Apache Parquet

Open, standard, efficient columnar storage

https://parquet.apache.org/

Who I am

- Apache Parquet PMC (project management committee) member
- Apache Arrow PMC member
- CPython core developer
- Free / open source software expert
- Working at QuantStack (https://quantstack.net/)
- https://github.com/pitrou
- Contact me at antoine@python.org

Antoine Pitrou pitrou

Overview

Open, standard, efficient?

- A community project, under the rules of the Apache Software Foundation
 - Open source specification
 - Several open source implementations
- De facto standard (not de jure)
 - No similar file format comes close in popularity
 - (but CSV is still ubiquitous!)
- Efficient
 - Storage footprint
 - Read performance
 - Efficient querying

Columnar?

- Traditional DB systems (but also CSV!) are row-oriented
 - Good for row-wise operations and mutations
- Modern analytics systems use column-oriented storage
 - Dataframes, analytics databases, data lakes...

Name	Weight	Vitamins	Months
strawberry	10	{"c": 67}	["Apr", "May", "Jun"]
grapefruit	400	{"a": 110, "c": 26}	["Dec", "Jan", "Feb", "Mar"]
fig	50		["Aug", "Sep"]
banana	150	{"a": 148}	

Columnar ? (#2)

- Column-oriented storage is good for
 - Compression efficiency
 - Reading a subset of columns
 - Computations over many rows

Name	Weight	Vitamins	Months
strawberry	10	{"c": 67}	["Apr", "May", "Jun"]
grapefruit	400	{"a": 110, "c": 26}	["Dec", "Jan", "Feb", "Mar"]
fig	50		["Aug", "Sep"]
banana	150	{"a": 148}	

Features: a high-level view

- Rich data model
 - Arbitrarily nested data with explicit schema
 - Data types that reflect common database-y data (numbers, temporals...)
 - Omitted (NULLs) / repeated values (lists, potentially nested)
- Single-pass sequential writing ({S3, GCS...}-friendly)
- Random access reading
 - Parallelizable across columns, pages...
 - Can selectively read columns
 - Can selectively read data (statistics, bloom filters)
- Optional flexible encryption
- CSV has almost nothing of all this!

Anatomy of a Parquet file

Parquet data model: the nested schema

- All data in a Parquet file conforms to a single schema
- Arbitrarily nested
- Each node can be required/optional/repeated
- Only leaf nodes (columns) have physical data
- Each column has a specific data type

```
REQUIRED BYTE_ARRAY name (STRING)
REQUIRED DOUBLE weight
OPTIONAL GROUP vitamins {
    OPTIONAL DOUBLE a
    OPTIONAL DOUBLE c
}
OPTIONAL GROUP months (LIST) {
    REPEATED GROUP list {
        REQUIRED BYTE_ARRAY element (STRING)
    }
}
```

Parquet data model: physical types

- Each column has a mandatory physical type
 - BOOLEAN
 - INT32
 - INT64
 - INT96 (deprecated)
 - FLOAT
 - DOUBLE
 - FIXED_LEN_BYTE_ARRAY aka FLBA (parametric)
 - BYTE_ARRAY

Parquet data model: logical types (#1)

- Columns can optionally be annotated with a logical type
- Numerical logical types:

Logical type	Supported physical types	Parameters
IntType	INT32, INT64	Bit width, is signed
DecimalType	INT32, INT64, FLBA(n), BYTE_ARRAY	Scale, precision
Float16Type	FLBA(2)	
DateType	INT32	
TimeType	INT32, INT64	Time unit (ms/μs/ns), is UTC
TimestampType	INT64	Time unit (ms/µs/ns), is UTC
		Paro

Parquet data model: logical types (#2)

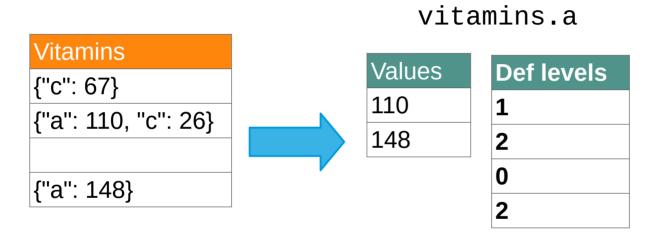
String/binary logical types:

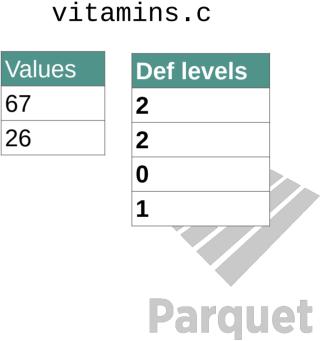
Logical type	Supported physical types	Parameters
StringType	BYTE_ARRAY	
EnumType	BYTE_ARRAY	
UUIDType	FLBA(16)	
JsonType	BYTE_ARRAY	
BsonType	BYTE_ARRAY	

Logical type	Supported physical types	Parameters
NullType	any	
ListType	only on group nodes	
МарТуре	only on group nodes	

Data model: definition levels

How are optional values represented?

