The Art of Assembly Language

The Art of Assembly Language

(Brief Contents)
Forward Why Would Anyone Learn This StUFF? ..o 1
SECLION ONE. oottt 9
Chapter One Data REPreSENtation ..o esssessssssssnns 11
Chapter TWO B0O0Iean AlgEhra ... ssssesssssssnns 43
Chapter Three System Organization ... 83
Chapter Four Memory Layout ANd ACCESSvvverrrrrerrinrieisesssessssssssssessesssssssssssssnns 145
SECLION TWO! ovuveveesseeseesses st 193
Chapter Five Variables and Data StrUCIUIES ..o 195
Chapter Six The 80X86 INSIIUCHION SELvvvevreiiiiie s 243
Chapter Seven The UCR Standard LIDrary ..., 333
Chapter Eight MASM: Directives & PSeudo-OpCodescovmrrerneenreneiniinniensennns 355
Chapter Nine Arithmetic and Logical OpPerationsccccovmrmirnsrneensensinssnnsensennns 459
Chapter 10 CONLrol SITUCIUIEScvevvcveieriseiee s 521
Chapter 11 Procedures and FUNCLIONSc.ccceererieiiinrsiesssssisssessssssssssssesssssessens 565
SECHON TRIBE. oo 637
Chapter 12 Procedures: AAvanced TOPICSverrreiernrriesssssssssesssssssessessessssessens 639
Chapter 13 MS-DOS, PC-BIOS, and File I/Ocvvvrieriireneiisnsisessiseesssisessneenns 699
Chapter 14 Floating Point AfItNMELICccccovveieieireieieecesss s 771
Chapter 15 Strings and CharaCter SEIS ... 819
Chapter 16 Pattern MatChingc.ccooveieeinrieinessseiess s 883
SECLION FOUR: oovvtveirereseiise it 993
Chapter 17 Interrupts, Traps, and EXCEPIONScccvvvvveirierieresisnssessesise s, 995
Chapter 18 ReSIAENt PrOGraMScvvvvvverierieiieissssssesisssssssssesssssssssssssssssssessssssssssnns 1025
Chapter 19 Processes, Coroutings, and CONCUITENCYcvvuvvvrvrrenresersesssssssssessesssessesens 1065
SECLION FIVE! oottt 1151
Chapter 20 The PC KEYDOAIcocvvvierieieiscississesssse s ssssssssssssenns 1153
Chapter 21 The PC Parallel POMSccoovieveieiesisesssssesessesssssssssssssssssesssssssesenns 1199
Chapter 22 The PC SErial POMSccooveviereiscssissessse s ssssssssssenns 1223
Chapter 23 The PC Video DiSPlaycccoververeinsiinriesssssessesssssssssssssssssesssssssssenns 1247
Chapter 24 The PC Game AJAPLETc..ovvvereercisriieniiessesesssesssssssssssssssssessssssssseans 1255
SECOLION SIX: veeuvereessertseessees bbb 1309
Chapter 25 Optimizing YOUT PrOJramMSccvvcvrvnrierissiesssssssssssssssssssssssesssesssessans 1311
SECLION SEVEN: .oooieeeieriiseese ettt 1343
Appendix A: ASCII/IBM CharaCter SEtccovvvermemrsreiesiesssssssssssssssssssssesssssssessnns 1345
Appendix B: Annotated Bibliography ..., 1347

Pagei

Appendix C: Keyboard Scan Codes ...

Appendix D: Instruction Set Reference

Pageii

The Art of Assembly Language

The Art of Assembly Language
(Full Contents)

Forward Why Would Anyone Learn This STUFf? ... 1
1 What's Wrong With ASSembly LANGUAGEvvrrvrrernrrrerierissssssssssessssssssssssesssssssenssnes 1
2 What's Right With ASsembly LANGUAGE? ouvereverererrrrnernssrssssssssssssssssssssssssssssssssesssnses 4
3 Organization of This Text and Pedagogical CONCEINS covvvverrvnrrnerrnsrsressssssssesssnnes 5
4 Obtaining Program Source Listings and Other Materials in This TeXtccorvvrvrrinvrennnes 7
SECHON ONE. o 9
Maching Organization ... s s ssssens 9
Chapter One Data REPreSENtationc.vvierieinisisinssssesses s ssesssssssssnns 11
1.0 Chapter OVEIVIBW ...oucvvuviereresisss s ssssssssesssssssss s sssssssssesssssssssesssasssssssssssssssones 11
1.1 NUMDEING SYSIEMS oo sss s st sss s st sssssssssssssnes 11
1.1.1 AReview of the Decimal SYSEMccccovvrvrrinreinnrnnrinsnssisssssssss s ssssssesssnees 1
1.1.2 The Binary NUMDEFNG SYSLEM ...ovvoeriirisriesesssssssssisssessssssssssssssssssssesssnees 12
1.1.3 BINAIY FOMMALS ..ot ssssss s sssssssssssessssss s esssssssesssnses 13
1.2 Data Organizationcocvvererrrnnrnsssssesssssss s s ssssssssssssssssssssss s sssssssssssssssones 13
121 BIES coeoreeereeeiseeesiseeesssees e ees sttt s 14
1.2.2 NIBDIBS oot s 14
12,3 BYLES oottt ettt b s 14
124 WOTHS oot st 15
1.2.5 DOUDIE WOITS ...o.voovirirrirsisss s ssssssssss st essssss s esssssssssssnses 16
1.3 The Hexadecimal NUMDEING SYSEMoovvereriserssrssssssssssssss s sssssssssssnsens 17
1.4 Arithmetic Operations on Binary and Hexadecimal NUMDErScooevvvvivvrinnrnerirnnenne, 19
1.5 Logical Operations 0N BItSccccoemvrvmrmrmnnrinssisssnsssssssssssssssssssssssssssssesssssssssssenes 20
1.6 Logical Operations on Binary Numbers and Bit StringScocovevverinmrnsrimsinsinnrinninns 22
1.7 Signed and UnSigned NUMDETSocverermrimernseissessssesssssssssssssssssssssssssssssesssssssensiones 23
1.8 Sign and Zero EXIENSION cvvcvvrvrernsriesississsesssnnssones 25
1.9 Shifts ANA ROTAIES .v.vvvveerererereerssr s ess st sssnssss s 26
1.10 Bit Fields and PaCKed DAtacccouvrmrermrrmernseinsisnssessssssssssssssssssssssssssssesssssssssssones 28
1.11 The ASCII CRaraCter SEL ..o isssssssssssssssssessssssess st sssssssesssssssnssnes 28
112 SUMMAIY oot b bbb 31
1.13 LabOratory EXBICISES ...uvervverrerreirerssssnssssessssssessssssssssssesssssssssssesssessssssesssasssssssssssssssones 33
1.13.1 Installing the SOMWAIEceevvieeriereserese s s esssnens 33
1.13.2 Data CONVETSION EXEITISES ..uvvvuvveerrerererreesessenssssssssssesssssssssssessssssssssssssssssssssssnees 34
1.13.3 Logical Operations EXEITISESvrerrrerreererreresmnessssessssssssssesssssssssssssssssssssssness 35
1.13.4 Sign and Zero EXtENSION EXEICISES vvvrrvirernnrrmrinsessssssssssessssssssssssssenssnnees 36
1.13.5 Packed Datad EXEICISESovvvverrrrrreeresiessssessssssssssssssssssssssesssssssssssessssssssesssnses 37
L.14 QUESHIONS oocveviceectiesict ettt e s s st s bbbt s 38
1.15 Programming PrOJECES vververrrirernsreeressessnssesssssssssssssssssssssssesssassssssssssssssssssssnssnnssones 41
Chapter TWO B00I€an AlgEDIa ..o 43
2.0 Chapter OVEIVIEW ..ot sssssss st ssssesss s ssssassssssssnses 43
2.1 B0OIEAN AIGEDIA ..o s 43

