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Abstract: In the past few years, General Purpose Graphics Processors (GPUs) have been used to
significantly speed up numerous applications. One of the areas in which GPUs have recently led to a
significant speed-up is model checking. In model checking, state spaces, i.e., large directed graphs,
are explored to verify whether models satisfy desirable properties. GPUEXPLORE is a GPU-based
model checker that uses a hash table to efficiently keep track of already explored states. As a large
number of states is discovered and stored during such an exploration, the hash table should be able
to quickly handle many inserts and queries concurrently. In this paper, we experimentally compare
two different hash tables optimised for the GPU, one being the GPUEXPLORE hash table, and the
other using Cuckoo hashing. We compare the performance of both hash tables using random and
non-random data obtained from model checking experiments, to analyse the applicability of the two
hash tables for state space exploration. We conclude that Cuckoo hashing is three times faster than
GPUEXPLORE hashing for random data, and that Cuckoo hashing is five to nine times faster for
non-random data. This suggests great potential to further speed up GPUEXPLORE in the near future.

1 Introduction

General Purpose Graphics Processors (GPUs) have been used to significantly speed up computations in
numerous application domains. Contrary to CPUs, GPUs can handle many thousands of parallel threads,
allowing for a great increase in parallel processing of data. This increase has opened up new possibilities
to improve the performance of algorithms, as significant speedups can be achieved by using optimised
algorithms and lock-free data structures.

One of the domains to which GPU computing has been applied in the last few years is model check-
ing. Model checking involves taking a model of an (often concurrent) system and verifying whether
certain properties are satisfied by that model. The semantics of such models can be expressed in a state
space, which is a directed graph (often sparse), with labels either on the edges or the nodes. During model
checking, such a state space is constructed by interpreting the model. Starting from the initial state of the
model, exploration continues until either all reachable states have been explored, or a counter-example
to the property being verified has been encountered [4]. This operation can be very resource-demanding,
as state spaces tend to grow exponentially as the number of concurrent components in a model grows
linearly. This problem is commonly referred to as the state space explosion problem. For this reason,
the use of modern parallel architectures is very appealing, since it could make the analysis of large state
spaces more practically feasible.

In recent years, approaches have been developed to perform state space exploration either using a
combination of the CPU and the GPU, or specifically using the GPU [5} [7, [8} 21} [26} 27, [23] 28, [29].
Most approaches use an exploration strategy similar to Breadth-First Search (BFS).
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A data structure commonly used during state space exploration is the hash table [10]]. It is used to
keep track of the states encountered so far. Accessing the hash table tends to be done very frequently
during model checking, so in a parallel setting, it is critical that the hash table being used can very
efficiently handle parallel accesses. For this reason, first of all, it needs to be lock-free, and second of
all, it needs to have a suitable hashing mechanism. Even though identifying which hash tables are most
suitable for model checking is an important undertaking, for GPUs, this has not been thoroughly done
in the past, or at least, no reports have been published on it. In this paper, we discuss such a thorough
comparison.

Only a very few different hash tables have been proposed so far for GPUs. A notable one is the one
by Alcantara et al. [3]. They propose to use a version of Cuckoo hashing [17] optimised for parallel
execution using 64-bit data elements. It has been adopted in the standard CUDPP libraryﬂ In addition,
Wijs and Bosnacki developed their own custom hash table for their parallel state space exploration tool
GPUEXPLORE [23, 128]].

Alcantara et al. compared the performance of their hash table to the building and querying of a sorted
array. The keys and values used by Alcantara et al. to test the performance of Cuckoo hashing are ran-
domly generated integers [1]]. Consequently, the performance of their Cuckoo hash table has previously
only been analysed using sequences of random and unique integers, and not using non-random sequences
stemming from real data. Since the performance of a hash table can be influenced by different patterns
encountered in the input data, for instance, the frequency at which the same values are encountered again
and again, it is useful to consider non-random data as well.

Beides this, for the hash table implemented in GPUEXPLORE, no isolated performance evaluation
has been done in the past. Instead of Cuckoo hashing, the hash table implemented for GPUEXPLORE
uses another way to resolve collisions and instead of operating on 64-bit elements, it supports elements
of arbitrary length.

This paper addresses reports the results of a performance evaluation between Cuckoo hashing and
GPUEXPLORE hashing. We analyse Cuckoo hashing and GPUEXPLORE hashing with both random and
non-random datasets. The non-random data originates from actual state space explorations performed by
a model checker, in which the revisiting of states has been recorded. This data allows us to compare the
applicability of the two hash tables for state space exploration.

