

 Alpha AXP Architecture

By Richard L. Sites

1 Abstract

 The Alpha AXP 64-bit computer architecture is designed for high
performance and longevity. Because of the focus on multiple instruction
issue, the architecture does not contain facilities such as branch delay
slots, byte writes, and precise arithmetic exceptions. Because of the focus
on multiple processors, the architecture does contain a careful shared-
memory model, atomic-update primitive instructions, and relaxed read/write
ordering. The first implementation of the Alpha AXP architecture is the
world's fastest single-chip microprocessor. The DECchip 21064 runs multiple
operating systems and runs native-compiled programs that were translated
from the VAX and MIPS architectures.

 Thus in all these cases the Romans did what all wise princes ought to do;
namely, not only to look to all present troubles, but also to those in the
future, against which they provided with the utmost prudence. - Niccolo
Machiavelli, The Prince

2 Historical Context

The Alpha AXP architecture grew out of a small task force chartered in 1988
to explore ways to preserve the VAX VMS customer base through the 1990s.
This group eventually came to the conclusion that a new reduced instruction
set computer (RISC) architecture would be needed before the turn of the
century, primarily because 32-bit architectures will run out of address
bits. Once we made the decision to pursue a new architecture, we shaped it
to do much more than just preserve the VMS customer base.

This paper discusses the architecture from a number of points of view. It
begins by making the distinction between architecture and implementation.
The paper then states the overriding architectural goals and discusses a
number of key architectural decisions that were derived directly from these
goals. The key decisions distinguish the Alpha AXP architecture from other
architectures. The remaining sections of the paper discuss the architecture
in more detail, from data and instruction formats through the detailed
instruction set. The paper concludes with a discussion of the designed-in
future growth of the architecture. An Appendix explains some of the key
technical terms used in this paper. These terms are highlighted with an
asterisk in the text.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

 Alpha AXP Architecture

3 Architecture Distinct from Implementations

From the beginning of the Alpha AXP design, we distinguished the
architecture from the implementations, following the distinction made by
the IBM System/360 architects:

 Computer architecture is defined as the attributes and behavior of a
 computer as seen by a machine-language programmer. This definition
 includes the instruction set, instruction formats, operation codes,
 addressing modes, and all registers and memory locations that may be
 directly manipulated by a machine-language programmer.

 Implementation is defined as the actual hardware structure, logic
 design, and data-path organization of a particular embodiment of the
 architecture.[1]

Thus, the architecture is a document that describes the behavior of all
possible implementations; an implementation is typically a single computer
chip.[2] The architecture and software written to the architecture are
intended to last several decades, while individual implementations will
have much shorter lifetimes. The architecture must therefore carefully
describe the behavior that a machine-language programmer sees, but must
not describe the means by which a particular implementation achieves that
behavior.

A similar approach has been used with much success in specifying the PDP-11
and VAX families of computers. An alternate approach is to design and build
a fast RISC* chip, then wait to see if it is successful in the marketplace.
If so, successive implementations are often forced to reproduce accidents
of the initial design, or to introduce slight software incompatibilities.
This approach works, but with varying success.

4 Architectural Goals

When we started the detailed design of the Alpha AXP architecture, we had a
short list of goals:

1. High performance

2. Longevity

3. Capability to run both VMS and UNIX operating systems

4. Easy migration from VAX and MIPS architectures

These goals directly influenced our key decisions in designing the
architecture.

In considering performance and longevity, we set a 15- to 25-year design
horizon and tried to avoid any design elements that we thought could
become limitations during this time. In current architectures, a primary
limitation is the 32-bit memory address. Thus we adopted a full 64-bit
architecture, with a minimal number of 32-bit operations for backward
compatibility.

2 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

We also considered how implementation performance should scale over 25
years. During the past 25 years, computers have become about 1,000 times
faster. Therefore we focused our design decisions on allowing Alpha AXP
system implementations to become 1,000 times faster over the coming 25
years. In our projections of future performance, we reasoned that raw clock
rates would improve by a factor of 10 over that time, and that other design
dimensions would have to provide two more factors of 10.

If the clock cannot be made faster, then more work must be done per
clock tick. We therefore designed the Alpha AXP architecture to encourage
multiple instruction issue* implementations that will eventually sustain
about ten new instructions starting every clock cycle. This aggressive
technique of starting multiple instructions distinguishes the Alpha AXP
architecture from many other RISC architectures.

The remaining factor of 10 will come from multiple processors. A single
system will contain perhaps ten processors and share memory. We therefore
designed a multiprocessor memory model and matching instructions
from the beginning. This early accommodation for multiple processors
also distinguishes the Alpha AXP architecture from many other RISC
architectures, which try to add the proper primitives later.

To run the OpenVMS AXP and the DEC OSF/1 AXP-and now the Microsoft Windows
NT-operating systems, we adopted an idea from a previous Digital RISC
design called PRISM.[3] We placed the underpinnings for interrupt delivery
and return, exceptions, context switching, memory management, and error
handling in a set of privileged software subroutines called PALcode. These
subroutines have controlled entry points, run with interrupts turned off,
and have access to real hardware (implementation) registers. By including
different sets of PALcode for different operating systems, neither the
hardware nor the operating system is burdened with a bad interface match,
and the architecture itself is not biased toward a particular computing
style.

To run existing VAX and MIPS binary images, we adopted the idea of binary
translation,* as described in a companion paper.[4,5,6] The combination
of PALcode and binary translation gave us the luxury of designing a new
architecture. Other than the fundamental integer and floating-point data
types, there are no specific VAX or MIPS features carried directly into the
Alpha AXP instruction-set architecture for compatibility reasons.

