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Abstract

A new algorithm for generating order preserving minimal perfect hash func-
tions is presented. The algorithm is probabilistic, involving generation of ran-
dom graphs. It uses expected linear time and requires a linear number words
to represent the hash function, and thus is optimal up to constant factors. It
runs very fast in practice.

Keywords: Data structures, probabilistic algorithms, analysis of algorithms,
hashing, random graphs

Introduction

Consider a set W of m words each of which is a finite string of symbols over an
ordered alphabet Y. A hash function is a function h : W — [ that maps the set of
words W into some given interval of integers I, say [0, k — 1], where k is an integer,

and usually £ > m. The hash function, given a word, computes an address (an
integer from [) for the storage or retrieval of that item. The storage area used to

store items is known as a hash table. Words for which the same address is computed
are called synonyms. Due to the existence of synonyms a situation called collision
may arise in which two items w; and wy have the same address. Several schemes for
resolving collisions are known. A perfect hash function is an injection h : W — I,

*appeared in Information Processing Letters, 43(5):257-264, October 1992.



where W and I are sets as defined above, & > m. If £ = m, then we say that A is
a minimal perfect hash function. As the definition implies, a perfect hash function
transforms each word of W into a unique address in the hash table. Since no collisions
occur each item can be retrieved from the table in a single probe. A hash function
is order preserving if it puts entries into the hash table in a prespecified order.

Minimal perfect hash functions are used for memory efficient storage and fast
retrieval of items from a static set, such as reserved words in programming languages,
command names in operating systems, commonly used words in natural languages,
etc. An overview of perfect hashing is given in [18], §3.3.16 and the area is surveyed
n [25]. Some recent independent developments appear in [13, 14, 16].

Various algorithms with different time complexities have been presented for
constructing perfect or minimal perfect hash functions, including [3, 4, 5, 6, 7, 8,
17, 10, 19, 20, 22, 30]. In 1985 Sager proposed the mincycle algorithm [28] which
uses graph considerations. The author claimed that the mincycle algorithm has
complexity O(m?). Based on this algorithm other solutions have been developed
[9, 14, 15, 16], with mainly experimental evidence of time performance.

We present a new algorithm based on random graphs for finding minimal perfect
hash functions of the form

h(w) = (g(fl(w)) + g(fz(U)))) mod m

where fi and f; are functions that map strings into integers, and ¢ is a function
that maps integers into [0, m — 1]. We show that the expected time complexity is
O(m). The space required to store the generated function is O(m log m) bits, which
is optimal for order preserving minimal perfect hash functions (see [21]).

2 The new algorithm

Consider the following problem. For a given undirected graph G = (V, F), |E| = m,
| V| = n find a function ¢ : V — [0, m — 1] such that the function h : £ — [0, m — 1]
defined as

h (e = (u,v) € E) = (g(u) + g(v)) mod m

is a bijection. In other words we are looking for an assignment of values to vertices
so that for each edge the sum of values associated with its endpoints taken modulo
the number of edges is a unique integer in the range [0, m — 1].

This problem is not always solvable if arbitrary graphs are considered. However,
if the graph G is acyclic, a very simple procedure can be used to find values for each
vertex, as follows. Associate with each edge a unique number h(e) € [0, m —1]in any
order. For each connected component of ' choose a vertex v. For this vertex, set
g(v) to 0. Traverse the graph using a depth-first search (or any other regular search
on a graph), beginning with vertex v. If vertex w is reached from vertex u, and the
value associated with the edge e = (u, w) is h(e), set g(w) to (h(e)— ¢g(u)) mod m.
Apply the above method to each component of . Pseudocode is given in Fig. 2,
which solves a problem like that addressed in [27]. (Notice that we have reversed our



original problem, by defining the values of the function h first and then searching
for suitable values for function g.)

To prove the correctness of the method it is sufficient to show that the value
of function ¢ is computed exactly once for each vertex. This property is clearly
fulfilled if & is acyclic. The solution to this graph problem becomes the second part
of our algorithm for generating the minimal perfect hash function and is called the
assignment step.

Now we are ready to present the new algorithm for generating a minimal perfect
hash function. We denote the length of the word w by |w| and its i-th character by
w(i]. The algorithm comprises two steps: mapping and assignment. In the mapping
step a graph G = (V, F) is constructed, where V' = {0,...,n—1} with n determined
later, and £ = {(fi(w), o(w)) : w € W}. We introduce auxiliary functions f; and
fo which are designed to be two independent random functions mapping W into
[0,n — 1]. There are various possibilities. Here we choose the functions to be:

||
filw) = Z:Tl(z',w[z']) mod n

||
h(w) = ZTQ(i,w[z’]) mod n

where T7 and T, are tables of random integers modulo n for each character and for
each position of a character in a word.

