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1 Abstract

The Al pha AXP 64-bit conputer architecture is designed for high
performance and | ongevity. Because of the focus on multiple instruction

i ssue, the architecture does not contain facilities such as branch del ay
slots, byte wites, and precise arithnetic exceptions. Because of the focus
on nultiple processors, the architecture does contain a careful shared-
menory nodel, atonic-update primitive instructions, and relaxed read/wite
ordering. The first inplenmentation of the Al pha AXP architecture is the
worl d's fastest single-chip mcroprocessor. The DECchip 21064 runs nultiple
operating systens and runs native-conpiled prograns that were transl ated
fromthe VAX and M PS architectures.

Thus in all these cases the Romans did what all w se princes ought to do;
namely, not only to look to all present troubles, but also to those in the
future, against which they provided with the utnost prudence. - Niccolo
Machi avel l'i, The Prince

2 Historical Context

The Al pha AXP architecture grew out of a small task force chartered in 1988
to explore ways to preserve the VAX VMS cust oner base through the 1990s.
This group eventually canme to the conclusion that a new reduced instruction
set conputer (RISC) architecture would be needed before the turn of the
century, primarily because 32-bit architectures will run out of address
bits. Once we nmade the decision to pursue a new architecture, we shaped it
to do nuch nore than just preserve the VMS custonmer base

Thi s paper discusses the architecture froma nunber of points of view It
begi ns by meking the distinction between architecture and i npl enentati on.
The paper then states the overriding architectural goals and discusses a
nunber of key architectural decisions that were derived directly fromthese
goal s. The key deci sions distinguish the Al pha AXP architecture from ot her
architectures. The renmi ning sections of the paper discuss the architecture
in nmore detail, fromdata and instruction formats through the detail ed

i nstruction set. The paper concludes with a discussion of the designed-in
future growth of the architecture. An Appendi x expl ains sone of the key
technical terns used in this paper. These terns are highlighted with an
asterisk in the text.
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3 Architecture Distinct from | nplenentations

From t he begi nning of the Al pha AXP design, we distinguished the
architecture fromthe inplenmentations, follow ng the distinction nmade by
the | BM System 360 architects:

Conmput er architecture is defined as the attributes and behavior of a
conput er as seen by a machi ne-l anguage programrer. This definition

i ncludes the instruction set, instruction formats, operation codes,
addressi ng nodes, and all registers and nmenory | ocations that may be
directly mani pul ated by a nachi ne-I anguage progranmer.

I mpl ementation is defined as the actual hardware structure, logic
desi gn, and data-path organization of a particular enbodi nent of the
architecture.[1]

Thus, the architecture is a docunent that describes the behavior of al
possi bl e i nmpl ementations; an inplenentation is typically a single conputer
chip.[2] The architecture and software witten to the architecture are

i ntended to | ast several decades, while individual inplenmentations wll
have much shorter lifetinmes. The architecture nmust therefore carefully
descri be the behavior that a machi ne-1anguage programer sees, but mnust
not describe the neans by which a particular inplenmentation achieves that
behavi or .

A sinilar approach has been used with nmuch success in specifying the PDP-11
and VAX famlies of conputers. An alternate approach is to design and build
a fast RISC* chip, then wait to see if it is successful in the marketpl ace.
If so, successive inplenentations are often forced to reproduce accidents
of the initial design, or to introduce slight software inconmpatibilities.
Thi s approach works, but with varying success.

4 Architectural Goals

When we started the detailed design of the Al pha AXP architecture, we had a
short list of goals:

1. High performance

2. Longevity

3. Capability to run both VM5 and UNI X operating systens
4. Easy migration from VAX and M PS architectures

These goals directly influenced our key decisions in designing the
architecture.



In considering performance and | ongevity, we set a 15- to 25-year design
hori zon and tried to avoid any design elenments that we thought could
become limtations during this tinme. In current architectures, a primry
limtation is the 32-bit menory address. Thus we adopted a full 64-bit
architecture, with a mninml nunmber of 32-bit operations for backward
conmpatibility.
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We al so consi dered how i npl ement ati on perfornmance shoul d scal e over 25
years. During the past 25 years, conputers have becone about 1,000 tines
faster. Therefore we focused our design decisions on allow ng Al pha AXP
system i npl enentations to become 1,000 tines faster over the com ng 25
years. |In our projections of future performance, we reasoned that raw cl ock
rates would i nprove by a factor of 10 over that tinme, and that other design
di mensi ons woul d have to provide two nore factors of 10.

If the clock cannot be nade faster, then nore work nust be done per

clock tick. We therefore designed the Al pha AXP architecture to encourage
mul tiple instruction issue* inplenmentations that will eventually sustain
about ten new instructions starting every clock cycle. This aggressive
techni que of starting multiple instructions distinguishes the Al pha AXP
architecture from many ot her RI SC architectures.

The remaining factor of 10 will come fromnultiple processors. A single
systemwi || contain perhaps ten processors and share nenory. W therefore
designed a nultiprocessor nenory nodel and matching instructions

fromthe beginning. This early accommodation for nultiple processors

al so distinguishes the Al pha AXP architecture from many other RI SC
architectures, which try to add the proper primtives |ater

To run the OpenVMS AXP and the DEC OSF/ 1 AXP-and now the M crosoft W ndows
NT- operating systens, we adopted an idea froma previous Digital Rl SC
design called PRISM[3] W placed the underpinnings for interrupt delivery
and return, exceptions, context swi tching, nmenory nmanagenent, and error
handling in a set of privileged software subroutines called PALcode. These
subrouti nes have controlled entry points, run with interrupts turned off,
and have access to real hardware (inplenentation) registers. By including
different sets of PALcode for different operating systens, neither the

har dware nor the operating systemis burdened with a bad interface nmatch,
and the architecture itself is not biased toward a particular conputing
styl e.

