An NUMA API for Linux

Andi Kleen
SUSE Labs
ak@suse.de

Aug 2004

1 What is NUMA API?

CC/NUMA (Cache Coherent/Non Uniform Memory Access) machines are becom-
ing more common. Examples are AMD Opteron, IBM Power5 or SGI Altix. This is
opposite to SMP (Symmetric Multi Processing) where all CPUs in the system have
the same access to all memory.

A word on terminology: a node is a set of CPUs (Central Processing Unit) that
all have equal fast access to some memory using a memory controller. On a system
where CPUs have integrated memory controllers a node consists of a single CPU,
possibly with multiple cores or virtual threads. On other more traditional NUMA
systems like an SGI Altix or a HP Superdome bigger nodes with 2 to 4 CPUs are
sharing memory.

In addition to the local memory NUMA machines have remote memory. This
is memory located on other nodes, connected over a fast interconnect. From the
software point of view this remote memory can be used in the same way as local
memory; it is fully cache coherent. The only difference is that accessing it is slower
because the interconnect is slower than the local memory bus of the node. In
addition to these big server systems some embedded architectures also have memory
with different performance.

NUMA policy is concerned about putting memory allocations on specific nodes
to let programs access it as fast as possible. The primary way to do this is to
allocate memory for a thread on its local node and keep the thread running there
(node affinity) This gives the best latency for memory and minimizes traffic over
the global interconnect.

SMP Systems try to optimize in similar ways to optimize use of the per CPU
caches (cache affinity). However there is an important difference: on a SMP system
when a thread moves between CPUs its cache contents will eventually move with
it. On a NUMA system once a memory area is committed to a specific node it
stays there and a thread running on a different node that accesses it will always
add traffic to the interconnect and see higher latency.

However the scheduler can not always optimize purely for node affinity. The
problem is that not using a CPU in the system would be even worse than a pro-
cess using remote memory and seeing lower memory performance. In cases where
memory performance is more important than even use of all CPUs in the system
the application or the system administrator can override the default decisions of
the scheduler and the memory allocator. This allows to optimize better for specific
workloads.

Linux traditionally had ways to bind threads to specific CPUs (using the sched_set_affinity(2)
system call and schedutils) NUMA API extends this to allow programs to specify
on which node memory should be allocated.

The NUMA API described here separates placement of threads to CPUs and
placement of memory. Primarily it is concerned about the placement of memory.
In addition the application can configure CPU affinity separately. NUMA API is
currently available on SUSE Linux Enterprise Server 9 for AMDG64 and for TA64.

2 Optimizing Bandwidth

Memory access performance of programs can be optimized for latency or for band-
width. Most programs seem to prefer lower latency, but there are a few exceptions
that want bandwidth.

Using node local memory has the best latency. To get more bandwidth the
memory controllers of multiple nodes can be used in parallel. This is similar to how
RAID can improve disk 10 performance spreading 10 operations over multiple hard
disks. NUMA API can use the MMU (Memory Management Unit) in the CPU to
interleave blocks of memory from different memory controllers. This means each
consecutive page! in such a mapping will come from a different node.

When the applications does a large streaming memory access to such an inter-
leaved area it will see the bandwidth of the memory controllers of multiple nodes
combined. How well this works depends on the particular NUMA architecture, in
particular on the performance of the interconnect and the latency difference be-
tween local and remote memory. On some systems it only works effectively on a
subset of neighboring nodes.

Some NUMA systems like Opteron can be configured by firmware to interleave
all memory across all nodes on a page basis. This is called ”Node Interleaving” by
most firmware. ”"Node Interleaving” is similar to the interleaving mode offered by
the NUMA API; however they differ in important ways. Node Interleaving applies
to all memory while NUMA API interleaving can be configured for each process or
thread individually. If Node Interleaving is enabled by firmware, then NUMA policy
is disabled. With NUMA API each application can individually policy memory
areas for latency or bandwidth.

3 Parts of implementation: Kernel/System calls,
libnuma, numactl

NUMA API consists of different sub components: It has a kernel part that manages
memory policy for processes or specific memory mappings. This kernel part can be
controlled by three new system calls.