The structure of the paper is as follows. Related work is discussed in Section 2. In Section 3,
first a brief explanation of GPUs is given, which is particularly focussed on NVIDIA GPUs and the
CUDA programming interface, as we employed those GPUs for our experiments. Furthermore, Section
3 also provides an overview of the approach used in GPUEXPLORE to do model checking. A detailed
description of the two hash tables is given in Section 4. The experimental setup is explained in Section 5.
In Section 6, the results of the comparisons are discussed, and finally, conclusion and pointers to future
work are given in Section 7.

2 Related work

There are several papers introducing lock-free hash tables for GPUs [3. [13} 14, [6]. However, in those
papers only limited performance evaluations have been conducted. Specifically, the evaluations that
have been performed involved sequences of equally distributed random values. This is the case for the
performance evaluations conducted in the dissertation of Alcantara [[1], and the performance evaluation
conducted by Misra and Chaudhur [[13].

ICUDPP library: http://cudpp.github.io.
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The hash table described by Alcantara et al. [1, 3] uses Cuckoo hashing and is implemented in
the CUDA library CUDPP. In the work of Alcantara et al., different aspects of Cuckoo hashing are
thoroughly analysed. Various aspects influencing the performance of the hash table are analysed and
compared, including the size of the hash table and how long an insertion on the hash table tends to take.
However, no performance evaluation on non-random data for Cuckoo hashing on the GPU exists in the
literature.

Other lock-free hash tables are those proposed by Moazeni & Sarrafzadeh [14] and by Bordawekar
[6]. Unfortunately, to the best of our knowledge, no implementations are publicly available.

Regarding GPU accelerated model checking, relevant work is the paper by Bartocci et al. [3], in
which they introduce modifications of the SPIN model checker that take advantage of a GPU architecture.
They experience significant performance increases for larger problems, for which concurrency of the
GPU starts to pays off. The hash table they use is the one by Alcantara et al., which means that they are
restricted to analysing state spaces containing states that can be stored in 64 bits.

Edelkamp et al. [/]] investigated the applicability of GPUs for probabilistic model checking, a pro-
cess in which matrix-vector multiplications are performed and systems of linear equations are solved.
Modifications to the algorithm such that these operations are performed on a GPU can cause speed-ups
of 18 times compared to executions on the CPU.

Furthermore, Wu. et al. investigated the use of GPUs for on-the-fly state space exploration using
Cuckoo hashing [29]], and Wijs and Bo$nacki developed GPUEXPLORE, which uses a custom collision
revolvement scheme to maintain which states have already been visited. The latter tool achieves a per-
formance increase of, on average, 120 times compared to CPU based state space exploration, in cases
where state spaces consisting of at least a million states are analysed [23} 28]].

Finally, Edelkamp et al. investigated the applicability of GPUs to speedup the generation of very
large state spaces using BFS [[11]. In their work, Edelkamp et al. utilise a perfect hashing function to
keep track of the current depth of the BFS, so that during iterations over the state space, only the currently
open states are considered.

3 Background

3.1 CUDA

In the 2000s, development of more programmable GPUs started. The change from fixed pipeline graph-
ical units to programmable graphical processors opened up new possibilities for software developers.
GPUs have significantly more processing units than CPUs, allowing more instructions to be executed in
parallel.

The introduction of more programmable GPUs has made it possible to use GPUs for applications
other than graphical calculations. Before the arrival of general purpose graphics processors, the only
way to use GPUs for more general purpose applications was by transforming the problem to a problem of
triangles and polygons, and then solving this problem using the available graphics Software Development
Kits (SDK).

The increased capability of GPUs led Stanford researchers to define GPUs as stream processors. In
turn, this has made it possible to compile C code to be executed on the GPU. NVIDIA expanded upon
this concept and in 2006 released the first version of CUDA. CUDA is an SDK that allows code in a
high-level language such as C or C++ to be compiled for, and executed on, an NVIDIA GPU.

Unlike CPUs, GPUs are built to take large batches of data and execute the same, short, sequence of
operations in parallel on all elements of that data. Because of this, GPUs often consist of several hundreds
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of processors, grouped in Streaming Multiprocessors (SMs), such that a large number of threads can
concurrently execute instructions. Therefore, lock-free algorithms optimised for execution on a GPU
often achieve significant speed-ups. Matrix addition is an example of an operation that can easily be
executed in parallel, which each single thread computes the value of a single cell of the output matrix.
Because of the large number of threads that can be executed in parallel, the resulting matrix can be
computed much faster than when it has to be constructed sequentially.