To run existing VAX and M PS bi nary i nages, we adopted the idea of binary
transl ation,* as described in a conpanion paper.[4,5,6] The conbination

of PALcode and binary translation gave us the |uxury of designing a new
architecture. Other than the fundanmental integer and floating-point data
types, there are no specific VAX or MPS features carried directly into the
Al pha AXP instruction-set architecture for conpatibility reasons.

5 Key Design Decisions

This section presents the design decisions that distinguish the Al pha AXP
architecture from ot hers.
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RI SC

The Al pha AXP architecture is a traditional RI SC | oad/store architecture.
All data is noved between registers and nenory without conputation,

and all conputation is done between values in registers. Little-endian
byt e addressi ng and both VAX and | EEE fl oati ng-poi nt operations* are
carried over fromthe VAX and MPS architectures.[7] W assuned that

nost i npl ementations would pipeline instructions, i.e., they would start
execution of a second, third, etc. instruction before the execution of a
first instruction conpletes. W assuned that the inplenentation | atency
of many operations would be inportant. Latency is the nunmber of cycles a
program must wait to use the result of a preceding instruction. W assuned
that the vast najority of menmory operands woul d be aligned. An aligned
operand of size 2**N bytes* has an address with N |low order zeros. O her
menory operands are ternmed unaligned.

Full 64-bit Design

The Al pha AXP architecture uses a linear* 64-bit virtual address space.
Regi sters, addresses, integers, floating-point nunbers, and character
strings are all operated on as full 64-bit quantities. There are no
segnment ed addresses. *

Regi ster File

In choosing the register file design, we considered both a single conbined
register file and split integer and floating-point register files. W chose
a split register file to support aggressive multiple issue. A conbined

file is sonewhat nore flexible, especially for progranms that are heavily
skewed toward integer-only or floating-point-only conputation. A conbined
file also nakes it easier to pass a mxture of integer and fl oating-point
subroutine paranmeters in registers. However, split files allow gracefu
two-chip i nplenentations and snal |l er integer-only inplenmentations. They

al so need fewer read/wite ports per file to sustain a given amunt of

mul tiple instruction issue.

We al so consi dered whether each file should contain 32 or 64 registers. W
chose 32, largely because

1. Thirty-two registers in each file are enough to support at |east eight-
way nultiple issue

2. Two valuable instruction bits are better used to nake a 16-bit
di spl acenent field in nenory-format instructions.

More regi sters might seem better, but excess registers consunme chip
area and access tine, save/restore speed across subroutines and context



switches, and instruction bits that m ght be put to better use. Conpilers
can deliver substantial perfornmance gains when given 32 registers instead
of 16, but there is no clear evidence of simlar gains with 64 registers.
Demand for registers is likely to increase slowy in the future, but a
nunber of inplenentation techniques, such as short | atency pipelines and
regi ster renam ng, should satisfy this demand.
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Mul tiple Instruction |Issue

Qur design sought to elimnate any nmechani smthat woul d hi nder aggressive
mul tiple instruction issue inplenentations. Therefore we tried to avoid al
speci al or hidden processor resources.[8] Thus, the Al pha AXP architecture
has no condition codes, no global exception enables, no multiplier-quotient
or string registers, no branch delay slots, no suppressed instructions

or skips, no precise arithnetic exceptions, and no single-byte wites to
menory. All of these features, found in sone RI SC architectures, have the
ef fect of hindering nmultiple instruction issue, or hindering pipelining of
mul tiple instances of the same instruction. For exanple, a dedicated string
regi ster makes it hard to have three unrelated string operations in the

pi peline at once.

To illustrate the performance | oss associated with special or hidden
processor resources, consider a dual-issue inplenentation with a four-

cycl e-deep pipeline. At the beginning of each cycle, up to six prior
instructions are partially executed and two nore are about to be issued.
Six prior instructions can have six pending wites to result registers,
plus six sets of side effects on special or hidden processor resources.
The next two instructions can specify a total of four operand registers,
two nore result registers, and two nore sets of side effects on special or
hi dden resources. The decision to issue 0, 1, or 2 of the next instructions
i nvol ves 36 sinple conparisons of pairs of register nunmbers and 12 conpl ex
conpari sons of sets of side effects. The nunber of such conparisons

i ncreases as a function of the issue width, the pipeline depth, and the
nunber of special or hidden processor resources. The conplexity of these
conparisons can limt the clock rate. The register-nunber conparisons

are unavoi dable, therefore we tried to limt special or hidden processor
resour ces.

Branch Del ay Slots. The Al pha AXP architecture has no branch delay slots.
The branch delay slots found in some RI SC architectures require exactly one
following instruction to be executed after a conditional branch. In 1988
this was, perhaps, a good idea for overlapping branch |atency in a single-
issue chip with a one-cycle instruction cache. In 1995, however, it wll

not scale well to a four-way issue chip with a two-cycle instruction cache.
I nstead of one instruction, up to eight instructions would be needed in

the delay slot. Branch delay slots also introduce a restart problemif the
instruction in the delay slot faults: one restart program counter is needed
for the delay slot and another one for the actual branch target.