5 Key Design Decisions

This section presents the design decisions that distinguish the Alpha AXP
architecture from others.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 3

 Alpha AXP Architecture

RISC

The Alpha AXP architecture is a traditional RISC load/store architecture.
All data is moved between registers and memory without computation,
and all computation is done between values in registers. Little-endian
byte addressing and both VAX and IEEE floating-point operations* are
carried over from the VAX and MIPS architectures.[7] We assumed that
most implementations would pipeline instructions, i.e., they would start
execution of a second, third, etc. instruction before the execution of a
first instruction completes. We assumed that the implementation latency
of many operations would be important. Latency is the number of cycles a
program must wait to use the result of a preceding instruction. We assumed
that the vast majority of memory operands would be aligned. An aligned
operand of size 2**N bytes* has an address with N low-order zeros. Other
memory operands are termed unaligned.

Full 64-bit Design

The Alpha AXP architecture uses a linear* 64-bit virtual address space.
Registers, addresses, integers, floating-point numbers, and character
strings are all operated on as full 64-bit quantities. There are no
segmented addresses.*

Register File

In choosing the register file design, we considered both a single combined
register file and split integer and floating-point register files. We chose
a split register file to support aggressive multiple issue. A combined
file is somewhat more flexible, especially for programs that are heavily
skewed toward integer-only or floating-point-only computation. A combined
file also makes it easier to pass a mixture of integer and floating-point
subroutine parameters in registers. However, split files allow graceful
two-chip implementations and smaller integer-only implementations. They
also need fewer read/write ports per file to sustain a given amount of
multiple instruction issue.

We also considered whether each file should contain 32 or 64 registers. We
chose 32, largely because

1. Thirty-two registers in each file are enough to support at least eight-
 way multiple issue

2. Two valuable instruction bits are better used to make a 16-bit
 displacement field in memory-format instructions.

More registers might seem better, but excess registers consume chip
area and access time, save/restore speed across subroutines and context

switches, and instruction bits that might be put to better use. Compilers
can deliver substantial performance gains when given 32 registers instead
of 16, but there is no clear evidence of similar gains with 64 registers.
Demand for registers is likely to increase slowly in the future, but a
number of implementation techniques, such as short latency pipelines and
register renaming, should satisfy this demand.

4 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

Multiple Instruction Issue

Our design sought to eliminate any mechanism that would hinder aggressive
multiple instruction issue implementations. Therefore we tried to avoid all
special or hidden processor resources.[8] Thus, the Alpha AXP architecture
has no condition codes, no global exception enables, no multiplier-quotient
or string registers, no branch delay slots, no suppressed instructions
or skips, no precise arithmetic exceptions, and no single-byte writes to
memory. All of these features, found in some RISC architectures, have the
effect of hindering multiple instruction issue, or hindering pipelining of
multiple instances of the same instruction. For example, a dedicated string
register makes it hard to have three unrelated string operations in the
pipeline at once.

To illustrate the performance loss associated with special or hidden
processor resources, consider a dual-issue implementation with a four-
cycle-deep pipeline. At the beginning of each cycle, up to six prior
instructions are partially executed and two more are about to be issued.
Six prior instructions can have six pending writes to result registers,
plus six sets of side effects on special or hidden processor resources.
The next two instructions can specify a total of four operand registers,
two more result registers, and two more sets of side effects on special or
hidden resources. The decision to issue 0, 1, or 2 of the next instructions
involves 36 simple comparisons of pairs of register numbers and 12 complex
comparisons of sets of side effects. The number of such comparisons
increases as a function of the issue width, the pipeline depth, and the
number of special or hidden processor resources. The complexity of these
comparisons can limit the clock rate. The register-number comparisons
are unavoidable, therefore we tried to limit special or hidden processor
resources.

Branch Delay Slots. The Alpha AXP architecture has no branch delay slots.
The branch delay slots found in some RISC architectures require exactly one
following instruction to be executed after a conditional branch. In 1988
this was, perhaps, a good idea for overlapping branch latency in a single-
issue chip with a one-cycle instruction cache. In 1995, however, it will
not scale well to a four-way issue chip with a two-cycle instruction cache.
Instead of one instruction, up to eight instructions would be needed in
the delay slot. Branch delay slots also introduce a restart problem if the
instruction in the delay slot faults: one restart program counter is needed
for the delay slot and another one for the actual branch target.

Suppressed Instructions. The Alpha AXP architecture has no suppressed
instructions, whereby the execution of one instruction conditionally
suppresses a following one. Suppressed (or skipped) instructions are found
in other RISC architectures. The suppression bit(s) represent nonreplicated
hidden state, so multiple instruction issue is difficult for more than

one potential suppressor. If an interrupt is taken between a suppressor
and suppressee, or if the suppressee takes a restartable exception (e.g.,
page fault), the correct version of the suppression state must be saved
and restored. There are also definitional problems with this approach: Are

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5

 Alpha AXP Architecture

exceptions ever reported for suppressed instructions? What happens if the
suppressed instruction suppresses a third instruction?

Byte Load or Store Instructions. The Alpha AXP architecture has no byte
load or store instructions and no implicit unaligned accesses. There
also are no partial-register writes. The byte load/store instructions and
unaligned accesses found in some RISC architectures can be a performance
bottleneck. They require an extra byte shifter in the speed-critical load
and store paths, and they force a hard choice in fast cache design. The
partial-register writes found in other RISC architectures can also be a
performance bottleneck because they require masking and shifting in the
fundamental operation of accessing a register.