The space required by tables 77 and T3 is O(logn) bits, since each entry is a
number in the range [0,n — 1] and there is in effect a constant number of entries
(actually dependent on the length of keys and the size of character set). As long as
n fits into one computer word this is O(1) words. If n is not less than the alphabet
size, by treating each character w[i] as a number we obtain another suitable pair of
mapping functions:

||
Ji(w) = Z_: Tie(1) x wli] | mod n.

These can be stored in less space at the expense of greater time for hash function
evaluation on common machine architectures (since table lookups are replaced by
multiplications). In fact we can characterize suitable functions by as little as one
random number, at the expense of even greater computation time. However our
space requirements for increasing m are dominated by the space for storing the
function ¢, so such considerations are of interest only for small m.

Our goal is to find values of Ty and T so that the graph G is acyclic. Because
we have no easy deterministic method for doing this, we randomly generate tables
repeatedly, until we obtain an acyclic graph (see Fig. 1).

Once an acyclic graph is generated the assignment step is executed. Notice that
generating a minimal perfect hash function can be reduced to the problem described
at the beginning of this section. For an acyclic graph, each edge e = (u,v) €



repeat
initialize E := 0
randomly generate tables Ty and T5;
for w € W loop

Aw) = (M Ta(j, wli])) mod n;

fw) = (242 7o, wli])) mod n;
add the edge (fi(w), fo(w)) to graph G
end loop;
until G is acyclic;

Figure 1: The mapping step

procedure traverse(u : vertex);
begin
visited[u] := TRUE;
for w € neighbours(u) loop
if not visited[w] then
g(w) := (h(e = (u,w)) = g(u)) mod m;
traverse(w);
end if;
end loop;
end traverse;

begin
visited[v € V] := FALSE;
for v € V loop
if not visited[v] then

g(v) := 0;
traverse(v);
end if;
end loop;

end;

Figure 2: The assignment step



function h(w : string) : integer;
begin

= (S 717, wli))) mod n;
vi= (S 7o, wli])) mod n;
return (g(u) + g(v)) mod m;

end;

Figure 3: Evaluating the hash function

F' corresponds uniquely to some word w (such that fi(w) = w and fpi(w) = v)
so the search for the desired function is straightforward. We simply set h(e =
(filw), fo(w))) = i — 1 if w is the i-th word of W. Then values of function ¢ for each
v € V are computed by the assignment step. The function h is a minimal perfect
hash function for W.

Evaluation of the hash function is done in fast, constant time, involving little
more than two standard hashes. Pseudocode is given in Fig. 3.

3 Complexity analysis

In this section we show that expected time complexity of the algorithm is linear in
the number of words.

As a result of the technique used to generate edges of the graph there is some
dependency among them. However, due to the large degree of randomness introduced
by the mapping functions, the assumption that the m-edged graphs are generated
uniformly at random should give quite accurate results, especially since our graphs
are quite sparse. We henceforth make this assumption in our theoretical analysis.
We also treat the alphabet size and maximum key length as constants, a reasonable
assumption for any specific application area. (In fact m is bounded by the alphabet
size raised to the maximum key length, but this is not a practical restriction.)

The second step of the algorithm, assignment, runs in O(m + n) time. In each
iteration of the mapping step, the following operations are executed: (i) generation
of tables of random integers; (ii) computation of values of auxiliary functions for each
word in a set; (iii) testing if the generated graph G is acyclic. Operation (i) takes at
most time proportional to the maximum length of a word in the set W times size of
alphabet ¥, which is a constant. Operations (ii) and (iii) need O(m) and O(m + n)
time, respectively. Hence, the complexity of a single iteration is O(m + n).

We now show that the expected number of iterations in the mapping step can be
made constant by suitable choice of n. Let p, denote the probability of generating
an acyclic graph with m edges and n vertices. Let X be a random variable such
that p(X = i) = p.(1—p,)"~'. By standard probability arguments, the mean of X,
which is equal to the expected number of iterations executed in the mapping step,



is 1/p, and its variance is (1 — p,)/p?. Also, the probability that the number of
iterations in the mapping step exceeds some k is (1 — Pa)k.