Pageiii

2.2 Boolean Functions and Truth TADIEScvviceieeee et 45

2.3 Algebraic Manipulation of BooIean EXPressionsccerrrmssinsenssssnsssssssessnnns 48
2.4 CANONICAI FOMMNS ..ottt bbb 49
2.5 Simplification of BoOIEAN FUNCHONSovvvvvrevrecrsrssrississsiesssssssssssssssssessssssssnssnns 52
2.6 What Does This Have To Do With Computers, ANYWaY?ccccvvremermmernmrsnmsrssessssessnnns 59
2.6.1 Correspondence Between Electronic Circuits and Boolean Functions —.............. 59
2.6.2 CombINALOrTAl CITCUITS ...vuuveveierceeieeieceere e 60
2.6.3 Sequential and CIOCKEA LOGICuvvevreereirrsnrinrinsrsesssisssessssssssssssssssssssesssnees 62
2.7 Okay, What Does It Have To Do With Programming, Ten?ccecvvernrrvnrnsrensrennnnnn, 64
2.8 Generic Bo0lean FUNCHIONS ... sss s 65
2.9 LADOratONY EXEITISES ...vvouieeieiereneeiees ittt 69
2.9.1 Truth Tables and Logic EQUALIONS EXEICISES veverrereermrieerrressssssssssssnsssssennes 70
2.9.2 Canonical Logic EQUAtIONS EXEICISES vuvvrurremresmeesnrsinsessssssssssssssssssssssssssssssnses 71
2.9.3 OPtiMIZAtiON EXEITISES .vvvvvvuvverrrirerreesssissssssssssesssssssssssssssssssesssessssssssssssssesssanees 72
2.9.4 L0giC EVAlUatioN EXEICISES ..vvuvviuvvereeeesiesssnsinsssnsssssssssssssssesssssssssssessssssssssesssnees 72
2.10 Programming PrOJECES vucerceeeriersressssssssssssssssssssssssssssssesssesssessssssssssssssssesssssssenssones 77
211 SUMMAIY oottt bbb bbbt 78
2.12 QUESHIOMNS .ovoveeeierieseesse e e 80
Chapter Three System Organization ..., 83
3.0 Chapter OVEIVIEW ..o ssssssssssss st ssss s ssess st sssesssssssnssenes 83
3.1 The Basic System COMPONENTS ... ssss s ssesens 83
311 TRE SYSEEM BUS evoeveceiereseiss s ess st ssss s essssss s sssesssnses 84
3111 TRE DALA BUS .ceooieeceierieeieiie st 84
3.1.1.2 The AdrESS BUS ..ot 86
3.1.1.3 THE CONLIOI BUSeoueverciirerinerieiee e 86
3.1.2 The Memory SUDSYSIEM ...ocvcrcrsrrissiseisss s s sssssssssssssnees 87
3.1.3 The 1/O SUDSYSIEM ..ot ess s 92
3.2 SYSEEM TIMING .overieriereeeseie et bbb s 92
3.2.1 THe SYSEM CIOCK ovvvvevvieicicr st s sssssssnnes 92
3.2.2 Memory Access and the SYstem ClOCK ..o 23
3.2.3 WAL SEALES ovooceeceieeieii it 95
3.2.4 CAChE MEMOIY oot nnes 96
3.3 The 886, 8286, 8486, and 8686 “Hypothetical” ProcesSorsceineeneinnnens 99
3.3.1 CPUREQISIEIS ..vvuvirrirrersssssisss s sssssssssssssesssssssssssssssssssssesssssssssssssssssesssnses 99
3.3.2 The Arithmetic & LOGICal UNItcovvvrieirerierissrsssssssssssssssss s 100
3.3.3 The BUS INtErfACE UNIE ... ssse s s 100
3.3.4 The Control Unit and INSIrUCLION SEISvvvvrereiieeieie e 100
3.3.5 The X86 INSIUCLION SEL ...t 102
3.3.6 Addressing Modes 0N the X86 ... esssssssssssssnees 103
3.3.7 ENCoding X86 INSTUCLIONS vvuviuvirieriiesssssssisssssssssssssess s ssssssssssssssssnees 104
3.3.8 Step-by-Step INStrUCtion EXECULION cvvcvvcrerisrisssississs s ssssssssesssssesssssnnns 107
3.3.9 The Differences Between the X86 PrOCESSOIS ouewerenneererinnerinerineessseeinnes 109
3.3.10 THE 886 PrOCESSOT ...ouuvereiermreiereseeessesssessesssse st ss s st 110
3.3.11 THE 8286 PrOCESSOF ..ouuveruiermrerereseeesesssesssessssessss st ssse s sssessssssssees 110
3.3.12 THE 8ABE PrOCESSON ..ouuvermrermrerereseeeseessesssesssse st sss s s s sess s 116
3.3.12.1 The 8486 PIPEIINEvvvevrvcrersessssss st 117
3.3.12.2 Stalls iN @ PIPEINE ..vvovvvrrversrisssessssss s s 118
3.3.12.3 Cache, the Prefetch Queue, and the 8486cccoeceerececriecinerieeneiennne, 119

Pageiv

The Art of Assembly Language

3.3.12.4 Hazards ONthe 8486ccocemereereerenneiineiiseiieesse s 122
3.3.13 THE 8686 PrOCESSOF ouuverueereeseessseiseesse st sesss s s s 123
3.4 1/O (INPUHOULPUL) eoverrceerererseeessreeesssesssse st sss st sss s st sssssssesssens 124
3.5 Interrupts and POIEA /O ..ot st esssnens 126
3.6 LADOrAONY EXEITISES ...oouiveuieiieiieiiserieise st 128
3.6.1 The SIMx86 Program — Some Simple X86 Programscccouevvernmeenmressssnsesnneons 128
3.6.2 Simple 1/0-Mapped Input/Output OPErationsccc.coermeermrermerrnnerenreessnnseerenns 131
3.6.3 Memory Mapped 1/O ...t 132
3.6.4 DMA EXEITISES ..oovuveuuiereieseetisesisssssess st bbb s 133
3.6.5 Interrupt Driven 1/0 EXEICISESvvvirvireerimrssenns 134
3.6.6 Machine Language Programming & Instruction Encoding EXercisesc...... 135
3.6.7 Self Modifying COOE EXEITISES ..vuuvvrurvrrrieririsissssssssssssssesssssssssssssssssssssssessssssenns 136
3.7 Programming PIOJECES eeeueereerieiineiieesiesssse s st sssss s 138
3.8 SUMMAIY oot 139
3.9 QUESLIONS oottt bbb bbb 142

Chapter Four Memory Layout aNd ACCESSuvreriiririeesieeneissssssesssesssesnsens 145

4.0 Chaper OVEIVIEBW .o.ceeeieeieieeiee s bbb 145
4.1 The 80x86 CPUS:A Programmer’s VIEWcouveervrnernsisnsssssssssssisssssssssssssssssssesssnees 145
4.1.1 8086 General PUrPOSE REJISIEISvvvcrieriiriessssssssssssssssssssssssssssssssssssssnssnes 146
4.1.2 8086 SEIMENE REYISIEIS .ouvvvvrerreresreeeresrses s sss s sessssssssssssssnssenes 147
4.1.3 8086 Special PUrPOSE REJISIEIS cvocvvcrieririesissssssssssssssssessssssssssssesssssssnes 148
4.1.4 80286 REGISIEIS vvvvvvevreererissesisssssessssss s s sssssssssssssssesssesssss st sssssssssssenssones 148
4.1.5 80386/80486 REGISIEIS ..vvvvvevvereersrieesressisessssssssssssssssssssesssesssssssssssssssesssssssanssones 149
4.2 80x86 Physical Memory Organizationccocoveverneemsrnsrmsssnssisssssssssssssssssssssnees 150
4.3 Segments ONthe BOXBEcvvvevevererrrr s st ssnens 151
4.4 Normalized Addresses 0n the 80XBEcccvrerienereinereinneinessisssse e 154
4.5 Segment Registers 0N the 80X86 ... sssssssssessssnses 155
4.6 The 80x86 AAressing MOUES c.covrvvrrvrimrenernssnss s ssssssssesssenes 155
4.6.1 8086 Register ADAressing MOUESc.vverrirrmreneessnssnssssssessssssssssssesssssssnss 156
4.6.2 8086 Memory Addressing MOGES c.crvrrrrmrenressnsssssssssssssssssesssesssssssnss 156
4.6.2.1 The Displacement Only Addressing MOEc.coervmrnrrrnrrneennrnnenneennes 156