Suppressed I nstructions. The Al pha AXP architecture has no suppressed

i nstructions, whereby the execution of one instruction conditionally
suppresses a follow ng one. Suppressed (or skipped) instructions are found
in other RISC architectures. The suppression bit(s) represent nonreplicated
hi dden state, so nultiple instruction issue is difficult for nore than



one potential suppressor. If an interrupt is taken between a suppressor
and suppressee, or if the suppressee takes a restartable exception (e.qg.
page fault), the correct version of the suppression state nmust be saved
and restored. There are also definitional problens with this approach: Are
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exceptions ever reported for suppressed instructions? What happens if the
suppressed i nstruction suppresses a third instruction?

Byte Load or Store Instructions. The Al pha AXP architecture has no byte

| oad or store instructions and no inplicit unaligned accesses. There

also are no partial-register wites. The byte | oad/store instructions and
unal i gned accesses found in some RISC architectures can be a perfornmance
bottl eneck. They require an extra byte shifter in the speed-critical |oad
and store paths, and they force a hard choice in fast cache design. The
partial -register wites found in other RISC architectures can also be a
performance bottl eneck because they require masking and shifting in the
fundament al operation of accessing a register

On a previous project involving a MPS inplenmentation, we found the

shifter for the |load-left/load-right instructions to be a direct cycle-
time bottleneck. Also, the VAX 8700 inplenentation (circa 1986) renoved the
byte shifter in the |load/store hardware in favor of a faster mcrocycle,
with 2 cycles for a byte |load and 6 cycles for an unaligned 32-bit access.
Thi s deci sion achieved a net performance gain. OQur experience encouraged us
to avoid byte | oad/store.

An additional problemw th byte stores is that an inplenmenter may easily
choose only two of the three design features: fast write-back cache,
single-bit error correction code (ECC), or byte stores.

Byte stores are straightforward in sinple byte-parity wite-through cache
i mpl ement ati ons. Except for the expensive design of four or five ECC bits
for every eight bits of data, a byte store to a fast ECC wite-back cache
i nvol ves

1. Reading an entire cache word*

2. Checking the ECC bits and correcting any single-bit error

3. Modifying the byte

4. Calculating the new ECC bits

5. Witing the entire cache word

This read-nodi fy-wite sequence requires hidden sequencer hardware and

hi dden state to hold the cache word tenporarily. The sequencer tends to
sl ow down ordinary full-cache-word stores. The need for byte stores tends
to ripple throughout the nmenory subsystem design, nmaki ng each piece a
little nore conplicated and a little slower. Wth nonreplicated hidden

state, it is difficult to issue another byte store until the first one
finishes. Finally, the existence of a byte store instruction has |ed



to prograns and library routines for other RISC inplenmentations with

si ngl e-byte nove and conpare | oops. String mani pul ati on on Al pha AXP

i mpl ementations is up to eight times faster by processing eight bytes at a
tinme.[9]
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I nstead of including byte |oad/store, we followed the RI SC phil osophy

of exposing hidden conmputation as a sequence of many sinple, fast
instructions. In the Al pha AXP architecture, a byte load is done as an
explicit | oad/shift sequence; a byte store as an explicit |oad/ nodify/store
sequence. W tuned the instruction set to keep these sequences short. The
instructions in these sequences can be interm xed, schedul ed, and issued as
mul tiples with other conputation, as can the rest of the instructions in
the architecture. Table 1 gives a sumary of the Al pha AXP instruction set.

Arithmetic Exceptions. The Al pha AXP architecture has no precise
arithnetic exceptions. Reporting an arithnetic exception (e.g., overflow,
underfl ow) precisely neans that instructions subsequent to the one causing
t he exception nust not be executed. This is straightforward in a slow
i mpl ementation that runs a single instruction to conpletion before starting
the next one, but becones substantially nmore difficult to do quickly in
a pipelined four-way issue inplenentation. There are standard techni ques
avail abl e for delivering precise exceptions while running quickly (checking
exponents, suppressing register wites, exception silos and backout),
but these techni ques consunme substantial design tinme and can cost sone
performance. They appear not to scale well with wider nmultiple issue or
faster clocks.

Excepti onal cases are just that-exceptional, or rare, events. Based partly
on custoner requests, we decided to enphasize the performance of nornal
operations at the expense of exceptional cases. Rather than an inplicit
exception ordering between every pair of instructions, we adopted the
Cray-1 nodel of arithmetic exceptions-in which exceptions are reported
eventual ly-plus an explicit trap barrier (TRAPB) instruction that can

be used to nake exception reporting as precise as desired.[10] W also
docunent ed a code-generation design that needs one trap barrier per branch
(at nost) to give precise reporting. Using TRAPB instructions in the first
Al pha AXP inplenentation | owers performnce 3 percent to 25 percent in rea
floating-point programs and | ess than 1 percent in integer prograns, but

i mproves cycle tine approximately 10 percent.

In contrast to arithmetic exceptions, nmenory nmanagenent exceptions, such

as page faults, are reported precisely. This is not as much of a burden on
i mpl ementers as precise arithnmetic exceptions would be, and | ack of precise
menory managenent faults would be a severe burden on software witers.

Shar ed- menory Ml ti processing
The Al pha AXP architecture's shared-nmenory nultiprocessing nodel is an
integral part of the design. It is not the add-on found in other RISC

archi tectures.

