Almost random graphs with simple hash

functions

Martin Dietzfelbinger

Technische Universitat limenau

(Joint work with Philipp Woelfel, Universitat Dortmund)

[Appeared: STOC'03]

Version AKA — Hashing, 6.2.2007

h: U — |m]

U : Universe of all keys

m|={0,...,m—1}:
the range,

indices in table I’

Interested in behaviour of A

onS CU,n=|S|

Hashing with two functions

hl,hgi U — [m]

m| ={0,...,m — 1} : the range, indices in tables 17, T5

Interested in behaviour of A1, ho on S C U.

Assume h, hy are “random”

— “random” bipartite graph

G(S, hy, hs)

edge set:

E = {(h(x),hy(2)) | v € S}

2 Randomness properties of G(S, hy, hs)

Why bother?

Applications (later):
e Cuckoo hashing
e Generating fully random hash functions

e Shared memory simulation

Overview

e Universal Hashing

e Structure of function pairs

e Bad substructures of graph, Minimizing

e Probability of bad substructures

e Randomness properties

e Application 1: Cuckoo hashing

e Application 2: Fully random hash functions (whp)

e Conclusion

Universal Hashing [carter/wegman 79]

Random experiment:
Choose h at random from a set (“class”) H C {h | h: U — |m]}

Definition: H is d-universal if
for each fixed sequence x1, .. ., x4 of distinct keys in U
(h(x1),...,h(xq)) is fully random.

Realization, e.qg.:

H “=" all polynomials of degree < d over field U, projected into |m]
Space: O(d)

Evaluation time: O(d)

What if we choose hy, hg from known d-universal classes?

e Simple polynomials:
constant evaluation time = d constant

nothing known about randomness properties of G(.S, hy, hs).

e n°-universal hash classes of [Siegel 89]
(Space O(n¢), 1 > ¢ > ¢; evaluation ime (J)(1)):
many properties of truly random graphs hold.
(Used in many theoretical applications;

evaluation time unpracticable.)

Our aim: Get good randomness properties in G(.S, hy, hs)

at the (evaluation) cost of low degree polynomials.

Structure of functions

Known [DM9Q0] :

g: U — [r] chosen from a d-universal class,
f: U — |m] chosen from a d-universal class,

displacements 2, . . . , 2,1 chosen randomly in [m]

h(z) = (f(x) + 24(x)) mod m

Constant evaluation time!

(h(x)).es has certain randomness properties.

m-1

m-1

displacements
i m—1 ZJ
4

OGN W B W OoN

displacements
i m—1 ZJ
e 4

OGN W B W OoN

displacements
i m—1 ZJ
e 4

OO N W W OoN

displacements

i m—1 ZJ

e 4
2

8

Oo ® 3
o’ 4

o 3
O o) 2

o | 5

displacements
i m—1 ZJ
e 4

Y
e
O N W B~ W oM

displacements

i m—1 ZJ

°e 4

2

8

o 3

o’ 4

o 3
o 2

o 5

Structure of functions (contd)

g: U — [r| chosen from a d-wise independent class,

f1, fa: U — |m] chosen from a d-wise independent class,

DRSO @ O

20y , and 2 , chosen randomly in [m)]

hi(z) = (fl(x) + Z&;)) mod m
ho(z) = (fg(:z:) + zﬁl)) mod m

Double DM-construction, but use the same g-function

Constant evaluation time!

Like degree-(d — 1)-polynomials.

displacements

2
%()

z (1)

m1 7]

1
S
0
6
3
2
2
0

< N O 1O O IO 1 (N

BEEREEERER

Basic observation:
Let g be given.
Define B; = {x € S | g(z) = j}.

Then the 27 random vectors

(hl(SE))xEBj7 (hQ(x))xEBj7 0<y<r,

are independent.

Reason: Random displacements zﬁl), z]<-2).

Dependencies may exist only among keys inside the same g-row.

Bad substructures

Hope: Inside its connected components graph G(.5, h1, hs) should

behave fully randomly.