4.6.2.2 The Register Indirect Addressing MOUEScc.ovveervmrnrrrnrenssnssnssnseennes 158

4.6.2.3 Indexed AdAressing MOGESvvvrermmrrmremrmnrinssnsssssssssesssssssssesssenses 159

4.6.2.4 Based Indexed Addressing MOUEScccvvemrerneernnrinmrnsesssssssssnssnsssnnes 160

4.6.2.5 Based Indexed Plus Displacement Addressing MOdeccocvvervvrnirennns 160

4.6.2.6 An Easy Way to Remember the 8086 Memory Addressing Modes 162

4.6.2.7 Some Final Comments About 8086 Addressing MOEScccevrrvererrrennnes 162
4.6.3 80386 Register AAressing MOUEScvvvrrmrenrinerinsssssssssssssssssssssssssssssnns 163
4.6.4 80386 Memory Addressing MOUES c.vvvrrmrenrrnsrinsssssssssssssssssssssesssssssnns 163
4.6.4.1 Register Indirect Addressing MOUESvvvvvrreeenernmrnrsnssssssssnssnsssenes 163

4.6.4.2 80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing Modes 164

4.6.4.3 80386 Scaled Indexed Addressing MOUEScceermenvernernsssnssnssnnseenes 165

4.6.4.4 Some Final Notes About the 80386 Memory Addressing Modes 165
4.7 The 80X86 MOV INSIIUCHION ...ceouiveieeeereiieiisseeesie s ssess s 166
4.8 Some Final Comments on the MOV INSIFUCHIONS cooueverereereerineeinsiseseeseeeiiens 169
4.9 LADOTALONY EXEICISES ..oouverurerereseeeseissess st sssss s bbb 169
4.9.1 The UCR Standard Library for 80x86 Assembly Language Programmers 169
4.9.2 Editing YOUF SOUFCE FIlES .vvvvvvirvrreieerresrsesississssssssssssssessssssesssssssssssssssssenssnes 170

Page v

4.9.3 The SHELLASM FIIE ..o ssssesssssssssessssssssnenes 170

4.9.4 Assembling Your Code With MASM ... ssssssss s 172
4.9.5 Debuggers and COUEVIEWLTocvvvevernerimrnsinssiesssssssssssssssssssssssssssssssssanses 173
4,951 A QUick LOOK at COUBVIEWcocvrricrieriecierieeteses et essesessesins 173
4.9.5.2 The SOUICE WINAOWcvemieircrieiicieinesiesissessssssssse s 174
4.9.5.3 The MemOry WINAOWcc.covvvvrnmiinmriininnsissssssssssssssssssssssssssssssssssenns 175

4.9.5.4 The Register WINAOWccvvverinninriisisssissssssssssssssssssssssessssssssssnsenns 176

4.9.5.5 The Command WINAOWccocuereerenereiiineisisssssesiessse s 176

4.9.5.6 The OQULPUL MENU IEEM <..oovvevicerersesn s 177

4.9.5.7 The CodeView Command WiNdOWc.couevereeriinereineeineensssssriseeenns 177

4.9.5.7.1 The Radix Command (N) ..o 177

4.95.7.2 The Assemble COMMANG ovvvrveriieiee e 178

4.9.5.7.3 The Compare Memory COMMandcccooerivmrnvrrimrrinsinnsnssnnsennnns 178

4.9.5.7.4 The Dump Memory COMMANd cccovvveernmrnmrinrrinssinsssessnsssssennns 180

4.95.75 The Enter COMMANG ... 181

4.9.5.7.6 The Fill Memory COMMANG c.ovvvvrvnrrnerenrssrnssesssssssssssnsssnnes 182

4.9.5.7.7 The Move Memory COMMANGcovvevvrnernnrnmrinsriessisssessnssensssnnns 182

4.9.5.7.8 The INput COMMANG cvvcrierrrrsrressee s s 183

4.9.5.7.9 The Output COMMANGcccoerrmrririnrirernsrrsresess s 183

4,95.7.10 The QUIt COMMANG ...coovvveieieecrecee ettt 183

4.9.5.7.11 The Register COMMANG cccovvvrvrinrrinrinnrsssnssssssisssssssssssssenns 183

4.9.5.7.12 The Unassemble COMMANGcccvereerenereneriinerineensesesisseeenns 184

4.9.5.8 CodeView FUNCHON KBYScvvvverieriinisssisssisssssssssssssssss s ssssssssssesns 184

4.9.5.9 Some Comments on CodeView AArESSEScuererererererniersnsersnererserenns 185

4.9.5.10 AWrap 0N COUEVIEW ...ovvvevicrierinriisisss s ssssessssssssss s ssssssssssenns 186

4.9.6 LADOTALONY TASKS vvvvveriseeieciss e sesiss st st sssesssnnes 186
4.10 Programming PrOJECES uvurcverrierissiesisssssssissssssssssssssssssesssessssssssssssssssssesssssssnssones 187
A.11 SUMMAIY otttk 188
4,12 QUESHIONS ..oovecvicecreetet ettt bbb st st st e s bbbt bbbt 190

SECHON TWO! oottt 193
Basic ASSEMDIY LANGUAGEcvvueverceireiieiise s 193
Chapter Five Variables and Data SrUCIUIES ..o 195

5.0 Chaper OVEIVIEBW oouieeierieieieseeeiesis st 195
5.1 Some Additional Instructions: LEA, LES, ADD, and MULoccevevriveriecesesie e, 195
5.2 Declaring Variables in an Assembly Language Programcccoevemeemrensrsnmsnmsessesnsennns 196
5.3 Declaring and Accessing Scalar VariableScccovrmrmrnnrinnsnssnssssssssssssssssnnssens 197
5.3.1 Declaring and using BYTE VarialIESccccoervmrnmrimrineennrinssinsssssiessssssssssssnnes 198
5.3.2 Declaring and using WORD VariabIeSccccourvvvrmrrinernnrnneinssssssessssesssssssennes 200
5.3.3 Declaring and using DWORD VariableSccccuumrimrenmrnmenmrensrsnssssssssssssennes 201
5.3.4 Declaring and using FWORD, QWORD, and TBYTE Variablesccccoermirrnnns 202
5.3.5 Declaring Floating Point Variables with REAL4, REAL8, and REAL10ccc...... 202

5.4 Creating Your Own Type Names With TYPEDEF ccccooeivmrnvrnmrinsinsrnssinssessseesennn, 203
5.5 POINLET DAA TYPES vvvvrvrrerrerneirsresssssssssessssssssssssssssssessssssesssesssessssssssssssssesssssssnssonss 203
5.6 COMPOSILE DAA TYPES cvvvverrereerrererssssssssssssssssssssssssssssssssssssesssesssesssesssssssssssesssssssesssones 206
5.8.1 AITAYS vttt ettt et 206
5.6.1.1 Declaring Arrays in Your Data SEgMENtcc.covvmrvnrernnrnrennrsessssssnsssneens 207

5.6.1.2 Accessing Elements of a Single Dimension Arraycc..oerereneennrenneens 209

5.6.2 MUIIAIMENSIONAL AITAYS ..vouvveerierireesissssssss s ssssssssssess s ssssssssssssesssnees 210
5.6.2.1 ROW MajOr OFAEIING vvovvrrvierisrrssiresisssssssesssssssssssssssssssssesssssssssssssesssns 211

Page vi

The Art of Assembly Language

5.6.2.2 Column Major Orderingveeeerveernerimrnsssssesssssssssessssssssssssssssesssnes 215

5.6.2.3 Allocating Storage for Multidimensional ArTayscccoeeevnernnrensrensenne, 216

5.6.2.4 Accessing Multidimensional Array Elements in Assembly Language 217

5.68.3 SHUCIUIES oottt 218
5.6.4 Arrays of Structures and Arrays/Structures as Structure Fields —........ccocvvvrvernnnnn. 220
5.6.5 POINEIS 10 SUCIUIES ovvvveeivirrereerser s sississs s e sssss s sssssssssssesssssenes 221