There is a user space shared library called libnuma that can be linked to ap-
plications. libnuma is the recommended interface to use NUMA policy. It offers
a more user friendly and more abstracted interface than using the system calls di-
rectly. The following paper will only describe this higher level interface. It also has
a command line utility numactl that can be used to control policy for an unmodified
application and its children.

The user libraries and applications are included in the numactl rpm, which is
included distribution since SUSE Linux Enterprise Server 9 2 In addition there are
some utility programs like numastat to collect statistics about the memory allocation
and numademo to show the effect of different policies on the system. The package
also contains man pages for all functions and programs.

Ipage is a 4K unit on an AMDG64 or PPC64 system, normally 16k on TA64
21t was already included in SUSE Linux 9.1, but it is recommended to use the newer version
from SLES9.

4 Policies

The main task of NUMA API is to manage policies. Policies can be applied to
processes or to memory areas.
NUMA API currently supports four different policies:

Name Description
default Allocate on the local node.
bind Allocate on a specific set of nodes.

interleave Interleave memory allocations on a set of nodes.
preferred Try to allocate on a node first.

The difference between bind and preferred is that bind will fail the allocation
when the memory cannot be allocated on the specified nodes. preferred falls back
to other nodes. Using bind can lead to earlier running out of memory and delays
due to more swapping. In libnuma preferred and bind are folded into one and can
be changed per thread with the numa_set_strict libnuma function. The default is
non strict preferred allocation

Policies can be per process (process policy) or per memory region Children
inherit the process policy of the parent on fork. The process policy is applied to all
memory allocations done in the context of the process. This includes kernel internal
allocations done in system calls and the file cache. Interrupts always allocate on the
current node. Process policy always applies when a page of memory is allocated by
the kernel.

Per memory region policies (also called VMA policies) allow a process to set
a policy for a block of memory in its address space. Memory region policies have
higher priority than the process policy. The main advantage of memory region poli-
cies is that they can be set up before an allocation happens. Currently they are only
supported for anonymous process memory, SYSV shared memory, shmem/tmpfs
mappings or hugetlbfs files. The region policy for shared memory is persistent until
the shared memory segment or file is deleted.

5 Some simple numactl examples

numactl is a command line tool to run processes with a specific NUMA policy. Using
it is useful to set policies for programs that cannot be modified and recompiled.
Here are some simple examples on how to use numactl

numactl --cpubind=0 --membind=0,1 program

Run program bound to the CPUs of node 0 and only allocating memory from
node 0 or 1. Please note that cpubind uses node numbers, not CPU numbers. On
a system with multiple CPUs per node these can differ.

numactl --preferred=1 numactl --show
Set preferred policy to node 1 and show the resulting state
numactl --interleave=all numbercruncher

Run memory bandwidth intensive number cruncher with memory interleaved
over all available nodes.

numactl --offset=1G --length=1G --membind=1 --file /dev/shm/A --touch

Bind the second gigabyte in the tmpfs file /dev/shm/A to node 1.

3VMA stands for Virtual Memory Area and is region of virtual memory in a process.

numactl --localalloc /dev/shm/file
Reset the policy for the shared memory file /dev/shm/file.
numactl --hardware

Print an overview over the available nodes.

6 numactl: important command line switches

Here is a quick overview of the important command line switches of numactl.

Many of these switches need a node mask as argument. Each node in the system
has a unique number. A node mask can be a comma separated list of node numbers,
a range of nodes (nodel-node2) or all. See numact! —hardware for the nodes available
on the current system.

Most common usage is to set policy for a process: The policy is passed as first
argument and afterwards the program name and its argument. The available policy
switches are:

—membind=nodemask Only allocate memory on the nodes in nodemask.

—interleave=nodemask Interleave all memory allocations over nodes in node-
mask

—cpubind=nodemask Execute process only on the CPUs of the nodes specified
in tnodemask. Note that —cpubind can be specified in addition with other
policies because it separately affects the scheduler.

—preferred=node Allocate memory preferable on node node.

numactl —show prints the current process NUMA state as inherited from the
parent shell.

numactl —hardware gives an overview of the available NUMA resources on the
system.

For more details see the numactl(8) man page.