The underlying prinmtive for safe updating of a nultiprocessor-shared



menory |location is a sequence of RISC instructions: |oad-locked, in-

regi ster nodify, store-conditional, test. If this sequence conpletes

with no interrupts, no exceptions, and no interfering wite from another
processor, then the store-conditional stores the nodified result, and the
test indicates success: an atomic update was in fact perforned.
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I f anyt hing goes wong, the store-conditional does not store a result, and
the test indicates failure. The program nmust then retry the sequence unti

it succeeds. We chose this primtive sequence (quite sinmlar to the MPS
R4000 chi p design[5]) because it can be inplenmented in a way that scales

up with processor performance. In the absence of an interfering wite, the
entire sequence can be done in an on-chip wite-back cache, and hundreds of
chi ps can do noninterfering sequences simultaneously. The sequence can al so
be used to achieve byte granularity* of wites in shared nenory. [ 6]

The Al pha AXP architecture has no strict nultiprocessor read/wite
ordering, whereby the sequence of reads and wites issued by one processor
in a multiprocessor configuration is delivered to all other processors in
exactly the order issued. Strict order is sinple, but has a problemsinilar
to that of byte stores. An inplenmenter nay easily choose only two of the
three design features: pipelined wites, bus retry, or strict read/wite
orderi ng.

If one processor starts a wite to location A and a wite to location B
then di scovers that the wite to A has failed (bus parity error, etc.) and
retries it successfully, then a second processor will observe the wites
out of order: B, then A

Bef ore Al pha AXP i npl enentati ons, many VAX inpl enentations avoi ded
pipelined wites to main nenory, multibank caches, wite-buffer bypassing,
routi ng networks, crossbar menory interconnect, etc., to preserve strict
read/wite ordering. The Al pha AXP architecture's shared-nenory node

i nstead specifies no inplicit ordering between the reads and wites issued
on one processor, as viewed by a different processor. This progranm ng
nodel is an enabling technology for a wide variety of high-perfornmance

i mpl enmentation techniques. Strict ordering can be specified when needed by
insertion of explicit menory barrier (MB) instructions, quite simlar to
the | BM System 370 serialization design.[11]

6 Data Representation and Processor State

This section describes the fundanmental Al pha AXP data types and their
representation in nmenory and registers. It also describes the conplete

har dware regi ster state for each processor and outlines the additiona
state maintai ned by operating-systemspecific PALcode routines. The Al pha
AXP architecture differs fromother R SC architectures by carefully

speci fying a canonical formfor 32-bit data in 64-bit registers. A
canonical formis a standardi zed choice of data representation for
redundantly encoded val ues. Since 32-bit operations assume canonica
operands and give canonical results, very few explicit conversions between
32- and 64-bit representations are needed.

The fundanmental unit of data in the Al pha AXP architecture is a 64-



bit quadword.* As shown in Figure 1, quadwords may reside in nenory or
regi sters. For backwards conmpatibility, 32-bit |ongwords* may al so be
stored in nenory.
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There are three fundanmental data types: integer, |EEE floating point, and
VAX floating point; each is available in 32-bit and 64-bit forns.[4, 12]
VAX fl oating-point values in nmenory have 16-bit words swapped, for
conpatibility with VAX (and PDP-11) formats. The VAX floating-point |oad
and store instructions do word swappi ng* to give a conmon regi ster order
The 32-bit load instructions expand values to 64-bit canonical form and
the 32-bit store instructions contract 64-bit values back to 32.[13] Al
regi ster-to-register operations are thus done on full 64-bit values in

a comon integer or floating-point format. No partial-register reads or
wites are done.

The canonical formof a 32-bit value in a 64-bit integer register has the
nost significant 33 bits all equal to bit<31>. In essence, bit<31> is kept
as a "fat bit." This allows signed integer values to be used directly in
64-bit arithnetic and branches. This canonical formis maintained as a

cl osed system (even for 32-bit data considered to be "unsigned") by using
a conbi nation of 64-bit operates, 32-bit add/subtract/rmultiply, and two-

i nstruction sequences for shifts.

The canonical formof a 32-bit value in a 64-bit floating-point register
has the 8-bit exponent field expanded to 11 bits and the 23-bit mantissa
field expanded to 52 bits. Except for | EEE denormals,* this allows single-
preci sion floating-point values to be used directly in doubl e-precision
arithmetic and branches. This canonical formis maintained as a cl osed
system by using single-precision instructions.

Bytes and words (16-bit quantities) are not fundanental data types. They
may be transferred between nmenory and registers with short sequences of

i nstructions and manipulated in registers using normal arithnmetic and
the byte-mani pul ation instructions described in the Operate Instructions
secti on.

The hardware processor state, shown in Figure 2, includes 32 integer
registers RO..R31 of 64 bits each; R31 is always zero. There are al so
32 floating-point registers FO..F31 of 64 bits each; F31 is always zero.
Wites to R31 and F31 are ignored.