5.7 SaMPIE PrOGrAMS .vouveerirerisrissses s s sssssssssssssssssessssss s ssssssssssssssnssssesssesssssssssses 222
5.7.1 Simple Variable DEClarationscccourmmrmrimninnsinsinssnsssssssssssssssssssssssenns 222
5.7.2 Using Pointer VariablEScovvvervrvinernsrssnssiisss s sssssssssssssssssssssssssssenns 224
5.7.3 Single DIMENSION AITAY ACCESS ...ovvrurvererernssssssssssssssssssssssssssssesssssssssssssssssenes 226
5.7.4 Multidimensional Array ACCESS cvurrrierirmsrisssssessssssssssssssssesssssssssssssssssenns 227
5.7.5 SIMPIE StrUCIUIE ACCESS vvvvvvvrererrereerserississssss st s ssess s sssssssssessssssssssesssssenes 229
5.7.6 Arrays Of STTUCIUIES vvvevivrierieeisssesssssiessesssss s s ssssssssssssesssssssssessssssnns 231
5.7.7 Structures and Arrays as Fields of Another Structurecoocovevinvrnsriinriseiinnenns 233
5.7.8 Pointers to Structures and Arrays Of STTUCIUIES cvvvvvvrreernernsrssrssressssseneens 235

5.8 LADOIAtOrY EXEICISES ...vucvvviverriissieeisississssssssssssssssssss s ssssssssssssssssssssssssssesssesssssssssnses 237
5.9 Programming PrOJECES vveuverreinerinsrssinesissessesssasssssssssses 238
5.10 SUMMAIY 1ottt 239
5.11 QUESHIONS vovvveireiereierieriesissssssessssss s et ssss st st 241

Chapter Six The 80X86 INSLIUCHION Stccvvvrriririieriieree s 243

6.0 Chapter OVEIVIEW ..o st sssssss st sss st essssssssnses 243
6.1 The Processor Status REGIStEr (FIAgS)rremrrnmrnrrnssrssriesssssssssssssssssssssssssssesssnses 244
6.2 INStrUCtION ENCOTINGS .vvvvvvverrirreieeiiesrsss s sississssssssss s ssssssssssssssssssssessssssssssesssnses 245
6.3 Data MOVEMENL INSIFUCLIONS vvvecvvcriersrisseesssssses s s st ssssesssnees 246
6.3.1 The MOV INSEFUCHION ..vvvvooiiceecisei st s sss s 246
6.3.2 The XCHG INSLIUCION ...vvvvvvvcercerereeesesiesisssssss s s sesssssssssssessssnssssssssssenes 247
6.3.3 The LDS, LES, LFS, LGS, and LSS INSLrUCLIONScvvuvvvcverreneeeesesssesesensnessssesesenns 248
6.3.4 The LEA INSITUCLION ...vvvveeviereceisss s ssss s s ssss s ssssssssessssssssssssssenes 248
6.3.5 The PUSH and POP INSLIUCLIONS vvouviererieisnsssessssssssssssssssssssssesssssssssssssenns 249
6.3.6 The LAHF and SAHF INSEFUCHIONScoovvieriieisnrisssssssssssissssssssssesssssssssssenns 252

LT 000 V=T £ To] OO 252
6.4.1 The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructionsccc....... 252
6.4.2 The BSWAP INSIUCLION vvvvvvvrerciecreeesssesiss s s sssssssssssssssssesssssssss s senns 254
6.4.3 The XLAT INSIFUCHION ovvvoeieereiscissr s sissssss s s ssssssssssesssssenes 255

6.5 ArthmetiC INSITUCLIONS ...vvvervverieceer s s s 255
6.5.1 The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA 256
6.5.1.1 The ADD and ADC INSEFUCHIONSc.ovverrrerirrnrrenerssisssriesssssssnssssssssenssnns 256

6.5.1.2 The INC INSUCION .vvvvervreirieerrersrerssriesissssssess s ssssssssssssesssssssenssnes 258

6.5.1.3 The XADD INSIIUCHIONovvvrevrercerssriesissssss s essssssssssssssssssesssnes 258

6.5.1.4 The AAA and DAA INSITUCLIONScvveverereriersnsessssssisssessssssssssssssssssssens 258

6.5.2 The Subtraction Instructions:; SUB, SBB, DEC, AAS, and DAS cccccovvevivvirennns 259
6.5.3 The CMP INSLIUCHION ..oovvvvevivcvrcessr st e s senes 261
6.5.4 The CMPXCHG, and CMPXCHGS8B INStIUCLIONS cvvvvvrierieirieesereeeseeisereiees 263
6.5.5 The NEG INSLFUCHION ...oovvevviriccesi st 263
6.5.6 The Multiplication Instructions: MUL, IMUL, and AAMc.oocvvrrinvvnnrinninsinninns 264
6.5.7 The Division Instructions: DIV, IDIV, and AAD cooovveveereseeeese e 267

6.6 Logical, Shift, Rotate and Bit INStTUCLIONS vvvvvvererrnsivererssissses s 269
6.6.1 The Logical Instructions: AND, OR, XOR, and NOTcccccovvrivmrimmrmnrimrirsninnenns 269
6.6.2 The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD ccccoovvervivvirinnn. 270

Page vii

B.6.2.1 SHLISAL .ooooerieesseeireessses et 271

B.6.2.2 SAR ..ot s 272

B.6.2.3 SHR ..ottt st s 273

6.6.2.4 The SHLD and SHRD INSEIUCIONSc.ovvvrrierririersinsssssssssnsssssssssssesssensens 274

6.6.3 The Rotate Instructions: RCL, RCR, ROL, and RORovvvevvierescesesee e 276
B.6.3.1 RCL ..ottt sess sttt 277

B.6.3.2 RCR ..ottt 277

B.6.3.3 ROL ..ottt sttt 278

B.6.3.4 ROR ...ooomiercetireceise ettt ss sttt 278

6.6.4 The Bit OPErationScoocvevvrrnernsrissssssss s essssssssesss s sssssssnses 279
B.6.4.1 TEST ooooeeeeeetireeeisseess sttt ss sttt 280

6.6.4.2 The Bit Test Instructions: BT, BTS, BTR, and BTCcccoevvevvevievisicens 280

6.6.4.3 Bit Scanning: BSF and BSRc.coervmriirinrinsinsrsssnssssssssssssssssssssssesenns 281

6.6.5 The “Set on Condition” INSLIUCLIONScvvvvvcvierinsrserssss s 281

6.7 1O INSLUCLIONS 1..vvvvisrisciesrssiss st s ss s st sns s 284
6.8 StING INSLIUCHIONS 1v..vvvivieveiciseiess s s st ns s 284
6.9 Program Flow CONrol INSEIUCLIONSvvvvvvreeercrineressissssssssessesssssssssssssssssssesssssssesssnes 286
6.9.1 Unconditional JUMPScovevereinsrissssisss s ssssssesssssssss s sssesssnees 286
6.9.2 The CALL and RET INSLFUCHIONSouvvvrvrerrenrinseinsisesssssssessssssesssssssssssssssssnses 289
6.9.3 The INT, INTO, BOUND, and IRET INStIUCLIONScoovvevverivrieisesesesee e 292
6.9.4 The Conditional JUMP INSFUCLIONS vvvcvvcrecinsrserssss e enssnees 296
6.9.5 The JCXZ/IECXZ INSITUCHIONS ...vvvvvvrvverirssriensessissississssssessssssssssssssssssssesssnees 299
6.9.6 The LOOP INSIIUCLION ...ovcvvocvecrserisresississs s sssssssess s sssesssnees 300
6.9.7 The LOOPE/LOOPZ INSLIUCLION .vovvvrercvrnrisrrississsissssssssssssssssssssssssssssssssnees 300
6.9.8 The LOOPNE/LOOPNZ INSLIUCION ...vvvvcveecvirrisriesisssssssssssssssssssssssssssesssnees 301
6.10 MisCEllaNEoUS INSLIUCLIONS oucvvuvirierississssse st s sns s 302
6.11 SAMPIE PIOGIAMS ...vovviecesreieeirss s sssessssss s s ss st sss s s esss st ssssssssnsssssenes 303
6.11.1 Simple AfNMELIC | .o nees 303
6.11.2 Simple AfNMELIC 11 o..vvoec s nsrnees 305
6.11.3 LOGICal OPEIAtiONSvvvvvvcricrrerissriesiesssss st sss s s sssesssnses 306
6.11.4 Shift and Rotate OPErationScccvvrvernernrsrnsrnsrsssssssesssessssssssssssesssenses 308
6.11.5 Bit Operations and SETCC INSLIUCLIONScoovvrevrcrnmrisriessisssssssssssssssssesssenees 310
6.11.6 StriNg OPEratioNSvvvvvvreeierrirssissresissssss st ess s sssesssnees 312
6.11.7 CoNItioNal JUMPS .ovcvvvevcrcr st ss s s sssesssnees 313
6.11.8 CALL and INT INSEFUCHIONS .vvvovviriesiisises s ssisssess s ssssssssssssenssnees 315
6.11.9 Conditional JUMPS | ...cvvcecveieerss s esssnees 317
6.11.10 Conditional Jump INStTUCLIONS 11 ...oovvvovcreceees s 318
6.12 LaDOratory EXEICISES .vuvvrcvriericrierissssessssssssss s s sssessssssssssesssesssssssssssssssssssssssssones 320
6.12.1 The IBM/L SYSEEM ..ottt sssssssnees 320
6.12.2 IBM/ILEXEICISES vovverrerrrrersssisssssssesssessssssessssssssssssssssssssssasssessssssessssssssesssnses 327
6.13 Programming PrOJECES vvrcvrrrierisssesssessssssssssssssssessssssssssesssessssssssssssssessssnsssssones 327
B.14 SUMMAIY oottt ettt b s bbb bbb 328
.15 QUESHIONS ..o.vecviciciiectet ettt bbb st st st s bbbttt 331