7 numactl: shared memory

So far numactl has only been used to change the default policy of a process. In
addition it is also able to change policies in shared memory segments. This is useful
to change the policy of an application

An example would be a multi process program that uses a common shared
memory segment. For the individual processes it is best to use the default policy
of allocating memory on their current nodes. This way they get the best memory
latency for their local data structure. But the shared memory segment is shared
by multiple processes who run on different nodes. To avoid a hot spot on the node
which allocated the memory originally it may be an advantage to set interleaved
policy for the whole shared memory segment. This way all the accesses to it should
be spread out evenly over all nodes.

More complex policies are possibly. When parts of the shared memory are
mostly used by specific processes and are only accessed rarely by others they could
be bound to specific nodes or only interleaved to a subset of nodes which are near
to each other.

Shared memory here can be SYSV shared memory (from the shmat system
call), mmaped files in tmpfs or shmfs (normally in /dev/shm on a SUSE system)

or a hugetlbfs file. hugetlbfs will do the policy in huge pages granularity (2MB on
AMDG64 systems). The shared memory policy can be set up before the application
starts®. The policy will stay assigned to areas in the shared memory segment until
it is deleted.

The set policy only applies to new pages allocated. Already existing pages in
the shared memory segment will not be moved to conform to the policy.

Set up a 1GB tmpfs file to interleave its memory over all nodes.

numactl --length=1G --file=/dev/shm/interleaved --interleave=all

An hugetlbfs file can be set up in the same way, although all lengths must be
multiplies of the huge page size of the system®
An offset into the shared memory segment or file can be specified with —offset=number.
All numeric arguments can have unit prefixes: G for Gigabytes, M for Megabytes,
K for KBytes. The mode of the new file can be specified with -mode=mode
Alternatively this can be enforced with the —strict option. When —strict is set
and an already allocated page doesn’t conform to the new policy numactl will report
an error. numactl has several more options to control the type of the shared memory
segment. For details see the numactl(8) man page.

8 libnuma: basics, checking for NUMA

So far we have described numactl which controls the policy of whole processes.
The disadvantage of numactl is that the policy applies to the whole program, not
to individual memory areas (except for shared memory) or threads. For some
programs more fine grained policy control is needed.

This can be done with libnuma. libnuma is a shared library that can be linked
to programs and offers a stable API for NUMA policy. It provides a higher level
interface than using the NUMA API system calls directly and is the recommended
interface for applications. libnuma is part of the numact! rpm.

Applications link with libnuma as follows:

cc ... —lnuma

The NUMA API functions and macros are declared in the numa.h include file.
Before any NUMA API functions can be used the program has to call numa_available().
When this function returns a negative value, there is no NUMA policy support on
the system. In this case the behavior of all other NUMA API functions is undefined
and should not be called.

#include <numa.h>

if (numa_available() < 0) {
printf(‘‘Your system does not support NUMA API\n’’);

The next step is usually to call numa_maz_node(). This function discovers and
returns the number of nodes in the system. A word on thread safety: All libnuma
state is kept local per thread. Changing a policy in one thread will not affect the
other threads in the process.

4This assumes the application doesn’t insist on creating the shared memory segment itself.
5grep Hugepagesize /proc/meminfo gives the huge page size of the current system.

The following sections give an overview of the various libnuma functions with
some examples. For a more detailed reference please see the numa(3) man page. A
few more obscure ones are not described here.

9 libnuma: nodemasks

libnuma manages sets of nodes in abstract data types called nodemask_t defined
in numa.h. A nodemask_t is a simple fixed size bit set of node numbers. Each
node in the system has a unique number. The highest number is the number
returned by numa_maz_node() The maximum size is implementation defined in the
NUMA_NUM_NODES constant. It is passed by reference to many NUMA API
functions.

A node mask is initialized to the empty with nodemask_zero()

nodemask_t mask;
nodemask_zero (&mask) ;

An single node can be set with nodemask_set and cleared with nodemask_clr.
nodemask_equal compares two nodemasks. nodemask_isset tests if a bit is set in the
node mask.

nodemask_set (&mask, maxnode) ; /* set node highest */

if (nodemask_isset (&mask, 1)) { /* is node 1 set? */

}

nodemask_clr (&mask, maxnode); /* clear highest node again */

There are two predefined node masks: numa-all_nodes stands for all nodes in
the system and numa_no_nodes is the empty set.

10 libnuma: simple allocation

libnuma offers functions to allocate memory with a specified policy.

