
Rice University Computer Science Technical Report TR06-872 1

An Evaluation of Network Stack Parallelization Strategies
in Modern Operating Systems

Paul Willmann, Scott Rixner, and Alan L. Cox
Rice University

{willmann, rixner, alc}@rice.edu

Abstract

As technology trends push future microprocessors to-
ward chip multiprocessor designs, operating system net-
work stacks must be parallelized in order to keep pace
with improvements in network bandwidth. There are two
competing strategies for stack parallelization. Message-
parallel network stacks treat messages (usually pack-
ets) as the fundamental unit of concurrency, whereas
connection-parallel network stacks treat connections as
the fundamental unit of concurrency. Practical imple-
mentations of connection-parallel stacks map operations
to groups of connections and permit concurrent process-
ing on independent connection groups, thus treating the
group as the unit of concurrency. Connection-parallel
stacks can use either locks or threads to serialize access
to connection groups. This paper evaluates these parallel
stack organizations using a modern operating system and
chip multiprocessor hardware.

Compared to uniprocessor kernels, all parallel stack
organizations incur additional locking overhead, cache
inefficiencies, and scheduling overhead. However, the
organizations balance these limitations differently, lead-
ing to variations in peak performance and connection
scalability. Lock-serialized connection-parallel organi-
zations reduce the locking overhead of message-parallel
organizations by using many connection groups and
eliminate the expensive thread handoff mechanism of
thread-serialized connection-parallel organizations. The
resultant organization outperforms the others, delivering
5.4 Gb/s of TCP throughput for most connection loads
and providing a 126% throughput improvement versus
a uniprocessor for the heaviest connection loads tested,
utilizing 16384 simultaneous connections.

1 Introduction

Network bandwidths continue to increase at an exponen-
tial pace, and the demand for network content shows no
sign of letting up. In the past, exponential gains in mi-
croprocessor performance have always allowed process-
ing power to catch up with network bandwidth. How-
ever, the complexity of modern uniprocessors will pre-
vent such continued performance growth. Instead, mi-
croprocessors have begun to provide parallel processing
cores in order to make up for the loss in performance
growth of individual processor cores. In order for net-
work servers to exploit these parallel processors, scalable
parallelizations of the network stack are needed.

Modern network stacks can exploit either message-
based parallelism or connection-based parallelism. Net-
work stacks that exploit message-based parallelism,
such as Linux and FreeBSD, allow multiple threads
to simultaneously process different messages from the
same or different connections. Network stacks that
exploit connection-based parallelism, such as Dragon-
flyBSD and Solaris 10 [18], assign each connection
to a group. Threads may then simultaneously pro-
cess messages as long as they belong to different con-
nection groups. The connection-based approach can
use either threads or locks for synchronization, yield-
ing three major parallel network stack organizations:
message-based (MsgP), connection-based using threads
for synchronization (ConnP-T), and connection-based
using locks for synchronization (ConnP-L). These com-
peting parallelization strategies are implemented within
the FreeBSD 7 operating system to enable a fair compar-
ison.

The uniprocessor version of FreeBSD is efficient, but
its performance falls short of saturating available net-
work resources in a modern machine and degrades sig-
nificantly as connections are added. Utilizing 4 cores, the
parallel stack organizations can outperform the unipro-
cessor stack (especially at high connection loads), but

A shorter version of this work appeared at the USENIX 2006 Annual Technical Conference

Rice University Computer Science Technical Report TR06-872 2

each parallel stack organization incurs higher locking
overhead, reduced cache efficiency, and higher schedul-
ing overhead than the uniprocessor. MsgP outperforms
the uniprocessor for almost all connection loads but
experiences significant locking overhead. In contrast,
ConnP-T has very low locking overhead but incurs sig-
nificant scheduling overhead, leading to reduced perfor-
mance compared to even the uniprocessor kernel for all
but the heaviest loads. ConnP-L mitigates the locking
overhead of MsgP, by grouping connections so that there
is little global locking, and the scheduling overhead of
ConnP-T, by using the requesting thread for network
processing rather than forwarding the request to another
thread. This results in the best performance of all stacks
considered, delivering stable performance of 5440 Mb/s
for moderate connection loads and providing a 126% im-
provement over the uniprocessor kernel when utilizing
16384 simultaneous connections.

The remainder of this paper proceeds as follows. The
next section further motivates the need for parallelized
network stacks in current and future systems and dis-
cusses previous evaluations of parallel network stack or-
ganizations. Section 3 describes the parallel network
stack architectures that are evaluated in this paper. Sec-
tion 4 then presents an evaluation of each organization
and Section 5 discusses these results. Finally, Section 6
concludes the paper.

2 Background

The most efficient network stacks in modern operating
systems are single-threaded, forcing the network stack
to only run on a single processor core at a time. If two
threads need to perform network processing simultane-
ously, synchronization is necessary. However, indepen-
dent threads can run concurrently on separate processors,
as long as they do not access the operating system simul-
taneously. For multithreaded server applications that re-
quire a large amount of user-level processing, this level
of parallelism may be sufficient, as the operating sys-
tem’s network processing capabilities are unlikely to be
a performance bottleneck.

2.1 Performance Scaling

For network-intensive applications, however, such
single-threaded network stacks are not capable of sat-
urating a modern 10 Gbps Ethernet link. Hurwitz and
Feng found that, using Linux 2.4 and 2.5 uniprocessor
kernels (with TCP segmentation offloading), they were
only able to achieve about 2.5 Gbps on a 2.4 GHz Intel
Pentium 4 Xeon system [4]. Hence, network stack pro-
cessing currently represents a bottleneck for leveraging
the physically achievable network throughput on modern

1980 1985 1990 1995 2000 2005
1

10

100

1000

10000

100000

Year

E
th

er
ne

t B
an

dw
ith

 (
M

bp
s)

P
ro

ce
ss

or
 F

re
qu

en
cy

 (
M

H
z)

Ethernet Bandwidth
Processor Frequency

Figure 1: Intel microprocessor frequency trends in rela-
tion to Ethernet bandwidth growth.

links. Though the use of jumbo frames can improve these
numbers, the need for interoperability with legacy hard-
ware dictates that most network servers will use standard
1500 byte Ethernet frames.

