View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Research Commons@Waikato

An Exploration of Using the Intel AVX2 Gather
Load Instructions for Vectorised Image Processing

Michael J. Cree
School of Engineering
University of Waikato
Hamilton, New Zealand
michael.cree @waikato.ac.nz

Abstract—Processing image data with single-instruction
multiple-data (SIMD) CPU instructions provides a means of
vectorising, thus speeding up execution, of standard image
processing operators. SIMD register loads normally load from
consecutive locations in memory, that is, consecutive pixels in a
row of the image. For some algorithms, however, data dependen-
cies between pixels along rows render SIMD vectorisation useless.
If one could efficiently load pixels from columns of images this
problem would be fixed.

The Intel AVX2 CPU extension introduces an instruction for
the gather loading of data from multiple memory locations into
a single CPU SIMD register. We explore using these instructions
for column loads of image data in two common image operations,
transposing images and mean filtering, to test 1) whether they
provide useful speed-ups when other vectorised approaches exist
(and find that they do not), and 2) whether they provide means
of implementing operations that otherwise would be difficult or
extremely inefficient to achieve without a column load (they can
provide speed-ups over scalar code).

Index Terms—SIMD, vectorisation, image processing

I. INTRODUCTION

Simultaneous instruction multiple data (SIMD) CPU in-
structions process multiple data in one CPU instruction and
are a means of processing simultaneous calculations on many
data. They are very useful for accelerating image processing
operators by parallelising (or vectorising) computation [1].

SIMD CPU load instructions read multiple data from con-
secutive locations in memory into a CPU register. When
operating on an image that is stored in a C compliant array
format the SIMD load instruction efficiently loads the CPU
register with consecutive pixels from a row of the image. In
contrast, directly loading a register with consecutive pixels
from columns of the image is usually not possible with a
single (or even a few) CPU instructions and can be extremely
inefficient to perform.

Many standard image processing operations are decompos-
able into a sequence of simpler operations that are faster
to execute. For example, 2D-linear filtering operations can
sometimes be decomposed [2] into processing along rows
of the image followed by processing along columns of the
image, likewise some useful morphology structuring elements
can be decomposed in a similar manner [3]-[5]. In a scalar

978-1-7281-0125-5/18/$31.00 ©2018 Crown

implementation (i.e. no use of SIMD instructions) this decom-
position of a 2D operation into two 1D operations can provide
very significant speed-ups in execution. Vectorising the sub-
filter operations with SIMD vectorisation can provide further
substantial speed ups, provided that a means to vectorise all
sub-filtering operations exists [6].

That SIMD CPU registers can only be efficiently loaded
from rows of the image often means that vectorising pro-
cessing in one direction of the image is only possible, par-
ticularly if there are data-dependencies between pixels such
that subsequent pixels can only be calculated once the result
on a prior pixel is known. For example, the well-known mean
filter can be decomposed into two 1-D filtering operations,
one operating along columns and one along rows. An efficient
algorithm (that is independent of the size of the kernel) results
by calculating the kernel for a pixel from the kernel of the
preceding pixel, but this introduces a data dependency from a
pixel to its neighbour in the direction of calculation. Processing
down columns with SIMD is efficient because the pixel data
dependency is between pixels in different CPU registers, but
processing along rows with SIMD is inefficient because the
data dependency is between pixels in the same CPU register.
To calculate the result on all pixels in the register requires the
result of processing another pixel in the register which breaks a
necessary assumption for vectorising with SIMD instructions.

In the Haswell generation of Intel CPUs, Intel introduced
a new CPU instruction that can load a SIMD register from
multiple independent locations in memory, that is, each 32-
bit or 64-bit element of the register can be loaded from
random locations in memory and constituted into a single
SIMD register. It appears that this instruction was primarily
introduced to enable larger table lookups for evaluating stand-
ard mathematical functions [7], which then enables correct
rounding to the least significant bit of the result to a greater
portion of the domain in vectorised mathematical libraries
(which is the state of art in scalar mathematical function
evaluation).