Chapter Seven The UCR Standard LIDIary ..., 333

7.0 Chapter OVEIVIEW ..o sesissssssssssssss st ssss s ssess st ssssesssssssnssenes 333
7.1 An Introduction to the UCR Standard LIDraryccccoevenerinmrnrnnsinssnssnssinssssssessennns 333
7.1.1 Memory Management Routines: MEMINIT, MALLOC, and FREE cccovvvvenns 334
7.1.2 The Standard Input Routines: GETC, GETS, GETSMc.oovvivvvnvrimerinernnrinssrnsrennnns 334

7.1.3 The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT, and PRINTF 336

Page viii

The Art of Assembly Language

7.1.4 Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize 340
7.1.5 Output Field Size Routines: Isize, Usize, and LSIZE ccovvrrvrrmernnrnnrivrrnsrinronns 340
7.1.6 Conversion Routings: ATOX, and XTOA ..o 341
7.1.7 Routines that Test Characters for Set MeMDErshipovvvvvvvervrrinnesnrinsissisnenns 342
7.1.8 Character Conversion Routines: TOUPpPEr, TOLOWETcc.vververvrrrnnrenrsnsssnnssnneens 343
7.1.9 Random Number Generation: Random, Randomizecocevevevresivesieisens 343
7.1.10 Constants, Macros, and other MiSCEllanyccocvevrvernmrnrinssinseesrsssnsseesenns 344
T.LLL PIUSMOME! ottt s s st 344

7.2 SAMPIE PrOGrAMS .ottt sssssss sttt ssssss s s esssessssssssnses 344
7.2.1 Stripped SHELLASM FIlE ..vvoeccecsree st 345
7.2.2 NUMEIIC 1/O oo s s 345

7.3 LADOIAtOrY EXEICISES ...vuverrerrerrsiesssssisssesssssssssssssssss s sssssssssssssssessssnssansesssessssssssnses 348
7.3.1 Obtaining the UCR Standard LIDIaryccccovevmminermernmrinmsnsssssssssssssnssessenns 348
7.3.2 Unpacking the Standard LIDrary ..., 349
7.3.3 Using the Standard LIDrary ... senns 349
7.3.4 The Standard Library Documentation FileS ..., 350

7.4 Programming PrOJECES eveevverireerressissnesissssssssssssssss s sssssssssssssssssssssessesssessssssssnses 351
7.5 SUMMAIY oot 351
7.6 QUESLIONS oottt bbb b bbb bbb bbb 353

Chapter Eight MASM: Directives & Pseud0-OpCodesc.oceiminrnnirneisnsennens 355

8.0 ChapLer OVEIVIEW ..ot st ssss st ssssssssssesssssssnses 355
8.1 Assembly Language StAtEMENTS cccvervriinrinrissssss st ssssesssnnes 355
8.2 The LOCALION COUNLET ...vvvvereerreieeirsresssessssessssssssss st ssssssss s s sssssssssssssnses 357
8.3 SYMDIOIS oo s 358
8.4 Literal CONSIANLS oucvverireresreesssessssss st ssssssssssssss sttt ssssssnssnsesssessssssssnses 359
8.4.1 INtEgRr CONSLANES ..vvvvceeceiceeiseiee et 360
8.4.2 StriNG CONSIANS .ouvvevirrerreereseeises s sssssss s sttt sns s 361
8.4.3 REAI CONSLANESvvevverirririsrise s ssss st st 361
844 TEXt CONSLANIS ..ottt 362

8.5 Declaring Manifest Constants USING EQUALESvvvevrvrreremreneenssissssssssssssssssssesssnees 362
8.6 ProCESSOr DIFECHIVES ..vvuververrerereieerresr s ssssssssssssssssss s ssssssssessssssssssesssssssessesssessssssssnses 364
8.7 PIOCEAUMES voovveeevireieeiesiesisssesss s et sss st 365
8.8 SEOMENES oo 366
8.8.1 SEgMENE NAMES ..ot 367
8.8.2 Segment LOAdiNg OFGEIvvvrvvererireesrrieressssss s e ssss s essssssssssesssssenes 368
8.8.3 SEgMENt OPEIANUS ovvvererereierreer s seessssss s sttt esss s 369
8.8.3.1 THE ALIGN TYPE ooovvererereceinneieseeesse s ssssesesss st sssssssssssssssesns 369

8.8.3.2 The COMBINE TYPE ..oouverrerererereeseneresseesssssesssssssssssssssssssssssssesns 373

8.8.4 THE CLASS TYPE eoeveriereeesinneeessessssse e s sss st ssssss st sssssssssssesssnns 374
8.8.5 The Read-only OPErandcccovevivmrmrrnnrnsnssinssessssssesssssssssssssesssssssssssenes 375
8.8.6 The USE16, USE32, and FLAT OPHONS ..couvverererreeeineceseeseseeessessssesssssesenns 375
8.8.7 Typical Segment DEfiNItiONS ovvvvvvvrrerrnrssrierese s 376
8.8.8 Why You Would Want to Control the Loading Orderccccovevinvrvnrinerrnninnenns 376
8.8.9 SEGMENL PrEfiXES w.vvuivieriiriereeeissr et sttt 377
8.8.10 Controlling Segments with the ASSUME DIreCtivecoocrvervvrnmrnsrisssnssnneons 377
8.8.11 Combining Segments: The GROUP DireCtivecocvrmermermerrnmrnmeensrissssisssnneons 380
8.8.12 Why Even Bother With SEgmeNts? ... ssssssssssenns 383

8.9 THE END DIFECLIVE .vuvverirresesesesessisss s sssssssssssssssssssssssess s ssssssssssssssssssessesssesssssssssnses 384

Pageix

B.10 VAIIADIES .voeeeieseeee et ettt sttt 384

8.11 LADEI TYPES oottt st s st 385
8.11.1 How to Give a Symbol a Particular TYPEcocvvvvvrrnernsrvssinssisssssssssssssnsssnsns 385
8.11.2 LADBIVAIUES ..ottt 386
8.11.3 TYPE CONMIICLS .v.vvvvvirrercrsciser s st enssnees 386

8.12 AdAreSS EXPrESSIONS ..vvvuvvrerereresrrisessssssesssssssassssssssssssssssssssssesssesssessssssssssssssessssnssenssones 387
8.12.1 Symbol Types and Addressing MOGESc.vrvremrrinerrnmrssssssssssessssssessssssnnes 387
8.12.2 Arithmetic and Logical OPEratorscocovvmeenmrnmrmmsssssesssssssssssssssssssssesssenees 388
8.12.3 COBICION oottt bbbt bbb bbbt 390
8.12.4 TYPE OPEIALOIS .ovvvevicereriveier e esssss s s s s st nssns 392
8.12.5 OPErator PIECEABNCEvvvrvecrirrrriesisisssess st sssssssssess s ssssssssssssesssnses 396