A CUDA program often has the following structure: Preparatory code that can not be executed
in parallel is sequentially executed on the host CPU. Such code often prepares input data for parallel
processing. After processing the input data a kernel is launched, which is a method written for the GPU.
After the kernel has finished executing, the output of the kernel can be copied back to the host memory
and reported to the end user.

Launching a kernel for execution on the GPU is done by specifying how many thread blocks should
execute the kernel and the amount of threads that each block should consist of. The threads in all blocks
all execute the same kernel, and together, they form a grid [16].

Within a block, threads execute in warps consisting of 32 threads. Within a warp, the threads execute
in lockstep. This means that if the execution of a kernel involves an if statement, and, for instance, only
10 threads enter the body of the if-statement, then the other 22 threads are paused while the 10 active
threads execute that body. More generally stated, kernels that cause the threads in a warp to branch incur
performance penalties. Finally, memory accesses are scheduled on the half-warp level, meaning that if
either the first or last 16 threads in a warp wish to access a coalesced part of the memory, they will do so
in lock-step.

In addition to threading, the memory model of
the GPU is different compared to the memory hi-

. . SMO sM

erarchy of a CPU. Figure [I]illustrates the CUDA ’
OojpEmAEEA OojpEmAEEA
memory model. The memory layout GPU con- DEEEEEE L
sists out of several memory blocks. Most notably, ODOE@EOm OOoOEEEm
. OojooEEA OojooEEA
texture memory and global memory are available EEEEEEE IEEODEEE
to all SMs. While access to the texture memory oooEpmon AOEEEEA
is faster than access to global memory, write ac-

cesses to the former can only be performed from il il
the CPU side. On the other hand, the global mem- | | Global memory \ |
ory has a higher latency, but can both be read and | ‘
written to from the SMs. | Texture memeory |

Next to the registers, which is fast on-chip
local memory for each individual thread, every
thread block can use shared memory, which is
memory that is shared between all threads in a Figure 1: CUDA memory model, the small gray
block. The advantage of shared memory is that blocks are individual threads
it is also on-chip, and therefore closer to the SM
than global memory, and therefore faster to access. However, the shared memory of a block is not acces-
sible by threads outside of that block. This makes shared memory only useful for exchanging information
between threads in the same block.

In addition to having different forms of memory available to SMs, each type of memory also has
different latency and throughput characteristics. Texture memory is faster to access than global memory.
However, global memory is much larger than texture memory. For all types of device memory it holds
that it is faster to perform coalesced memory access, e.g., a warp reading a continuous piece of global
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memory, instead of each thread accessing a distinctly different memory location.

The division of threads into grids, blocks and warps and the unique memory model of CUDA has
far reaching implications for algorithms that need to be optimised for execution on a GPU. However, the
correct application of these concepts can lead to vast performance improvements.

3.2 GPUEXPLORE

In 2014, Wijs and Bosnacki developed a GPU powered on-the-fly model checking tool, called GPU-
EXPLORE [23} 24], that initially on average achieved a 10 times speedup compared to CPU implemen-
tations. The latest version of GPUEXPLORE achieves an average speedup of 120 times for sufficiently
large state spaces [28]]. Graph traversal algorithms optimised for usage on a GPU already existed prior
to the development of GPUEXPLORE, but these algorithms utilised the fact that the size of the final
graph was already known before exploration started. However, for model checking, this is not a practi-
cal assumption, therefore GPUEXPLORE initially only knows the size of the model, which consists of a
finite number of automata in parallel composition. Because of this, the parallelisations proposed in the
literature for graph traversal could not directly be applied for on-the-fly state space exploration.

As input, GPUEXPLORE excepts a model of a concurrent system, consisting of a finite number of
finite-state processes. It explores the state space implied by this model using a Breadth-First Search
(BFS) based search strategy, starting from the initial state of the system. The initial system state is a
vector consisting of all the initial states of the individual processes. By combining the enabled transitions
in each individual process, successor state vectors can be constructed. To keep track of discovered and
explored states GPUEXPLORE maintains a set of open states and a set of closed states, respectively. The
set of open states contains the states for which the successors still need to be identified, and the set of
closed states is the set of states for which this has already been done. In addition to a finite number
of processes, an automaton representing a (negation of a) safety property can be provided. Recently,
support for liveness properties has also been investigated [22]], and support for partial order reduction
to restrict exploration of state spaces has been added [[15)]. In the future, support for timed behaviour is
planned [20] and other forms of state space reduction [19].