To the machine vision scientist, this CPU instruction sug-
gests another application: the loading of a SIMD register from
the column of an image. We explore in this paper the use
of the Intel gather load instruction to load image data from
columns (see Fig. 1(a)) to implement transpose operators and
to implement a 1D horizontal (i.e. along rows) mean filter that

https://core.ac.uk/display/190046503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is otherwise much more difficult to implement.

We explore image transposes because the loading of image
pixels from a column of the image followed by a normal SIMD
write along the row effects the transpose without any further
calculation. Without a column load this operation is normally
performed by loading the rows of the block, performing the
transpose by permutation operations on the CPU registers, then
writing out the rows of the block with the transposed data. We
investigate on images with 32-bit pixels because that is the
smallest sized element that can be loaded with the gather-load
instruction, and ask whether a column load using a gather-
load instruction is faster. We also investigate the transpose
of images with 8-bit and 16-bit pixels using the gather-load
approach because other methods to implement the transpose
result in excessive spill of CPU registers to the stack, which
negates the advantage gained by vectorisation.

We then explore the use of the column load in implementing
the horizontal 1D mean filter on 32-bit data. We do this not
only because the column load has a minimum resolution of
loading 32-bit data, but because on an Intel processor with
both the streaming SIMD extension (SSE) and advanced vector
extensions (AVX, AVX2) we can load a ‘half-vector’ which
provides an alternative means of efficiently loading the same
basic block of data with half-length row loads with a transpose
of the data in the CPU registers. This gives a method to
perform the loads by column, or by rows with transposition,
and compare which is the best approach.

II. THEORY

Recent Intel CPUs contain both the SSE and AVX/AVX2
extensions. The SSE extensions provides for SIMD calcula-
tions on CPU registers of 128-bit width. SSE can perform cal-
culations, as examples, on 16 bytes simultaneously, or on four
32-bit integers simultaneously. The AVX extension lengthened
the register to 256-bit width thus can simultaneously perform
calculations on 32 bytes, or eight 32-bit integers, in CPU re-
gisters. The AVX2 extension provided more CPU instructions
to the AVX registers including the gather load instruction.

Note that there is no accompanying scatter write instruction
that does the equivalent of the gather read for writing data.
That is quite a limitation that can be argued to largely negate
the advantage of a gather read for reading in columns, because
there is no means to write out data to the same columns! We
work around this problem where necessary by use of SSE
row writes: by loading four neighbouring columns of 32-bit
integers into four AVX2 registers we load a 4 x 8 block
of pixels! which can be transposed with CPU instructions
operating on the CPU registers to give eight SSE registers
that can be used to perform row writes (see Fig. 1(b)).

A. Transpose of images with 32-bit pixels

Consider the transpose of an image of size M x N 32-bit
pixels. To improve cache locality we divide the image into
tiles of size T x T pixels where T is chosen to ensure the tile

I'We use the = X y convention when specifying image and block sizes.

(a) (b)

Figure 1. Illustration of column loads: (a) A single column load of 32-bit
data from position (z,y) of the image into an AVX2 register formed from
two gather load CPU instructions. (b) Four adjacent column loads used to
load a 4 x 8 block of 32-bit pixels into four AVX2 registers that can also
be written/read to/from memory with eight SSE writes/reads (dashed boxes
along rows).

can easily fit into cache. A tile read from position (z, y) in the
source image is written in transposed form to location (y, x)
in the destination image. The image is processed in tiles by
sequentially processing each tile in row major order from the
source image.

We implement a number of versions of the transpose:

1) Scalar implementation in which the tile transpose op-
erator reads and writes individuals pixels (32-bit data)
one at a time. In the figures this is labelled ‘Scalar-
Transpose’.

2) A vectorised implementation in which the gather load
instruction is used to read into four AVX2 vectors being
the columns of a 4 x 8 block of pixels. These are written
out directly as AVX?2 vector rows writes, writing the 8 x4
block of pixels to the destination image. In the figures
this is labelled ‘Transpose: Gather’.