On a previous project involving a MIPS implementation, we found the
shifter for the load-left/load-right instructions to be a direct cycle-
time bottleneck. Also, the VAX 8700 implementation (circa 1986) removed the
byte shifter in the load/store hardware in favor of a faster microcycle,
with 2 cycles for a byte load and 6 cycles for an unaligned 32-bit access.
This decision achieved a net performance gain. Our experience encouraged us
to avoid byte load/store.

An additional problem with byte stores is that an implementer may easily
choose only two of the three design features: fast write-back cache,
single-bit error correction code (ECC), or byte stores.

Byte stores are straightforward in simple byte-parity write-through cache
implementations. Except for the expensive design of four or five ECC bits
for every eight bits of data, a byte store to a fast ECC write-back cache
involves

1. Reading an entire cache word*

2. Checking the ECC bits and correcting any single-bit error

3. Modifying the byte

4. Calculating the new ECC bits

5. Writing the entire cache word

This read-modify-write sequence requires hidden sequencer hardware and
hidden state to hold the cache word temporarily. The sequencer tends to
slow down ordinary full-cache-word stores. The need for byte stores tends
to ripple throughout the memory subsystem design, making each piece a
little more complicated and a little slower. With nonreplicated hidden
state, it is difficult to issue another byte store until the first one
finishes. Finally, the existence of a byte store instruction has led

to programs and library routines for other RISC implementations with
single-byte move and compare loops. String manipulation on Alpha AXP
implementations is up to eight times faster by processing eight bytes at a
time.[9]

6 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

Instead of including byte load/store, we followed the RISC philosophy
of exposing hidden computation as a sequence of many simple, fast
instructions. In the Alpha AXP architecture, a byte load is done as an
explicit load/shift sequence; a byte store as an explicit load/modify/store
sequence. We tuned the instruction set to keep these sequences short. The
instructions in these sequences can be intermixed, scheduled, and issued as
multiples with other computation, as can the rest of the instructions in
the architecture. Table 1 gives a summary of the Alpha AXP instruction set.

 Arithmetic Exceptions. The Alpha AXP architecture has no precise
arithmetic exceptions. Reporting an arithmetic exception (e.g., overflow,
underflow) precisely means that instructions subsequent to the one causing
the exception must not be executed. This is straightforward in a slow
implementation that runs a single instruction to completion before starting
the next one, but becomes substantially more difficult to do quickly in
a pipelined four-way issue implementation. There are standard techniques
available for delivering precise exceptions while running quickly (checking
exponents, suppressing register writes, exception silos and backout),
but these techniques consume substantial design time and can cost some
performance. They appear not to scale well with wider multiple issue or
faster clocks.

Exceptional cases are just that-exceptional, or rare, events. Based partly
on customer requests, we decided to emphasize the performance of normal
operations at the expense of exceptional cases. Rather than an implicit
exception ordering between every pair of instructions, we adopted the
Cray-1 model of arithmetic exceptions-in which exceptions are reported
eventually-plus an explicit trap barrier (TRAPB) instruction that can
be used to make exception reporting as precise as desired.[10] We also
documented a code-generation design that needs one trap barrier per branch
(at most) to give precise reporting. Using TRAPB instructions in the first
Alpha AXP implementation lowers performance 3 percent to 25 percent in real
floating-point programs and less than 1 percent in integer programs, but
improves cycle time approximately 10 percent.

In contrast to arithmetic exceptions, memory management exceptions, such
as page faults, are reported precisely. This is not as much of a burden on
implementers as precise arithmetic exceptions would be, and lack of precise
memory management faults would be a severe burden on software writers.

Shared-memory Multiprocessing

The Alpha AXP architecture's shared-memory multiprocessing model is an
integral part of the design. It is not the add-on found in other RISC
architectures.

The underlying primitive for safe updating of a multiprocessor-shared

memory location is a sequence of RISC instructions: load-locked, in-
register modify, store-conditional, test. If this sequence completes
with no interrupts, no exceptions, and no interfering write from another
processor, then the store-conditional stores the modified result, and the
test indicates success: an atomic update was in fact performed.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 7

 Alpha AXP Architecture

If anything goes wrong, the store-conditional does not store a result, and
the test indicates failure. The program must then retry the sequence until
it succeeds. We chose this primitive sequence (quite similar to the MIPS
R4000 chip design[5]) because it can be implemented in a way that scales
up with processor performance. In the absence of an interfering write, the
entire sequence can be done in an on-chip write-back cache, and hundreds of
chips can do noninterfering sequences simultaneously. The sequence can also
be used to achieve byte granularity* of writes in shared memory.[6]

The Alpha AXP architecture has no strict multiprocessor read/write
ordering, whereby the sequence of reads and writes issued by one processor
in a multiprocessor configuration is delivered to all other processors in
exactly the order issued. Strict order is simple, but has a problem similar
to that of byte stores. An implementer may easily choose only two of the
three design features: pipelined writes, bus retry, or strict read/write
ordering.

If one processor starts a write to location A and a write to location B,
then discovers that the write to A has failed (bus parity error, etc.) and
retries it successfully, then a second processor will observe the writes
out of order: B, then A.

Before Alpha AXP implementations, many VAX implementations avoided
pipelined writes to main memory, multibank caches, write-buffer bypassing,
routing networks, crossbar memory interconnect, etc., to preserve strict
read/write ordering. The Alpha AXP architecture's shared-memory model
instead specifies no implicit ordering between the reads and writes issued
on one processor, as viewed by a different processor. This programming
model is an enabling technology for a wide variety of high-performance
implementation techniques. Strict ordering can be specified when needed by
insertion of explicit memory barrier (MB) instructions, quite similar to
the IBM System/370 serialization design.[11]

6 Data Representation and Processor State

This section describes the fundamental Alpha AXP data types and their
representation in memory and registers. It also describes the complete
hardware register state for each processor and outlines the additional
state maintained by operating-system-specific PALcode routines. The Alpha
AXP architecture differs from other RISC architectures by carefully
specifying a canonical form for 32-bit data in 64-bit registers. A
canonical form is a standardized choice of data representation for
redundantly encoded values. Since 32-bit operations assume canonical
operands and give canonical results, very few explicit conversions between
32- and 64-bit representations are needed.

