
Analyzing GPGPU Pipeline Latency
Michael Andersch, Jan Lucas,

Mauricio Álvarez-Mesa, Ben Juurlink
Embedded Systems Architectures, TU Berlin, Einsteinufer 17, 10587 Berlin, Germany

1. Overview

GPUs as we know them today are intrinsically throughput-focused devices designed to hide microarchitectural latency through heavy use of
thread-level parallelism. Over the last few generations of commercial GPUs, throughput has increased substantially as a result of both architectural
innovation and advancements in manufacturing technology. While the throughputs of each commercial GPU are well known, the same cannot be
said for latencies of the hardware, such as instruction latencies or cache hit times. As we run or want to run both throughput-limited and latency-
limited applications on such devices, this is problematic for both programmers and GPU architects, as the development of high-performance code
and the design of newer and faster GPU architectures require an intricate knowledge of the state of the art. In this study, we investigate this state by
performing a GPU hardware latency analysis on four subsequent generations of GPU architectures: NVIDIA Tesla, Fermi, Kepler, and Maxwell.

2. Arithmetic Pipelines

Tesla Fermi Kepler Maxwell Tesla Fermi Kepler Maxwell
Operation

GT200 GF106 GK104 GM107
Operation

GT200 GF106 GK104 GM107
Integer & Logic 32-bit Floating Point

ADD, SUB 24 16 9 6 ADD, SUB 24 16 9 6
MAX, MIN 24 18 9 12 MAX, MIN 24 20 9 12

MAD 120 22 9 13 MAD 24 18 9 6
MUL 96 20 9 13 MUL 24 16 9 6

DIV (unsigned) 608 286 141 210 DIV 137 1038 758 374
DIV (signed) 684 322 168 243 fadd *() 24 16 9 6

REM (unsigned) 728 280 138 202 fmul *() 26 16 9 6
REM (signed) 784 315 163 232 fdividef() 52 95 41 34

AND, OR, XOR 24 16 9 6 sinf(), cosf() 48 42 18 15
SHL, SHR 24 18 9 6 tanf() 98 124 58 49

umul24() 24 38 18 19 exp2f() 48 98 49 41
mul24() 24 38 18 19 expf(), exp10f() 72 114 58 46
usad() 24 20 9 6 log2f() 28 46 22 35
sad() 24 20 9 6 logf(), log10f() 52 94 49 40

umulhi() 144 20 9 21 powf() 75 143 62 49
mulhi() 180 20 9 21 sqrt() 56 216 181 128

Table 1: Latencies of math datapath operations over four generations of NVIDIA GPUs.

Methodology
I Directed CUDA microbenchmarks + GT200 results from [1]
I Generate unrolled loop of dependent arithmetic instructions of

desired type
I Encapsulate with timing code, i.e. reading the clock register
I Divide number of clocks measured by number of instructions in

the loop
Results
I Just a handful of actual hardware datapaths
I Several operations realized by instruction sequences
I Significantly longer latencies than comparable CPU datapaths
I Trend: Arithmetic latencies have significantly decreased from

Tesla to Maxwell

3. Memory Pipelines

23 25 27 29 211 213 215 217 219 221 223 225 227 229

Stride length (bytes)
0

100

200

300

400

500

600

700

La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

15360 B

16384 B

17408 B

28672 B

33792 B

43008 B

50176 B

235520 B

266240 B

512000 B

526336 B

1048576 B

2097152 B

8388608 B

16777216 B

33554432 B

Figure 1: Global memory results on Fermi.

23 25 27 29 211 213 215 217 219 221 223 225 227 229

Stride length (bytes)
160

180

200

220

240

260

280

300

La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

15360 B

16384 B

17408 B

28672 B

33792 B

43008 B

50176 B

235520 B

266240 B

512000 B

526336 B

1048576 B

2097152 B

8388608 B

16777216 B

33554432 B

Figure 2: Global memory results on Kepler.

23 25 27 29 211 213 215 217 219 221 223 225 227 229

Stride length (bytes)
180

200

220

240

260

280

300

320

340

360

La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

15360 B

16384 B

17408 B

28672 B

33792 B

43008 B

50176 B

235520 B

266240 B

512000 B

526336 B

1048576 B

2097152 B

8388608 B

16777216 B

33554432 B

Figure 3: Global memory results on Maxwell.

Tesla Fermi Kepler Maxwell
Unit

GT200 GF106 GK104 GM107
Global & Local Memory

L1 D$ × 45 30 ×
L2 D$ × 310 175 194
DRAM 440 685 300 350

Shared Memory
SMEM 38 50 33 28

Texture Memory
Texture L1 D$ 261 224 105 92

L2 D$ 371 435 215 172
DRAM × 791 348 330

Fixed-function pipeline × 106 48 (-20)
Constant Memory

Constant L1 D$ 56 52 42 28
Constant L1.5 D$ 129 165 104 79

L2 D$ 268 375 215 184

Table 2: Latencies of hardware units in the various memory
pipelines over four generations of NVIDIA GPUs.

Methodology
I Directed CUDA microbenchmarks + GT200 results from [1]
I A single thread chases pointers through the desired memory space
I Stride and footprint varied, per-access memory latency in cycles measured
Global Memory
I Dramatic changes throughout the generations
I No caches on Tesla, local-only L1 cache on Kepler, no L1 cache on Maxwell
I Extremely large latencies compared to CPUs
I Trend: Minimum access latency has increased over the years
Other Memory Spaces
I Shared memory has not changed much between the generations
I Texture memory massively improved on Kepler, faster than global/local on Maxwell
I Constant memory shows per-cluster cache between core-private L1 and core-shared L2

4. Conclusions

I Conducted static latency analysis with a multitude of GPU processors
I 75% decrease in basic arithmetic latency over the last 6 years
I Global memory access minimum latency has increased in newer GPUs

5. Acknowledgement

The research leading to these results received funding from the EC’s 7th
Framework Programme, LPGPU project, grant agreement n◦ 288653. For
more information about the LPGPU project, please visit http://lpgpu.
org.

6. References

[1] Wong et al., Demystifying GPU Microarchitecture through Microbenchmarking, Proceedings of the International Symposium on Performance
Analysis for Systems and Software (ISPASS), 2010.

Embedded Systems Architecture http://www.aes.tu-berlin.de/

http://lpgpu.org
http://lpgpu.org
http://www.aes.tu-berlin.de/