3) A vectorised implementation in which SSE row reads
are used to read from consecutive rows a 4 X 8 block
of pixels. These are permutated in CPU registers to
produce four AVX?2 registers which are the columns of
the block of pixels. Note that this operation produces
exactly the same result in the four AVX2 registers
as the Tranpose:Gather operation described above. The
transpose is therefore effected in the same manner:
simply writing the AVX2 registers out as rows to the
required location in the destination image. In the figures
this is labelled ‘Transpose: SSErow’.

4) A typical vectorised implementation which loads eight
AVX2 registers from consecutive rows of the same z-
location giving a block of 8 x 8 pixels that is transposed
by permutation CPU instructions operating on the re-
gisters, and then written out as AVX2 row writes to
the required locations in the destination images. In the
figures this is labelled ‘Vector-Transpose’.

B. Transpose of Images with 16-bit and 8-bit pixels

An AVX2 CPU register contains sixteen 16-bit elements
and thirty-two 8-bit elements. Note that the transpose of

(r,y? (v,) (y+ 15,2
i (y,z+1) ... (y+ 15,2+ 1)

(xvyH‘ 7)

(2,y+8)

(2,y 3+ 15)

Figure 2. Two column loads performed (left) to load two AVX2 registers
with a 2 X 16 block of 16-bit pixels. With minimal permutation these can
be rearranged into two AVX2 registers with a row of sixteen 16-bit pixels
each (right) that can be written out to the destination image with normal row
writes.

SIMD registers containing N elements requires greater than
N registers to perform the transpose without spilling CPU
registers to the stack. The Intel CPU has 16 AVX2 CPU
registers thus to transpose a 16 x 16 block of 16-bit pixels will
result in register spill to the stack and is likely to be inefficient.
The transpose of a 32 x 32 block of 8-bit pixels involves
repeated substantial spill of CPU registers to the stack. These
spills involve extra memory reads and writes which negate the
advantage of working with SIMD registers.

But note if we use the gather load instruction to load a
column of 1 x 16 32-bit data into two AVX2 registers, the
first register being the top half of the column and the second
register the bottom half of the column, we get a block of 2x 16
16-bit data (see Fig. 2). With a simplified transpose operation
using only six permutation instructions on CPU registers those
two AVX?2 registers can be rearranged to be the transposed
16 x 2 data in two AVX2 registers one for each row. Two
straightforward row writes of the AVX2 registers to the correct
location in the destination effects the transpose of images of
16-bit data.

Likewise if we use four column loads to load a column of
1 x 32 32-bit data into four AVX2 registers, each subsequent
one continuing the load from the rows below the last one, we
get a block of 4 x 32 8-bit data. With eighteen permutation
operations on the four AVX2 registers this can be transposed
to a 32 x 4 block of data, and with four AVX?2 register writes
to consecutive rows the transpose of the block of pixels to the
destination image is effected.

Note that a column load enables us to transpose a non-
square block of image pixels without risk of register spill to
the stack even though the register may hold many image pixels.
The above two scenarios therefore presents the opportunity to
implement image operations that are otherwise very inefficient
when implemented without column loads.

C. Horizontal 1-d mean filter on unsigned 32-bit pixels

The horizontal 1-D mean filter with a kernel of k-pixels
can be calculated by summing up the k-pixels contributing to
the kernel at the start of the row (i.e. the first pixel in the
row). The accumulator is divided by k and the result is stored

back to the pixel. For ‘in-place’ image operation the original
pixel is saved into a temporary row buffer as it is needed again.
Shifting to the next pixel the new pixel added to the right-edge
of the kernel is added in to the accumulator and the old pixel
lost from the left-edge of the kernel (and previously saved into
temporary row buffer) is subtracted off. The accumulator now
has the new value needed for calculating the result with only an
addition and subtraction to the previous kernel’s accumulator.
This is the case no matter the value of k and presents a
very efficient means of calculating the horizontal 1-D mean
filter with run-time that is largely independent of the size
of the kernel. Provided there is no under or overflow of the
accumulator this scheme is exact for integer pixel data, but can
suffer a serious loss of significance for floating-point data if the
image data consists of large variations (orders of magnitude)
in value.

