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Apache Parquet
Open, standard, efficient columnar storage

https://parquet.apache.org/ 

https://parquet.apache.org/
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Who I am
● Apache Parquet PMC (project management committee) member
● Apache Arrow PMC member
● CPython core developer
● Free / open source software expert
● Working at QuantStack (https://quantstack.net/)
● https://github.com/pitrou
● Contact me at antoine@python.org 

https://quantstack.net/
https://github.com/pitrou
mailto:antoine@python.org
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Overview
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Open, standard, efficient ?
● A community project, under the rules of the Apache Software Foundation

● Open source specification
● Several open source implementations

● De facto standard (not de jure)
● No similar file format comes close in popularity
● (but CSV is still ubiquitous!)

● Efficient
● Storage footprint
● Read performance
● Efficient querying
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Columnar ?
● Traditional DB systems (but also CSV!) are row-oriented

● Good for row-wise operations and mutations

● Modern analytics systems use column-oriented storage
● Dataframes, analytics databases, data lakes…

Name Weight Vitamins Months

strawberry 10 {"c": 67} ["Apr", "May", "Jun"]

grapefruit 400 {"a": 110, "c": 26} ["Dec", "Jan", "Feb", "Mar"]

fig 50 ["Aug", "Sep"]

banana 150 {"a": 148}
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Columnar ? (#2)
● Column-oriented storage is good for

● Compression efficiency
● Reading a subset of columns
● Computations over many rows

Name Weight Vitamins Months

strawberry 10 {"c": 67} ["Apr", "May", "Jun"]

grapefruit 400 {"a": 110, "c": 26} ["Dec", "Jan", "Feb", "Mar"]

fig 50 ["Aug", "Sep"]

banana 150 {"a": 148}
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Features: a high-level view
● Rich data model

● Arbitrarily nested data with explicit schema
● Data types that reflect common database-y data (numbers, temporals...)
● Omitted (NULLs) / repeated values (lists, potentially nested)

● Single-pass sequential writing ({S3, GCS...}-friendly)

● Random access reading
● Parallelizable across columns, pages…
● Can selectively read columns
● Can selectively read data (statistics, bloom filters)

● Optional flexible encryption
● CSV has almost nothing of all this!
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Anatomy of a Parquet file
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Parquet data model: the nested schema
● All data in a Parquet file conforms to 

a single schema

● Arbitrarily nested

● Each node can be 
required/optional/repeated

● Only leaf nodes (columns) have 
physical data

● Each column has a specific data type
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Parquet data model: physical types
● Each column has a mandatory physical type

● BOOLEAN
● INT32
● INT64
● INT96 (deprecated)
● FLOAT
● DOUBLE
● FIXED_LEN_BYTE_ARRAY aka FLBA (parametric)
● BYTE_ARRAY
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Parquet data model: logical types (#1)
● Columns can optionally be annotated with a logical type
● Numerical logical types:

Logical type Supported physical types Parameters

IntType INT32, INT64 Bit width, is signed

DecimalType INT32, INT64, FLBA(n), BYTE_ARRAY Scale, precision

Float16Type FLBA(2)

DateType INT32

TimeType INT32, INT64 Time unit (ms/µs/ns), is UTC

TimestampType INT64 Time unit (ms/µs/ns), is UTC
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Parquet data model: logical types (#2)

● String/binary logical types:
Logical type Supported physical types Parameters

StringType BYTE_ARRAY

EnumType BYTE_ARRAY

UUIDType FLBA(16)

JsonType BYTE_ARRAY

BsonType BYTE_ARRAY

● Misc logical types: Logical type Supported physical types Parameters

NullType any

ListType only on group nodes

MapType only on group nodes
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Data model: definition levels
● How are optional values represented?

Vitamins

{"c": 67}

{"a": 110, "c": 26}

{"a": 148}

Values

110

148

Def levels

1

2

0

2

Values

67

26

Def levels

2

2

0

1

vitamins.a vitamins.c
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Data model: repetition levels
● How are repeated values represented?

Values

Apr

May

Dec

Jan

Feb

Aug

Def levels

2

2

2

2

2

2

0

Months

["Apr", "May"]

["Dec", "Jan", "Feb"]

["Aug"]

Rep levels

0

1

0

1

1

0

0

months
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Encodings
● How are physical values and levels actually represented?

Encoding Physical types

PLAIN all except levels

RLE levels, BOOLEAN

DELTA_BINARY_PACKED INT32, INT64

DELTA_LENGTH_BYTE_ARRAY BYTE_ARRAY, FLBA

DELTA_BYTE_ARRAY BYTE_ARRAY, FLBA

RLE_DICTIONARY all except levels

BYTE_STREAM_SPLIT INT32, INT64, FLOAT, DOUBLE, FLBA

(note: this table omits deprecated encodings)
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Encodings : focus on RLE_DICTIONARY
● In real-world data, columns often have a relatively small cardinality

● RLE_DICTIONARY encodes unique values in a dictionary
● Indices use a hybrid of bit-packing and run-length-encoding (called “RLE 

encoding”)

color

blue

red

red

red

green

red

Dictionary

blue

red

green

Indices

0

1

1

1

2

1PLAIN encoding

RLE encoding
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Compression
● Compression comes after encoding

● Encoding step may improve compressibility (BYTE_STREAM_SPLIT)

● General-purpose compression codecs

Compression codec Notes

UNCOMPRESSED

GZIP      ubiquitous but under-performing

BROTLI better than GZIP

SNAPPY widely used, fast, moderately efficient

ZSTD state of the art, fast and efficient

LZ4_RAW state of the art, fastest

LZO      official library is GPL-licensed
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Anatomy of a file: data pages
● Let’s zoom out a bit...