The implementation of GPUEXPLORE solves several practical aspects related to state space explo-
ration. For instance, the papers address how the input model is read and stored in memory, and how the
concurrent processes in a model should be combined to discover all the reachable states of the complete
system.

As both the memory model and the threading model of CUDA drastically differ from CPUs there
are several notable implementation details. Due to the fact that memory latency is high, a reduction
of the number of required memory accesses can lead to significant performance increases. Firstly, the
individual processes in the model are stored in texture memory, as this information never needs to be
updated during exploration. Because of this accessing the states and outgoing transitions of a state of an
individual process only incurs minimal memory latency.

Secondly, as the number of threads available on a GPU is much higher than on a CPU, GPUEXPLORE
gives each individual thread a very small amount of work to perform. When the successors of a system
state need to be identified, a group of threads cooperate, and each individual thread fetches the relevant
outgoing transitions of the current state of a particular process. Together, the threads in a group ensure
that the correct result is computed.

To implement the open and closed sets, GPUEXPLORE uses a hash table to store visited states. Since
the encoding of a state vector depends on the number of processes in the concurrent system model,
and the number of local states each process can be in, a single 32 or 64-bit integer is often too small to
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contain a vector. Therefore, the hash table of GPUEXPLORE is able to correctly store elements consisting
of multiple 32-bit integers, where each element is a state in the concurrent system.

The hash table used by GPUEXPLORE to keep track of the visited and open sets is stored in global
memory of the GPU. As memory latency for the global memory is high, especially for uncoalesced
memory accesses [16], the hash table provides the guarantee that an item can be located in a worst case
constant number of steps.

GPUEXPLORE does not use the hash table of Alcantara et al., as it only supports atomic insertions of
elements consisting of single 32 or 64-bit integers. If Cuckoo hashing is used to insert longer elements,
race conditions tend to frequently occur [24]. This may lead to erroneous state vectors being stored in
the hash table that were not really visited during exploration. Therefore, Wijs and Bosnacki developed
GPUEXPLORE hashing which is suited for vectors of arbitrary length.

4 Hashtables

In this section, the two hash tables that have been evaluated in this paper are discussed.

4.1 Cuckoo hashing on the GPU

In 2001, Pagh and Rodler proposed Cuckoo hashing [17], a collision resolving scheme for hash tables.
Contrary to collision resolving schemes [[10] such as linear probing, quadratic probing or chaining, locat-
ing a key in the hash table can be done in worst case constant time. The average performance of Cuckoo
hashing is comparable to other hash table designs.

A Cuckoo hash table 7. has a constant number of hashfunctions #4p, .. h.. Insertion of a key k is
initially done by hashing k with ;. For instance, let & (k) = i, then the key is inserted into .. at position
i. If there is no element at this position the insertion algorithm terminates. Otherwise, if there already
is a key kK’ at position i, k is inserted into 7% at i and k" is evicted and reinserted into the hash table at
position #/, which is determined by the next hash function relevant for &/, that is, given that for some
a € {l,..,c}, we have h,(k') = i, then h, (k') determines the new position /. This process is repeated
until an empty slot is encountered, a maximum number of so-called evictions is reached, or the number
of hash functions was not sufficient to insert a particular key. In the latter two cases, the hash table is
considered to be full.

As an example, the process of inserting key 18 into a Cuckoo hash table is illustrated in Figure [2|
As can be observed, in step (D, the key is first hashed using the first hash function 4; and inserted
into the corresponding slot. However, in this case there already is an element that has been inserted
into this slot. That element is evicted from the table (step ) and should be re-inserted using its next
hash function. Before re-inserting 26 the algorithm first determines which hash function was used to
previously insert key 26 into the table. In this case 26 was inserted using hash function /;, and therefore
it is re-inserted using hash function &3 (step ®). Since there is no element in the slot that 26 is inserted
into, the insertion terminates (step @). In this case there was only one eviction, as rehashing 26 pointed
to a free slot, however, would there have been another element at the final location of 26 that element
would have been evicted as well. Such a sequence of evictions for a single insertion is called an eviction
chain.