The fundamental unit of data in the Alpha AXP architecture is a 64-

bit quadword.* As shown in Figure 1, quadwords may reside in memory or
registers. For backwards compatibility, 32-bit longwords* may also be
stored in memory.

8 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

There are three fundamental data types: integer, IEEE floating point, and
VAX floating point; each is available in 32-bit and 64-bit forms.[4,12]
VAX floating-point values in memory have 16-bit words swapped, for
compatibility with VAX (and PDP-11) formats. The VAX floating-point load
and store instructions do word swapping* to give a common register order.
The 32-bit load instructions expand values to 64-bit canonical form, and
the 32-bit store instructions contract 64-bit values back to 32.[13] All
register-to-register operations are thus done on full 64-bit values in
a common integer or floating-point format. No partial-register reads or
writes are done.

The canonical form of a 32-bit value in a 64-bit integer register has the
most significant 33 bits all equal to bit<31>. In essence, bit<31> is kept
as a "fat bit." This allows signed integer values to be used directly in
64-bit arithmetic and branches. This canonical form is maintained as a
closed system (even for 32-bit data considered to be "unsigned") by using
a combination of 64-bit operates, 32-bit add/subtract/multiply, and two-
instruction sequences for shifts.

The canonical form of a 32-bit value in a 64-bit floating-point register
has the 8-bit exponent field expanded to 11 bits and the 23-bit mantissa
field expanded to 52 bits. Except for IEEE denormals,* this allows single-
precision floating-point values to be used directly in double-precision
arithmetic and branches. This canonical form is maintained as a closed
system by using single-precision instructions.

Bytes and words (16-bit quantities) are not fundamental data types. They
may be transferred between memory and registers with short sequences of
instructions and manipulated in registers using normal arithmetic and
the byte-manipulation instructions described in the Operate Instructions
section.

The hardware processor state, shown in Figure 2, includes 32 integer
registers R0..R31 of 64 bits each; R31 is always zero. There are also
32 floating-point registers F0..F31 of 64 bits each; F31 is always zero.
Writes to R31 and F31 are ignored.

A 64-bit program counter (PC) contains a longword-aligned virtual byte
address (i.e., the low 2 bits of the PC are always zero). The VAX
architecture keeps the PC in general register 15, where it is directly
used for PC-relative memory addressing. In the Alpha AXP architecture,
however, code and data pages are usually separated by 64 kilobytes (KB) or
more to allow separate memory protection, but the 16-bit displacement in
load/store instructions cannot span more than 64KB.

The hardware processor state includes a lock flag and a locked physical
address for the load-locked/store-conditional sequence. It also has a

floating-point control register containing the IEEE dynamic rounding mode.*

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

 Alpha AXP Architecture

Hardware implementations may optionally include a pair of state registers
for memory prefetching (FETCH/FETCH_M instructions), and an optional
interrupt flag for use only by translated VAX OpenVMS AXP programs that
reproduce complex instruction set computer (CISC*) instruction atomicity
using a sequence of RISC instructions.[6]

In addition to the above hardware state, the privileged architecture
library routines for the various operating systems implement additional
state. This state may be maintained by hardware or (PALcode) software,
at the option of the implementer, and it varies from one operating system
to another. Typical PALcode state includes a processor status (PS) word,
kernel and user stack pointers, a process control block base for context
switching, a process-unique value for threads, and a processor number
for multiprocessor dispatching. Additional PALcode state may include
a floating-point enable bit, interrupt priority level, and translation
look-aside buffers for mapping instruction-stream and data-stream virtual
addresses. All of this state is soft in the sense that it is defined only
in relationship to the PALcode routines for a specific operating system. In
a multiprocessor implementation, all of the above is replicated for each
processor.

7 Memory Access

Alpha AXP memory is byte addressed, using the lowest-numbered byte of a
datum. Only aligned longwords or quadwords may be accessed: an aligned
longword is a four-byte datum whose address is a multiple of four; an
aligned quadword is an eight-byte datum whose address is a multiple of
eight. Normal load or store instructions that specify an unaligned address
take a precise data alignment trap to PALcode (which may do the access
using two aligned accesses or report a fatal error, depending on the
operating system design).

Alpha AXP implementations allow data to be accessed using either a little-
endian* view (byte 0 is the low byte of an integer), or a big-endian* view
(byte 0 is the high byte of an integer). As described in the Load/store
Instructions section, there is a one-instruction bias in the sequences for
little- and big-endian byte manipulation.

Virtual addresses are a full 64 bits; implementations may restrict
addresses to have some number of identical high-order bits, but must
always distinguish at least 43 bits. Virtual addresses are mapped in an
operating-specific way to physical addresses, using fixed-size pages.
Memory protection is done on a per-page basis. Address mapping errors
(e.g., protection, page faults) take precise traps to PALcode. Each page
may also be marked to provide a fault on each read, write, or instruction-
fetch.

Virtual addresses may be further qualified by address space numbers (ASNs),
to allow multiple disjoint addresses spaces. The choice of disjoint or
common mapping across all processes is done on a per-page basis.

