or dissipate unreasonable amount of ,pmvizEr too

expensive.

Note that amongst the solutions known at the time of writing, ternary CAMs have
desirable storage (and possibly update rate) characteristics, but do not have the speed of
one RAM access, and do not admit feasible implementations supporgegrtating
tables. Even though the algorithm proposed in Chapter 2 seems to satisfy all but the
update rate requirements, thegkustorage requirements of this algorithm dictate that the
fastest memory technologye., SRAM, cannot be used. This imposes an inherent limita-

tion on the routing lookup rates achievable using this algorithm.

If an ideal solution did exist todait would consumes2 x 256K = 8 Mb of memory
for 256K prefixesz. Now, 8 Mb of fast SRAM (with 3 ns cycle time) can be easily put on a
reasonable sized chip in current 0.18 micron technoldgyce, an ideal solution would
be able to lookup 333 million packets per second, enough to process 40 byte minimum-

sized TCP/IP packets at line rates of 100 Gbisscontrast, only 66 million packets per

1. This is two orders of magnitude greater than the peak of a few hundred reported by Labovitz [47].
2. 256,000 is more than double the number of prefixes (98,000) at the time of writing (see Section 1.2 of)Chapter 1
3. Again, this ignores the packet-oM80ONET overhead bytes.
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second can be looked up by solutions available today — the algorithm proposed in Chap-

ter 2 (using embedded DRAM), and ternary CAMs (using 2-4 chips).

2 ldeal packet classification solution

An ideal packet classdation solution not only has all the characteristics we saw
above of an ideal lookup solution — that of high speed (clea8dn at line-rate), low
storage (to support thousands of classifon rules), fast incremental updates, and feasi-
ble implementation (costfefctive) — but also the characteristics of flexibility in the num-
ber and spedifation syntax of packet headeéglfls supported. In contrast with routing
lookups, it is harder to quantify the desirable values of these parameters for packet classi-
fication because of the lack of afstient amount of statistical data about real-life classifi-
ers. Howeverit is not unrealistic to imagine a carreedge router supporting 1000 ISP
subscribers, each with at least 256 five-field classification rules, for a total of 256,000 128-

bit rules required to be supported by the classification engine of a router

In light of the worst-case lower bounds on multi-dimensional classification algorithms
mentioned in Chapter 4, an ideal classification solution is unlikely to be able to support all
possible worst case combinations of classification rules, and yet satisfy all the other char-
acteristics mentioned above eWelieve that intelligent heuristic solutions should be

acceptable.

We now see how close the solutions known at the time of the writing of this thesis
approach that of an ideal solution. A total of sixteen 2 Mb ternary CAM chips are required
to support 256,000 128-bit classification rules. The resulting power dissipation and cost of
the system would be clearly excessive. SimilaHg Recursive Flow Clasiation algo-

rithm of Chapter 4 would require approximately 9 DRAM cHifiiough not in terms of

1. Based on experiments shown in Section 4.3 of Chapter 4, we assume that 4K rules occupy a maximum of approxi-
mately 4.5 Mbytes of memargnd that each DRAM chip has a density of 256 Mbits.
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power dissipation, this solution is still expensive in terms of board real-estate. The HiCuts
algorithm of Chapter 5 would require 4 DRAM chips but would be two to four times

slower than a ternary CAM or recursive flow classification solution.

3 Final words

The above mentioned ideal lookup and classiion solutions appear challenging to
obtain, and will probably require not only improved circuit technologies, but also new
data structures and algorithms. Hopefulhjis dissertation will serve as a useful founda-
tion for future research in this exciting field in general, and in attempts to obtain these (or

similar) ideal solutions in particular
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Appendix A

Proof of correctness for the Optimized one-instruc-

tion-update algorithm of Chapter 2

Define D (m) , wherem is a memory entyto be the depth of the longest (i.e., deepest) ppefixat cov-
ersm. Also definelL (p) to be the length of a prefix.

Claim CX: For all prefixegp, PS(p) < MS(p) .
Proof: By definition.

Claim C2 For all prefixesp, ME (p) < PE(p) .
Proof: By definition.

Claim C3 For all prefixegp andq, either of the following hold:

(1) PS(p) < PS(q) <PE(q) <PE(p) i.e.q is completely contained ip.

(2) PS(q) < PS(p) <PE(p) <PE(Qq) i.e.p is completely contained ig.

(3) PS(p) < PE(p) <PS(q) <PE(q) i.e.p andq are completely non-overlapping.