A 64-bit program counter (PC) contains a |ongword-aligned virtual byte
address (i.e., the low 2 bits of the PC are always zero). The VAX
architecture keeps the PC in general register 15, where it is directly
used for PC-relative nenory addressing. In the Al pha AXP architecture,
however, code and data pages are usually separated by 64 kil obytes (KB) or
nore to all ow separate nmenory protection, but the 16-bit displacenent in

| oad/ store instructions cannot span nore than 64KB

The hardware processor state includes a lock flag and a | ocked physica
address for the | oad-1ocked/store-conditional sequence. It also has a



fl oating-point control register containing the | EEE dynam c¢c roundi ng node. *
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Har dwar e i nmpl ementations may optionally include a pair of state registers
for nmenory prefetching (FETCH FETCH M instructions), and an optiona
interrupt flag for use only by translated VAX OpenVMs AXP prograns that
reproduce conplex instruction set conputer (CISC*) instruction atomcity
usi ng a sequence of RISC instructions.[6]

In addition to the above hardware state, the privileged architecture
library routines for the various operating systens inplenment additiona
state. This state nay be maintained by hardware or (PALcode) software,

at the option of the inplenenter, and it varies from one operating system
to another. Typical PALcode state includes a processor status (PS) word,
kernel and user stack pointers, a process control block base for context
switching, a process-unique value for threads, and a processor numnber

for multiprocessor dispatching. Additional PALcode state may include

a floating-point enable bit, interrupt priority level, and translation

| ook-aside buffers for mapping instruction-stream and data-streamvirtua
addresses. All of this state is soft in the sense that it is defined only
in relationship to the PALcode routines for a specific operating system In
a multiprocessor inplenentation, all of the above is replicated for each
processor.

7 Menory Access

Al pha AXP nmenory is byte addressed, using the | owest-nunbered byte of a
datum Only aligned | ongwords or quadwords may be accessed: an aligned

l ongword is a four-byte datum whose address is a multiple of four; an

al i gned quadword is an eight-byte datum whose address is a nultiple of
eight. Normal |oad or store instructions that specify an unaligned address
take a precise data alignment trap to PALcode (which may do the access
using two aligned accesses or report a fatal error, depending on the
operating system design).

Al pha AXP inplenentations allow data to be accessed using either a little-
endi an* view (byte 0 is the |ow byte of an integer), or a big-endian* view
(byte 0 is the high byte of an integer). As described in the Load/store
Instructions section, there is a one-instruction bias in the sequences for
little- and big-endi an byte mani pul ation.

Virtual addresses are a full 64 bits; inplenentations may restrict
addresses to have sone nunmber of identical high-order bits, but nust

al ways distinguish at least 43 bits. Virtual addresses are mapped in an
operating-specific way to physical addresses, using fixed-size pages.
Menory protection is done on a per-page basis. Address mapping errors
(e.g., protection, page faults) take precise traps to PALcode. Each page
may al so be marked to provide a fault on each read, wite, or instruction-
fetch.



Virtual addresses nmay be further qualified by address space nunbers (ASNs),
to allow multiple disjoint addresses spaces. The choice of disjoint or
comon mappi ng across all processes is done on a per-page basis.
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The virtual - to physical -address mapping is done on a per-page basis.

Each i npl ementati on may have a page size of 8KB, 16KB, 32KB, or 64KB

The 64KB upper bound allows a linker to allocate blocks of nmenory with
differing protection or ASN properties far enough apart to work on al

i mpl ementations. The virtual - to physical -address nmappi ng can be many to
one, i.e., synonyns are allowed. In a multiprocessor inplenmentation, shared
mai n menory | ocations have the sanme physical address on all processors.

Per - processor unshared | ocations are al so al |l owed.

Menory has | ongword granularity: two processors nmay sinultaneously
access adjacent |ongwords without nutual interference. The | oad-I ocked
/store-conditional sequence discussed previously can be used to achieve
mul ti processor byte granularity.

| nput/out put is menmory mapped: sone physical nmenory addresses may refer
to 1/ 0O device regi sters whose access triggers side effects (such as the
transfer of data). Side effects on reads are di scouraged.

8 Instruction Formats

Four fundamental instruction formats-operate, nenory, branch, and CALL_
PAL-are shown in Figure 3. Al instructions are 32 bits wi de and reside
in menory at aligned | ongword addresses. Each instruction contains a 6-
bit opcode field and zero to three 5-bit register-nunber fields, RA

RB, and RC. The renmmining bits contain function (opcode extension),
literal, or displacenent fields. To nmininze register file ports in fast
i mpl enmentations, RBis never witten, and RC is never read.

All the operate instructions are three-operand register-to-register
calculating RC = RA operate RB. In integer operates, the opcode and a 7-bit
function field specify the exact operation. |Integer operates nmay have an
8-bit zero-extended literal instead of RB. In floating-point operates, the
opcode and an 11-bit function field specify the exact operation. There are
no floating-point literals.

Menory format instructions are used for |oads, stores, and a few

m scel | aneous operations. Loads and stores are two-operand instructions,
speci fying a register RA and a base-di splacenent virtual byte address.

The effective address cal cul ati on sign extends the 16-bit di splacenent

to 64 bits and adds the 64-bit RB base register (ignoring overflow).

The resulting virtual byte address is mapped to a physical address. The

nm scel | aneous instructions make other uses of the RA, RB, and displ acenent
fields.

Branch format instructions specify a single register RA and a signed
PC-rel ative | ongword di spl acenment. The branch target cal cul ation shifts
the 21-bit displacenent left by 2 bits to nmake it a | ongword (not



byt e) di splacenent, then sign extends it and adds it to the updated
PC. Conditional branch instructions test register RA and unconditiona
branches wite the updated PC to RA for subroutine |inkage. The |arge
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| ongword di spl acenent allows a range of +4MB, substantially reducing the
need for branches around or to other branches.

The CALL_PAL instruction has only a 6-bit opcode and a 26-bit function
field. The function field is a small integer specifying one of a few dozen
privileged architecture library subroutines.