To locate a key k in the hash table, worst case, all possible slots indicated by hashing k& with Ay, ..
h. need to be checked. Hence, the query algorithm has a worst case constant running time, as at most ¢
steps have to be performed to locate a key in the hash table. Furthermore for insertions, Pagh and Rodler
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Figure 2: Visual representation of an insertion into a hash table using Cuckoo hashing

state that on average insertions perform similar to other hash tables using linear or quadratic probing.

Alcantara et al. adapted the work of Pagh and Rodler to support the computational model of CUDA.
Over the past few years Alcantara et al. have proposed several variations on Cuckoo hashing, attempting
to achieve optimal performance [1, 2, 3]]. The overall best performing implementation largely resembles
the originally proposed Cuckoo hash table by Pagh and Rodler. In that implementation, a kernel is
launched for every batch of insert or query operations, where each element is processed by a single
thread. This way the kernel makes optimal use of the available parallelism, allowing for a large amount
of data to be processed concurrently.

Alcantara et al. describe and compare different edge cases that can occur when using Cuckoo hash-
ing. Most importantly, they discuss the size of the hash table compared to the size of the input data.
Cuckoo hashing does not use any form of chaining, so as the hash table becomes more populated the
length of eviction chains increases. Therefore, it is important to initially pick a hash table size that is
sufficiently larger than the size of the input data. This ensures that eviction chains remain short even
after almost all data has been inserted into the table. Using experimental evaluation Alcantara et al.
determined .7%;,, = 1.25n to be the ideal hash table size for input of size n. However, due to the nature
of eviction chains and the constant number of hash functions it might always be the case that an element
cannot be inserted as there might not be enough hash functions. In this case Alcantara et al. propose to
store such items in a small stash, and to attempt to re-insert elements from the stash if the stash becomes
full. In case the stash is full and insertion of an element fails, the hash table has to be rebuilt, and new
constants for the hash functions have to be generated.

Figure 3| presents the original results as reported by Alcantara et al.. They present two types of
Cuckoo hash tables, one using a single level of Cuckoo hashing, the other using two, nested hash tables.
As can be seen, using Cuckoo hashing on the GPU is faster when querying data and has a performance
roughly equal to that of inserting when compared to other hash tables. Furthermore, when inserting data
Alcantara et al. found that for larger datasets, sorting the input sequence using radix-sort was faster that
inserting all elements in a hash table, with Cuckoo hashing and quadratic probing being a close second

[LL].
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Figure 3: Results of querying and inserting keys and values into several different hash tables [[1]].

4.2 GPUEXPLORE implementation

The hash table backing GPUEXPLORE resembles Cuckoo hashing in that it uses a constant number of
hash functions. However, due to the information stored for each state that is encountered the GPUEX-
PLORE hash table needs to support storing vectors of 32-bit integers instead of single 32 bit elements.

Another difference is that instead of hashing to single slots, the GPUEXPLORE hash table hashes
elements to buckets of multiple slots. In this setup, each bucket can store several vectors. The size
of a bucket has been set such that memory accesses by individual threads in a warp are grouped and
optimised, as in GPU applications it is very important that memory accesses are coalesced as opposed to
randomly scattered [[16]. The size of a bucket for GPUEXPLORE hashing has been set to 32 integers, or
equal to the warp-size. Furthermore, since atomic read and write operations are scheduled per half-warp,
ensuring that buckets are aligned with warps helps to guarantee that vector reads and writes performed
by one warp cannot be interrupted by another, which essentially boils down to those operations being
atomic as well.

Figure [4] illustrates an example of applying the insertion algorithm of GPUEXPLORE hashing to
insert of vector consisting of three 32-bit integers. To insert a vector into the hash table it is first hashed
by an entire warp of threads using the first hash function /;. The corresponding bucket is then accessed
by the entire warp, as can be seen in (), where each thread in the warp accesses a single slot in the
bucket. Then, every thread reports whether the slot that it is checking is free, or whether it has found
an element of the vector that is being inserted ). Using warp primitives from CUDA these results are
exchanged between threads such that every thread in the warp knows the result of all other threads in the
warp.

Using this information the threads can verify whether the vector that is being inserted is already
present in the bucket. If this is the case all 32 threads can stop the insertion step as the element has
already been inserted, otherwise a sufficiently large group of threads associated with single slots in the
bucket attempts to atomically write the vector into the free sequence of slots (). In this example, only
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Figure 4: Insertion of a vector into the bucket of a GPUEXPLORE hash table.