While it has traditionally been the case that unipro-
cessors have not been able to saturate the network with
the introduction of each new bandwidth generation, ex-
ponential gains in uniprocessor performance have al-
ways allowed processing power to catch up with network
bandwidth. However, it is very likely that this will no
longer be the case in the future.

Figure 1 shows the growth in Ethernet bandwidth and
processor frequency over time. The graph plots Ethernet
bandwidth in Mbps based upon when new Ethernet stan-
dards are ratified, and the highest processor frequency of
Intel chips in MHz. Processor frequency is obviously not
equivalent to performance, but Intel processor frequency
has been a reasonable approximation of processor perfor-
mance trends over the period in the graph. As the graph
shows, both Ethernet bandwidth and processor frequency
have been growing exponentially. However, processor
frequency growth has not kept up with Ethernet band-
width growth in the past 5 years. Furthermore, processor
frequencies have largely leveled out recently. Clearly,
processor performance continues to improve, but the rate
of improvement has definitely slowed in recent years.

The complexity of modern uniprocessors has made it
prohibitively expensive to continue to improve processor
performance at the same rate as in the past. Not only is
it difficult to further increase clock frequencies, as Fig-
ure 1 implies, but it is also difficult to further improve
the efficiency of modern uniprocessor architectures [1].
Therefore, industry has turned to single chip multipro-
cessors (CMPs) [14] to continue to increase processor
performance. One of the first dual-core chips was the
IBM Power 4 architecture [3, 17]. The IBM Power 4 in-
cludes two complete processing cores, allowing roughly
twice the performance of a single core for two indepen-
dent threads of control. Shortly after the release of the
Power 4, Intel introduced hyperthreading in the Pentium

Rice University Computer Science Technical Report TR06-872 3

4, enabling two threads to utilize a single core more ef-
ficiently [9]. While hyperthreading does not duplicate
the processor core, it does provide modest speedups for
two independent threads, as the second thread can take
advantage of resources unused by the first thread. Subse-
quently, Sun, AMD, and Intel have all released dual-core
processors [5, 10, 11].

This indicates a clear trend towards single-chip multi-
processing. Sun’s Niagara is perhaps the most aggressive
example, with 8 cores on a single chip, each capable of
executing four threads of control [8, 12]. Unfortunately,
each processor in a single-chip multiprocessor is unlikely
to perform as well as a monolithic uniprocessor. For ex-
ample, the fastest dual-core Opteron processors operate
at lower frequencies than their single-core counterparts.
This is likely to result in an even greater performance loss
due to shared resources between the cores. It seems clear
that networking code will have to be parallelized exten-
sively in order to saturate the network with these parallel
processing cores.

2.2 Network Stack Parallelization

Since uniprocessor performance will not improve fast
enough to saturate future networks, and most server ap-
plications manage multiple network connections concur-
rently using separate threads, operating systems have be-
gun to exploit connection-level parallelism by allowing
multiple threads to carry out network operations concur-
rently in the kernel. However, supporting this parallelism
comes with significant cost [2, 4, 13, 15, 20]. For exam-
ple, uniprocessor Linux kernels deliver 20% better end-
to-end throughput over 10 Gigabit Ethernet than multi-
processor kernels [4]. Since the performance of indi-
vidual processors will not increase nearly as fast as they
have in the past as microprocessors move towards CMP
architectures, there is a significant need to improve the
efficiency of multiprocessor kernels for networking ap-
plications.

Much of the research on parallelizing the network
stack took place in the mid-1990s, between the introduc-
tion of 100 Mbps Ethernet and Gigabit Ethernet. At that
time, two forms of network processing parallelism were
examined: message-oriented and connection-oriented
parallelism. Using message-oriented parallelism, any
message (or packet) may be processed simultaneously
on a separate thread. Hence, messages for a single
connection could be processed concurrently on different
threads, potentially resulting in improved performance.
Connection-oriented parallelism is more coarse-grained;
at the beginning of network processing (either at the top
or bottom of the network stack), messages and packets
are classified according to the connection with which
they are associated. All packets for a certain connection

are then processed by a specific thread; a thread may be
responsible for processing one or more specific connec-
tions.

Nahum et al. first examined message-oriented par-
allelism on an SGI Challenge shared-memory multi-
processor [13]. That study examined the behavior of
a message-parallel implementation of the user-spacex-
kernel utilizing a memory-only pseudo network device.
They studied the effects of locking granularity within
the network stack and overall stack scalability with re-
spect to the number of processors; because message-
parallel stacks allow messages from the same connection
to be processed simultaneously, mutual exclusion is re-
quired to ensure that higher-level connection state (such
as reassembly queues and timeout state) is kept consis-
tent. This study found that, in general, implementing
finer grained locking around connection state variables
degrades performance by introducing additional over-
head and does not result in significant improvements in
speedup. In that case, coarser-grained locking (with just
one lock protecting all TCP state) performed best. Fur-
thermore, they found that careful attention had to be paid
to thread scheduling and lock acquisition ordering on the
receive side to ensure that packets that arrived in order
did in fact get processed in order.

Yates et al. later examined a connection-oriented
parallel implementation of thex-kernel, also utilizing a
pseudo network device and running on the SGI Chal-
lenge architecture [20]. That study examined the ef-
fects of scaling the number of threads with the number
of connections; they found that increasing the number
of threads to match the number of connections yielded
the best results, even when the number of threads was
far greater than the number of physical processors. At
the time, the OS limited the user-spacex-kernel to 384
threads; Yates et al. propose using as many as are sup-
ported by the system.

Schmidt and Suda compared message-oriented and
connection-oriented network stacks in a modified version
of SunOS utilizing a real network interface [16]. They
found that, given just a few connections, a connection-
parallel stack outperforms a message-parallel one. How-
ever, they note that the number of context switches
increases significantly as connections (and processors)
are added to the connection-parallel scheme, and that
the cost of synchronization heavily affects the effi-
ciency with which each scheme operates (especially the
message-parallel scheme).

