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where W and I are sets as de�ned above, k � m. If k = m, then we say that h isa minimal perfect hash function. As the de�nition implies, a perfect hash functiontransforms each word ofW into a unique address in the hash table. Since no collisionsoccur each item can be retrieved from the table in a single probe. A hash functionis order preserving if it puts entries into the hash table in a prespeci�ed order.Minimal perfect hash functions are used for memory e�cient storage and fastretrieval of items from a static set, such as reserved words in programming languages,command names in operating systems, commonly used words in natural languages,etc. An overview of perfect hashing is given in [18], x3.3.16 and the area is surveyedin [25]. Some recent independent developments appear in [13, 14, 16].Various algorithms with di�erent time complexities have been presented forconstructing perfect or minimal perfect hash functions, including [3, 4, 5, 6, 7, 8,17, 10, 19, 20, 22, 30]. In 1985 Sager proposed the mincycle algorithm [28] whichuses graph considerations. The author claimed that the mincycle algorithm hascomplexity O(m4). Based on this algorithm other solutions have been developed[9, 14, 15, 16], with mainly experimental evidence of time performance.We present a new algorithm based on random graphs for �nding minimal perfecthash functions of the formh(w) = �g(f1(w)) + g(f2(w))�mod mwhere f1 and f2 are functions that map strings into integers, and g is a functionthat maps integers into [0;m � 1]. We show that the expected time complexity isO(m). The space required to store the generated function is O(m logm) bits, whichis optimal for order preserving minimal perfect hash functions (see [21]).2 The new algorithmConsider the following problem. For a given undirected graph G = (V ;E), jE j = m,jV j = n �nd a function g : V ! [0;m � 1] such that the function h : E ! [0;m � 1]de�ned as h �e = (u; v) 2 E� = �g(u) + g(v)�mod mis a bijection. In other words we are looking for an assignment of values to verticesso that for each edge the sum of values associated with its endpoints taken modulothe number of edges is a unique integer in the range [0;m � 1].This problem is not always solvable if arbitrary graphs are considered. However,if the graph G is acyclic, a very simple procedure can be used to �nd values for eachvertex, as follows. Associate with each edge a unique number h(e) 2 [0;m�1] in anyorder. For each connected component of G choose a vertex v . For this vertex, setg(v) to 0. Traverse the graph using a depth-�rst search (or any other regular searchon a graph), beginning with vertex v . If vertex w is reached from vertex u, and thevalue associated with the edge e = (u;w) is h(e), set g(w) to (h(e)� g(u)) mod m.Apply the above method to each component of G . Pseudocode is given in Fig. 2,which solves a problem like that addressed in [27]. (Notice that we have reversed our2



original problem, by de�ning the values of the function h �rst and then searchingfor suitable values for function g .)To prove the correctness of the method it is su�cient to show that the valueof function g is computed exactly once for each vertex. This property is clearlyful�lled if G is acyclic. The solution to this graph problem becomes the second partof our algorithm for generating the minimal perfect hash function and is called theassignment step.Now we are ready to present the new algorithm for generating a minimal perfecthash function. We denote the length of the word w by jw j and its i -th character byw [i ]. The algorithm comprises two steps: mapping and assignment. In the mappingstep a graph G = (V ;E) is constructed, where V = f0; : : : ; n�1g with n determinedlater, and E = f(f1(w); f2(w)) : w 2 W g. We introduce auxiliary functions f1 andf2 which are designed to be two independent random functions mapping W into[0; n � 1]. There are various possibilities. Here we choose the functions to be:f1(w) = 0@ jw jXi=1T1(i ;w [i ])1Amod nf2(w) = 0@ jw jXi=1T2(i ;w [i ])1Amod nwhere T1 and T2 are tables of random integers modulo n for each character and foreach position of a character in a word.The space required by tables T1 and T2 is O(log n) bits, since each entry is anumber in the range [0; n � 1] and there is in e�ect a constant number of entries(actually dependent on the length of keys and the size of character set). As long asn �ts into one computer word this is O(1) words. If n is not less than the alphabetsize, by treating each