Operate I nstructions

There are five groups of register-to-register operate instructions: integer
arithnetic, logical, byte-manipulation, floating-point, and m scell aneous.
Al'l instructions operate on 64-bit quadwords unl ess otherw se specified.

Integer Arithmetic Instructions. The integer arithnetic instructions are
add, subtract, multiply, and conpare. Add, subtract, and nultiply have
variants that enable arithnmetic overflow traps. They al so have | ongword
variants that check for 32-bit overflow (instead of 64) and force the high
33 bits of the result to all equal bit<31> Add and subtract al so have
scal ed variants that shift the first operand left by 2 or 3 bits (with
no overfl ow checking) to speed up sinple subscripted address arithnetic.
The UMJLH instruction (from PRISM gives the high 64 bits of an unsigned
128-bit product and may be used for dividing by a constant. There is no
i nteger divide instruction; a software subroutine is used to divide by a
nonconstant. The conpare instructions are signed or unsigned and wite a
Bool ean result (0 or 1) to the target register.

Logical Instructions. The logical instructions are AND, OR, and XOR
with the second operand optionally conpl emented (ANDNOT, ORNOT, XORNOT).
The shifts are shift left logical, shift right |ogical, and shift right
arithnetic. The 6-bit shift count is given by RB or a literal. The
conditional nmove instructions test RA (sane tests as the branching
i nstructions) and conditionally nove RB to RC. These can be used to
elim nate branches in short sequences such as M N(a,b).

Byt e- mani pul ati on I nstructions. The byte-nmani pul ation instructions are
used with the |Ioad and store unaligned instructions to manipul ate short
unal i gned strings of bytes. Long strings should be manipul ated in groups
of eight (aligned quadwords) whenever possible. The byte-mani pul ation
i nstructions are fundanmentally masked shifts. They differ from nornmal
shifts by having a byte count (0..7) instead of a bit count (0..63), and
by zeroing sone bytes of the result, based on the data size given in the
function field.

The extract (EXTxx) instructions extract part of a 1-, 2-, 4-, or 8-byte
field froma quadword and place the resulting bytes in a field of zeros.
A single EXTxL instruction can perform byte or word | oads, pulling the

datum out of a quadword and placing it in the |low end of a register with



hi gh-order zeros. A pair of EXTxL/EXTxH instructions can perform unaligned
| oads, pulling the two parts of an unaligned datum out of two quadwords
and placing the parts in result registers. A sinple OR operation can then
conmbine the two parts into the full datum
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The insert (INSxx) and mask (MSKxx) instructions position new data and zero
out old data in registers for storing bytes, words, and unaligned data. If
the Al pha AXP architecture were a four-operand one, inserting and masking
coul d have been conbined into a single instruction.

The conpare-byte instruction allows character-string search and conpare
to be done eight bytes at a tinme. The ZAP instructions allow zeroing of
arbitrary patterns of bytes in a register. These instructions allow very
fast inplenentations of the C |anguage string routines, anmong other uses.

Fl oating-point Arithmetic Instructions. The floating-point arithnetic

i nstructions are add, subtract, nultiply, divide, conmpare, and convert.
The first four have variants for | EEE and VAX fl oati ng-point, and single-
and doubl e-preci sion data types. They al so have variants that enable
conmbi nations of arithnmetic traps and that specify the roundi ng node.
The single-precision instructions wite canonical 64-bit results, but do
exponent checking and roundi ng to single-precision ranges. The conpare
instructions wite a Boolean result (0 or nonzero) to the target register
The convert instructions transfer between single and double, floating-
poi nt and integer, and two forns of VAX double (D-float and G float).
A conbi nati on of hardware and software provides full |EEE arithnetic.
Operations on VAX reserved operands,* dirty zeros,* | EEE denormal s,
infinities,* and not-a-nunmbers* are done in software.

There are also a few floating-point instructions that nove data w t hout
applying any interpretation to it. These include a conplete set of
conditional nmove instructions simlar to the integer conditional noves.

M scel | aneous | nstructions. The m scel |l aneous instructions include: nmenory
prefetching instructions to hel p decrease nenory |atency, a read cycle
counter instruction for perfornmance neasurenent, a trap barrier instruction
for forcing precise arithmetic traps, and nenory barrier instructions for
forcing nmultiprocessor read/wite ordering.

9 Load/Store Instructions

The |l oad and store instructions only nove data. They never apply an
interpretation to the data and therefore never take any data-dependent
traps. This design allows nmoving conpletely arbitrary bit patterns in and
out of registers and allows conpletely transparent saving/restoring of
regi sters.

The integer |oad and store quadword unaligned (LDQ U, STQ U) instructions
ignore the low three bits of the byte address and al ways transfer an

al i gned quadword. These instructions are used with the in-register byte
mani pul ation instructions to operate on byte, word, and unaligned data by
short sequences of RISC instructions.
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Exanple 1 in Figure 4 shows a two-instruction sequence for |oading a

byte into the |low end of a register, using little-endian byte nunbering.
Exanpl e 2 shows a simlar sequence for loading a byte into the high end

of a register, using big-endian byte nunbering. Exanple 3 shows a sequence
for storing a byte (the first two and last two instructions m ght issue
simul taneously on the first Al pha AXP inplenentation). Exanple 4 shows a
sequence for an explicit unaligned | oad quadword (no data alignment trap).