10 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

The virtual- to physical-address mapping is done on a per-page basis.
Each implementation may have a page size of 8KB, 16KB, 32KB, or 64KB.
The 64KB upper bound allows a linker to allocate blocks of memory with
differing protection or ASN properties far enough apart to work on all
implementations. The virtual- to physical-address mapping can be many to
one, i.e., synonyms are allowed. In a multiprocessor implementation, shared
main memory locations have the same physical address on all processors.
Per-processor unshared locations are also allowed.

Memory has longword granularity: two processors may simultaneously
access adjacent longwords without mutual interference. The load-locked
/store-conditional sequence discussed previously can be used to achieve
multiprocessor byte granularity.

Input/output is memory mapped: some physical memory addresses may refer
to I/O device registers whose access triggers side effects (such as the
transfer of data). Side effects on reads are discouraged.

8 Instruction Formats

Four fundamental instruction formats-operate, memory, branch, and CALL_
PAL-are shown in Figure 3. All instructions are 32 bits wide and reside
in memory at aligned longword addresses. Each instruction contains a 6-
bit opcode field and zero to three 5-bit register-number fields, RA,
RB, and RC. The remaining bits contain function (opcode extension),
literal, or displacement fields. To minimize register file ports in fast
implementations, RB is never written, and RC is never read.

All the operate instructions are three-operand register-to-register,
calculating RC = RA operate RB. In integer operates, the opcode and a 7-bit
function field specify the exact operation. Integer operates may have an
8-bit zero-extended literal instead of RB. In floating-point operates, the
opcode and an 11-bit function field specify the exact operation. There are
no floating-point literals.

Memory format instructions are used for loads, stores, and a few
miscellaneous operations. Loads and stores are two-operand instructions,
specifying a register RA and a base-displacement virtual byte address.
The effective address calculation sign extends the 16-bit displacement
to 64 bits and adds the 64-bit RB base register (ignoring overflow).
The resulting virtual byte address is mapped to a physical address. The
miscellaneous instructions make other uses of the RA, RB, and displacement
fields.

Branch format instructions specify a single register RA and a signed
PC-relative longword displacement. The branch target calculation shifts
the 21-bit displacement left by 2 bits to make it a longword (not

byte) displacement, then sign extends it and adds it to the updated
PC. Conditional branch instructions test register RA, and unconditional
branches write the updated PC to RA for subroutine linkage. The large

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 11

 Alpha AXP Architecture

longword displacement allows a range of ±4MB, substantially reducing the
need for branches around or to other branches.

The CALL_PAL instruction has only a 6-bit opcode and a 26-bit function
field. The function field is a small integer specifying one of a few dozen
privileged architecture library subroutines.

Operate Instructions

There are five groups of register-to-register operate instructions: integer
arithmetic, logical, byte-manipulation, floating-point, and miscellaneous.
All instructions operate on 64-bit quadwords unless otherwise specified.

 Integer Arithmetic Instructions. The integer arithmetic instructions are
add, subtract, multiply, and compare. Add, subtract, and multiply have
variants that enable arithmetic overflow traps. They also have longword
variants that check for 32-bit overflow (instead of 64) and force the high
33 bits of the result to all equal bit<31>. Add and subtract also have
scaled variants that shift the first operand left by 2 or 3 bits (with
no overflow checking) to speed up simple subscripted address arithmetic.
The UMULH instruction (from PRISM) gives the high 64 bits of an unsigned
128-bit product and may be used for dividing by a constant. There is no
integer divide instruction; a software subroutine is used to divide by a
nonconstant. The compare instructions are signed or unsigned and write a
Boolean result (0 or 1) to the target register.

 Logical Instructions. The logical instructions are AND, OR, and XOR,
with the second operand optionally complemented (ANDNOT, ORNOT, XORNOT).
The shifts are shift left logical, shift right logical, and shift right
arithmetic. The 6-bit shift count is given by RB or a literal. The
conditional move instructions test RA (same tests as the branching
instructions) and conditionally move RB to RC. These can be used to
eliminate branches in short sequences such as MIN(a,b).

 Byte-manipulation Instructions. The byte-manipulation instructions are
used with the load and store unaligned instructions to manipulate short
unaligned strings of bytes. Long strings should be manipulated in groups
of eight (aligned quadwords) whenever possible. The byte-manipulation
instructions are fundamentally masked shifts. They differ from normal
shifts by having a byte count (0..7) instead of a bit count (0..63), and
by zeroing some bytes of the result, based on the data size given in the
function field.

The extract (EXTxx) instructions extract part of a 1-, 2-, 4-, or 8-byte
field from a quadword and place the resulting bytes in a field of zeros.
A single EXTxL instruction can perform byte or word loads, pulling the
datum out of a quadword and placing it in the low end of a register with

high-order zeros. A pair of EXTxL/EXTxH instructions can perform unaligned
loads, pulling the two parts of an unaligned datum out of two quadwords
and placing the parts in result registers. A simple OR operation can then
combine the two parts into the full datum.

12 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

The insert (INSxx) and mask (MSKxx) instructions position new data and zero
out old data in registers for storing bytes, words, and unaligned data. If
the Alpha AXP architecture were a four-operand one, inserting and masking
could have been combined into a single instruction.

The compare-byte instruction allows character-string search and compare
to be done eight bytes at a time. The ZAP instructions allow zeroing of
arbitrary patterns of bytes in a register. These instructions allow very
fast implementations of the C language string routines, among other uses.