These allocation functions round all allocations to pages (4KB on AMD64 sys-
tems) and are relatively slow. They should only be used for allocating large memory
objects which exceed the cache sizes of the CPU and where NUMA policy is likely a
win. When no memory can be allocated they return NULL. All memory allocated
with the numa_alloc family of functions should be freed with numa_free.

numa_alloc_onnode allocates memory on a specific node:

void *mem = numa_alloc_onnode (MEMSIZE_IN_BYTES, 1);
if (mem == NULL)
/* report out of memory error */

. pass mem to a thread bound to node 1

The thread must eventually numa_free the memory. By default numa_alloc_onnode
will try to allocate memory on the specified node first, but fall back to other nodes
when there is not enough memory. When numa_set_strict(1) was executed first it
will not do this fall back and fail the allocation when there is not enough memory
on the intended node. Before that the kernel will try to swap out memory on the
node and clear other caches, which can lead to delays. To get a glimpse of how
much memory can be available on a node see the numa_node_size function below.
numa_alloc_interleaved allocates memory interleaved on all nodes in the system.

void *mem = numa_alloc_interleaved (MEMSIZE_IN_BYTES);
if (mem == NULL)
/* report out of memory error */

. run memory bandwidth intensive algorithm on mem ...
numa_free(mem, MEMSIZE_IN_BYTES);

Please note that using memory interleaved over all nodes is not always a per-
formance win. Sometimes depending on the NUMA architecture of the machine
the program runs on only a subset of neighboring nodes gives better bandwidth.
The numa_alloc_interleaved_subset function can be used to interleave on a subset of
nodes.

Another function is numa_alloc_local which allocates memory on the local node.
This is normally the default for all allocations, but useful to specify explicitly when
the process has a different process policy. numa_alloc allocates memory with the
current process policy.

11 libnuma: process policy

Each thread has a default memory policy inherited from its parent. Unless changed
with numactl this policy is normally to allocate memory preferably on the current
node. When existing code in a program cannot be modified to use the numa_alloc
functions described in the previous section directly it is sometimes useful to change
the process policy in a program.

numa_set_interleave_mask enables interleaving for the current thread. All future
memory allocations will allocate memory round robin interleaved over the nodemask
specified. Passing numa_all_nodes will interleave memory to all nodes. Passing
numa_no_nodes turns off interleaving again. numa_get_interleave_mask returns the
current interleave mask. This can be useful to save restore interleaving masks in a
library.

numamask_t oldmask = numa_get_interleave_mask();
numa_set_interleave_mask(&numa_all_nodes);

/* run memory bandwidth intensive legacy library that allocates memory */
numa_set_interleave_mask(&oldmask) ;

numa_set_prefered sets the preferred node of the current thread. The memory
allocator tries to allocate memory on that node first, and if there isn’t enough
memory free falls back to other nodes.

numa_set_membind sets a strict memory binding mask to a nodemask. strict
means that the memory must be allocated on the specified nodes, when there is
not enough memory free after swapping the allocation will fail. numa_get_membind
returns the current memory binding mask.

numa_set_localalloc sets the process policy to the standard local allocation policy.

12 libnuma: changing the policy of existing mem-
ory areas

When working with shared memory it is often not possible to use the numa_alloc
family of functions to allocate memory. The memory has to be gotten from shmat()
or from mmap instead. To allow libnuma programs to set policy on such areas there
are additional functions to set memory policy for already existing areas.

numa_interleave_memory will set an interleaving policy with an interleaving
mask. Passing numa_all_nodes will interleave to all nodes in the system.

void *mem = shmat(...); /* get shared memory */
numa_interleave_mask(mem, size, numa_all_nodes);

numa_tonode_memory will allocate the memory on a specific node, while numa_tonodemask_memory
puts the memory onto a mask of nodes.
numa_setlocal_memory gives the memory area a policy to allocate on the current
node. numa_police_memory uses the current policy to allocate memory. This can
be useful when the memory policy is changed later.
When numa_set_strict(1) was executed previously to set strict policy these calls
will call numa_error when any of the already existing pages in the memory area do
not conform to the new policy. Otherwise existing pages are ignored.

13 libnuma: binding to CPUs

The functions discussed so far allocated memory on specific nodes. Another part
of NUMA policy is to run the thread on the correct node. This is done by the
numa_run_on_node function which binds the current thread to all CPUs in node.
numa_run_on_node_mask binds the current thread to any of the CPUs included in
a nodemask.