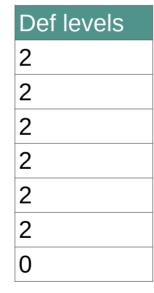




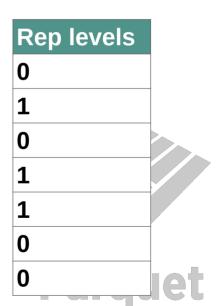
Data model: repetition levels

How are repeated values represented?

Aug



months



Encodings

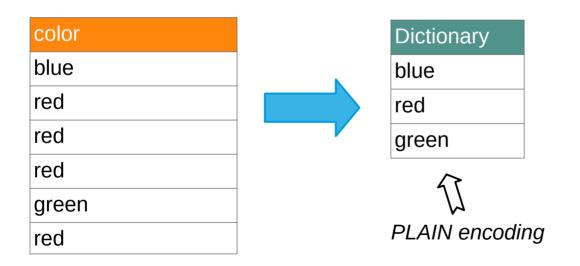
How are physical values and levels actually represented?

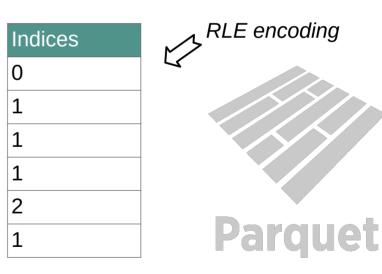
Encoding	Physical types
PLAIN	all except levels
RLE	levels, BOOLEAN
DELTA_BINARY_PACKED	INT32, INT64
DELTA_LENGTH_BYTE_ARRAY	BYTE_ARRAY, FLBA
DELTA_BYTE_ARRAY	BYTE_ARRAY, FLBA
RLE_DICTIONARY	all except levels
BYTE_STREAM_SPLIT	INT32, INT64, FLOAT, DOUBLE, FLBA

(note: this table omits deprecated encodings)

Encodings : focus on RLE_DICTIONARY

- In real-world data, columns often have a relatively small cardinality
- RLE_DICTIONARY encodes unique values in a dictionary
 - Indices use a hybrid of bit-packing and run-length-encoding (called "RLE encoding")





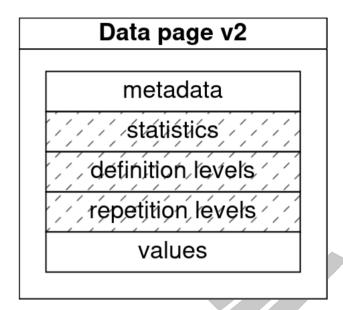
Compression

- Compression comes after encoding
 - Encoding step may improve compressibility (BYTE_STREAM_SPLIT)
- General-purpose compression codecs

Compression codec	Notes
UNCOMPRESSED	
GZIP	⚠ ubiquitous but under-performing
BROTLI	better than GZIP
SNAPPY	widely used, fast, moderately efficient
ZSTD	state of the art, fast and efficient
LZ4_RAW	state of the art, fastest
LZO	△ official library is GPL-licensed

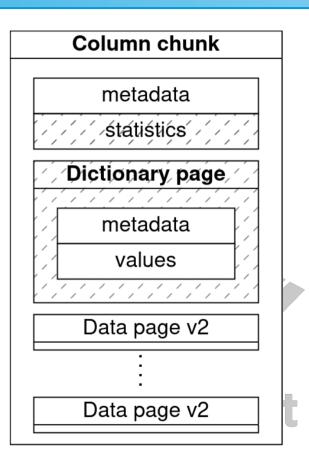
Anatomy of a file: data pages

- Let's zoom out a bit...
- Data pages are the smallest unit of work (encoding, compression)
- Actual size depends on data and writer configuration
- Typical data pages are both < 1MiB and < 20k rows



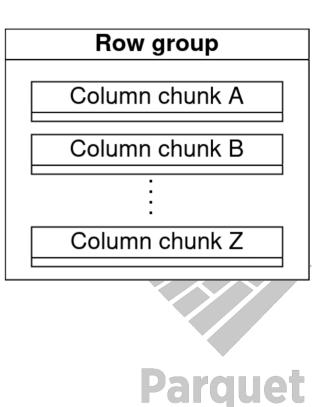
Anatomy of a file: column chunks

- A column chunk gathers many data pages of a given column
- Typical size is unbounded
- A single dictionary is shared at the column chunk level (for RLE_DICTIONARY)
- Data pages do not necessarily contain the same number of rows