character w [i ] as a number we obtain another suitable pair ofmapping functions: fk (w) = 0@ jw jXi=1Tk (i)� w [i ]1A mod n:These can be stored in less space at the expense of greater time for hash functionevaluation on common machine architectures (since table lookups are replaced bymultiplications). In fact we can characterize suitable functions by as little as onerandom number, at the expense of even greater computation time. However ourspace requirements for increasing m are dominated by the space for storing thefunction g , so such considerations are of interest only for small m.Our goal is to �nd values of T1 and T2 so that the graph G is acyclic. Becausewe have no easy deterministic method for doing this, we randomly generate tablesrepeatedly, until we obtain an acyclic graph (see Fig. 1).Once an acyclic graph is generated the assignment step is executed. Notice thatgenerating a minimal perfect hash function can be reduced to the problem describedat the beginning of this section. For an acyclic graph, each edge e = (u; v) 23



repeatinitialize E := ;;randomly generate tables T1 and T2;for w 2W loopf1(w) := �Pjw jj=1T1(j ;w [j ])�mod n;f2(w) := �Pjw jj=1T2(j ;w [j ])�mod n;add the edge (f1(w); f2(w)) to graph G ;end loop;until G is acyclic; Figure 1: The mapping stepprocedure traverse(u : vertex);beginvisited[u] := TRUE;for w 2 neighbours(u) loopif not visited[w ] theng(w) := (h(e = (u;w))� g(u)) mod m;traverse(w);end if;end loop;end traverse;beginvisited[v 2 V ] := FALSE;for v 2 V loopif not visited[v ] theng(v) := 0;traverse(v);end if;end loop;end; Figure 2: The assignment step4



function h(w : string) : integer;beginu := �Pjw jj=1 T1(j ;w [j ])�mod n;v := �Pjw jj=1 T2(j ;w [j ])�mod n;return �g(u) + g(v)� mod m;end; Figure 3: Evaluating the hash functionE corresponds uniquely to some word w (such that f1(w) = u and f2(w) = v)so the search for the desired function is straightforward. We simply set h(e =(f1(w); f2(w))) = i �1 if w is the i -th word ofW . Then values of function g for eachv 2 V are computed by the assignment step. The function h is a minimal perfecthash function for W .Evaluation of the hash function is done in fast, constant time, involving littlemore than two standard hashes. Pseudocode is given in Fig. 3.3 Complexity analysisIn this section we show that expected time complexity of the algorithm is linear inthe number of words.As a result of the technique used to generate edges of the graph there is somedependency among them. However, due to the large degree of randomness introducedby the mapping functions, the assumption that the m-edged graphs are generateduniformly at random should give quite accurate results, especially since our graphsare quite sparse. We henceforth make this assumption in our theoretical analysis.We also treat the alphabet size and maximum key length as constants, a reasonableassumption for any speci�c application area. (In fact m is bounded by the alphabetsize raised to the maximum key length, but this is not a practical restriction.)The second step of the algorithm, assignment, runs in O(m + n) time. In eachiteration of the mapping step, the following operations are executed: (i) generationof tables of random integers; (ii) computation of values of auxiliary functions for eachword in a set; (iii) testing if the generated graph G is acyclic. Operation (i) takes atmost time proportional to the maximum length of a word in the set W times size ofalphabet �, which is a constant. Operations (ii) and (iii) need O(m) and O(m + n)time, respectively. Hence, the complexity of a single iteration is O(m + n).We now show that the expected number of iterations in the mapping step can bemade constant by suitable choice of n. Let pa denote the probability of generatingan acyclic graph with m edges and n vertices. Let X be a random variable suchthat p(X = i) = pa(1� pa)i�1. By standard probability arguments, the mean of X ,which is equal to the expected number of iterations executed in the mapping step,5



is 1=pa and its variance is (1 � pa)=p2a . Also, the probability that the number ofiterations in the mapping step exceeds some k is (1� pa)k .To obtain a high probability of generating an acyclic graph in an iteration wemust deal with very sparse graphs. We choose n = cm, for some constant c. Detailedprobabilistic arguments appear in [26]. Brie