Proof. Follows from the definitions d*SandPE and the basiparenthesigproperty of prefixes.

Claim C4 For all memory entriem such thatPS(p) < m<MS(p),D (m) >L (p) .
Proof: As MS(p) is the irst memory entry covered by piefp, all memory entries between its
prefix start and memory start must be covered by deeper (i.e., longer) prefixes.

Claim C5:If a prefixp is deeper thag andPS(q) < PS(p) <MS(q) , thenMS(q) > PE(p) ;
i.e. p has to end (prefix end) befdS(q) .

Proof: Follows from the fact thaq cannot actually start in memory before any deepeixgnat
completely ended.

Now, let the update instruction passed on to the hardware by the processpddie(m,)2).
Before any updates, an is the frst memory entry chosen to be updated by the processor
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D (m) <Y. If while executing the algorithm, hardware encounters a start-marker marking a new
prefx, sayq, on a memory entryn2, m2 equalsMS(q) but it may or may not equ&S(q) .
We will show thatL (g) >Y in both cases.

Case (S1)m2 = PS(q) = MS(q)
Proof: Since the hardware is not done scanning, it has not yet encourtielgd . As it has
encounteredm2 (= PS(q)), (C3) tells us thafg is wholly contained inp, and so

L(g)>L(p) =Y.

Case (S2)PS(gq) <m2 = MS(Q)

There are two subcases possible within this case depending uponR@epe lies with respect
tom:

Case(S2.1m<PS(q) <m2 = MS(Qq)

Clearly in this case, prefig is wholly contained in prefip, and soL (q) > Y.

Case (S2.2PS(g) < m<m2 = MS(q) . Clearly in this case is deeper thag (asm needs to
be updated, anth lies in betweerPS(q) andMS(q) ). By (C3) and (C5)PE (p) <MS(q) ,
and therefore the hardware should have stopped scanning before raaghimpis subcase is
thus not possible at all.

The correctness of the update algorithm now follows immedidfehe hardware, while scanning
memory entries encounters a start-marikendicates the start of a prefwhich is necessarily
deeper tharY, and hence is not to be updated. This is exactly what the algorithm does. By updat-
ing only when DC equals 1, it ensures that a memory entry is updated only if it haik alpakf
lower thanY covering it before the update.
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Appendix B

Choice of Codeword Lengths in a Depth-constrained

Alphabetic Tee

Lemma 1A depth-constrained alphabetic tree with maximum dé&ptbatisfies the characteristic
inequality of Lemma 3.1 (Chapter 3), when the codeword lerigtia$ the kth letter occurring

4 :
— * min([ —lo ,D k = 1,n

with probabilitququz 2°0kH are given byt = J ([ -loga, |. D) |
g min(-ogqg,|+1,D) 2<ksn-1

Proof: We need to prove thag <1 wheres, = c(s,_;,2 I‘)+2 “

' S = 0, andc is

defined byc(a,b) = [a/b’b. We first prove by induction that

|
S < zqk 01<i<n-1
k=1

-l
For the base cass, = 2 T< q, by the definition of, . For the induction step, assume the

4. -
hypothesis is true for-1. By definition,s, = c(s,_;,2 Y+2 '. Now there are two pos-

sible cases:
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—(l.-1)

1. [—Ioqu +1<D, and therefor@ <¢; . Using the fact that
[a/b]<a/b+1,i.e.c(a b)<a+b for all nonzero real numbeessandb, we get
the following using inductive hypothesis:

4 4 -y i i—1 i
S§s§_+t2 +2 =<2 Y WSgt D A= ) g
K=1 K=1 K=1

_|_
D and hence, =2 '. Also, ass is an

2. |’—Iogqi‘| +1>D. This implies that, 1

n i—1
integral multiple ofz_DDj , (s _ 12 N = S_,< z g, and thus:
k=1

_ iy i—-1 i
S|=2 I+C(Si_1,2 I)Sqi+ qu: qu
k=1 k=1

n—1
4
Therefores, ;< ¢ =1-q,<1-2 ". Also:
i'=1
| | - 4 _|

npmn +1-2 " = 1. This completes the

l “n “n .
2 N<2 "+c1-2 "2 "N =2

n
S, = 2 +c(sn_l,

proof that these codeword lengths satisfy the characteristic inedquality
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As the embodied soul continuously passes,
in this body, from boyhood to youth to old age,
the soul similarly passes into another body at death.

Lord Krishna to Arjuna in Bhagvad-gita
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