 Floating-point Arithmetic Instructions. The floating-point arithmetic
instructions are add, subtract, multiply, divide, compare, and convert.
The first four have variants for IEEE and VAX floating-point, and single-
and double-precision data types. They also have variants that enable
combinations of arithmetic traps and that specify the rounding mode.
The single-precision instructions write canonical 64-bit results, but do
exponent checking and rounding to single-precision ranges. The compare
instructions write a Boolean result (0 or nonzero) to the target register.
The convert instructions transfer between single and double, floating-
point and integer, and two forms of VAX double (D-float and G-float).
A combination of hardware and software provides full IEEE arithmetic.
Operations on VAX reserved operands,* dirty zeros,* IEEE denormals,
infinities,* and not-a-numbers* are done in software.

There are also a few floating-point instructions that move data without
applying any interpretation to it. These include a complete set of
conditional move instructions similar to the integer conditional moves.

 Miscellaneous Instructions. The miscellaneous instructions include: memory
prefetching instructions to help decrease memory latency, a read cycle
counter instruction for performance measurement, a trap barrier instruction
for forcing precise arithmetic traps, and memory barrier instructions for
forcing multiprocessor read/write ordering.

9 Load/Store Instructions

The load and store instructions only move data. They never apply an
interpretation to the data and therefore never take any data-dependent
traps. This design allows moving completely arbitrary bit patterns in and
out of registers and allows completely transparent saving/restoring of
registers.

The integer load and store quadword unaligned (LDQ_U, STQ_U) instructions
ignore the low three bits of the byte address and always transfer an
aligned quadword. These instructions are used with the in-register byte
manipulation instructions to operate on byte, word, and unaligned data by
short sequences of RISC instructions.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 13

 Alpha AXP Architecture

Example 1 in Figure 4 shows a two-instruction sequence for loading a
byte into the low end of a register, using little-endian byte numbering.
Example 2 shows a similar sequence for loading a byte into the high end
of a register, using big-endian byte numbering. Example 3 shows a sequence
for storing a byte (the first two and last two instructions might issue
simultaneously on the first Alpha AXP implementation). Example 4 shows a
sequence for an explicit unaligned load quadword (no data alignment trap).

The integer load-locked and store-conditional
(LDQ_L, LDL_L, STQ_C, STL_C) instructions are included in the architecture
to facilitate atomic updates of multiprocessor-shared data. As described
above, they can be used in short sequences of RISC instructions to
do atomic read-modify-writes. Example 5 shows a sequence for doing a
multiprocessor test-and-set. Note that changing the LDQ_U/STQ_U in Example
3 to AND/LDQ_L/STQ_C/BEQ gives a byte-store sequence that is safe to use
with multiprocessor-shared data.

There are two related load address instructions. LDA calculates the
effective address and writes it into RC. LDAH first shifts the displacement
left 16 bits, then calculates the effective address and writes it into RC.
LDAH is included to give a simple way of creating most 32-bit constants in
a pair of instructions. (Because LDA sign-extends the displacement, some
values in the range 000000007FFF8000 .. 000000007FFFFFFF require three
instructions.) Constants of 64 bits are loaded with LDQ instructions.

Branching Instructions

The branch instructions include conditional branches, unconditional
branches, and calculated jumps. In addition to the previously described
conditional moves, the architecture contains hints to improve branching
performance.

The integer conditional branches test register RA for an opcode-specified
condition (>0 >=0 =0 !=0 <=0 <0 even odd) and either branch to the target
address or fall through to the updated PC address. The floating-point
conditional branches are the same, except they do not include even/odd
tests. Arbitrary testing (and faulting on VAX or IEEE nonfinite values)
can be done by sequences of compare instructions and branch instructions.
Logical or arithmetic instructions can combine compare results without
using branches.

Unconditional branches write the updated PC to RA for subroutine linkage
and branch to the target address. RA = R31 may be used if no linkage is
needed.

Calculated jumps write the updated PC to RA and jump to the target address
in RB. Calculated jumps are used for subroutine call, return, CASE (or

SWITCH) statements, and coroutine linkage.

The architecture specifies three kinds of branching hints in instructions.
The hints need not be correct, but to the extent that they are,
implementations may perform faster.

14 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

The first form of hint is an architected static branch prediction rule:
forward conditional branches are predicted not-taken, and backward ones
taken. To the extent that compilers and hardware implementers follow
this rule, programs can run more quickly with little hardware cost.
This hint does not eliminate the use of dynamic branch prediction in an
implementation, but it may reduce the need to use it.

The second form describes computed jump targets. Unused instruction bits
are defined to give the low bits of the most likely target, using the same
target calculation as unconditional branches. The 14 bits provided are
enough to specify the instruction offset within a page, which is often
enough to start a fastest-level instruction-cache read many cycles before
the actual target value is known.

The third form describes subroutine and coroutine returns. By marking each
branch and jump as call, return, or neither, the architecture provides
enough information to maintain a small stack of likely subroutine return
addresses within an implementation. This implementation stack can be used
to prefetch subroutine returns quickly.

The conditional move instructions (discussed previously in the Logical
Instructions section and the Floating-point Arithmetic Instructions
section) and the branching hints eliminate some branches and speed up the
remaining ones without compromising multiple instruction issue.

10 Supervision

The actions underpinning an operating system are performed in PALcode
subroutines and are a flexible part of the architecture. All asynchronous
events, such as interrupts, exceptions, and machine errors, are mediated by
PALcode routines. PALcode establishes the initial state of the machine
before execution of the first software instruction. PALcode routines
mediate all accesses to physical hardware resources, including physical
main memory and memory-mapped I/O device registers.

This design allows implementers to craft a set of PALcode routines that
closely match an operating system design, not only for traditional
operating systems, but also for specialized environments such as real-
time or highly secure computing. As new computing paradigms are adopted
and new operating systems are created, the Alpha AXP architecture may well
prove flexible enough to accommodate them efficiently.