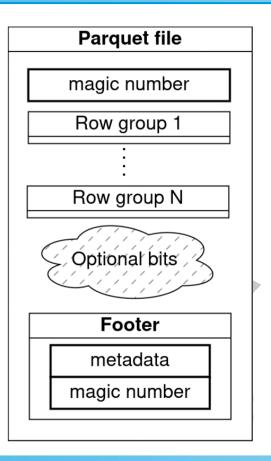
Anatomy of a file: row groups

- A row group contains one column chunk per physical column
- Typical size is unbounded (and can be very large)
- The number of row groups in a file varies from 1 to N (purely a writer decision)



Anatomy of a file: overall layout

- Writers can write this in a single sequential pass even if data is produced iteratively
 - No need to materialize all data at once in memory
 - Accumulate metadata and write it at the end
- Readers typically start by reading the footer
 - Reading footer metadata is on the critical path
 - Then random access into the file



Optional bits: the page index

- Goals:
 - Support page skipping / projection push-down given column predicate (SELECT ... WHERE 15 < weight < 30)
 - Support indexed access ("give me row #10025")
 - All while minimizing the number of I/Os (less seeking)
- Solution: two structures stored contiguously, per column, at the end of the file
 - The offset index allows direct navigation to data pages by row index
 - The column index stores statistics about data pages
 - Mainly min/max values (but also: null stats, def/rep levels histograms)
 - Efficiency is data-dependent (sortedness, clustering of values)
- "Speeding Up SELECT Queries with Parquet Page Indexes", Zoltán Borók-Nagy and Cabor Szádovszky, Cloudera (https://chk.me/mOyDOeA)

Optional bits: Bloom filters

- Goal: allow data pruning for equality-based predicates (SELECT ... WHERE species = "cat")
- Solution: Bloom filters stored contiguously, column-wise, at the end of the file
 - One Bloom filter per column chunk (not data page)
 - A Bloom filter is a heuristic hash-based containment test
 - Two possible answers: "no" and "yes, perhaps"
 - Selectivity depends:
 - 1) Data cardinality: the more distinct values in a column chunk, the less selective
 - 2) Filter size: the larger the filter, the more selective
 - A well-known formula exists to choose filter size based on desired selectivity
- "Using Parquet's Bloom Filters", Trevor Hilton, InfluxData (https://chk.me/1UF79nd)

Encryption

- Optional whole-file encryption
 - 1) Ensure confidentiality
 - 2) Protect against tampering
- Individual file components ("modules") are encrypted independently
 - Preserving full Parquet capabilities (random access, column selections, projection push-down...)
- Symmetric encryption only (AES GCM or AES CTR)
- Optional per-column keys, for more granular access control
- Key management is out of scope for the Parquet format
 - Implementations typically provide several strategies
- "Big data security in Apache projects", Gidon Gershinsky (https://chk.me/FCKdUhF)

Ecosystem

Implementations

- Main open source implementations
 - Java (previously known as "parquet-mr")
 - https://github.com/apache/parquet-java/
 - C++, a component of Arrow C++
 - Bindings to Python (PyArrow), Ruby, R...
 - https://arrow.apache.org/
 - Rust, a component of Arrow Rust
 - https://docs.rs/parquet/
- GPU implementation in cuDF
- An unknown number of proprietary / in-house implementations

Availability and support

- Parquet supported by a number of libraries, execution engines, services
 - Open source: DuckDB, Spark, Pandas, Dask, Iceberg...
 - "pg_parquet: An Extension to Connect Postgres and Parquet", Craig Kerstiens, CrunchyData (https://chk.me/cjWw9OW)
 - Closed source: too many to name
- Domain-specific communities, such as GeoParquet

Present and future

Limitations

- Many features, not all of them supported by all implementations
 - LZ4_RAW, BYTE_STREAM_SPLIT, Bloom filters...
 - Writers are usually conservative
 - Enable features according to target user base when writing
- Metadata serialization (Thrift) inefficient with very wide schemas (thousands of columns)
- No random access inside data pages
 - Must decode/decompress whole page
- Not adapted to very large binary values (such as images)

Alternatives

- Apache ORC
 - Similar characteristics as Parquet
 - Different technical choices, but efficiency roughly the same
 - Smaller ecosystem
- Lance v2
 - Innovative, extensible, but very young
 - Designed for the constraints of AI workloads
 - "Lance v2: A columnar container format for modern data", Weston Pace, LanceDB (https://chk.me/JoJiMVF)
 - "Nimble and Lance: The Parquet Killers", Chris Riccomini (https://chk.me/DKtvczc)

Present and future

- Parquet is still being actively developed
 - Latest format spec release is 2.11.0 (November 2023)
- New Variant type (from Spark and Iceberg)
 - Efficient representation of semi-structured / dynamically typed data
- Discussions around a new metadata serialization format
 - Using Flatbuffers rather than Thrift
 - Much better efficiency on very wide schemas
 - Maintaining compatibility with older readers

Discussion