The horizontal 1-D mean filter just described is difficult
to implement in SIMD for general k£ because there is a data
dependency between pixels along rows. (Relatively straight-
forward solutions exist if £ is very small, namely 2 or 3.)
The usual load of SIMD data from a row of the image
results in the data dependency being intra-register. Breaking
such a dependency usually takes as many operations as there
are elements in the register (when k is large) thus negating
any advantage of vectorising. But if one could load from
columns of images into the CPU SIMD register then the
data dependency is transformed from intra- to inter-register,
a condition needed for efficient vectorisation.

We use the AVX?2 gather load instruction to load an AVX2
register worth of pixels from a column of the image. It is an
advantage to load four such neighbouring columns of pixels
(i.e. a 4 x 8 block of 32-bit pixels) for two reasons: 1) we can
use SSE row writes to the write the resultant block back to
the image in the absence of a column write, and 2) we can
compare against a series of SSE row reads with a transpose to
implement the same column load. (There is a third advantage:
it is easier to port to other architectures that do not have gather
load instructions.)

We should make comment on the calculation of the division
of the kernel accumulator to effect the calculation of the mean.
Because a constant divisor is used (the same divisor for every
pixel) the integer reciprocal can be calculated once for the
image then integer multiplication of the kernel accumulator
by the reciprocal can be performed at each pixel. Integer
multiplication on most architectures is much faster than integer
division: this proves to be true on Intel CPUs even though there
is an integer division CPU instruction.

In the scalar code we use the method of Robison [8] to
calculate the integer reciprocal and the division by multiplic-
ation. This method exploits the fact that we have more than
the 32-bits width of the pixel in a CPU register to do the
calculation (indeed 64-bits are available). But this is not the
case for the vectorised SIMD implementation: it is much more
efficient in SIMD to calculate at the width of the SIMD vector
elements (in our case 32-bits) but an unsigned integer division
of N-bits by multiplication with the integer reciprocal can

Table 1
SYSTEMS TESTS WERE PERFORMED ON. CACHE (L1, L2 AND L3) 1S
SPECIFIED AS SIZE/WAYS OF ASSOCIATIVITY.

System | CPU Memory L1 L2 L3
Haswell 15-4590 8GB 32kB/8 256kB/8 6MB/12
Haswell i7-4790 16 GB 32kB/8 256kB/8 8MB/16
Haswell E5-2640 128 GB 32kB/8 256kB/8 20MB/20
Coffee-Lake | i5-8600K 16 GB 32kB/8 256kB/4 9MB/12

require [N 41 bits in the calculation to get correct results, thus
we use the method of Granlund and Montgomery [9] which
simulates a N+1-bit multiplication with only N-bit arithmetic.
The reciprocal is calculated with scalar code as it is only done
once for the image. The multiplication by the integer reciprocal
is vectorised for efficient division at each pixel.

III. METHODOLOGY

We test on four Intel platforms: Intel Core i5, i7 and Xeon
(Haswell generation CPUs) running Debian Linux ‘Stretch’
version 9.5 with code compiled with the GCC 6.3 compiler,
and on an Intel Core i5 (Coffee Lake generation) running
Ubuntu Linux ‘Xenial Xerus’ version 16.04.5 (LTS) with code
compiled with the GCC 5.4 compiler. Further details on these
platforms are in Table I.

Code was profiled with the Linux Performance Events
subsystem to exploit hardware event counters in the CPU
to measure elapsed time and count number of CPU cycles,
instructions retired and cache misses incurred while the timed
process is scheduled on the CPU. Images were initialised with
uniformly distributed random data and the image processing
operator was first run once to test for correct operation of
the operator and prime the cache. This operation makes
copies of original images to test that the operator does not
modify the source image, and checks that the result image is
correct. The operator then was executed a further ten times
in succession solely to time the operation and count hardware
events. Elapsed time, CPU cycles incurred, instructions retired
and number of cache misses incurred on average for one
execution of the operation were stored for further analysis.

Tests were performed on a square image for sizes ranging
from 128 x 128 pixels (0.016 megapixel) up to 8192 x 8192
pixels (67 megapixel). For sizes below 16 megapixel the tests
were re-run 50 times and for sizes above 16 megapixels the
tests were re-run 30 times. Results for the fastest 25 execution
times were used of the 50 (or 30) test runs to eliminate dis-
proportionately large results due to latencies incurred by other
processes running on the system. The mean value calculated
for the chosen 25 test runs are used for analysis.