The costs of synchronization and context switches
have changed dramatically in the years since many of the
seminal works that examined network stack paralleliza-
tion strategies. Though processors have become much
faster, the gap between memory system performance and
processing performance has become much greater, mak-

Rice University Computer Science Technical Report TR06-872 4

ing the worst-case cost of synchronization much higher
in terms of lost execution cycles. Moreover, this gap
exacerbates the cost of a context switch as thread state
is swapped in memory. Both the need to close the gap
between computation and physically achievable Ether-
net throughput, and the vast changes in the architectural
characteristics that shaped prior analyses of parallel net-
work stacks motivate a fresh examination of parallel net-
work stack architectures on modern parallel hardware.

3 Parallel Network Stack Architectures

Despite the conclusions of the 1990s described in the
previous section, there still does not seem to be a solid
consensus among modern operating system developers
on how to design efficient and scalable parallel network
stacks. Major subsystems of FreeBSD and Linux, in-
cluding the network stack, have been redesigned in re-
cent years to improve performance on parallel hardware.
Both operating systems now incorporate variations of
message-based parallelism within their network stacks.
Conversely, Sun has recently rearchitected the Solaris
operating system in anticipation of their high-throughput
computing microprocessors and now incorporates a vari-
ation of connection-based parallelism [18], as does Drag-
onflyBSD.

These operating system improvements are directly tar-
geted at the architectural trend towards increasingly par-
allel hardware, including multiple processing cores and
threads of control on a single chip, as described in Sec-
tion 2.1. While the different design choices may be mo-
tivated by a variety of factors, it is interesting that oper-
ating systems developers have not unanimously chosen
to follow the recommendations of past research. There-
fore, a reevaluation of network stack parallelization tech-
niques in the context of modern operating systems and
hardware is warranted to uncover the benefits and pitfalls
of the different organizations.

FreeBSD is chosen as a representative modern operat-
ing system for the purposes of this evaluation. FreeBSD
implements a competitively parallelized network stack
based upon a variation of message-based parallelism
(MsgP), and it includes kernel-adaptive mutexes and
intra-kernel threading, which are useful building blocks
for an efficient implementation of a connection-based
parallel (ConnP) network stack. Furthermore, the other
major subsystems are also parallelized competitively and
thus should not introduce biasing bottlenecks. Therefore,
the FreeBSD 7 operating system was modified to include
a connection-based parallel network stack to compare to
its message-based parallel network stack. The follow-
ing subsections describe the architecture of both network
stacks.

3.1 Message-based Parallelism (MsgP)

Message-based parallel (MsgP) network stacks, such
as FreeBSD, exploit parallelism by allowing multiple
threads to operate within the network stack simultane-
ously. Two types of threads may perform network pro-
cessing: one or more application threads and one or more
inbound protocol threads. When an application thread
makes a system call, that calling thread context is “bor-
rowed” to then enter the kernel and carry out the re-
quested service. So, for example, aread or write call
on a socket would loan the application thread to the oper-
ating system to perform networking tasks. Multiple such
application threads can be executing within the kernel at
any given time. The network interface’s driver executes
on an inbound protocol thread whenever the network in-
terface card (NIC) interrupts the host, and it may transfer
packets between the NIC and host memory. After ser-
vicing the NIC, the inbound protocol thread processes
received packets “up” through the network stack.

Given that multiple threads can be active within the
network stack, FreeBSD utilizes fine-grained locking
around shared kernel structures to ensure proper message
ordering and connection state consistency. As a thread
attempts to send or receive a message on a connection, it
must acquire various kernel-adaptive locks when access-
ing shared connection state, such as the global connec-
tion hash table lock (for looking up TCP connections)
and per-connection locks (for both socket state and TCP
state). If a thread is unable to obtain a lock, it is placed
in the lock’s queue of waiting threads and yields the pro-
cessor, allowing another thread to execute. To prevent
priority inversion, priority propagation from the waiting
threads to the thread holding the lock is performed.

As is characteristic of message-based parallel network
stacks, FreeBSD’s locking organization thus allows con-
current processing of different messages on the same
connection, so long as the various threads are not access-
ing the same portion of the connection state at the same
time. For example, one thread may process TCP timeout
state based on the reception of a new ACK, while at the
same time another thread is copying data into that con-
nection’s socket buffer for later transmission. However,
note that the inbound thread configuration described is
not the FreeBSD 7 default. Rather, the operating sys-
tem’s network stack has been configured to use the op-
tionaldirect dispatch mechanism. Normally ded-
icated parallel driver threads service each NIC and then
hand off inbound packets to a single worker thread via a
shared queue. That worker thread then processes the re-
ceived packets “up” through the network stack. The de-
fault configuration thus limits the performance of MsgP
and is hence not considered in this paper. The thread-
per-NIC model also differs from the message-parallel or-

Rice University Computer Science Technical Report TR06-872 5

ganization described by Nahumet al. [13], which used
many more worker threads than interfaces. Such an orga-
nization requires a sophisticated scheme to ensure these
worker threads do not reorder inbound packets that were
received in order, and hence that organization is also not
considered.

3.2 Connection-based Parallelism (ConnP)

To compare connection parallelism in the same frame-
work as message parallelism, FreeBSD 7 was modified
to support two variants of connection-based parallelism
(ConnP) that differ in how they serialize TCP/IP process-
ing within a connection. The first variant assigns each
connection to one of a small number of protocol process-
ing threads (ConnP-T). The second variant assigns each
connection to one of a small number of locks (ConnP-L).

3.2.1 Connection Parallelism Serialized by Threads
(ConnP-T)

Connection-based parallelism using threads utilizes sev-
eral kernel threads dedicated to per-connection protocol
processing. Each protocol thread is responsible for pro-
cessing a subset of the system’s connections. At each
entry point into the TCP/IP protocol stack, the requested
operation is enqueued for service by a particular protocol
thread based on the connection that is being processed.
Each connection is uniquely mapped to a single proto-
col thread for the lifetime of that connection. Later, the
protocol threads dequeue requests and process them ap-
propriately. No per-connection state locking is required
within the TCP/IP protocol stack, because the state of
each connection is only manipulated by a single protocol
thread.