To obtain a high probability of generating an acyclic graph in an iteration we
must deal with very sparse graphs. We choose n = ¢m, for some constant ¢. Detailed
probabilistic arguments appear in [26]. Briefly, they proceed as follows. For random
labeled graphs with m edges and n = ¢m vertices as n — oo, the expected number
of cycles of length k tends towards 2% /(2kc*) [1, p. 98]. This result is for graphs
with no self-loops (k = 1) or multiple edges (k = 2), however it may be extended
to cover them. Then, the probability of having an acyclic graph tends towards

exp (— >or—1 2’“/(2/{:0’“)) [12]. Since, for ¢ > 2, lim Sohe1 28/(2ke*) = 11n (sz),

the probability of getting an acyclic graph tends towards p° = \/? . For ¢ < 2,
pa = 0.

Thus, for ¢ > 2 the probability of generating an acyclic graph approaches a
nonzero constant, so we choose n > 2m. For n = 3m, the expected number of
iterations for large m is F(X) ~ 1/p>® = /3. Therefore, the complexity of the
mapping step is O(m + n), and the complexity of the algorithm is O(m + n). Since
n = c¢m the complexity of the algorithm is linear in m, the number of words.

We can slightly improve the performance of the algorithm by modifying the
functions f; and f, so that there are no self-loops. One way is to change the definition

of f2 to ensure that fo(w) # fi(w), another is to generate bipartite graphs. For the
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former case p2® = elle ~=. If bipartite graphs are generated, the probability of

generating a cycle-free graph increases to po° = @. Other improvements can be
made if special properties of the words in W are taken into account.

4 A simple example

Consider the set of 12 month names, abbreviated to the first three characters. We
want to construct a minimal perfect hash function so that the ¢-th month, ¢ €
{1,...,12} is kept in the (i — 1)-th location of the hash table.

We select ¢ to be 211—2, hence n = 25. Moreover we notice that the second and the
third characters of the keys are unique for any key, therefore we restrict the definition
of tables T7 and T so that there are only two rows in each table. The space required
to store such tables is 2 X 2 x 26 = 104 bytes. Suppose that in the mapping step
the randomly generated contents of tables Ty and T3 are as shown in Fig. 4 a), with
unused letters omitted. Then, for each key we compute the edge, which corresponds
toit. Thus we have: fi(jan) := (T1(2,a) + T1(3,n)) mod 25 = (11+19) mod 25 = 5,
L(jan) = (T2(2,a)+ T5(3,n)) mod 25 = (5 + 7) mod 25 = 12; fi(feb) := (13 +
9) mod 25 = 22, fa(feb) := (21 + 9) mod 25 = 5; fi(mar) := (114 1) mod 25 = 12,
fo(mar) := (54+17) mod 25 = 22. The last edge has closed a cycle (5, 12,22) and there
is no point in computing edges for the remaining keys with the current contents of
tables Ty and T5. (Although the option of early detection of cycles was not included
in the pseudocode given in Fig. 1, it is quite easy to implement. We use a set union



T 2111 113 21|17 1
1
3 9 21 13| 5 |19 2001 |0 3|12
a b e g | n o p r t u v y
T 2|5 221 241 8 12
2
3 9 |23 5127 12117 | 2 11, 8
b) a b c e g | n o p r t u v y
T 2119 3 |14 7 120 24
1
3 11|21 15|14 |10 31217 1|15
a b c e gl n o p r t u v y
T 2|3 13| 7 11|21 22
2
3 10|12 19| 3 |10 2811 24|15

Figure 4: Contents of the mapping tables: a) during the first iteration; b) during
the second iteration

algorithm [29] to do so. This results in a theoretically inferior solution, as the best
set union algorithms have worst-case complexity O(n + ma(n,n)), where a(n,n) is
the functional inverse of Ackermann’s function. However, linear time performance
of set union algorithms is expected on the average [24, 2, 31], and, as the authors of
[29] point out “for all practical purposes, a(m, n)is a constant no larger than four.”)

Because of the cycle, the mapping process has to be repeated. The contents of
tables T7 and T, generated in the second iteration are shown in Fig. 4 b). This
time the mapping leads to an acyclic graph, shown in Fig. 5. In the assignment
step for each connected component we select a vertex and assign 0 to it. Then we
perform a regular search on the component, computing the values associated with
the remaining vertices.