The integer |oad-1ocked and store-conditiona

(LDQL, LDL_L, STQC, STL_C) instructions are included in the architecture
to facilitate atom ¢ updates of multiprocessor-shared data. As described
above, they can be used in short sequences of RISC instructions to

do atomi c read-nmodi fy-writes. Exanple 5 shows a sequence for doing a

nmul ti processor test-and-set. Note that changing the LDQ U STQ U in Exanple
3 to AND/LDQ L/ STQ C/ BEQ gives a byte-store sequence that is safe to use
with rmultiprocessor-shared data.

There are two rel ated | oad address instructions. LDA cal cul ates the
effective address and wites it into RC. LDAH first shifts the di spl acenent
left 16 bits, then calculates the effective address and wites it into RC
LDAH is included to give a sinple way of creating nost 32-bit constants in
a pair of instructions. (Because LDA sign-extends the displacenent, sone
val ues in the range 000000007FFF8000 .. O000000007FFFFFFF require three
instructions.) Constants of 64 bits are | oaded with LDQ instructions.

Branchi ng I nstructions

The branch instructions include conditional branches, unconditiona
branches, and calculated junps. In addition to the previously described
conditional nmoves, the architecture contains hints to inprove branching
per f ormance.

The integer conditional branches test register RA for an opcode-specified
condition (>0 >=0 =0 !'=0 <=0 <0 even odd) and either branch to the target
address or fall through to the updated PC address. The fl oating-point
conditional branches are the same, except they do not include even/odd
tests. Arbitrary testing (and faulting on VAX or | EEE nonfinite val ues)
can be done by sequences of conpare instructions and branch instructions.
Logical or arithmetic instructions can conbine conpare results w thout
usi ng branches.

Uncondi ti onal branches write the updated PC to RA for subroutine |inkage
and branch to the target address. RA = R31 may be used if no linkage is
needed.

Calculated junps wite the updated PCto RA and junp to the target address
in RB. Calculated junps are used for subroutine call, return, CASE (or



SW TCH) statenments, and coroutine |inkage.

The architecture specifies three kinds of branching hints in instructions.
The hints need not be correct, but to the extent that they are,

i mpl enentations may perform faster
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The first formof hint is an architected static branch prediction rule:
forward conditional branches are predicted not-taken, and backward ones
taken. To the extent that conpilers and hardware inplenenters follow
this rule, programs can run nmore quickly with little hardware cost.
This hint does not elimnate the use of dynam c branch prediction in an
i mpl enentation, but it may reduce the need to use it.

The second form describes conputed junp targets. Unused instruction bits
are defined to give the low bits of the nost |likely target, using the sane
target cal culation as unconditional branches. The 14 bits provided are
enough to specify the instruction offset within a page, which is often
enough to start a fastest-level instruction-cache read many cycl es before
the actual target value is known.

The third form describes subroutine and coroutine returns. By marking each
branch and junp as call, return, or neither, the architecture provides
enough information to maintain a small stack of likely subroutine return
addresses within an inplenmentation. This inplenmentation stack can be used
to prefetch subroutine returns quickly.

The conditional nove instructions (discussed previously in the Logica
Instructions section and the Floating-point Arithmetic |Instructions
section) and the branching hints elimnate sonme branches and speed up the
remai ni ng ones without conpromising nultiple instruction issue.

10 Supervi sion

The actions underpinning an operating system are performed i n PALcode
subroutines and are a flexible part of the architecture. Al asynchronous
events, such as interrupts, exceptions, and machine errors, are nedi ated by
PALcode routines. PALcode establishes the initial state of the nmachine

bef ore execution of the first software instruction. PALcode routines

nmedi ate all accesses to physical hardware resources, including physica

mai n menory and menory-nmapped |/ O device registers.

This design allows inplementers to craft a set of PALcode routines that
closely match an operating system design, not only for traditiona
operating systenms, but also for specialized environnents such as real -
time or highly secure conmputing. As new conputing paradi gns are adopted
and new operating systens are created, the Al pha AXP architecture my wel
prove flexible enough to accommpdate themefficiently.

11 Future Changes
The Al pha AXP architecture will surely change during its lifetime. In

addition to the PALcode flexibility di scussed above, explicit perfornmance
flexibility and instruction-set flexibility exist in the architecture.



Architectural fields that are too small can limt perfornmance. The Al pha
AXP architecture therefore has many fields deliberately sized for |ater
expansi on.
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Al t hough initial inplenmentations use only 43 bits of virtual address, they
check the remaining 21 bits, so that software can run unnodified on |ater

i mpl ementations that use (up to) all 64 bits. Furthernore, although initia
i mpl enmentations use only 34 bits of physical address, the architected page
table entry (PTE) formats and page-size choices allow gromh to 48 bits.
By expanding into a 16-bit PTE field that is not currently used by mapping
har dwar e, another 16 bits of physical address growth can be achieved, if
ever needed.

Initial inplenmentations also use only 8KB pages, but the design
accompdates limted growh to 64KB pages. Beyond that, page table
granularity hints allow groups of 8, 64, or 512 pages to be treated as

a single large page, thus effectively extending the page-size range by a
factor of over 1,000. Each architected PTE format al so has one bit reserved
for future expansion.

Several other soft PALcode registers, such as the PS or ASN, that need only
a few bits today are allocated a full 64 bits for future expansion

Exception processing can limt performance. PALcode routines deliver
exceptions to an operating system so the design can be gradually inproved.
In fact, PALcode routines for the data alignnent have been inproved in the
OpenVMsS AXP and DEC OSF/ 1 AXP operating systens. Sone currently specified
sof tware exceptions (such as | EEE denornmal arithmetic) could be noved into
PALcode or hardware.