11 Future Changes

The Alpha AXP architecture will surely change during its lifetime. In
addition to the PALcode flexibility discussed above, explicit performance
flexibility and instruction-set flexibility exist in the architecture.

Architectural fields that are too small can limit performance. The Alpha
AXP architecture therefore has many fields deliberately sized for later
expansion.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 15

 Alpha AXP Architecture

Although initial implementations use only 43 bits of virtual address, they
check the remaining 21 bits, so that software can run unmodified on later
implementations that use (up to) all 64 bits. Furthermore, although initial
implementations use only 34 bits of physical address, the architected page
table entry (PTE) formats and page-size choices allow growth to 48 bits.
By expanding into a 16-bit PTE field that is not currently used by mapping
hardware, another 16 bits of physical address growth can be achieved, if
ever needed.

Initial implementations also use only 8KB pages, but the design
accommodates limited growth to 64KB pages. Beyond that, page table
granularity hints allow groups of 8, 64, or 512 pages to be treated as
a single large page, thus effectively extending the page-size range by a
factor of over 1,000. Each architected PTE format also has one bit reserved
for future expansion.

Several other soft PALcode registers, such as the PS or ASN, that need only
a few bits today are allocated a full 64 bits for future expansion.

Exception processing can limit performance. PALcode routines deliver
exceptions to an operating system, so the design can be gradually improved.
In fact, PALcode routines for the data alignment have been improved in the
OpenVMS AXP and DEC OSF/1 AXP operating systems. Some currently specified
software exceptions (such as IEEE denormal arithmetic) could be moved into
PALcode or hardware.

There are a number of areas of instruction-set flexibility designed into
the architecture. Four of the 6-bit opcodes are nominally reserved for
adding integer and floating-point aligned octaword* (128-bit) load/store
instructions.[14] Nine more 6-bit opcodes remain for other expansion.
Within each opcode, the function field contains room for further expansion.
For example, the scaled add/subtract functions were added between prototype
chip and product chip. The fact that the function fields are not fully
policed is a mistake.

Within the IEEE floating-point function field, code points are nominally
reserved for double-extended* precision (128-bit) arithmetic. Within the
memory barrier instruction group, three code points were reserved for
subset barriers. One of these has already been redefined as a write-write
barrier.

Not all changes involve growth. There are subsetting rules defined for
removing either one or both (IEEE and VAX) floating-point data types. If
both are removed, the floating-point registers can also be removed. The
AMOVxx PALcode routines and RS/RC instructions are defined as optional and
can be deleted when the transition of translated VAX code is completed.
Other unneeded PALcode routines can also be removed eventually.

16 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

12 Summary

The goals that shaped the Alpha AXP architecture design have largely been
realized. For high performance, the first implementation (the DECchip 21064
microprocessor) is listed in the October 1992 Guinness Book of Records as
the world's fastest single-chip microprocessor. It is too early to measure
longevity, but the fact that we had designed-in flexibility in places that
changed during development is at least encouraging. OpenVMS AXP, DEC OSF/1
AXP, and Windows NT operating systems all run on Alpha AXP implementations
today. Programs from the VAX and MIPS architectures transport easily to
Alpha AXP implementations and run quickly. Many of the ideas in the Alpha
AXP design are now being adopted by other architectures in the industry.

13 Appendix

Binary translation-A software technique to change an executable program
written for one architecture/operating-system pair into an equivalent
program for a different architecture/operating-system pair.

Big-endian memory addressing- A view of memory in which byte 0 of an
operand contains the most significant (sign) bit of an integer. Compare
little-endian memory addressing.

Byte-An 8-bit datum.

Byte granularity-The appearance that two processors can update adjacent
bytes in memory without interfering with each other.

CISC-Complex instruction set computer, characterized by variable-length
instructions, a wide variety of memory addressing modes, and instructions
that combine one or more memory accesses with arithmetic. CISC designs
express computation as a few complex steps.

IEEE denormalized number (denormal)-A floating-point number with magnitude
between zero and the smallest representable normalized number. Numbers
in this range are typically not representable in other floating-point
arithmetic systems; such systems might signal an underflow exception or
force a result to zero instead.

IEEE double-extended format-A loosely specifed floating-point format with
at least 64 significant bits of precision and at least 15 bits of exponent
width; typically implemented using a total of 80 or 128 bits.

IEEE dynamic rounding mode-One of four different rounding rules.

IEEE floating-point-A form of computer arithmetic specified by IEEE
standard 754.[12] IEEE arithmetic includes rules for denormalized numbers,

infinities, and not-a-numbers. It also specifies four different modes for
rounding results.

IEEE infinity-An operand with an arbitrarily large magnitude.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 17

 Alpha AXP Architecture

IEEE not-a-number (NaN)-A symbolic entity encoded in a floating-point
format. The IEEE standard specifies some exceptional results (e.g., 0/0) to
be NaNs.

Linear addressing-A memory addressing technique in which all addresses
form a single range, from 0 to the largest possible address. Subscript
calculations can create any address in the entire range.

Little-endian memory addressing-A view of memory in which byte 0 of
an operand contains the least significant bit of an integer. The terms
little-endian and big-endian are borrowed from Gulliver's Travels in which
religious wars were waged over which end of an egg to break.

Longword-A 32-bit datum.

Multiple instruction issue-A high-performance computer implementation
technique of starting more than one instruction at once. An implementation
that starts (up to) two instructions at once is called dual-issue; four
instructions, quad-issue or four-way issue; etc.

Octaword-A 128-bit datum.

Quadword-A 64-bit datum.