8.13 Conditional ASSEMBIY oucvvcviererisriesissssss s ess s s 397
B.13.1 IFDIFBCLIVE oottt 398
B8.13.2 IFE QIFECHIVE oottt 399
8.13.3 IFDEF and IFNDEF ...ttt snnans 399
8134 IFB, IFNB oottt 399
8.13.5 IFIDN, IFDIF, IFIDNI, and IFDIFI ..ot 400

B.14 MACTOS vuviitictie et bbb bbb bbb bbb bbbt 400
8.14.1 ProCedural MACIOSccvvviviiisisisisisisss ettt 400
8.14.2 Macros vs. 80X86 PIOCEAUIES cvveieieisieiee st 404
8.14.3 The LOCAL DIFECLIVEvvvceieeeseeiecsiese ettt sssnsans 406
8.14.4 The EXITM DIFECLIVE vvvveeeieseeies ettt 406
8.14.5 Macro Parameter Expansion and Macro Operatorscccemereernsrnrsensrennnns 407
8.14.6 A Sample Macro to Implement FOr LOOPS vvvvvevvneinnrnesnssissssessssssssnsssnnns 409
8.14.7 MACIO FUNCLIONS ...vvcvieceiiiiss sttt 413
8.14.8 Predefined Macros, Macro Functions, and Symbolsccccvvvmrineinnrinninsinnnns 414
8.14.9 MacCros VS, TEXE EQUALES vvuevrvveerviierissisenssisesesssssesssss s s ssssessssssssssessns 418
8.14.10 Macros: Good and Bad NEWScveeiviniisisisee s 419

8.15 RePEAt OPEIAIONS ..vvvvvivvrerercrierierisssessessssss s ettt st ss st ssssns s 420

8.16 The FOR and FORC Macro OPErationscccoeveremremsssssnsssnssssssssssssssssesssssssnsssnns 421

8.17 The WHILE MaCro OPEIation ccvevvvererisirsnrnrsississsssssssssssssssssssssssssssssssssssasssnsssnes 422

8.18 MACIO PArAMELEIS ..ucvicviciiee bbb bbbt 422

8.19 Controlling the LISHING vvvecvrrerissriesississsssssssssssssssssssesses s sssssssssssessssssssnssonss 424
8.19.1 The ECHO and %OUT DIrECLIVES vvvvveeersersisiiseisissrs s, 424
8.19.2 The TITLE DIFECLIVE ...vvvceeeeeieecsceiessesss ettt sttt 424
8.19.3 The SUBTTL DIFBCLIVE ...evvieieeeeeiecsiee ettt sneans 424
8.19.4 The PAGE DIFECLIVE ..vveeieeeieeeeiesess ettt 424
8.19.5 The .LIST, .NOLIST, and .XLIST DIr€CHIVESccovvvveririsierseeisee st 425
8.19.6 Other LiSting DIFECHVES cvvurvierirerisesississsissssssssssssssssssss s sssessssnees 425

8.20 Managing Large PrOGramScccvvvvirrmruinsinssisssssssssssssssssssssesssessssssssssssssesssssssnssnes 425
8.20.1 The INCLUDE DIrECHIVE ...ovveieeeisiesisiseese ettt ssssssssans 426
8.20.2 The PUBLIC, EXTERN, and EXTRN Dir€Ctivesccccovvivirvisisisisiesieisseiennn, 427
8.20.3 The EXTERNDEF DIFECHVE ...vvveeeieeisieesis et sssssnians 428

B.21 MAKE FIBS .voeeeeeeeeesiees ettt ettt 429

8.22 SAMPIE PIOGIAM ooovveveecvssessiess st sss s sttt ess s st ns s s 432
B8.22.1 EXBMAK oottt bbb 432
B8.22.2 MALIIXA oottt 432
8.22.3 EXBLASM oot st 433
8.22.4 GETLASM oottt sttt 442

Page x

The Art of Assembly Language

8.22.5 GEEAITAY.ASM ooocvoeetceise ettt 443
8.22.6 XPTOUUCLASM ..oooiiiieeiteetseisti et 445
8.23 LADOTAIONY EXEICISES ..uvvvuieiseeiseeserieise st ssse bbb ss b 447
8.23.1 Near vS. Far PrOCEAUIES ... sesssssssssssessessssesssssens 447
8.23.2 Data AlIGNMENTE EXEICISES .vuuvvvuevrcrireisrisrisessssssss s ssssssssssssesssssssessnsssssenes 448
8.23.3 EQUALE EXEICISE .ouvvucrirriirieseiesssss s sisssssssssns s ssss st sssssssssssssssssnsesssssenns 449
8.23.4 IFDEF EXEITISE ..ouveuurereiereeeinesissesssess st bbb s 450
8.23.5 MaKE File EXEITISE ...cvvuueverereireiieeeieieeseie sttt 451
8.24 Programming PrOJECES .uuvueveereieirnnriesssssssssssssssssss s sessssssssssesssssssessssssssssssssnses 453
8.25 SUMMAIY oottt bbb bbb 453
8.26 QUESLIONS ...oooveraeeseeeseeeseieseee bbb bbb 456
Chapter Nine Arithmetic and Logical Operationscceveveenineisrneernsesnsennens 459
9.0 Chapter OVEIVIEW ..ot sssssssss st sssssssssssessesssasssssssssses 459
9.1 ArithmetiC EXPIESSIONS couvvruieeserierieiinessssesssse st sss st 460
9.1.1 SIMPIE ASSIGNMENLS ...vvvvvrrvrrereeriess s sssessssss s s ess s esssesssesssssssssesssssenes 460
9.1.2 SIMPIE EXPrESSIONS .vvcvvvverirerrereessssississssssssssssssssssesssesssssssssssssssssssssssssssasssssenes 460
9.1.3 COMPIEX EXPESSIONS 1ovvvvevrerrererrsrississsssssssssssssessesssssssssssssssssssessssssssssassssssenes 462
9.1.4 ComMMUEALIVE OPEIALOTS ..vvvvverercrrereeesesiesisssssss s esssss s esssssssesssssssssssssssenes 466
9.2 Logical (BOOIEAN) EXPIESSIONS cvvcriuririssresnsssissinsssssssssssesssssssssssssssssssssssssssssssesssnses 467
9.3 MUItiPrecision OPEIALIONS cc.evemeriererersiersseiseisess s ssss s 470
9.3.1 Multiprecision Addition OPErationsccccovvmmrmrernnrrmmrmsssssssessessssssssssenns 470
9.3.2 Multiprecision Subtraction Operationsccueerrmernmrnmsissmsssssnssnssssssssenns 472
9.3.3 Extended Precision COMPAIiSONSc.vveerermermmsinsernsssssmsssssssssssiesssesssssssssssssenns 473
9.3.4 Extended Precision MUIIPHCALION cvovvervvvinerenessrssressssssssssess s 475
9.3.5 Extended Precision DIVISION coccreieeierineiineiieessesissssssessesssssssesssssens 477
9.3.6 Extended Precision NEG OPErationsccovemmrnrernsrsnsrmssssnsssssssssnsssssssssenns 480
9.3.7 Extended Precision AND OPEIALIONSvvervrrnrrinnrrnsrsssmnssssssssssissssessnsssssssesenns 481
9.3.8 Extended Precision OR OPErationscccvvrmmrmmermsismsmmsssssnssissssessssssssssssenns 482
9.3.9 Extended Precision XOR OPErationscccoveeermrenerinsrmssssssssssssssnsssssssssenns 482
9.3.10 Extended Precision NOT OPErationSccccoumrmremerrmrmmseissnssissssnssnsssssssssenns 482
9.3.11 Extended Precision Shift OPerations ... 482
9.3.12 Extended Precision Rotate Operationsccoeemrvmrnmsmssnssnssnssnssssssssenns 484
9.4 Operating on Different Sized OPErandscoocvvvrmermmrnerinsnnsnssinssessssssssssesssnees 485
9.5 Machine and Arithmetic IdIOMS ... 486
9.5.1 Multiplying Without MUL and IMUL ..o 487
9.5.2 Division Without DIV and IDIV oocierineiieiineeisesisesssessessseessesssssens 488
9.5.3 Using AND to Compute REMAINGELSc.vvvvvrnrrnrernnrisrssssssesssssess oo 488
9.5.4 Implementing Modulo-n Counters With ANDcccovvivrinernerienrinsrnsrsssssssneons 489
9.5.5 Testing an Extended Precision Value for OFFFF..FFh ..o 489
0.5.6 TEST OPEIAtiONS .vvucvovviriereiessisssessssssssssssssssssss s ssssssssssssssssssesssssssessesssssenns 489
9.5.7 Testing Signs with the XOR INSLIUCLION oovvvvrereeeresrssissssessessess s 490
9.6 MasKing OPEIatioNS c.covveivverrieiesrrsssisssssssss s s ssssssssssess st sssssssssses 490
9.6.1 Masking Operations with the AND INStrUCHIONcvvuvvvrveeiserinerssessresissssneens 490
9.6.2 Masking Operations with the OR INStTUCION c.ovvvcvvernrrsrnsseesr s 491
9.7 Packing and Unpacking Data TYPESc.vreremernsrnssinsssssiessssssssssssssssessssssssssssssnses 491
0.8 TADIES oo 493
9.8.1 Function Computation via Table LOOK UPccovvvvrvnervernnrsnisssssiessssssssissenns 493
9.8.2 Domain CONAItIONING .vv.vvvvvvvrvreevser s s 496