There are a nunber of areas of instruction-set flexibility designed into
the architecture. Four of the 6-bit opcodes are nom nally reserved for
addi ng i nteger and floating-point aligned octaword* (128-bit) |oad/store
instructions.[14] Nine nore 6-bit opcodes renain for other expansion

Wt hin each opcode, the function field contains roomfor further expansion
For exanple, the scal ed add/subtract functions were added between prototype
chip and product chip. The fact that the function fields are not fully
policed is a m stake.

Wthin the | EEE fl oating-point function field, code points are nom nally
reserved for doubl e-extended* precision (128-bit) arithmetic. Wthin the
menory barrier instruction group, three code points were reserved for
subset barriers. One of these has already been redefined as a wite-wite
barrier.

Not all changes involve growh. There are subsetting rules defined for
renmovi ng either one or both (I EEE and VAX) floating-point data types. If
both are renoved, the floating-point registers can also be renoved. The
AMOVxx PALcode routines and RS/RC instructions are defined as optional and
can be deleted when the transition of translated VAX code is conpleted.

O her unneeded PALcode routines can al so be renoved eventually.
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12  Summary

The goal s that shaped the Al pha AXP architecture design have |largely been
realized. For high performance, the first inplenmentation (the DECchip 21064
m croprocessor) is listed in the October 1992 Gui nness Book of Records as
the world's fastest single-chip microprocessor. It is too early to neasure
| ongevity, but the fact that we had designed-in flexibility in places that
changed during devel opnent is at |east encouragi ng. OpenVMS AXP, DEC OSF/ 1
AXP, and W ndows NT operating systens all run on Al pha AXP inpl enentations
today. Progranms fromthe VAX and MPS architectures transport easily to

Al pha AXP i npl enmentations and run quickly. Many of the ideas in the Al pha
AXP design are now being adopted by other architectures in the industry.

13 Appendi x

Bi nary translation-A software techni que to change an executabl e program
written for one architecture/operating-systempair into an equival ent
program for a different architecture/operating-systempair

Bi g- endi an nenory addressing- A view of nenory in which byte 0 of an
operand contains the nost significant (sign) bit of an integer. Conpare
littl e-endian nmenory addressing.

Byte-An 8-bit datum

Byte granul arity-The appearance that two processors can update adjacent
bytes in nenory without interfering with each other

Cl SC- Conpl ex instruction set conputer, characterized by variable-1ength
instructions, a wide variety of nenory addressing nodes, and instructions
t hat combi ne one or nore menory accesses with arithmetic. Cl SC designs
express conputation as a few conpl ex steps.

| EEE denornmalized nunber (denornmal)-A floating-point number with nmagnitude
between zero and the small est representable normalized nunber. Nunbers

in this range are typically not representable in other floating-point
arithnetic systenms; such systens m ght signal an underfl ow exception or
force a result to zero instead.

| EEE doubl e- ext ended format-A | oosely specifed floating-point format with
at least 64 significant bits of precision and at |east 15 bits of exponent
width; typically inplemented using a total of 80 or 128 bits.

| EEE dynam ¢ roundi ng node- One of four different rounding rules.

| EEE fl oating-point-A form of conputer arithnetic specified by | EEE
standard 754.[12] IEEE arithmetic includes rules for denornmalized nunbers,



infinities, and not-a-nunbers. It also specifies four different nodes for
roundi ng results.

| EEE infinity-An operand with an arbitrarily |arge nmagnitude.
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| EEE not -a-nunmber (NaN)-A synbolic entity encoded in a floating-point
format. The | EEE standard specifies sonme exceptional results (e.g., 0/0) to
be NaNs.

Li near addressi ng-A nmenory addressing technique in which all addresses
forma single range, fromO to the | argest possible address. Subscript
cal cul ations can create any address in the entire range.

Littl e-endi an nmenory addressing-A view of nenory in which byte 0 of

an operand contains the |east significant bit of an integer. The terns
little-endian and big-endian are borrowed from Gulliver's Travels in which
religious wars were waged over which end of an egg to break

Longword- A 32-bit datum

Mul tiple instruction issue-A high-performance conputer inplenmentation
techni que of starting nore than one instruction at once. An inplenentation
that starts (up to) two instructions at once is called dual-issue; four

i nstructions, quad-issue or four-way issue; etc.

Octaword-A 128-bit datum
Quadword- A 64-bit datum

RI SC- Reduced instruction set conmputer, characterized by fixed-1ength

i nstructions, sinple nenory addressi ng nodes, and a strict decoupling of

| oad/ store nenory access instructions fromregister-to-register arithnetic
i nstructions. RISC designs express conputation as many sinple steps.

Segnent ed addr essi ng- A nmenory addressi ng techni que in which addresses are
broken into two or nore parts (segnents). Subscript cal cul ati ons can only
be done within a single segnent, and el aborate software techni ques are
needed to extend addressi ng beyond a single segnment.

VAX dirty zero-A zero value represented with a non-zero faction; nust be
converted to a true zero result.

VAX fl oating-point-A formof conputer arithnetic specified by the VAX
architecture manual .[4] VAX arithnetic includes rules for reserved operands
and dirty zeros.

VAX reserved operand-A non-nunber that signals an exception when used as an
operand in VAX floating-point arithnetic.

VAX word swappi ng- The rearrangenent needed for the 16-bit pieces of a VAX
floating-point nunmber to put the fields in a nore usual order; this is an
artifact of the PDP-11 16-bit architecture.



Word- A 16-bit datum
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