The kernel protocol threads are simply worker threads
that are bound to a specific CPU. They dequeue requests
and perform the appropriate processing; the messaging
system between the threads requesting service and kernel
protocol threads maintains strict FIFO ordering. Within
each protocol thread, several data structures that are nor-
mally system-wide (such as the TCP connection hash ta-
ble) are replicated so that they are thread-private. Ker-
nel protocol threads provide both synchronous and asyn-
chronous interfaces to threads requesting service.

If a requesting thread requires a return value or if the
requester must maintain synchronous semantics (that is,
the requester must wait until the kernel thread completes
the desired request), that requester uses a condition vari-
able to yield the processor and wait for the kernel thread
to complete the requested work. Once the kernel pro-
tocol thread completes the desired function, the kernel
thread fills in the return value into the message that was
passed to it and then signals the waiting thread. This is

the common case for application threads, which require
a return value to determine if the network request suc-
ceeded. However, interrupt threads (such as those that
service the network interface card and pass “up” pack-
ets received on the network) do not require synchronous
semantics. In this case, the interrupt context classifies
each packet according to its connection and enqueues the
packet for the appropriate kernel protocol thread.

The connection-based parallel stack uniquely maps a
packet or socket request to a specific protocol thread by
hashing the 4-tuple of remote IP address, remote port
number, local IP address, and local port number. How-
ever, not every portion of this tuple is defined for every
protocol operation. For example, thelisten() call
does not have a remote address or port number associ-
ated with it. Such operations that cannot be uniquely
associated with a specific connection are processed on
protocol thread 0. In the case oflisten(), a wildcard
entry must be made in each protocol thread’s connec-
tion hash table, because any remote IP address and port
number combination could arrive at the local machine,
resulting in a hash to any of the local kernel protocol
threads. When that happens, any of the protocol threads
must be able to find the wildcard entry in its local hash
table. Similarly,close() may require a shoot-down of
all wildcard entries on remote threads. Hence, though
locking overheads are reduced within the protocol stack
in the common case, some start-up and tear-down opera-
tions are more expensive because they require messaging
that scales with the number of kernel protocol threads.
This implementation of connection-oriented parallelism
is like that of DragonflyBSD.

3.2.2 Connection Parallelism Serialized by Locks
(ConnP-L)

Just as in thread-serialized connection parallelism,
connection-based parallelism using locks is based upon
the principle of isolating connections into groups that
are each bound to a single entity during execution. As
the name implies, however, the binding entity is not a
thread; instead, each group is isolated by a mutual exclu-
sion lock.

When an application thread enters the kernel to obtain
service from the network stack, the network system call
maps the connection being serviced to a particular group
using a mechanism identical to that employed by thread-
serialized connection parallelism. However, rather than
building a message and passing it to that group’s specific
kernel protocol thread for service, the calling thread di-
rectly obtains the lock for the group associated with the
given connection. After that point, the calling thread may
access any of the group-private data structures, such as
the group-private connection hash table or group-private

Rice University Computer Science Technical Report TR06-872 6

per-connection structures. Hence, these locks serve to
ensure that at most one thread may be accessing each
group’s private connection structures at a time. Upon
completion of the system call in the network stack, the
calling thread releases the group lock, allowing another
thread to obtain that group’s lock if necessary. Threads
accessing connections in different groups may proceed
concurrently through the network stack without obtain-
ing any stack-specific locks other than the group lock.

Inbound packet processing is also analogous to
connection-based parallelism using threads. After re-
ceiving a packet, the inbound protocol thread classi-
fies the packet into a group. Unlike the thread-oriented
connection-parallel case, the inbound thread need not
hand off the packet from the driver to the worker thread
corresponding to the packet’s connection group. Instead,
the inbound thread directly obtains the appropriate group
lock for the packet and then processes the packet “up”
the protocol stack without any thread handoff. This con-
trol flow is similar to the message-parallel stack, but the
lock-serialized connection-parallel stack does not require
any further protocol locks after obtaining the connection
group lock. As in the MsgP case, there is one inbound
protocol thread for each NIC, but the number of groups
may far exceed the number of threads.

This implementation of connection-oriented paral-
lelism is similar to Solaris 10. At the core of Solaris
10’s implementation is thesqueue abstraction, which
is short for “serialization queue”. Thesqueue con-
sists of a packet queue, a worker thread, a set of flags,
and a lock. The worker thread is bound to a processor
core (or in the case of a multithreaded processor mi-
croarchitecture, a virtual processor). Each connection
is permanently associated with ansqueue at its cre-
ation. The number ofsqueues is equal to the num-
ber of processor cores (or virtual processors). Once the
connection to which an inbound or outbound packet be-
longs is determined, the packet is queued on that con-
nection’ssqueue for TCP/IP processing. The thread
that enqueued the packet then either (1) does nothing, (2)
wakes up the worker thread to perform TCP/IP process-
ing on the packet queue, or (3) attempts to acquire exclu-
sive control of thesqueue and itself perform TCP/IP
processing on the packet queue. In any case, at most
one thread is ever performing TCP/IP processing on the
packet queue at a time. The implementations evaluated
in this work are slightly more rigidly defined. For lock-
serialized connection parallelism (ConnP-L), application
and inbound protocol threads always acquire exclusive
control of the group lock and carry out stack process-
ing directly. For thread-serialized connection parallelism
(ConnP-T), application and inbound driver threads al-
ways hand off network requests and inbound packets to
a worker thread for further processing.

4 Evaluation

To gain insights into the behavior and characteristics of
the parallel network stack architectures described in Sec-
tion 3, these architectures were evaluated on a modern
chip multiprocessor. All stack architectures were imple-
mented within the 2006-03-27 repository version of the
FreeBSD 7 operating system to facilitate a fair compari-
son. This section describes the benchmarking methodol-
ogy and hardware platforms and presents the scalability
of the network stack organizations.

4.1 Evaluation Hardware

The parallel network stack organizations were evaluated
using a 4-way SMP AMD Opteron system. The system
consists of a Tyan S2885 motherboard, two dual-core
Opteron 275 processors, two 1 GB PC2700 DIMMs per
processor (one per memory channel), and three dual-port
Intel PRO/1000-MT Gigabit Ethernet network interfaces
spread across the motherboard’s PCI-X bus segments.
Data is transferred between the 4-way Opteron’s 6 Eth-
ernet interfaces and three client systems. Each client has
two Gigabit Ethernet interfaces and uses faster proces-
sors and memory. Each of these clients is directly con-
nected to the 4-way Opteron without use of a switch,
and each can independently sustain the theoretical peak
bandwidth of its two interfaces. Therefore, all results are
determined solely by the behavior of the 4-way Opteron
275 system. The Opterons’ hardware performance coun-
ters are used to perform low-overhead profiling.

