
 1

Apache Parquet
Open, standard, efficient columnar storage

https://parquet.apache.org/

https://parquet.apache.org/

 2

Who I am
● Apache Parquet PMC (project management committee) member
● Apache Arrow PMC member
● CPython core developer
● Free / open source software expert
● Working at QuantStack (https://quantstack.net/)
● https://github.com/pitrou
● Contact me at antoine@python.org

https://quantstack.net/
https://github.com/pitrou
mailto:antoine@python.org

 3

Overview

 4

Open, standard, efficient ?
● A community project, under the rules of the Apache Software Foundation

● Open source specification
● Several open source implementations

● De facto standard (not de jure)
● No similar file format comes close in popularity
● (but CSV is still ubiquitous!)

● Efficient
● Storage footprint
● Read performance
● Efficient querying

 5

Columnar ?
● Traditional DB systems (but also CSV!) are row-oriented

● Good for row-wise operations and mutations

● Modern analytics systems use column-oriented storage
● Dataframes, analytics databases, data lakes…

Name Weight Vitamins Months

strawberry 10 {"c": 67} ["Apr", "May", "Jun"]

grapefruit 400 {"a": 110, "c": 26} ["Dec", "Jan", "Feb", "Mar"]

fig 50 ["Aug", "Sep"]

banana 150 {"a": 148}

 6

Columnar ? (#2)
● Column-oriented storage is good for

● Compression efficiency
● Reading a subset of columns
● Computations over many rows

Name Weight Vitamins Months

strawberry 10 {"c": 67} ["Apr", "May", "Jun"]

grapefruit 400 {"a": 110, "c": 26} ["Dec", "Jan", "Feb", "Mar"]

fig 50 ["Aug", "Sep"]

banana 150 {"a": 148}

 7

Features: a high-level view
● Rich data model

● Arbitrarily nested data with explicit schema
● Data types that reflect common database-y data (numbers, temporals...)
● Omitted (NULLs) / repeated values (lists, potentially nested)

● Single-pass sequential writing ({S3, GCS...}-friendly)

● Random access reading
● Parallelizable across columns, pages…
● Can selectively read columns
● Can selectively read data (statistics, bloom filters)

● Optional flexible encryption
● CSV has almost nothing of all this!

 8

Anatomy of a Parquet file

 9

Parquet data model: the nested schema
● All data in a Parquet file conforms to

a single schema

● Arbitrarily nested

● Each node can be
required/optional/repeated

● Only leaf nodes (columns) have
physical data

● Each column has a specific data type

 10

Parquet data model: physical types
● Each column has a mandatory physical type

● BOOLEAN
● INT32
● INT64
● INT96 (deprecated)
● FLOAT
● DOUBLE
● FIXED_LEN_BYTE_ARRAY aka FLBA (parametric)
● BYTE_ARRAY

 11

Parquet data model: logical types (#1)
● Columns can optionally be annotated with a logical type
● Numerical logical types:

Logical type Supported physical types Parameters

IntType INT32, INT64 Bit width, is signed

DecimalType INT32, INT64, FLBA(n), BYTE_ARRAY Scale, precision

Float16Type FLBA(2)

DateType INT32

TimeType INT32, INT64 Time unit (ms/µs/ns), is UTC

TimestampType INT64 Time unit (ms/µs/ns), is UTC

 12

Parquet data model: logical types (#2)

● String/binary logical types:
Logical type Supported physical types Parameters

StringType BYTE_ARRAY

EnumType BYTE_ARRAY

UUIDType FLBA(16)

JsonType BYTE_ARRAY

BsonType BYTE_ARRAY

● Misc logical types: Logical type Supported physical types Parameters

NullType any

ListType only on group nodes

MapType only on group nodes

 13

Data model: definition levels
● How are optional values represented?

Vitamins

{"c": 67}

{"a": 110, "c": 26}

{"a": 148}

Values

110

148

Def levels

1

2

0

2

Values

67

26

Def levels

2

2

0

1

vitamins.a vitamins.c

 14

Data model: repetition levels
● How are repeated values represented?

Values

Apr

May

Dec

Jan

Feb

Aug

Def levels

2

2

2

2

2

2

0

Months

["Apr", "May"]

["Dec", "Jan", "Feb"]

["Aug"]

Rep levels

0

1

0

1

1

0

0

months

 15

Encodings
● How are physical values and levels actually represented?

Encoding Physical types

PLAIN all except levels

RLE levels, BOOLEAN

DELTA_BINARY_PACKED INT32, INT64

DELTA_LENGTH_BYTE_ARRAY BYTE_ARRAY, FLBA

DELTA_BYTE_ARRAY BYTE_ARRAY, FLBA

RLE_DICTIONARY all except levels

BYTE_STREAM_SPLIT INT32, INT64, FLOAT, DOUBLE, FLBA

(note: this table omits deprecated encodings)

 16

Encodings : focus on RLE_DICTIONARY
● In real-world data, columns often have a relatively small cardinality

● RLE_DICTIONARY encodes unique values in a dictionary
● Indices use a hybrid of bit-packing and run-length-encoding (called “RLE

encoding”)

color

blue

red

red

red

green

red

Dictionary

blue

red

green

Indices

0

1

1

1

2

1PLAIN encoding

RLE encoding

 17

Compression
● Compression comes after encoding

● Encoding step may improve compressibility (BYTE_STREAM_SPLIT)

● General-purpose compression codecs

Compression codec Notes

UNCOMPRESSED

GZIP ubiquitous but under-performing

BROTLI better than GZIP

SNAPPY widely used, fast, moderately efficient

ZSTD state of the art, fast and efficient

LZ4_RAW state of the art, fastest

LZO official library is GPL-licensed

 18

Anatomy of a file: data pages
● Let’s zoom out a bit...