● Data pages are the smallest unit of work 
(encoding, compression)

● Actual size depends on data and writer 
configuration

● Typical data pages are both < 1MiB and < 
20k rows
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Anatomy of a file: column chunks

● A column chunk gathers many data pages of a given 
column

● Typical size is unbounded

● A single dictionary is shared at the column chunk 
level (for RLE_DICTIONARY)

● Data pages do not necessarily contain the same 
number of rows
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Anatomy of a file: row groups

● A row group contains one column chunk per physical 
column

● Typical size is unbounded (and can be very large)

● The number of row groups in a file varies from 1 to N 
(purely a writer decision)
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Anatomy of a file: overall layout

● Writers can write this in a single sequential pass even if 
data is produced iteratively

● No need to materialize all data at once in memory
● Accumulate metadata and write it at the end

● Readers typically start by reading the footer
● Reading footer metadata is on the critical path
● Then random access into the file
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Optional bits: the page index
● Goals:

● Support page skipping / projection push-down given column predicate
(SELECT … WHERE 15 < weight < 30)

● Support indexed access (“give me row #10025”)
● All while minimizing the number of I/Os (less seeking)

● Solution: two structures stored contiguously, per column, at the end of the file
● The offset index allows direct navigation to data pages by row index
● The column index stores statistics about data pages

● Mainly min/max values (but also: null stats, def/rep levels histograms)
● Efficiency is data-dependent (sortedness, clustering of values)

● “Speeding Up SELECT Queries with Parquet Page Indexes”, Zoltán Borók-Nagy and 
Gábor Szádovszky, Cloudera (https://chk.me/mOyDOeA)

https://chk.me/mOyDOeA


 23

Optional bits: Bloom filters
● Goal: allow data pruning for equality-based predicates

(SELECT … WHERE species = “cat”)

● Solution: Bloom filters stored contiguously, column-wise, at the end of the file
● One Bloom filter per column chunk (not data page)
● A Bloom filter is a heuristic hash-based containment test

● Two possible answers: “no” and “yes, perhaps”
● Selectivity depends:

1) Data cardinality: the more distinct values in a column chunk, the less selective

2) Filter size: the larger the filter, the more selective
● A well-known formula exists to choose filter size based on desired selectivity

● “Using Parquet’s Bloom Filters”, Trevor Hilton, InfluxData
(https://chk.me/1UF79nd)

https://chk.me/1UF79nd
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Encryption
● Optional whole-file encryption

1) Ensure confidentiality

2) Protect against tampering

● Individual file components (“modules”) are encrypted independently
● Preserving full Parquet capabilities (random access, column selections, projection 

push-down...)

● Symmetric encryption only (AES GCM or AES CTR)

● Optional per-column keys, for more granular access control

● Key management is out of scope for the Parquet format
● Implementations typically provide several strategies

● “Big data security in Apache projects”, Gidon Gershinsky (https://chk.me/FCKdUhF)

https://chk.me/FCKdUhF
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Ecosystem
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Implementations
● Main open source implementations

● Java (previously known as “parquet-mr”)
● https://github.com/apache/parquet-java/ 

● C++, a component of Arrow C++
● Bindings to Python (PyArrow), Ruby, R…
● https://arrow.apache.org/ 

● Rust, a component of Arrow Rust
● https://docs.rs/parquet/ 

● GPU implementation in cuDF

● An unknown number of proprietary / in-house implementations

https://github.com/apache/parquet-java/
https://arrow.apache.org/
https://docs.rs/parquet/
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Availability and support
● Parquet supported by a number of libraries, execution engines, services

● Open source: DuckDB, Spark, Pandas, Dask, Iceberg...
● “pg_parquet: An Extension to Connect Postgres and Parquet”, 

Craig Kerstiens, CrunchyData (https://chk.me/cjWw9OW)
● Closed source: too many to name

● Domain-specific communities, such as GeoParquet

https://chk.me/cjWw9OW
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Present and future
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Limitations
● Many features, not all of them supported by all implementations

● LZ4_RAW, BYTE_STREAM_SPLIT, Bloom filters…
● Writers are usually conservative
● Enable features according to target user base when writing

● Metadata serialization (Thrift) inefficient with very wide schemas (thousands of 
columns)

● No random access inside data pages
● Must decode/decompress whole page

● Not adapted to very large binary values (such as images)
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Alternatives
● Apache ORC

● Similar characteristics as Parquet
● Different technical choices, but efficiency roughly the same
● Smaller ecosystem

● Lance v2
● Innovative, extensible, but very young
● Designed for the constraints of AI workloads
● “Lance v2: A columnar container format for modern data”, Weston Pace, LanceDB

(https://chk.me/JoJiMVF)
● “Nimble and Lance: The Parquet Killers”, Chris Riccomini (https://chk.me/DKtvczc)

https://chk.me/JoJiMVF
https://chk.me/DKtvczc
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Present and future
● Parquet is still being actively developed

● Latest format spec release is 2.11.0 (November 2023)
● New Variant type (from Spark and Iceberg)

● Efficient representation of semi-structured / dynamically typed data
● Discussions around a new metadata serialization format

● Using Flatbuffers rather than Thrift
● Much better efficiency on very wide schemas
● Maintaining compatibility with older readers
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Discussion
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