Page xi

0.8.3 GENerating TADIES cvvevvrererireessresissssss s s s esssnees 497

9.9 SAMPIE PrOGrAMS ..ovvovvireesereesisss s ssssssssessssss s ssss s sssssssss s sessssss s st sssesssssssnssones 498
9.9.1 Converting Arithmetic Expressions to Assembly Languagecooeveerinmernirennnns 498
9.9.2 Boolean Operations EXAMPIE ... ssssssssssssesssenees 500
9.9.3 64-DIt INTEGET 1/O ovvveeseee s s 503
9.9.4 Packing and Unpacking Date Data TYPES ...c.vrrremrrneernmrisssssssssssssssssssssnsssnnes 506

.10 LabOratory EXEICISES .vuvvrverrrrrriersssssessssssssssssssssssssssessssssesssesssessssssssssssssessssssssnssones 509
9.10.1 Debugging Programs With COUEVIEWcvevevreinriississiesssssssssssssssssssssnnns 509
9.10.2 DebugQing SIrAtEUIESvvvcvrerrrrrierissssss s sssssssss s sssssssesssnees 511

9.10.2.1 Locating INfinite LOOPS ...vvuuvvoucrrrimresisssnssssssssissssssssssssssssssssssssssssnsenns 511
9.10.2.2 Incorrect COMPULALIONScvouvererrriseissr s sssssssnssnsons 512
9.10.2.3 lllegal Instructions/Infinite LOOPS Part Iloevvevvvveerrivsrnsriseressssssssneens 513
9.10.3 Debug Exercise I: Using CodeView to Find Bugs in a Calculationc......... 513
9.10.4 Software Delay LOOP EXEICISES ...ovvvrererierrrrinriisriesissssssesssssssssssssssssssssesssnnees 515

9.11 Programming PrOJECES ...vvuvvrcurerierinsssessssssssssssssssssssssssssssssssesssesssssssssssssessssnsssnssones 516

0.12 SUMMAIY oottt sttt 516

0.13 QUESHIONS ..vvveviceicieeiet ettt st st st s b bbbttt 518

Chapter 10 CONLrOl SEUCIUIESvvuvveriereinsinssi s 521

10.0 Chapter OVEIVIEW ovvvceereceierssisssssss st sssssss s ssss s sssssssssssssssssssessssssnes 521

10.1 Introduction 10 DECISIONSvuuuevereiererireieseiesseesesssse s ss s 521

10.2 IF..THEN..ELSE SEUEBNCESoovoeriier et 522

10.3 CASE STAEEMENLS .oovvevereeierseeie s 525

10.4 State Machines and INCIrECt JUMPS ..ovvvvvvvvreerrerseisss s s ssssssesenns 529

10.5 SPAGNELti COUR ..o s s st 531

108 LOOPS oottt 531
10.6.1 WHIIE LOOPS oovvourerrereesressssssssesssssssssssssessssssssssssssssssssssssssssssessssssssssssssssnssones 532
10.6.2 Repeal. .UNtl LOOPS vovvrreierrciisresiessssssssesssasssnssnes 532
10.6.3 LOOP..ENDLOOP LOOPS ..cveuuevimeremmrsmereneiesesssessssssssssssssssssssssss s sssesssacs 533
10.6.4 FORLOOPS oooveruierueeieeeseeseesseessse s st ss s 533

10.7 Register Usage and LOOPS cvevrererrrsmsimserssssssssssssssssssssssssssssssssssssesssssssesssassssssenes 534

10.8 Performance IMPrOVEMENTSc.vverirerrrinrernsriesissssssesssessssssesssssssssssesssssssssssssssssenns 535
10.8.1 Moving the Termination Condition to the End of aLOOP vvvvvvevernninnriniiinnnns 535
10.8.2 Executing the LOOP BaCKWArdSoveeverneirmemeenssnssssssssssssssssessssssssnsssssnns 537
10.8.3 Loop Invariant COMPUIALIONSceevvrrerrernnrissreessssssssssssssssssssessssssssssssssnns 538
10.8.4 UNraveling LOOPS .oucevvvrreieererissesiesssssssssssssssssssssssesssssssessssssssssssssssssssssnssnes 539
10.8.5 INAUCEION VANIADIES ovoreeeee s 540
10.8.6 Other Performance IMProVEMENTSvvevvvrvrvnnrnrrinesisrssssssssessesssessssssnnes 541

10.9 NeSted STATEMENTS vereeeeerrerie e 542

10.10 Timing Delay LOOPS .vovvrerirersrierrsisessssinssssssssssssssssssssssssssssssessssssssssssesssssssesssanssessenes 544

10.11 SAMPIE PIOGIAM oot sss st ssssssnssnsensssssnes 547

10.12 LaDOraOry EXEITISES .ovvveevrcrreresesesisssnsissssssssssssssssssssesssssssssssssssssssssssesssssssnssasssessenes 552
10.12.1 The PhySIiCS Of SOUND oucvrcvirrerieessessesssssssssssesssssssss s ssssssssssssnssnssnns 552
10.12.2 The Fundamentals Of MUSIC ..o 553
10.12.3 The PhYSICS Of MUSIC .v.uvvveveaiereresieessssiessressssssssssssssesssssssesssssssssssssssssnsssnnssnes 554
10.12.4 The 8253/8254 TIMEI ChIP ...ooveverceieiireiee s 555
10.12.5 Programming the Timer Chip to Produce Musical TONES covveevrnerrrveenirernnns 555
10.12.6 PUting it All TOGEENET ..ot s snsssnssnssnns 556

Page xii

The Art of Assembly Language

10.12.7 AMAZING GraCe EXEITISE ..vuvvvrurvrrrirerissrsssessssssessssssssssssssessssss s sssssssssesssnses 557
10.13 Programming PrOJECES ...vvuuevvrrerrrinseieriesssssssssssssss s ssssssssssssssssssssesssassssssssssssssssones 558
10.14 SUMMAIY oot s b bbbt 559
10.15 QUESHIONS ..ooviiecierceteet ettt e bbb st bbbt 561

Chapter 11 Procedures and FUNCHONScccveiiiniinneiesssssssesssessesneens 565
11,0 ChapLEr OVEIVIEW ..o.vvevieriseessssssss s sssssssss st sssssssssssssss st ssssssnsssssssones 565
11,1 PROCEAUIES oottt bbb 566
11.2 Near and Far PrOCEAUIES ocvuererierieieseesesseise st sssse s s sess s ssss s 568

11.2.1 Forcing NEAR or FAR CALLS @nd RELUMNS covvvrerrrrirsreesessssssnsssssssesssenssnnees 568

11.2.2 NEStEd PrOCEAUIEScvvuecvirerireeiserise st sssessssens 569
11,3 FUNCHONS oottt bbb 572
11.4 Saving the State 0f the MaChiNg ... s 572
115 PAIAMELEIS ..o es s s 574