We start with vertex 0, hence ¢(0) := 0. Suppose we explore the right branch
first. Thus ¢(17) :== (1 —g¢(0)) mod 12 =1, ¢(9) := (8 —¢(17)) mod 12 = 7, ¢(18) :=
(4—¢(9)) mod 12 =9 and ¢(7) := (5 — ¢(9)) mod 12 = 10. Next, after returning to
vertex 0, we explore the left branch. Here we set ¢(13) := (6 — ¢(0)) mod 12 = 6,
g(4) :== (0 —g(13)) mod 12 = 6 and ¢(22) := (3 — g(4)) mod 12 = 9. This ends the
assignment step for the largest component. The same procedure is then applied to
the remaining components. It is easy to see that ¢(8) = 0, ¢(10) = 10, ¢(19) = 1;
g(11) =0, ¢(21) = 2 and ¢(14) = 0, ¢(16) = 7, ¢(20) = 9 are suitable values. This
ends the generation phase of the hash function.



Now, to calculate the hash table address for nov, say, we compute fi(nov) :=
(7+ 1) mod 25 = 8 and fo(nov) := (11 + 24) mod 25 = 10. Then the hash table
address of nov is (g(8) + ¢(10)) mod 12 = (0 + 10) mod 12 = 10. (With no extra
work(!) we have gained also the information that nov is the 10 + 1 = 11-th month

of the year.)
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Figure 5: The graph generated in the second iteration of the mapping step

5 Experimental results

The new algorithm, without any specific improvements, was implemented in the
C language. All experiments were carried out on Sun SPARC station 2, running
under the SunOS operating system. The results are summarized in Table 1. An
entry in the table produced for the algorithm was generated as follows: for each
specified m (number of words) 250 random sets of words were selected. The table
entries represent the averages over these 250 trials. Words were chosen from 24692
words in a dictionary. The dictionary was obtained by removing from the standard
Unix dictionary all words shorter than 3 characters, longer than 18 characters or
containing characters other than letters. For each experiment the words were selected
using shuffling [23]. For m > 24692, artificial sets of random words were generated.
The values of m, iterations, mapping, assignment and total are the number of words,
average number of iterations in the mapping step, time for the mapping step, time
for the assignment step and total time for the algorithm, respectively. All times are
in seconds.

The experimental results fully back the theoretical considerations. Also, the time
requirements of the new algorithm are very low. Observe that the average number
of iterations is approximately equal to v/3 as indicated by the theory. Likewise



m = n/3 | iterations | mapping | assignment total
512 1.704 0.037 0.010 | 0.047
1024 1.684 0.052 0.019 | 0.072
2048 1.776 0.095 0.037 | 0.132
4096 1.676 0.169 0.067 | 0.236
8192 1.668 0.320 0.142 | 0.463
16384 1.680 0.628 0.293 | 0.921
24692 1.688 0.950 0.444 | 1.394
32768 1.636 1.353 0.597 | 1.949
65536 1.696 2.718 1.198 | 3.916
131072 1.676 5.448 2.416 | 7.864
262144 1.768 11.273 4.813 | 16.087
524288 1.736 22.493 10.414 | 32.907

Table 1: Experimental results

the mapping, assignment and total times grow approximately linearly with m. A
comparison with the timing results given in [16] reveals that this algorithm is much
faster than that given there. For example, their algorithm took 763.07 seconds to
generate a minimal perfect hash function for 524288 keys on a Sequent machine.

In the implementation of the algorithm we used an edge-oriented representation
of graphs [11]. This allowed us to handle edges as concrete objects, represented by
integers, and not as pairs of vertices. Because of this, the space complexity of the
algorithm is linear in the number of words too, with a very small constant factor.

6 Conclusions

A new algorithm for generating order preserving minimal perfect hash functions
has been developed. The expected time complexity of the algorithm is O(m), so the
algorithm is time optimal. Its space complexity, also optimal, is em log m+O(1) logn
bits, or em + O(1) words, as long as n fits into a word. Observe that the i-th word of
W is placed at (i—1)-th location of the hash table, hence the generated hash function
preserves the order of the words in an input. This allows arbitrary arrangement of
them, which may be useful in some applications. The generated function is quickly
computable, and the space needed to store it may be made as small as m(2 + ¢),
€ > 0. Extensive experimental results have confirmed the theoretical results. They
also have shown that the time requirements of the new algorithm are very low, even
for very large sets.
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