y, they proceed as follows. For randomlabeled graphs with m edges and n = cm vertices as n ! 1, the expected numberof cycles of length k tends towards 2k=(2kck) [1, p. 98]. This result is for graphswith no self-loops (k = 1) or multiple edges (k = 2), however it may be extendedto cover them. Then, the probability of having an acyclic graph tends towardsexp ��Pnk=1 2k=(2kck)� [12]. Since, for c > 2, limn!1Pnk=1 2k=(2kck) = 12 ln � cc�2�,the probability of getting an acyclic graph tends towards p1a = qc�2c . For c � 2,p1a = 0.Thus, for c > 2 the probability of generating an acyclic graph approaches anonzero constant, so we choose n > 2m. For n = 3m, the expected number ofiterations for large m is E(X ) � 1=p1a = p3. Therefore, the complexity of themapping step is O(m + n), and the complexity of the algorithm is O(m + n). Sincen = cm the complexity of the algorithm is linear in m, the number of words.We can slightly improve the performance of the algorithm by modifying thefunctions f1 and f2 so that there are no self-loops. One way is to change the de�nitionof f2 to ensure that f2(w) 6= f1(w), another is to generate bipartite graphs. For theformer case p1a = e1=cq c�2c . If bipartite graphs are generated, the probability ofgenerating a cycle-free graph increases to p1a = pc2�4c . Other improvements can bemade if special properties of the words in W are taken into account.4 A simple exampleConsider the set of 12 month names, abbreviated to the �rst three characters. Wewant to construct a minimal perfect hash function so that the i -th month, i 2f1; : : : ; 12g is kept in the (i � 1)-th location of the hash table.We select c to be 2 112 , hence n = 25. Moreover we notice that the second and thethird characters of the keys are unique for any key, therefore we restrict the de�nitionof tables T1 and T2 so that there are only two rows in each table. The space requiredto store such tables is 2 � 2 � 26 = 104 bytes. Suppose that in the mapping stepthe randomly generated contents of tables T1 and T2 are as shown in Fig. 4 a), withunused letters omitted. Then, for each key we compute the edge, which correspondsto it. Thus we have: f1(jan) := (T1(2; a) + T1(3; n)) mod 25 = (11+19) mod 25 = 5,f2(jan) := (T2(2; a) + T2(3; n)) mod 25 = (5 + 7) mod 25 = 12; f1(feb) := (13 +9) mod 25 = 22, f2(feb) := (21 + 9) mod 25 = 5; f1(mar) := (11 + 1) mod 25 = 12,f2(mar) := (5+17) mod 25 = 22. The last edge has closed a cycle (5; 12; 22) and thereis no point in computing edges for the remaining keys with the current contents oftables T1 and T2. (Although the option of early detection of cycles was not includedin the pseudocode given in Fig. 1, it is quite easy to implement. We use a set union6
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Figure 4: Contents of the mapping tables: a) during the �rst iteration; b) duringthe second iterationalgorithm [29] to do so. This results in a theoretically inferior solution, as the bestset union algorithms have worst-case complexity O(n +m�(n; n)), where �(n; n) isthe functional inverse of Ackermann's function. However, linear time performanceof set union algorithms is expected on the average [24, 2, 31], and, as the authors of[29] point out \for all practical purposes, �(m; n) is a constant no larger than four.")Because of the cycle, the mapping process has to be repeated. The contents oftables T1 and T2 generated in the second iteration are shown in Fig. 4 b). Thistime the mapping leads to an acyclic graph, shown in Fig. 5. In the assignmentstep for each connected component we select a vertex and assign 0 to it. Then weperform a regular search on the component, computing the values associated withthe remaining vertices.We start with vertex 0, hence g(0) := 0. Suppose we explore the right branch�rst. Thus g(17) := (1�g(0)) mod 12 = 1, g(9) := (8�g(17)) mod 12 = 7, g(18) :=(4� g(9)) mod 12 = 9 and g(7) := (5� g(9)) mod 12 = 10. Next, after returning tovertex 0, we explore the left branch. Here we set g(13) := (6 � g(0)) mod 12 = 6,g(4) := (0� g(13)) mod 12 = 6 and g(22) := (3� g(4)) mod 12 = 9. This ends theassignment step for the largest component. The same procedure is then applied tothe remaining components. It is easy to see that g(8) = 0, g(10) = 10, g(19) = 1;g(11) = 0, g(21) = 2 and g(14) = 0, g(16) = 7, g(20) = 9 are suitable values. Thisends the generation phase of the hash function.7



Now, to calculate the hash table address for nov, say, we compute f1(nov) :=(7 + 1) mod 25 = 8 and f2(nov) := (11 + 24) mod 25 = 10. Then the hash tableaddress of nov is (g(8) + g(10)) mod 12 = (0 + 10) mod 12 = 10. (With no extrawork(!) we have gained also the information that nov is the 10 + 1 = 11-th monthof the year.)