IV. RESULTS

We first report results (Fig. 3) for copying and transposing
an image of 32-bit pixel data. The scalar implementation
copies images with the C-standard memcpy() library routine
applied per row of the image. The glibc implementation of
memcpy() detects the CPU and may use CPU specific op-
timised code including copying via SIMD registers. Then we

Execution Time of Copy and Transpose Operations

100 T T T
+ g H T
+ ¢ & X X X X X
- £ %k % X X X E
%
a
@
Q
8 10 b
o
>
o
o]
S
Scalar-Copy +
SIMD-Copy X
Scalar-Transpose
Transpose: 8x8
1 Il Il Il
10000 100000 1x10° 1x107 1x108

Image size (pixels)

Figure 3. Execution time (in CPU cycles per pixel) of Scalar and SIMD
implementations of image copy and transpose. The scalar copy operation may
well be vectorised as it uses the standard memcpy() library function.

tested image copy with our own SIMD optimised copy routine
(Fig. 3) which proved slightly faster than using memcpy(),
probably because our routine could exploit the fact that every
row of the image is allocated to ensure correct alignment for
SIMD operation and has row padding to avoid any special
casing code at the start and end of rows.

In Fig. 3 we also report on transposing the image with a
pixel-by-pixel scalar implementation and by the 8 x 8 block
transpose vector implementation that uses only typical SIMD
row loads from memory. The image transpose for images
smaller than about 1 megapixel proved faster than image copy
on this system. Considering that there are two images (the
original and the result copy/transpose) of 4 MB each, and that
on this system (Haswell, i7) the L3 cache is 8 MB is suggestive
that the transpose out-performs a straight image copy when the
images can be held entirely in L3 cache. Tests on the other
Haswell systems (not shown here) produced similar results
with the merging of the various implemented operations to
similar speeds occurring at about L3 cache size.

Now we consider the implementation of the transpose using
the column load operation. The use of the column load elim-
inates the need for an 8 x 8 block transpose of the image data
in SIMD registers. Timing results for the four implemented
transpose operators (scalar and the three vectorised implement-
ations) are shown in Fig. 4. The ‘SIMD-Copy’ and ‘Transpose:
8 X 8 curves are the same as presented in Fig. 3. One can
see that the column load (labelled ‘Gather’) did not perform
as well as the baseline “Transpose: 8 x 8 implementation or
the SSErow variant, showing that the computer architecture is
(not unsurprisingly) much more efficient at loading row data.

To better see these differences in speed we plot the speed-
up of the vectorised copy versus scalar copy, and the speed-up
of the three vectorised transpose operations versus the scalar
operation in Fig. 5. It is clear that the SIMD column load based
transpose operator ("Transpose: Gather’) is actually slower in
many cases than the scalar implementation! The tests on the

Execution Time of SIMD Copy and Transpose Operations

100 T T T
X
% X
¥ o +T +
5 + ++ + + F
X X X X X X X
Q
@
Qo
8 10 | E
o
>
()
o)
S
SIMD-Copy +
Transpose: Gather X
Transpose: SSErow
‘ Transpose:‘ 8x8
1
10000 100000 1x106 1x107 1x108

Image size (pixels)

Figure 4. Execution time (in CPU cycles per pixel) of SIMD implementations,
including the column load implementations, of image transpose.

SIMD Copy and Transpose Speed-Up

5 T T T
Copy +
Transpose: Gather X
al Transpose: SSErow |
Transpose: 8x8
Qo
S
k-]
o 3 i
Q
(%]
[
S 2+t X -
9]
£ X
“‘1_+++++ oy X ¥ & % |
X X X X
X X X X
0 Il Il Il
10000 100000 1x106 1x107 1x108
Image size (pixels)
Figure 5. Speed-up in execution of image copy versus the scalar copy

implementation, and of image transposes versus the scalar transpose imple-
mentation.

Coffee Lake system (Fig. 6) showed an improved performance
on the gather load method, but they are still considerably
slower than loading data by rows.