(23,

three of the 32 threads are active while writing, and each thread in this case writes one 32-bit integer of
the vector to a slot in the hash table.

As the GPUEXPLORE hash table has been built with parallel insertions in mind it could be the
case that between 2) and ) another warp inserts a different vector into the targeted slot. In this case, the
atomic insertion fails and the warp selects the next sequence of three free slots in the table, if present. The
warp keeps doing this until all free slots have been tried, or until an atomic write completed successfully.

There is no data available on how often such a conflict occurs, however, if this edge case is ignored
state vectors are corrupted during the exploration phase of GPUEXPLORE and as a result an incorrect
number of states is returned.

If all free slots in a bucket have been tried unsuccessfully, or if the bucket had no free slots in the first
place, the algorithm hashes the vector with the next hash function 4, and probes the bucket returned by
that function. The warp will keep doing this until either the vector has been placed, found or until there
are no more hash functions that can be tried. In case the number of hash functions has been exhausted
the algorithm reports that it considers the hash table to be full, as the vector could not be placed.

Similar to Cuckoo hashing, attempting to find a vector in the GPUEXPLORE hash table has a worst-
case constant time complexity. This is the case since at most ¢ buckets have to be probed to find the
vector, and for each each bucket exactly 32 slots have to be checked.

5 Experimental setup

To compare the performance of the GPUEXPLORE hash table and the Cuckoo hash table available in the
CUDPP library, experiments have been performed on an Nvidia GPU. Both implementations have been
tested using as input sequences of 32-bit integers. Two custom CUDA kernels have been written that
execute the tests. Each kernel attempts to find and insert elements in one of the two hash tables, using
the approporiate insertion operation.

Both hash table implementations have several parameters that influence the running time of the inser-
tion and querying algorithms. One of these parameters is the number of hash functions, which influences
how many times an element can be rehashed before the hash table is considered full. In addition, both



10 Analysing the Performance of GPU Hash Tables for State Space Exploration

hash tables also have a parameter that represents the size of the hash table versus the size of the dataset.
For example, if there are ten unique elements, and a scale factor of 1.2 defines that the hash table will
have 12 slots. As previously mentioned, for the Cuckoo hash table implementation of Alcantara et al., it
has been suggested that about four hash functions and a hash table with size 1.25 xn [3] is ideal, where
n is the number of unique 32-bit integers in the input sequence. These same parameters have also been
used for the benchmark experiments performed with the GPUEXPLORE hash table.

The tests were performed by first loading the sequence file into host memory, then the unique number
of elements in the sequence is counted. Based on the unique number of elements in the sequence the hash
table under test is initialized in the GPU memory with size 1.25 times the number of unique elements in
the sequence file. In addition, other information used by the hash table is copied to GPU memory, such
as the hash constants used by the hash function. Finally, the sequence is copied to GPU memory and a
kernel is started that attempts to insert all elements into the hash table under test.

For each element in the sequence it is first checked whether the element is already in the hash table,
if the element is found in the hash table nothing is done. Otherwise, if the element does not exist in the
hash table it is inserted using the insertion algorithm of the hash table under test. The time measured for
each hash table is the time taken to either find or insert every single integer in the sequence, if an integer
in the sequence is found it is not inserted in the table. Each experiment is conducted ten times, and the
average of all ten runs is taken.

While running the experiments we found out that enabling shared memory when launching the ker-
nels negatively impacts performance, even if the shared memory is not actually used. Since shared
memory is not required for the performance evaluation one set of experiments has been executed with
shared memory disabled. However, as GPUEXPLORE requires shared memory during state space explo-
ration we have also analysed the performance of the two hash tables with shared memory enabled, so
that the hash table best suited for GPUEXPLORE can be selected.

5.1 Modifications

Both the Cuckoo hash table and the GPUEXPLORE hash table have been modified to be able to process
the input sequence files. These modifications are explained in the following two subsections.

5.1.1 Cuckoo hashing

In the original tests conducted by Alcantara ef al., all values in the input sequences only appeared once.
However, this is not realistic for state space exploration, as states tend to the encountered multiple times
[18)]. However, the CUDPP implementation has been tailored for a priori known sequences of input
values, and a precondition of the insertion method implemented in CUDPP is that no duplicate elements
are ever inserted. For this reason, the insertion method proposed by Alcantara et al. has been modified
by us to also be able to handle parallel insertions of duplicate elements. This has been achieved by
modifying the insertion method in such a way that it checks whether the element it is evicting is equal
to the element it is inserting. If this is the case a parallel insertion is occurring, and the thread that has
detected this parallel insertion terminates.