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Figure 5: The graph generated in the second iteration of the mapping step5 Experimental resultsThe new algorithm, without any speci�c improvements, was implemented in theC language. All experiments were carried out on Sun SPARC station 2, runningunder the SunOStm operating system. The results are summarized in Table 1. Anentry in the table produced for the algorithm was generated as follows: for eachspeci�ed m (number of words) 250 random sets of words were selected. The tableentries represent the averages over these 250 trials. Words were chosen from 24692words in a dictionary. The dictionary was obtained by removing from the standardUnix dictionary all words shorter than 3 characters, longer than 18 characters orcontaining characters other than letters. For each experiment the words were selectedusing shu�ing [23]. For m > 24692, arti�cial sets of random words were generated.The values of m, iterations, mapping, assignment and total are the number of words,average number of iterations in the mapping step, time for the mapping step, timefor the assignment step and total time for the algorithm, respectively. All times arein seconds.The experimental results fully back the theoretical considerations. Also, the timerequirements of the new algorithm are very low. Observe that the average numberof iterations is approximately equal to p3 as indicated by the theory. Likewise8



m = n=3 iterations mapping assignment total512 1.704 0.037 0.010 0.0471024 1.684 0.052 0.019 0.0722048 1.776 0.095 0.037 0.1324096 1.676 0.169 0.067 0.2368192 1.668 0.320 0.142 0.46316384 1.680 0.628 0.293 0.92124692 1.688 0.950 0.444 1.39432768 1.636 1.353 0.597 1.94965536 1.696 2.718 1.198 3.916131072 1.676 5.448 2.416 7.864262144 1.768 11.273 4.813 16.087524288 1.736 22.493 10.414 32.907Table 1: Experimental resultsthe mapping, assignment and total times grow approximately linearly with m. Acomparison with the timing results given in [16] reveals that this algorithm is muchfaster than that given there. For example, their algorithm took 763.07 seconds togenerate a minimal perfect hash function for 524288 keys on a Sequent machine.In the implementation of the algorithm we used an edge-oriented representationof graphs [11]. This allowed us to handle edges as concrete objects, represented byintegers, and not as pairs of vertices. Because of this, the space complexity of thealgorithm is linear in the number of words too, with a very small constant factor.6 ConclusionsA new algorithm for generating order preserving minimal perfect hash functionshas been developed. The expected time complexity of the algorithm is O(m), so thealgorithm is time optimal. Its space complexity, also optimal, is cm logm+O(1) lognbits, or cm+O(1) words, as long as n �ts into a word. Observe that the i -th word ofW is placed at (i�1)-th location of the hash table, hence the generated hash functionpreserves the order of the words in an input. This allows arbitrary arrangement ofthem, which may be useful in some applications. The generated function is quicklycomputable, and the space needed to store it may be made as small as m(2 + �),� > 0. Extensive experimental results have con�rmed the theoretical results. Theyalso have shown that the time requirements of the new algorithm are very low, evenfor very large sets.7 AcknowledgementWe thank Nick Wormald of the University of Melbourne for help with calculating theprobability of generating an acyclic graph. We also thank the anonymous referees9
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