● Data pages are the smallest unit of work
(encoding, compression)

● Actual size depends on data and writer
configuration

● Typical data pages are both < 1MiB and <
20k rows

 19

Anatomy of a file: column chunks

● A column chunk gathers many data pages of a given
column

● Typical size is unbounded

● A single dictionary is shared at the column chunk
level (for RLE_DICTIONARY)

● Data pages do not necessarily contain the same
number of rows

 20

Anatomy of a file: row groups

● A row group contains one column chunk per physical
column

● Typical size is unbounded (and can be very large)

● The number of row groups in a file varies from 1 to N
(purely a writer decision)

 21

Anatomy of a file: overall layout

● Writers can write this in a single sequential pass even if
data is produced iteratively

● No need to materialize all data at once in memory
● Accumulate metadata and write it at the end

● Readers typically start by reading the footer
● Reading footer metadata is on the critical path
● Then random access into the file

 22

Optional bits: the page index
● Goals:

● Support page skipping / projection push-down given column predicate
(SELECT … WHERE 15 < weight < 30)

● Support indexed access (“give me row #10025”)
● All while minimizing the number of I/Os (less seeking)

● Solution: two structures stored contiguously, per column, at the end of the file
● The offset index allows direct navigation to data pages by row index
● The column index stores statistics about data pages

● Mainly min/max values (but also: null stats, def/rep levels histograms)
● Efficiency is data-dependent (sortedness, clustering of values)

● “Speeding Up SELECT Queries with Parquet Page Indexes”, Zoltán Borók-Nagy and
Gábor Szádovszky, Cloudera (https://chk.me/mOyDOeA)

https://chk.me/mOyDOeA

 23

Optional bits: Bloom filters
● Goal: allow data pruning for equality-based predicates

(SELECT … WHERE species = “cat”)

● Solution: Bloom filters stored contiguously, column-wise, at the end of the file
● One Bloom filter per column chunk (not data page)
● A Bloom filter is a heuristic hash-based containment test

● Two possible answers: “no” and “yes, perhaps”
● Selectivity depends:

1) Data cardinality: the more distinct values in a column chunk, the less selective

2) Filter size: the larger the filter, the more selective
● A well-known formula exists to choose filter size based on desired selectivity

● “Using Parquet’s Bloom Filters”, Trevor Hilton, InfluxData
(https://chk.me/1UF79nd)

https://chk.me/1UF79nd

 24

Encryption
● Optional whole-file encryption

1) Ensure confidentiality

2) Protect against tampering

● Individual file components (“modules”) are encrypted independently
● Preserving full Parquet capabilities (random access, column selections, projection

push-down...)

● Symmetric encryption only (AES GCM or AES CTR)

● Optional per-column keys, for more granular access control

● Key management is out of scope for the Parquet format
● Implementations typically provide several strategies

● “Big data security in Apache projects”, Gidon Gershinsky (https://chk.me/FCKdUhF)

https://chk.me/FCKdUhF

 25

Ecosystem

 26

Implementations
● Main open source implementations

● Java (previously known as “parquet-mr”)
● https://github.com/apache/parquet-java/

● C++, a component of Arrow C++
● Bindings to Python (PyArrow), Ruby, R…
● https://arrow.apache.org/

● Rust, a component of Arrow Rust
● https://docs.rs/parquet/

● GPU implementation in cuDF

● An unknown number of proprietary / in-house implementations

https://github.com/apache/parquet-java/
https://arrow.apache.org/
https://docs.rs/parquet/

 27

Availability and support
● Parquet supported by a number of libraries, execution engines, services

● Open source: DuckDB, Spark, Pandas, Dask, Iceberg...
● “pg_parquet: An Extension to Connect Postgres and Parquet”,

Craig Kerstiens, CrunchyData (https://chk.me/cjWw9OW)
● Closed source: too many to name

● Domain-specific communities, such as GeoParquet

https://chk.me/cjWw9OW

 28

Present and future

 29

Limitations
● Many features, not all of them supported by all implementations

● LZ4_RAW, BYTE_STREAM_SPLIT, Bloom filters…
● Writers are usually conservative
● Enable features according to target user base when writing

● Metadata serialization (Thrift) inefficient with very wide schemas (thousands of
columns)

● No random access inside data pages
● Must decode/decompress whole page

● Not adapted to very large binary values (such as images)

 30

Alternatives
● Apache ORC

● Similar characteristics as Parquet
● Different technical choices, but efficiency roughly the same
● Smaller ecosystem

● Lance v2
● Innovative, extensible, but very young
● Designed for the constraints of AI workloads
● “Lance v2: A columnar container format for modern data”, Weston Pace, LanceDB

(https://chk.me/JoJiMVF)
● “Nimble and Lance: The Parquet Killers”, Chris Riccomini (https://chk.me/DKtvczc)

https://chk.me/JoJiMVF
https://chk.me/DKtvczc

 31

Present and future
● Parquet is still being actively developed

● Latest format spec release is 2.11.0 (November 2023)
● New Variant type (from Spark and Iceberg)

● Efficient representation of semi-structured / dynamically typed data
● Discussions around a new metadata serialization format

● Using Flatbuffers rather than Thrift
● Much better efficiency on very wide schemas
● Maintaining compatibility with older readers

 32

Discussion

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