4.2 Parallel TCP Benchmark

Most existing network benchmarks evaluate single-
connection performance. However, modern multi-
threaded server applications simultaneously manage tens
to thousands of connections. This parallel network traffic
behaves quite differently than a single network connec-
tion. To address this issue, a multithreaded, event-driven,
network benchmark was developed that distributes traf-
fic across a configurable number of connections. The
benchmark distributes connections evenly across threads
and utilizeslibevent to manage connections within
a thread. For all of the experiments in this paper, the
number of threads used by the benchmark is equal to
the number of processor cores. Each thread manages
an equal number of connections. For experiments using
more than 24 connections, the application’s connections
are distributed across the server’s 6 NICs equally such
that each of the four threads uses each NIC, and every
thread has the same number of connections that map to
each NIC.

Rice University Computer Science Technical Report TR06-872 7

0

1000

2000

3000

4000

5000

6000

Connections

T
hr

ou
gh

pu
t (

M
b/

s)

6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8
16

38
4

UP
MsgP
ConnP−T(4)
ConnP−L(128)

Figure 2: Aggregate throughput for message-parallel and
connection-parallel network stacks.

0

1000

2000

3000

4000

5000

6000

Connections

T
hr

ou
gh

pu
t (

M
b/

s)

6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8
16

38
4

FreeBSD−UP(UP)
FreeBSD−MP(MsgP)
Linux−UP
Linux−MP
Linux−MP−SHORT

Figure 3: Aggregate throughput comparison for
FreeBSD and Linux.

Each thread sends data over all of its connections us-
ing a per-thread file using zero-copysendfile(). The
sending and receiving socket buffer sizes are set to be
256 KB in all tests to accomodate the large TCP windows
on high-bandwidth links. Using larger socket buffers did
not improve performance for any test. Furthermore, all
experiments use the standard 1500-byte maximum trans-
mission unit and do not utilize TCP segmentation of-
fload, which currently is not implemented in FreeBSD.
The benchmark is always run for 3 minutes unless other-
wise noted.

4.3 Network Throughput

Figure 2 depicts the aggregate throughput across all con-
nections when executing the parallel TCP benchmark de-
scribed in Section 4.2 utilizing various configurations of
FreeBSD 7. “UP” is the uniprocessor version of the

FreeBSD kernel running on a single core of the Opteron
server. The rest of the configurations are run on all
4 cores. “MsgP” is the multiprocessor FreeBSD-based
MsgP kernel described in Section 3.1. MsgP uses a
lock per connection. “ConnP-T(4)” is the multiproces-
sor FreeBSD-based ConnP-T kernel described in Sec-
tion 3.2.1, using 4 kernel protocol threads for TCP/IP
stack processing that are each pinned to a different core.
“ConnP-L(128)” is the multiprocessor FreeBSD-based
ConnP-L kernel described in Section 3.2.2. ConnP-
L(128) divides the connections among 128 locks within
the TCP/IP stack.

The figure shows that the “UP” kernel performs well
with a small number of connections, achieving a band-
width of 4034 Mb/s with only 6 connections. How-
ever, total bandwidth decreases as the number of con-
nections increases. MsgP achieves 82% of the unipro-
cessor bandwidth at 6 connections but quickly ramps up
to 4630 Mb/s, holding steady through 768 connections
and then decreasing to 3403 Mb/s with 16384 connec-
tions. ConnP-T(4) achieves close to its peak bandwidth
of 3123 Mb/s with 6 connections and provides approxi-
mately steady bandwidth as the number of connections
increase. Finally, the ConnP-L(128) curve is shaped
similar to that of MsgP, but its performance is larger in
magnitude and always outperforms the uniprocessor ker-
nel. ConnP-L(128) delivers steady performance around
5440 Mb/s for 96–768 connections and then gradually
decreases to 4747 Mb/s with 16384 connections. This
peak performance is roughly the peak TCP throughput
deliverable by the three dual-port Gigabit NICs.

To demonstrate that FreeBSD is representative in per-
formance of modern message-parallel operating systems,
Figure 3 compares the throughput of the FreeBSD-based
uniprocessor (“UP”) and multiprocessor (“MsgP”) op-
erating systems against the corresponding Linux-based
variants. The Linux configurations used kernel ver-
sion 2.6.16.15, ran on the same hardware, and used the
same TCP stack tuning parameters. Thesendfile()-
based microbenchmark application was modified to use
the LinuxTCP CORK socket option to optimize perfor-
mance. TCP segmentation offloading was disabled for
these tests because it led to connection resets under loads
greater than about 1000 simultaneous connections and
prevented tests from completing successfully. In Fig-
ure 3, “FreeBSD-UP(UP)” and “FreeBSD-MP(MsgP)”
are the uniprocessor and multiprocessor versions of the
FreeBSD 7 operating system, also depicted as “UP” and
“MsgP” in Figure 2. Figure 3 also depicts the uniproces-
sor version of Linux (“Linux-UP”), the multiprocessor
version of Linux using 4 cores (“Linux-MP”), and the
multiprocessor version of Linux using 4 cores and run-
ning a shorter, 20-second test (“Linux-MP-SHORT”).

Figure 3 shows that for the standard test duration,

Rice University Computer Science Technical Report TR06-872 8

FreeBSD and Linux perform comparably in both unipro-
cessor and multiprocessor configurations for most con-
nection loads tested, though uniprocessor FreeBSD out-
performs uniprocessor Linux by up to 1 Gb/s for smaller
connection loads. Hence, FreeBSD is a competitive
platform to use as a basis for implementing other net-
work stack architectures. The 20-second multiprocessor
Linux test (“Linux-MP-SHORT”) showed a significant
improvement over the 3-minute multiprocessor Linux
and FreeBSD tests, however. Clearly the test duration
has a significant impact on aggregate throughput. This
relationship was not observed using uniprocessor Linux
or any configuration of FreeBSD, and it remains unclear
what is causing this anomaly in the multiprocessor Linux
case.