Run current thread to node 1 and allocate memory there:

numa_run_on_on_node (1) ;
numa_set_prefered(1);

A simple way to use libnuma is the numa_bind function. It binds both the CPU
and the memory of the process allocated in the future to a specific nodemask. It is
equivalent to the previous example.

Bind process CPU and memory allocation to node 1 using numa_bind:

nodemask_t mask;
nodemask_zero (&mask) ;
nodemask_set (&mask, 1);
numa_bind (&mask) ;

The thread can be reset to execute on all nodes again by binding it to numa_all_nodes:
numa_run_on_node_mask(&numa_all_nodes);

The numa_get_run_node_mask function returns the nodemask of nodes the cur-
rent thread is allowed to run on.

14 libnuma: inquiring about the environment

numa_node_size returns the memory size of a node. The return argument is the total
size of its memory, which is not necessarily all available to the program. The second
argument is a pointer that can be filled with the free memory on the node. The
program can allocate node memory somewhere between the free memory (which is
normally low because Linux uses free memory for caches) and the maximum memory
size. This function gives a hint for how much memory is available for allocation on
each node, but it should be only taken as a hint, preferably with some way for the
administrator to overwrite. There is also a numa_node_size6/ function which uses
an long long argument for the free memory instead of long.

numa_node_to_cpus returns the CPU numbers of all CPUs in a node. This can
be used to find out how many CPUs there are in a node. It gets as argument the
node number and a pointer to an array. The last argument is the byte length of

the array. The array is filled with a bit mask of CPU numbers. When the array
is not long enough to contain all CPUs the function returns -1 and set errno to
ERANGE. It is recommended that applications always handle this error or pass
a very big buffer (e.g. 512 bytes). Otherwise there may be failures on very big
machines. Linux already runs on 1024 CPU machines and is expected to be moved
to even bigger machines.

15 libnuma: error handling

Error handling in libnuma is relatively simple. The main reason for this is that
errors in setting NUMA policy can be usually ignored. The worst result of a wrong
NUMA policy is that the program runs slower than it could be.

When an error occurs while setting a policy the numa_error function is called. By
default it prints an error to stderr. When the numa_exit_on_error global variable is
set it will exit the program. The function is declared weak and can be overwritten by
defining a replacement function in the main program. For example a C++ program
could throw a C++ exception in there.

Memory allocation functions always return NULL when no memory is available.

16 NUMA allocation statistics with numastat

For each node in the system, the kernel maintains some statistics pertaining to
NUMA allocation status as each page is allocated. This information may be useful
for testing the effectiveness of a NUMA policy.

The statistics are retrieved with the numastat command. The statistics are
collected on a per-node basis. On systems with multiple CPU cores per node,
numstat aggregates the results from all cores on a node to form a single result for
the entire node. The numastat command reports the following statistics for each
node:

numa_hit is incremented when a process requests a page from a particular node,
and it receives a page from the requested node, then this counter is incremented for
that particular node. The process may be running on any node in the system.

numa_miss is incremented when a process requests a page from a particular
node, and it instead receives a page from some other node, then this counter is
incremented at the node where the page was actually allocated. The process may
be running on any node in the system.

numa_foreign is incremented when a process requests a page from a particular
node, and it instead receives a page from some other node, this counter is incre-
mented at the original node from which the page was requested. The process may be
running on any node in the system. Each numa_foreign event has a corresponding
numa-miss event on another node.

interleave_hit is incremented on the node on which a page is allocated when the
allocation obeys the interleave policy for the address range. In addition, numa_hit
and either local_node or other_node are incremented as well on the node on which
the page is allocated. Note, there is no count of the number of pages allocated as
interleaved, but not on the requested node due to the requested node having no free
pages.

local_node - When a process requests a page, and the resulting page is located
on the same node where the process is running, then this counter is incremented on
that particular node.

other_node - When a process requests a page, and the resulting page is located on
a different node than where the process is running, then this counter is incremented

for the node on which the page is actually allocated.

The difference between numa_miss, numa_hit and local_node, foreign_node is that
the first two count hit or miss for the NUMA policy, while the later count if the
allocation was on the same node as the requesting thread was running on.