The speed-up in execution over scalar code for transposes
of 8-bit and 16-bit images using the column load approach
described in Sect. II-B is shown in Fig. 7. On the Haswell
systems the vectorised transpose of 16-bit images is slower
than the scalar implementation, and the vectorised transpose
of 8-bit images provides only a small speed advantage. The
Coffee-Lake system shows better performance with now a
small advantage for transposing 16-bit images and a more
significant and worthwhile advantage for transposing 8-bit
images.

We now turn attention to the mean filtering. The horizontal
1-D mean filter algorithms (scalar and the two vectorised
implementations) are shown in Fig. 8 for the Haswell i7
system. The improvement in performance over equivalent
scalar implementations is better seen in Fig. 9. The column

SIMD Copy and Transpose Speed-Up

5 T T T
Copy +
Transpose: Gather X
4k Transpose: SSErow |
Transpose: 8x8
Q
>
©
@ 3r B .
Q
w g
© X
c
o 2r B
‘L‘é « X ¢ %
w
+ + 4+ + o+ ¥ + & *t & +
1rx X X X t K ’ h
0 Il Il Il
10000 100000 1x106 1x107 1x108

Image size (pixels)

Figure 6. Speed-up in execution of image copy versus the scalar copy imple-
mentation, and of image transposes versus the scalar transpose implementation
on the Coffee Lake system.

Byte and 16-bit Transpose with Gather-Load

5 T T T
Transpose 8-bit (Haswell) +
Transpose 16-bit (Haswell) X

4l Transpose 8-bit (C-Lake) i
o Transpose 16-bit (C-Lake)
7
©
o 3f i
Qo
v +
©
=
o 2r B
* 2
b H mthog to h X +

1f . p X g X

X x x X X X X x
0 1 1 1
10000 100000 1x106 1x107 1x108
Image size (pixels)
Figure 7. Speed-up of the vectorised 8-bit and 16-bit image transpose

when implemented with column load operations on the Haswell system and
the Coffee-Lake (C-Lake) system compared against their respective scalar
implementations.

load (gather) gives a small, nevertheless disappointing, im-
provement in speed, and the use SSE row loads gives a better
speed-up of just over 2 times over the scalar implementation.
For comparison the speed-up of the vectorised vertical 1-D
mean filter is also shown, and speed-ups of between 4.5 and
6 times the scalar implementation is evident. This illustrates
the penalty of loading data from columns compared to loading
data from rows.

V. DISCUSSION

The results show that the slower speed of the gather load
instruction has limited utility in loading image data from
columns of the image. It is always faster, when it is possible
and there is no register spill, to reorganise the algorithm
to read from rows and transpose within CPU registers to
give the columns in the CPU registers, and transpose again
before writing data out as rows. It seems that Intel has made

Execution Time of Horiz 1D Mean Operation
100 T T T

X +
X +
X +
X +
X+
X+
X +
X +
X +
X +
X +
X +
X +

CPU cycles per pixel
-
S
T
1

Scalar-HMean +
HMean: Gather X
HMean: SSFrow

1 1
100000 1x106
Image size (pixels)

1
10000 1x107 1x108

Figure 8. Execution time (in CPU cycles per pixel) of the three implement-
ations of the Horizontal Mean 1-D filter.

SIMD 1D Mean Speed-Up

8 T
VMean +
7+ HMean: Gather X 4
Transpose: SSErow
6 + J
+ + +
+ + + n

+

2, .
X X X X X X X X x X X X X

Speed-up over scalar equivalent
I
T
1

| | |
100000 1x10° 1x107
Image size (pixels)

0
10000 1x108

Figure 9. Speed-up in execution of the two SIMD implementations of the
horizontal mean 1-D filter (‘HMean’) with the speed-up of the vectorised
vertical mean 1-D filter (‘“VMean’) for comparison.

some attempt to speed up the gather load instructions in
the newest generation of Intel CPUs (as evidenced by our
results on the Coffee Lake generation CPU) and it appears
that Intel acknowledge that the gather load instructions are
not as successful as one might have anticipated, as they
have introduced extra permutation instructions in the AVX-
512 extension to provide larger table lookups by operating on
CPU registers only [7], [10]. They state that using these new
permutation instructions in mathematical functions, although
it incurs a larger polynomial to interpolate between tabulated
points, can be as much as 2x faster than using the gather load
instruction [7]. Note, however, the AVX-512 extension is only
available on recent high-end server CPUs and it does not solve
the column load problem.