5.1.2 GPUEXPLORE

As the performance evaluations are executed on a list of 32-bit integers, the hash table of GPUEXPLORE
has been modified to instead use single 32-bit integers as opposed to vectors of 32 bit integers. For the
insertion method this means that a warp of 32 threads inserts a single 32-bit integer into a bucket.
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5.2 Data

Two different datasets have been used to compare the hash table implementations. One dataset is a
sequence of randomly generated integers, while the second consists of integer sequences that represent
the progress of actual sequential state space explorations, extracted from model checking executions.

The random dataset has been generated using the random number generator in Python 3.6. Several
different random datasets have been used to test the performance of the hash tables. Each randomly
generated sequence has a length of 100 million integers; however, the range of values from which random
numbers have been picked differs for each dataset. This variation influences how often particular values
appear in the sequences.

The non-random datasets have been obtained by running a modified version of the REFINER [235]]
model checking tool on several example models provided with REFINER. Three datasets have been
generated using REFINER, the models used for these are HAVi-asyn, Sieve and ABP, which originate
from the CADP toolbox distribution [[12]. The generated sequences vary in length from 35 million to
178 million integers. All three models can be downloaded together with REFINERE]

In total, 100 random integer sequences have been generated. During state space exploration, the
same state is often encountered several times [[18]], therefore, the generated sequences vary in how often
every integer value occurs.

6 Results

The experiments have been performed on an Nvidia GT 750M GPU using the Kepler architecture with 2
streaming multiprocessors, 2 GBs of global memory and a total of 384 cores. The code has been compiled
with CUDA 8 using compute capability 3.0 and the evaluations have been executed on Windows 10.

Datapoints have been recorded for a total of four different configurations. Both hash tables have been
evaluated, and for each hash table tests have been run with shared memory enabled and disabled.

The results of analysing the performance of the hash tables on sequences of randomly generated data
can be observed in Figure [5] The y-axis displays the running time of each test in milliseconds and the
x-axis displays how often an integer in the sequence occurs on average, where #» means that on average an
integer occurred n times in the entire sequence. Furthermore, the top figure shows the running time with
shared memory enabled and the bottom figure shows the running time with shared memory disabled.

Enabling shared memory appears to slow down the performance of the hash tables by roughly 1/3,
with a peak slowdown where the shared memory version is 8 times slower than the non-shared memory
version. With shared memory enabled fewer blocks can be scheduled on a single SM, as each SM only
has a limited amount of shared memory available. Therefore fewer threads operate simultaneously which
means that fewer elements are inserted in parallel and therefore performance decreases.

For the tests executed with shared memory disabled it becomes clear that Cuckoo hashing is about
three times faster than GPUEXPLORE hashing. Given that GPUEXPLORE hashing uses 32 threads to
insert a single element, Cuckoo hashing uses a single thread for each integer this result is interesting,
since the fact that GPUEXPLORE hashing uses 32 more threads to insert a single element than Cuckoo
hashing implies that Cuckoo hashing could in theory be 32 times faster.

Besides this, it also becomes clear that insertions are more expensive than queries for both hash
tables. As soon as duplicate elements are introduced in the sequence the running time to process the

2REFINER is available at http://www.win.tue.nl/~awijs,
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Figure 5: Results of evaluating the performance of Cuckoo hashing and GPUEXPLORE hashing on se-
quences of randomly generated numbers, with shared memory enabled (top) and disabled (bottom). Ev-
ery sequence is 100,000,000 integers long, and the x-axis indicates how often a value occurs on average
in the sequence.

entire sequence decreases sharply. However, GPUEXPLORE hashing appears to execute a larger amount
of constant work as the drop-off in running time is not as great as the drop-off for Cuckoo hashing.

The two bumps in the running time of Cuckoo hashing for n = 500 and n = 666.67 are as of yet
unexplained. For some reason sequences inserted with Cuckoo hashing where each number occurs 450
to 700 times take on average 1.5 times longer to insert, compared to numbers occurring slightly less than
450 times and slightly more than 700 times. The experiments have been rerun several times using differ-
ent sequences and on a different GPU, namely a GTX 970. Nevertheless, the bump in running time for
Cuckoo hashing still manifests itself as can be seen in Figure[f] However, in the non-random sequences,
numbers do not tend to occur on average between 450 and 700 times. This suggests that for model
checking problems, the observed performance bump may not heavily impact state space exploration.