5 Discussion and Analysis

Figure 2 shows that using 4 cores, ConnP-L(128) and
MsgP outperform the uniprocessor FreeBSD 7 kernel for
almost all connection loads. As mentioned in Section 2,
the use of TCP segmentation offloading and/or jumbo
frames can further improve the peak performance, but
these optimizations should benefit each organization ap-
proximately equally. Regardless, the speedup attained
using multiprocessor kernels is significantly less than
ideal and is limited by (1) locking overhead, (2) cache
efficiency, and (3) scheduling overhead. The following
subsections will explain how these issues affect the par-
allel implementations of the network stack.

5.1 Locking Overhead

There are two significant costs of locking within the par-
allelized network stacks. The first is that SMP locks are
fundamentally more expensive than uniprocessor locks.
In a uniprocessor kernel, a simple atomic test-and-set
instruction can be used to protect against interference
across context switches, whereas, SMP systems must use
system wide locking to ensure proper synchronization
among simultaneously running threads. This is likely
to incur significant overhead in the SMP case. For ex-
ample, on x86 architectures, thelock prefix, which is
used to ensure that an instruction is executed atomically
across the system, effectively locks all other cores out of
the memory system during the execution of the locked
instruction.

The second is that contention for global locks within
the network stacks is significantly increased when multi-
ple threads are actively performing network tasks simul-
taneously. Figure 4 shows the locking required in the
control path for send processing within the sending ap-
plication’s thread context in the MsgP network stack of
FreeBSD 7. Most of the locks pictured are associated

S o c k e t S e n dP r e p a r e m e t a d a t a s t r u c t u r e s p o i n t i n g t om e s s a g e d a t aS o c k e t B u f f e r AS o c k e t B u f f e r RC a l c u l a t e R e a d y D a t a t o S e n d
T C P S e n dC o n n e c t i o n H a s h t a b l e AL o o k U p C o n n e c t i o nC o n n e c t i o n AC o n n e c t i o n H a s h t a b l e R T C P O u t p u tf o r (p a c k e t F s i z e ds e g m e n t s i n m e s s a g e) C o n n e c t i o n R

R o u t e H a s h t a b l e AR o u t e H a s h t a b l e RR o u t e AR o u t e R
P r e p a r e T C P h e a d e r f o r o n e p a c k e tS o c k e t B u f f e r AS o c k e t B u f f e r RA l l o c a t e n e w r o u t e s t r u c t u r eF i l l i n r o u t eP r e p a r e I P h e a d e r I P O u t p u t

E t h e r n e tO u t p u tR o u t e AR o u t e RV a l i d a t e r o u t eE n s u r e A R P e n t r yi s n ' t e x p i r e d
T X I n t e r f a c e Q u e u e RT X I n t e r f a c e Q u e u e AI n s e r t p a c k e t

R o u t e AR o u t e RD e s t r o y r o u t e s t r u c t u r er e t u r n v a l u e

I n t e r f a c eQ u e u e

r e t u r n v a l u e

D r i v e r

L o c k s N a m e AL o c k s N a m e R A c q u i s i t i o n o f l o c kL o c k � N a m eR e l e a s e o f l o c kL o c k � N a m e==B o l d = G l o b a l L o c k P e r � C o n n e c t i o nL o c kR e g u l a r =

Figure 4: The Outbound Control Path in the Application
Thread Context.

with a single socket buffer or connection. Therefore, it
is unlikely that multiple application threads would con-
tend for those locks since it does not make sense to use
multiple application threads to send data over the same
connection. However, those locks could be shared with
the kernel’s inbound protocol threads that are processing
receive traffic on the same connection. Global locks that
must be acquired by all threads that are sending (or pos-
sibly receiving) data over any connection are far more
problematic.

There are two global locks on the send path:
the Connection Hashtable lock and theRoute
Hashtable lock. These locks protect the hash ta-
ble that maps a particular connection to its individual
connection lock and the hash table that maps a particu-
lar connection to its individual route lock, respectively.
These locks are also used in lieu of explicit reference
counting for individual connections and locks. Watson
presents a more detailed description of locking within the
FreeBSD network stack [19].

Rice University Computer Science Technical Report TR06-872 9

OS Type 6 conns 192 conns 16384 conns

MsgP 89 100 100
ConnP-L(4) 60 56 52
ConnP-L(8) 51 30 26
ConnP-L(16) 49 18 14
ConnP-L(32) 41 10 7
ConnP-L(64) 37 6 4
ConnP-L(128) 33 5 2

Table 1: Percentage of lock acquisitions for global
TCP/IP locks (Connection Hashtable and
Network Group locks) that do not succeed immedi-
ately.

There is very little contention for theRoute
Hashtable lock because the correspondingRoute
lock is quickly acquired and released so a thread
is unlikely to be blocked while holding theRoute
Hashtable lock and waiting for aRoute lock. In
contrast, theConnection Hashtable lock is highly
contended. This lock must be acquired by any thread
performing any network operation on any connection.
Furthermore, it is possible for a thread to block while
holding the lock and waiting for its corresponding
Connection lock, which can be held for quite some
time.

Table 1 depicts global TCP/IP lock contention, mea-
sured as the percentage of lock acquisitions that do not
immediately succeed because another thread holds the
lock. ConnP-T is omitted from the table because it
eliminates global TCP/IP locking completely. As the
table shows, the MsgP network stack experiences sig-
nificant contention for theConnection Hashtable
lock, which leads to considerable overhead as the num-
ber of connections increases.

One would expect that as connections are added, the
probability of contention for per-connection locks would
decrease, and in fact lock profiling supports this con-
clusion. However, because other locks (such as that
guarding the scheduler) are acquired while holding the
per-connection lock, and because those other locks are
system-wide and become highly contended during heavy
loads, detailed locking profiles show that the average
amount of time that each per-connection lock is held in-
creases dramatically. Hence, though contention for per-
connection locks decreases, the increasing cost for a con-
tended lock is so much greater that the system exhibits
increasing average acquisition times for per-connection
locks as connections are added. This increased per-
connection acquisition time in turn leads to longer waits
for the Connection Hashtable lock, eventually
bogging down the system with contention.