ARM is also introducing gather-load and scatter-write in-
structions to its CPUs in its new Scalable Vector Exten-
sion [11]. They note that these instructions enable vectorisation
of loops accessing discontiguous data, but also note that these

instructions in their tests did not scale well with increasing
size of the SIMD register, and blamed the compiler for poor
scheduling of instructions. To help to break the dependencies
of data intra-register ARM also propose ‘horizontal opera-
tions’ that operate on data within a register.

Despite these limitations we find that the gather load instruc-
tion does have utility when reading from rows of the image
into CPU registers and transposing incurs excessive spill of
registers to the stack, as occurs, for example, when working
with 8-bit data in the AVX2 256-bit registers. We found a
2x speed-up in operation over scalar code when transposing
images with 8-bit pixels when using the gather load instruction
on the newest generation Intel CPUs.

VI. CONCLUSION

Mixed results were obtained with the gather load instruction
for loading CPU SIMD registers from the columns of images.
We found that column loads of data never outperformed
loading data from rows and transposing entirely within CPU
registers to get the columns. While the more recent Coffee
Lake CPUs have a faster gather load instruction this conclusion
nevertheless remains unchanged. The only situation where
loading data from columns with the gather load gives an
improvement over other methods is when the only alternative
is transposing data in CPU registers and that would lead to
excessive register spill to the stack. Such a situation occurs
when transposing images consisting of byte (8-bit) pixels. On
Haswell systems only a small (approximately 1.3x) speed-
up was achieved using the gather-load instruction, but this
increased to a more useful 2x speed-up on Coffee Lake
systems.

REFERENCES

[1] R. Cypher and J. L. C. Sanz, “SIMD architectures and algorithms for
image processing and computer vision,” IEEE Trans. Acoust. Speech
Sig. Proc., vol. 37, no. 12, pp. 2158-2174, 1989.

[2] C.-S. Bouganis, G. A. Constantinides, and P. Y. K. Cheung, “A novel
2-d filter design methodology for heterogeneous devices,” in Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’05), Los Alamitos, 2005, pp. 13-22.

[3] X.Zhuang and R. Haralick, “Morphological structuring element decom-
position,” Comput. Vis. Graphics Image Process., vol. 35, pp. 370-382,
1986.

[4] X. Zhuang, “Decomposition of morphological structuring elements,” J.
Math. Imaging Vis., vol. 4, pp. 5-18, 1994.

[5]1 E. Urbach and M. Willkinson, “Efficient 2-d grayscale morphological
transformations with arbitrary flat structuring elements,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 12, pp. 1606-1617, 2008.

[6] M. J. Cree, “Vectorised SIMD implementations of morphology al-
gorithms,” in International Conference on Image and Vision Computing
New Zealand (IVCNZ2015), Auckland, New Zealand, 2015.

[71 M. Cornea, “Intel AVX-512 instructions and their use in the implement-
ation of math functions,” Intel Corporation, 2015.

[8] A.D. Robison, “N-bit unsigned division via n-bit multiply-add,” in [EEE
Symposium on Computer Arithmetic, 2005, pp. 131-139.

[9] T. Granlund and P. L. Montgomery, “Division by invariant integers using

multiplication,” in Proceedings ACM SIGPLAN 1994 Conference on

Programming Language Design and Implmentation, 1994, pp. 61-72.

C. S. Anderson, J. Zhang, and M. Cornea, “Enhanced vector math

support on the Intel AVX-512 architecture,” in 25th IEEE Symposium

on Computer Arithmetic (ARITH 25), Amherst, MA, 2018, pp. 116-120.

N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,

and et al., “The ARM scalable vector extension,” IEEE Micro, vol. 37,

no. 2, pp. 26-39, 2005.

[10]

[11]