RISC-Reduced instruction set computer, characterized by fixed-length
instructions, simple memory addressing modes, and a strict decoupling of
load/store memory access instructions from register-to-register arithmetic
instructions. RISC designs express computation as many simple steps.

Segmented addressing-A memory addressing technique in which addresses are
broken into two or more parts (segments). Subscript calculations can only
be done within a single segment, and elaborate software techniques are
needed to extend addressing beyond a single segment.

VAX dirty zero-A zero value represented with a non-zero faction; must be
converted to a true zero result.

VAX floating-point-A form of computer arithmetic specified by the VAX
architecture manual.[4] VAX arithmetic includes rules for reserved operands
and dirty zeros.

VAX reserved operand-A non-number that signals an exception when used as an
operand in VAX floating-point arithmetic.

VAX word swapping-The rearrangement needed for the 16-bit pieces of a VAX
floating-point number to put the fields in a more usual order; this is an
artifact of the PDP-11 16-bit architecture.

Word-A 16-bit datum.

18 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Alpha AXP Architecture

14 Acknowledgments

Hundreds of people have worked on the Alpha AXP architecture, hardware, and
software. Many Alpha AXP architectural ideas came from the PRISM design,
most notably the PALcode idea.[3] The architecture work was done in the
rich environment of dozens and later hundreds of bright, thoughtful, and
outspoken professional peers. Ellen Batbouta, Dileep Bhandarkar, Richard
Brunner, Wayne Cardoza, Dave Cutler, Daniel Dobberpuhl, Robert Giggi,
Henry Grieb, Richard Grove, Robert Halstead, Jr., Michael Harvey, Nancy
Kronenberg, Raymond Lanza, Stephen Morris, William Noyce, Charles Nylander,
Dave Orbits, Mary Payne, Audrey Reith, Robert Supnik, Benjamin Thomas,
Catharine van Ingen, and Rich Witek all contributed directly to the written
specification. Rich Witek is co-architect and is the other half of the term
"we" used in this paper.

15 References and Notes

1. G. Amdahl, G. Blaauw, and F. Brooks, Jr., "Architecture of the IBM
 System/360," IBM Journal of Research and Development, vol. 8, no. 2
 (April 1967): 87-101.

2. R. Sites, ed., Alpha Architecture Reference Manual (Burlington, MA:
 Digital Press, 1992).

3. R. Conrad et al., "A 50 MIPS (Peak) 32/64b Microprocessor," ISSCC Digest
 of Technical Papers (February 1989): 76-77.

4. R. Brunner, ed., VAX Architecture Reference Manual Second Edition
 (Bedford, MA: Digital Press, 1991).

5. G. Kane and J. Heinrich, MIPS RISC Architecture (Englewood Cliffs, NJ:
 Prentice-Hall, 1992).

6. R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson, "Binary
 Translation," Digital Technical Journal, vol. 4, no. 4 (1992, this
 issue).

7. The little-endian bias is very slight; both big- and little-endian Alpha
 AXP systems and software are in fact being built.

8. There are two special-resource anomalies in the architecture that
 we were unable to avoid: the dedicated state for the load-locked
 instruction and the dynamic rounding-mode register required for full
 IEEE conformance.

9. This is borne out in a large customer's recent C string manipulation
 benchmark result, running 3 to 6 times faster than the customer's

 expectation (which was based solely on clock rate ratios).

10.Cray-1 Computer System Reference Manual, Form 2240004 (Minneapolis: Cray
 Research, Inc., 1977).

11.IBM System/370 Principles of Operation, Form GA22-7000-4 (Armonk, NY:
 IBM Corporation, 1974): 28.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 19

 Alpha AXP Architecture

12.Institute of Electrical and Electronics Engineers, "Binary Floating-
 point Arithmetic for Microprocessor Systems," Standard Number IEEE-754
 (New York, 1985).

13.The careful reader will notice that Alpha AXP implementations require a
 longword shifter in the load/store path for 32-bit operands. Although
 we briefly considered a design with no 32-bit operands, we decided to
 keep 32-bit load/store support for good business reasons. Similarly,
 Alpha AXP implementations require a word swapper in the load/store
 path for VAX floating-point operands. We decided to keep VAX floating-
 point support for good business reasons. Depending on market needs, VAX
 floating-point support can be removed in the future.

14.Many commercially successful architectures have grown to double-width
 memory implementations in mid-life: the IBM 709 series from 36 to 72
 bits; the IBM System/360 series from 32 to 64 bits; the Digital PDP-11
 series from 16 to 32 bits; and the Digital VAX series from 32 to 64
 bits. This trend is likely to continue.

16 Trademarks

The following are trademarks of Digital Equipment Corporation: Alpha AXP,
AXP, DEC OSF/1 AXP, OpenVMS AXP, PDP-11, VAX, VAX 8700, and VMS.

CRAY-1 is a registered trademark of Cray Research, Inc.

IBM is a registered trademark of International Business Machines, Inc.

MIPS is a trademark of MIPS Computer Systems, Inc.

OSF/1 is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Windows and Windows NT are trademarks of Microsoft Corporation.

17 Biography

Richard L. Sites Dick Sites is a senior consultant engineer in the
Semiconductor Engineering Group, where he is working on binary translators
and the Alpha AXP architecture. He joined Digital in 1980 and has
contributed to various VAX implementations. Previously, he was employed
by IBM, Hewlett-Packard, and Burroughs, and taught at the University
of California. Dick received a B.S. in mathematics from MIT and a Ph.D.
in computer science from Stanford University. He also studied computer
architecture at the University of North Carolina. He holds a number of
patents on computer hardware and software.

20 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