Whereas the MsgP stack relies on repeated acquisition
to theConnection Hashtable andConnection
locks to continue stack processing, ConnP-L stacks

0

1000

2000

3000

4000

5000

6000

Connections

T
hr

ou
gh

pu
t (

M
b/

s)

6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8
16

38
4

ConnP−L(128)
ConnP−L(64)
ConnP−L(32)
ConnP−L(16)
ConnP−L(8)
ConnP−L(4)

Figure 5: Aggregate throughput for the connection-
based, parallel network stack using locks as the number
of locks is varied.

can also become periodically bottlenecked if a single
group becomes highly contended. As discussed in Sec-
tion 3.2.2, the number of connection groups in a ConnP-
L network stack may exceed the number of inbound
protocol threads. Table 1 shows the contention for
theNetwork Group locks for ConnP-L stacks as the
number of network groups is varied to from 4 to 128
groups. The table demonstrates that contention for the
Network Group locks consistently decreases as the
number of network groups increases. Though ConnP-
L(4)’s Network Group lock contention is high at over
50% for all connection loads, increasing the number of
network groups to 128 reduces contention from 52% to
just 2% for the heaviest connection load. Note that con-
tention decreases for the 6-connection case even as the
number ofNetwork Group locks increases well be-
yond 6. The signficant contention decreases of more
than one or two percent are caused by better hashing dis-
tribution of connections to connection groups. That is,
as more groups are added, the static hashing function
that assigns connections to connection groups is more
likely to assign each connection to a separate group. The
more modest contention decreases are caused by reduc-
tions in contention by book-keeping functions that up-
date all connection groups and thus access allNetwork
Group locks. For example, updates to TCP syncache
entries are lazily broadcast to all groups via a timer-based
mechanism, regardless of whether or not they currently
have an active connection. These updates are generally
not contended, but because there are more of them as
the number of groups increases,Network Group con-
tention decreases.

Figure 5 shows the effect increasing the number of
network groups has on aggregate throughput for 6, 192,
and 16384 connections. As is suggested by the con-
tention reduction associated with larger numbers of net-
work groups, network throughput increases with more

Rice University Computer Science Technical Report TR06-872 10

OS Type 6 conns 192 conn 16384 conns

UP 1.8 4.1 18.5
MsgP 37.3 28.4 40.5
ConnP-T(4) 52.3 50.4 51.4
ConnP-L(128) 28.9 26.2 40.4

Table 2:L2 Data cache misses per 1 Kilobyte of pay-
load data transmitted.

network groups. However, there are diminishing returns
as more groups are added.

5.2 Cache Behavior

Table 2 shows the number of L2 data cache misses
per KB of payload data transmitted collected using the
Opterons’ performance counters. Figure 6 plots these
L2 misses categorized according to where in the oper-
ating system the misses occurred (e.g., in the network
stack or in the thread scheduler). This data shows the ef-
ficiency of the cache hierarchy normalized to network
bandwidth. The uniprocessor kernel incurs very few
cache misses relative to the multiprocessor configura-
tions. The lack of metadata migration accounts for the
uniprocessor kernel’s cache efficiency. The increase in
the amount of connection state within the kernel stresses
the cache and directly results in increased cache misses
and decreased throughput as the number of connections
are increased [6, 7].

The parallel network stacks incur significantly more
cache misses per KB of transmitted data because of data
migration and lock accesses. Surprisingly, ConnP-T(4)
incurs the most cache misses despite each thread being
pinned to a specific processor core. One might expect
that such pinning would improve locality by eliminating
migration of many connection data structures. However,
Figure 6 shows that for the cases with 6 and 192 connec-
tions, ConnP-T(4) exhibits more misses in the network
stack than any of the other organizations. While thread
pinning can improve locality by eliminating migration
of connection metadata, frequently updated socket meta-
data is still shared between the application and protocol
threads, which leads to data migration and a higher cache
miss rate. Pinning the protocol threads does result in
better utilization of the caches for the 16384-connection
load, however. In this case, ConnP-T(4) exhibits the
fewest network-stack L2 cache misses. However, the rel-
atively higher number of L2 cache misses caused by the
scheduler prevents this advantage from translating into a
performance benefit.

5.3 Scheduler Overhead

The ConnP-T kernel trades the locking overhead of the
ConnP-L and MsgP kernels for scheduling overhead. As

OS Type 6 conns 192 conns 16384 conns

UP 482 440 423
MsgP 2904 1818 2448
ConnP-T(4) 3488 3602 4535
ConnP-L(128) 2135 924 1064

Table 3: Number of cycles spent managing the sched-
uler and scheduler synchronization per Kilobyte of data
transmitted.

operations are requested for a particular connection, they
must be scheduled onto the appropriate protocol thread.
As Figure 2 showed, this results in stable, but low total
bandwidth as connections scale for ConnP-T(4). ConnP-
L approximates the reduced intra-stack locking proper-
ties of ConnP-T and adopts the simpler scheduling prop-
erties of MsgP; locking overhead is minimized by the
additional groups and scheduling overhead is minimized
since messages are not transferred to protocol threads.
This results in consistently better performance than the
other parallel organizations.

To further explain this behavior, Table 3 shows the
number of cycles spent managing the scheduler and
scheduler synchronization per KB of payload data trans-
mitted collected using the Opterons’ performance coun-
ters. This shows the overhead of the scheduler normal-
ized to network bandwidth. Though MsgP experiences
less scheduling overhead as the number of connections
increase and threads aggregate more work, locking over-
head within the threads quickly negate the scheduler ad-
vantage. In contrast, the scheduler overhead of ConnP-T
remains high, corresponding to relatively low bandwidth.
In contrast, ConnP-L exhibits stable scheduler overhead
that is much lower than ConnP-T and MsgP, contribut-
ing to its higher throughput. ConnP-L does not require
a thread handoff mechanism and its low lock contention
compared to MsgP results in fewer context switches from
threads waiting for locks.