In Table [T| the results of executing the performance evaluation on the sequences of non-random data
can be found. Again a significant difference between having shared memory enabled and disabled exists.
Enabling shared memory doubles the running time of most tests, and in some cases the version with
shared memory disabled is even ten times faster.

As the same state is often encountered during state space exploration all three non-random sequences
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Figure 6: Results of running the performance evaluation for Cuckoo hashing with shared memory en-
abled on a GTX 970.

Table 1: Performance evaluation between Cuckoo hashing and GPUEXPLORE hashing on non-random
data

Cuckoo hashing (ms) | GPUEXPLORE hashing (ms)
Shared memory disabled
sieve (35,981,314 integers) 147.0 828.4
HAVi-asyn (77,043,711 integers) 399.2 1839.1
ABP (178,172,465 integers) 651.9 3892.8
Shared memory enabled
sieve (35,981,314 integers) 2022.7 1271.7
HAVi-asyn (77,043,711 integers) 5131.4 2734.0
ABP (178,172,465 integers) 8251.4 6352.4

contain duplicate elements. For Sieve and HAVi-asyn an integer in the sequence occurs on average five
times in the sequence. For ABP an integer occurs on average eight times in the sequence.

When analysing the performance of the hash table implementations with shared memory disabled, it
becomes clear that Cuckoo hashing again has a better performance. However, for non-random data this
performance difference appears to be even larger than for random data, as Cuckoo hashing tends to be
roughly six times faster than GPUEXPLORE hashing.

7 Conclusions and future work

In this paper we analysed the performance of two lock-free hash table implementations on the GPU. To
conduct this analysis we utilised sequences of both random and non-random numbers and measured the
time taken to insert all elements in those sequences.

From the performance evaluations in Section|] we can conclude that Cuckoo hashing is roughly three
times faster than GPUEXPLORE hashing for random sequences. Apparently the uncoalesced memory
accesses performed by the Cuckoo hashing kernel do not impact performance so much that it performs
worse than the coalesced memory accesses performed by GPUEXPLORE hashing.

Even more notable is the performance difference when using non-random data representing se-
quences of discovered states from actual state space explorations. There are sequences for which Cuckoo
hashing is ten times faster than GPUEXPLORE hashing. This indicates that it is very interesting to in-
vestigate whether it is possible to use Cuckoo hashing to further speed up GPUEXPLORE. A possible



14 Analysing the Performance of GPU Hash Tables for State Space Exploration

explanation for this performance difference between random and non-random data is that Cuckoo hash-
ing performs better when several duplicate elements occur after each other in the sequence. This is a
pattern that is often seen during state space exploration, as a state space generally tends to consist of
strongly connected components [[18]].

Furthermore, allocating shared memory when launching kernels appears to have a significant neg-
ative impact on the performance of hash table insertions. Therefore, we conclude that for state space
exploration, it is worth investigating whether splitting the work of exploring and storing states into dif-
ferent kernels may improve the overall performance of model checking. In such an approach, it would
be possible to perform the exploration of states in a kernel with shared memory enabled, allowing for
the storage of intermediary results shared memory until no more space is available, and the content of
the shared memory is copied to the global memory. Then, a second kernel could be started with shared
memory disabled that actually inserts the newly discovered states into the hash table.

However, even though GPUEXPLORE hashing uses 32 threads to insert a single integer it is not 32
times slower than Cuckoo hashing. This might be due to the fact that the memory accesses of GPU-
EXPLORE hashing are more structured, as GPUEXPLORE hashing accesses global memory in coalesced
blocks of 32 integers. It might be possible to identify a balance between the two approaches, by conduct-
ing experiments with GPUEXPLORE hashing using smaller buckets. With smaller buckets, fewer threads
are used to insert a single item, while the advantage of coalesced memory accesses is still preserved.
Consequently, in [9], we analyse the performance of GPUEXPLORE hashing with smaller bucket sizes.

Finally, the current performance evaluations have been executed on sequences of 32-bit integers.
However, GPUEXPLORE uses vectors of 32 bit integers as state identifiers, and this is required to per-
form model checking. Hence, for the purpose of state space exploration it is also interesting to try to
modify Cuckoo hashing to support keys of arbitrary length, and evaluate the performance between such
a generalised Cuckoo hash table and GPUEXPLORE hashing.
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