Obstructing: |T'| = 16 keys (edges); |g(T")| = 11 used g-values

§
Lolis hy (%)
3
.
6
1

3=9(X)

./‘12

.<: :

Connected component in which there are dependencies since the keys

M ()

of some edges belong to the same g-value.

Measure how far G (S, hq, he) is away from being nice:

Definition: G = G(S, Hy, hy) is {-bad if
(5 has a connected component induced by the key set 7' such that

g(T)| < |T|—¢.

(In example: G(.S, hy, ho) is 5-bad, 4-, 3-, 2-, 1-bad.)

How often do we see ¢-bad graphs?

It G(S, hy, ho) were fully random, there would be no big problem:
Use estimates for the probability that /' forms a connected component
iIn a random graph.

Multiply by the probability that there are colliding g-values.

Does not work, because G/(T', hy, hs) is not random.

Minimizing obstructing substructures

Assume G/(.9, h1, hy) has a connected component induced by 1" C S
that makes it /-bad.

Peel!

Take out edges (keys) so as to retain a connected, £-bad subgraph.

Aim: Reduce, stay 4-bad.

3

L

./‘12
3

,

6 3
1

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

3

12

TR

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, stay 4-bad.

3
12

LA

Remove cycle edge with key that is not g-colliding.

Aim: Reduce, ¢-bad, ¢ = 4.

o
00

Remove leaf edge with g-colliding key, if |g(T")| < |T'| — ¢.

Aim: Reduce, stay ¢-bad, { = 4.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ¢-bad, { = 4.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay ¢-bad, { = 4.

Remove leaf with key that is not g-colliding.

Aim: Reduce, stay /-bad, ¢ = 4.

12

No more possible moves:

minimal /-bad structure.

General: repeat throwing away:
e non-g-colliding leaf and cycle edges
e g-colliding leaf and cycle edges, as long as |g(T')| < |T'| — Z.

Resulting connected minimal structure has at most 2/ leaf and cycle

edges, and at most 2¢ g-colliding keys

—> can count these structures

Now:

Pr(3T: G(T, hy, ho) is connected, ¢-bad, minimal)

Pr(G(S, hi, ha) has ¢-bad component
<
< Z Pr(G(T, hy, hy) is connected, ¢-bad, minimal)

Nice:

if {1, fo are 2/-wise independent, then within minimal ¢-bad
substructures the dependence produced by keys in the same g-row is
made up for by independence via f1, fo

—> the hash values are fully independent

—> we may use known estimates from random graph theory.

Theorem 1

If f1, fo, g are 20-universal, and m > (1 + €)n, then
Pr(B) = Pr(Gis f-bad) = O(n/r").

Example: Use ¢ = 2, hence 4-universal classes, and r» = n3/4

Randomness properties |
ForT' C S'let R*(T) = the eventthat |g(T")| > |T'| — ¢.

Theorem 2
If f1, fo, g are 20-universal, and m > (1 4+ ¢)n, thenforall " C S

we have:
e R*(T) happens = hq, hy are perfectly random on 7.

e R*('T") does not happen and G(T', hy, hs) is within a connected
component of G(.5, hy, hs)
= G(9, hy, hs) is {-bad

Intuition:
Apart from a small bad part (probability O (n /7*)) everything inside

connected components of (5 is fully random.

Definition: The cyclomatic number of a connected graph G = (V, E)
with /V vertices and M edgesis M — N + 1,

l.e. the number of edges that are not contained in a (any) spanning tree

of 5.

Example: 13 nodes, 16 edges, cyclomatic number 4

./‘
o«

Randomness properties |l

Theorem 3

If f1, f2, g are 2{-universal, and m > (1 4 €)n, then

Pr(G(S, hy, hs) has c. c. with cyclomatic number > q)
= O(n/r") +0(n'™9).

(For random graphs with the same edge density:

...=0(n'"7))

Cuckoo hashing

M ()

h (y)

L

P

hy (X)=hy (y]

[Pagh/Rodler 2001]

Implementation of dynamic
dictionary:
Two tables 17, 15

of size m each

x € S may be stored
in T |hy(x)] or
In T2 [hg(ﬂf)]

—> Constant access time

In the worst case.