Both Table 3 and Figure 6 show that the reference
ConnP-T implementation in this paper incurs heavy
overhead in the thread scheduler, and hence an effective
ConnP-T organization would require a more efficient in-
terprocessor communication mechanism. A lightweight
mechanism for interprocessor communication, as imple-
mented in DragonflyBSD, would enable efficient intra-
kernel messaging between processor cores. Such an ef-
ficient messaging mechanism is likely to greatly bene-
fit the ConnP-T organization by allowing message trans-
fer without invoking the general-purpose scheduler, and
would potentially enable a ConnP-T organization to ex-
ploit the network stack cache efficiencies under heavier
loads that are depicted in Figure 6.

Rice University Computer Science Technical Report TR06-872 11

0

10

20

30

40

50

L2
 M

is
se

s/
K

B
 T

hr
ou

gh
pu

t

6 Connections 192 Connections 16384 Connections

UP
MsgP

ConnP−T(4)

ConnP−L(128) UP
MsgP

ConnP−T(4)

ConnP−L(128) UP
MsgP

ConnP−T(4)

ConnP−L(128)

Scheduler
Network Stack

Figure 6: Profile of L2 data cache misses per 1 Kilobyte of payload data transmitted.

6 Conclusions

Network performance is increasingly important in all
types of modern computer systems. Furthermore, archi-
tectural trends are pushing future microprocessors away
from uniprocessor designs and toward architectures that
incorporate multiple processing cores and/or thread con-
texts per chip. This trend necessitates the parallelization
of the operating system’s network stack. This paper eval-
uates message-based and connection-based parallelism
within the network stack of a modern operating system.

The uniprocessor version of the FreeBSD operating
system performs quite well, but its performance degrades
as additional connections are added. Though the MsgP,
ConnP-T, and ConnP-L parallel network stacks can out-
perform the uniprocessor when using 4 cores, none of
these organizations approach perfect speedup. This is
caused by the higher locking overhead, poor cache effi-
ciency, and high scheduling overhead of the parallel or-
ganizations. While MsgP can outperform a uniproces-
sor by 31% on average and by 62% for loads utilizing
16384 simultaneous connections, the enormous locking
overhead incurred by such an approach limits its perfor-
mance and prevents it from saturating available network
resources. In contrast, ConnP-T eliminates intra-stack
locking completely by using thread serialization but in-
curs significant scheduling overhead that limits its per-
formance to less than that of the uniprocessor kernel for
all but the heaviest connection loads. ConnP-L mitigates
the locking overhead of MsgP, by grouping connections
to reduce global locking, and the scheduling overhead of
ConnP-T, by using the requesting thread for network pro-
cessing rather than invoking a network protocol thread.
This results in good performance across a wide range of
connections, delivering 5440 Mb/s for moderate connec-
tion loads and achieving a 126% improvement over the
uniprocessor kernel when handling 16384 simultaneous
connections.

Acknowledgments

This work is supported in part by the NSF under Grant
No. CCF-0546140, by the Texas Advanced Technology
Program under Grant No. 003604-0052-2003, and by do-
nations from AMD.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and
D. Berger. Clock rate versus IPC: The end of the
road for conventional microarchitectures. InPro-
ceedings of the International Symposium on Com-
puter Architecture, June 2000.

[2] M. Bj örkman and P. Gunningberg. Performance
modeling of multiprocessor implementations of
protocols.IEEE/ACM Transactions on Networking,
June 1998.

[3] K. Diefendorff. Power4 focuses on memory band-
width. Microprocessor Report, Oct. 1999.

[4] J. Hurwitz and W. Feng. End-to-end perfor-
mance of 10-gigabit Ethernet on commodity sys-
tems.IEEE Micro, Jan./Feb. 2004.

[5] S. Kapil, H. McGhan, and J. Lawrendra. A chip
multithreaded processor for network-facing work-
loads.IEEE Micro, Mar./Apr. 2004.

[6] H. Kim and S. Rixner. Performance characteriza-
tion of the FreeBSD network stack. Technical Re-
port TR05-450, Rice University Computer Science
Department, June 2005.

[7] H. Kim and S. Rixner. TCP offload through con-
nection handoff. InProceedings of EuroSys, Apr.
2006.

[8] P. Kongetira, K. Aingaran, and K. Olukotun. Ni-
agara: A 32-way multithreaded SPARC processor.
IEEE Micro, Mar./Apr. 2005.

Rice University Computer Science Technical Report TR06-872 12

[9] D. Koufaty and D. T. Marr. Hyperthreading tech-
nology in the netburst microarchitecture.IEEE Mi-
cro, 23(2), 2003.

[10] K. Krewell. UltraSPARC IV mirrors predecessor.
Microprocessor Report, Nov. 2003.

[11] K. Krewell. Double your Opterons; double your
fun. Microprocessor Report, Oct. 2004.

[12] K. Krewell. Sun’s Niagara pours on the cores.Mi-
croprocessor Report, Sept. 2004.

[13] E. M. Nahum, D. J. Yates, J. F. Kurose, and
D. Towsley. Performance issues in parallelized net-
work protocols. InProceedings of the Symposium
on Operating Systems Design and Implementation,
Nov. 1994.

[14] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wil-
son, and K. Chang. The case for a single-chip mul-
tiprocessor. InProceedings of the Seventh Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
Oct. 1996.

[15] V. Roca, T. Braun, and C. Diot. Demultiplexed
architectures: A solution for efficient STREAMS-
based communication stacks.IEEE Network, July
1997.

[16] D. C. Schmidt and T. Suda. Measuring the perfor-
mance of parallel message-based process architec-
tures. InProceedings of the INFOCOM Conference
on Computer Communications, Apr. 1995.

[17] J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le,
and B. Sinharoy. Power4 system architecture.IBM
Journal of Research and Development, Jan. 2002.

[18] S. Tripathi. FireEngine—a new networking archi-
tecture for the Solaris operating system. White pa-
per, Sun Microsystems, June 2004.

[19] R. N. M. Watson. Introduction to multithreading
and multiprocessing in the FreeBSD SMPng net-
work stack. InProceedings of EuroBSDCon, Nov.
2005.

[20] D. J. Yates, E. M. Nahum, J. F. Kurose, and
D. Towsley. Networking support for large scale
multiprocessor servers. InProceedings of the 1996
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
May 1996.