To help further clarify how the numastat values consider the following examples.

1) The following example shows which counters are incremented when a process
running on node 0 requests a page on node 0 and it is allocated on node 0.

node3 node?2 nodel node0
numa_hit +1
numa_miss
numa_foreign
interleave_hit
local_node +1
other_node

2) The following example shows which counters are incremented when a process
running on node 0 requests a page on node 0 yet it is allocated on node 1 due to a
shortage of free pages on node 0.

node3 node?2 nodel node0
numa_hit
numa_miss +1
numa_foreign +1
interleave_hit
local_node
other_node +1

3) The following example shows which counters are incremented when a process
running on node 0 requests and receives a page on node 1. Note the difference
between this and example 1).

node3 node?2 nodel node0
numa_hit +1
numa_miss
numa_foreign
interleave_hit
local_node
other_node +1

4) The following example shows which counters are incremented when a process
running on node 0 requests a page on node 1 yet is allocated on node 0 due to a
shortage of free pages on node 1.

node3 node?2 nodel node0
numa_hit
numa_miss +1
numa_foreign +1
interleave_hit
local_node +1

other_node

As a further example, consider a four node machine, with 4 GB of RAM per
node. Initially, numastat reports the following statistics for this machine:

> numastat
node3 node?2 nodel nodeO

10

numa_hit 58956 142758 424386 319127

numa_miss 0 0 0 0
numa_foreign 0 0 0 0
interleave_hit 19204 20238 19675 20576
local_node 43013 126715 409434 305254
other_node 15943 16043 14952 13873

Now suppose that a program called memhog runs on nodel, allocating 8 GB of
RAM during execution. After memhog completes, numastat reports the following
statistics:
> numastat

node3 node?2 nodel node0

numa_hit 58956 142758 424386 320893
numa_miss 48365 1026046 0 0
numa_foreign 0 0 1074411 0
interleave_hit 19204 20238 19675 20577
local_node 43013 126856 1436403 307019
other_node 64308 1042089 14952 13874

Each column represents a node where an allocation event took place. Notice
that the memhog program tried to allocate 1,074,411 pages from nodel, but was
unable to do so. Instead, the process wound up with 1,026,046 pages from node2,
and 48,365 pages from node3.

17 System call overview

NUMA API adds three new system calls: mbind, set_mempolicy, get_mempolicy.
Normally user applications should use the higher level libnuma interface and not
call the system calls directly. The system call interface is declared in numaif.h. The
system calls are currently not defined in glibc, applications use them should link
to libnuma. They may return -1 and ENOSYS in errno when the kernel does not
support NUMA policy.

All of these system calls get masks of nodes as argument, similar to the node-
mask_t type of libnuma. In the system call interface they are defined as arrays of
longs, each long containing a string of bits, together with an additional argument
that gives the highest node number in the bitmap.

set_mempolicy sets the memory policy of the current thread. The first ar-
gument is the policy. Valid policies are MPOL_BIND, MPOL_INTERLEAVE,
MPOL_DEFAULT, MPOL_PREFERED. These act the same as the numactl poli-
cies described earlier. How the node mask argument is used depends on the policy.
For MPOL_INTERLFEAVE it specifies the interleave mask, for MPOL_BIND and
MPOL_PREFERED it contains the membind mask.

get_mempolicy retrieves the memory policy of the current thread. In addition to
output arguments for policy and nodemask and the nodemask size it has an address
and flags argument. When the MPOL_MF_ADDR bit is set in flags the vma policy
of address is returned in the other arguments. When MPOL_F_NODE is set in
addition the current node of the page at address is returned.

mbind sets the memory policy for a memory area. The first argument is a
memory address and a length, the rest is a policy with mask and length similar to
set_mempolicy. In addition it has a flags argument. When MPOL_MF_STRICT is
passed for flags the call will fail when any existing pages in the mapping violate the
specified policy.

For more details see the get_mempolicy(2), set_mempolicy(2), mbind(2) man
pages.

11

18 Limitations

On bigger system there is normally a hierarchy in the interconnect. This means
that neighboring nodes are faster to access than more remote nodes. NUMA API
currently represents the system as a flat set of nodes. Future versions will allow the

application to query node distances.
Future versions of NUMA API may allow to set policy on the file cache.

12