“Cuckoo hashing”

because of interesting insertion procedure.

Key x that wants to be placed in the table may kick out another key y
that sits in T [hy ()] or Toho(x)].

0 g g
1
5
2
5
§)
4 6
.
99 7
m—133

Aim: Insert . Try T} |h1(x)]. Occupied!

m-—1

m-1

Kick out 2 from 7. Now 2 “nestless”. T5|hs(2)] occupied!

0 38 8| 0
1
5 1
X
5
23@
A 6
7
9|9 7
m-1| 3 3 m-1

Kick out 6 from T5. Now 6 “nestless”. T7|h(6)] occupied!

(4)=

m-—1

m-1

Kick out 4 from 7. Now 4 “nestless”. T5|hs(4)] occupied!

2
6 6
7
9|2 7
m-1| 373 m-1

Kick out 5 from T5. Now 5 “nestless”. T;|h1(5)] empty!

Ol5N g 180
1 5 1
X done!
4
2
6 6
7
99 7
m-1| 313 m-1

Place 5in 17 |h1(5)].

Original analysis [PRO1]:

If S C U is the set of keys in the table, |S| = n, and
e m > (14 ¢)nand

e Ny, hy are from a clog n-universal class,

c > (0 constant, sufficiently large,
then

e with probability 1 — O(%) all S may be stored as required

(obstructing: connected component with cyclomatic number > 2)

e a single insertion attempt succeeds with probability 1 — O(#)

within O(log n) kick-out moves; the expected number of kick-out

moves IS constant.

If something goes wrong: start anew with new hash functions.

Drawback:

Need strong randomness assumptions about /11, hs:
c log n-universality.

(c > 0 constant.)

Achievable with polynomials of degree clog n or with Siegel’s class.

Solution:

Use hq, hy as described above.
Under the assumption that G(.5, h1, hs) is not {-bad,

the analysis of [PRO1] goes through.

Essential: With probability O(n /r*) + O(1/n), all connected
components of G(S, hi, hg) have cyclomatic number at most 1 (at

most one extra edge in addition to a spanning tree).

E.g., can use degree-3-polynomials for g, f1, fo and 2r = In3/4

random displacements z§1/2).

Simulating uniform hashing

[Ostlin/Pagh 2003]: One can initialize a data structure D that involves
in essence O(n) random numbers in || so that D allows computing a

hash function h: U — [t], with the following property:
e [is built obliviously of the keys it will be applied to

e foreach S C U, |S| = n, the probability of a “bad event” By in
D when applied to S is O(1/n")

e under the condition that B¢ does not occur,
h(z),z €5,
Is perfectly random.

Very interesting consequences for data structures (eliminating
Idealizing assumptions for the analysis of many hashing procedures),

balanced allocation,

Drawback:

Construction requires c log n-universal hash classes.

Achievable with polynomials of degree clog n or with Siegel’s class.

Pay with high evaluation time.

Alternative:

Let

(h(:lf) = Qp,y (2) -+ gth(x)(fC)) mod L,

where

e /1 and h, are functions chosen as described above,

range |m] withm > (1 + €)n,
® ag,...,04, 1 chosen at random from [t],

® 0p,...,0,_1 are chosen at random from a 2g-universal class of

functions from U to [¢].

The labeled graph

Bipartite graph
G(Sa hla h2)

with node labels:

a; and ¢;.

h(x) =
(@, (z) + Phy(x) () mod ¢

Theorem 4

Then, for each S C U, |S| = n, apart from a bad event By that has
probability O (n/r*) + O(nt™9),

h(x),z € S

is fully random on S

Essence of proof:

For h(x) to be fully random on .S

it is sufficient

that no connected component of G(S, hy, hy) has cyclomatic number
> (.

Conclusion, Open Problems

e Graphs that behave randomly within connected components, with

hash functions that are very fast to evaluate.

e Cuckoo hashing and simulation of uniform hashing with fast

functions.
e \What about denser graphs (m < n) ?
e Hypergraphs (3 or more functions)

e Analyze graphs obtained from simple d-universal hash functions.