11.5.1 PSS DY VAIUE ..ot 574

11.5.2 Pass Y REfEIENCE ... ssssnees 575

11.5.3 Pass by ValUB-REIUMNEA ..o sssesssnens 575

1154 PaSS Y RESUIL ..ot sttt s sssesssnnns 576

11.5.5 PasS Y NAME ..ot sttt ess st ssssssnses 576

11.5.6 Pass by Lazy-EVAIULION ..ot ssisssssssssssss s sssssssesssnens 577

11.5.7 Passing Parameters in REQISIENSvrvvrrrrerensrnesesissssssssssesssssssssssssesssnees 578

11.5.8 Passing Parameters in Global VariableS ... 580

11.5.9 Passing Parameters 0n the Stack ... 581

11.5.10 Passing Parameters in the Code Streamcccoveivvrnnrinrrinnrnsrinssnsssssssssnnens 590

11.5.11 Passing Parameters via a Parameter BIOCK ..o 598
11,6 FUNCHON RESUIES .cvoveereeeiieiieiisesie et 600

11.6.1 Returning Function ReSUItS in @ REGISIErc.vvvrerrvrisrinssneeesrsesrsssesssensssnees 601

11.6.2 Returning Function Results 0n the StACKcccvernrrsrinrrinsinnrinssnssessssssnnens 601

11.6.3 Returning Function Results in Memory LOCALIONS cvvvvrvvrermreneersnrnsesssennnns 602
11,7 SIOE EFFECES ovouveerceieeeieiieiie sttt 602
11.8 Local Variable SIOTA0E vvvvcvrrressrerississss s st sss s s sesssssssssssenes 604
11,9 RECUISION oottt 606
11,10 SAMPIE PIOGIAM oo sss s st sns st sssssssssnes 610
11,11 LaDOrAOrY EXEITISES .uvvrvercerrsirerssesesssesssssssessssssssssssesssssssesssesssassssssesssssssessssnssnssones 618

L1100 EXIL LCPP ovveerreeerreeesseeesssesssseeesssse st ssss st ssss s sssssssssssessssssssssssssssesees 619

L1002 EXIL LA@SIM cooeeececieeeieeess e esseees ettt sttt 621

11103 EXLL TBASM coooreceeieeeiseeesseeesseeesssseesssessss st ssessss e sss st ssssesssssessssssses 625
11.12 Programming PrOJECES ...vvueverrrreinsrisrisssssssissssssssssssssssssssssssssssssensesssasssssssssssssssones 632
1013 SUMMAIY e b b bbbt 633
1114 QUESHIONS oottt s bbb s bbbt enb s 635

SECHON THIBE: oot 637
Intermediate Level Assembly Language Programmingcceeeeeeeeenereesssssssssssssssnnsennes 637

Chapter 12 Procedures: Advanced TOPICSc.vveivmeimrieiieiecnsinsssssesssesssesnnens 639
12.0 ChapLEr OVEIVIEW ..ouvveviereseisssessss s sss s s s sssssssssssssssssssesssasssssssssssssssones 639
12.1 Lexical Nesting, Static Links, and DISPIAYS oveevvrrermreirinssinsssssnssssssssssssssssnsssnsones 639

12,11 SCOPE oot 640

Page xiii

12.1.2 Unit Activation, Address Binding, and Variable Lifetime —........cccocooevnerivrrnirnnnns 642

12.1.3 SEAHC LINKS ooovveriireetieeesseeese s bbb s 642
12.1.4 Accessing Non-Local Variables Using Static LINKSc.coevevvrrnreisnsnsrnnsnssennnns 647
12.1.5 TRE DISPIAY cvouveerirririeissessesss st st essssss s s ssssssssssssssenes 648
12.1.6 The 80286 ENTER and LEAVE INSEIUCLIONS evemerererenerieienerieeeeesisseeinnnes 650
12.2 Passing Variables at Different Lex Levels as Parameters.cooovvimevnernmrnseenssensennn, 652
12.2.1 Passing Parameters by Value in a Block Structured Languagecccovevnvrernnns 652

12.2.2 Passing Parameters by Reference, Result, and Value-Result in a Block Structured Language 653
12.2.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language 654

12.3 Passing Parameters as Parameters to Another Procedureovvmevnernernseessrennnnnn, 655
12.3.1 Passing Reference Parameters to Other Procedurescovveveeeeennrnneensrennnns 656
12.3.2 Passing Value-Result and Result Parameters as Parameterscoocvvvnvrennnns 657
12.3.3 Passing Name Parameters to Other ProcedUrEScocvvervmveiernnsineensrnssnssennnns 657
12.3.4 Passing Lazy Evaluation Parameters as Parameterscooovvvvveernnrnnsensiennnns 658
12.3.5 Parameter Passing SUMMAIYcc.covvrrnrrrnerimsnsisssssssssssssssssssssesssssssssssssssnes 658

12.4 Passing Procedures as PArAMELEIScccvvvnerierimsmnssinsssssssssssssssssssesssssssssssssssssenns 659

12.5 TEIAIOIS oottt bbb 663
12.5.1 Implementing Iterators Using In-Line EXPanSioncccovvvvemrrnernnrsnnrennsennnns 664
12.5.2 Implementing Iterators with RESUME FIAMEScvvvvveerrmreierinrsiessnsssssssennns 666

12,6 SAMPIE PrOGIAMS ovvvvrererreres s siessssssssssess st sssssssssessssssssss s sssssssssessssnssnsesssensenns 669
12.6.1 An Example Of @N IEIAOrc.ovveivvireiesessrsssnssssssessssssss s sssssssssssss s 669
12.6.2 Another Iterator EXAMPIE ..o sssssssssssssssssseens 673

12.7 LaDOratory EXEICISES .vvuvveeerierrerisesssisssssisssssssssssssssssssessssssssssssssssssssssesssssssssessssssenes 678
12.7.1 HEratOr EXEICISE ..vvvvvvverreieerrsrississsssssessssssssssssssssssssssessssss s st sssssssssssnssnes 678
12.7.2 The 80x86 Enter and Leave INSITUCLIONS ovvvvvvervinerinsrsesnsssssssesssssssssssennns 684
12.7.3 Parameter PassiNg EXEICISES vveivvrrierrresrississsssssessssssssssssssssssssssssssssssssnns 690

12.8 Programming PrOJECES cvuvvirercrieriisissssisssissssssssssssssesssssssssssssssssssssesssssssssesssensenes 695

12,9 SUMMAIY v bbb 697

1210 QUESHIONS oocvecviceciestct ettt et et e ettt st 698

Chapter 13 MS-DOS, PC-BIOS, and File I/0c.covvvvivvinniniiniiensseieesinnins 699

13.0 ChapLer OVEIVIEW ... resissssss st sssss s ssssssssssssssnsessssssnes 700

13.1 TREIBMPC BIOS .ottt 701

13.2 An Introduction to the BIOS' SEIVICES vvveerimriieinseissesssnssssesssssssssssssssssssssssssenns 701
13.2.1 INT 5-PrINESCIEEN oot s essssssess s snssssssnssnns 702
13.2.2 INT 10N - VIDEO SEIVICES .ouvvurirrrerirrsrsiessrsssissssssssssessssssssss s ssssssssssssssssssnns 702
13.2.3 INT 11h - EQUIpMENt INStAllEd ..o 704
13.2.4 INT 12h - Memory AVailable ... 704
13.2.5 INT 130 - LOW LeVel DiSK SEIVICESuuvvrurvrrrimriissssssesssssssnssssssssssssssssssssssssnns 704
13.2.6 INT 140 - SErial I/O oo 706

13.2.6.1 AH=0: Serial Port INItializationccccvvrvmrriernnrinsensrnssnsesssssssssssensons 706
13.2.6.2 AH=1: Transmit a Character to the Serial POrtcccoovvevvrimrinnrnnrnnnens 707
13.2.6.3 AH=2: Receive a Character from the Serial POrtc..ccocovvrrnrrinrrsnrnnnnns 707
13.2.6.4 AH=3; Serial POrt STAtUScc.vvverirerererrerrssriesissessssssssssssssssssssssssssesssnnses 707
13.2.7 INT 15h - MiSCEIIANEOUS SEIVICES .u.vvvurvrecrrcrisriisssssssesssssssssssssssssssssssssssssssnns 708
13.2.8 INT 16h - Keyboard SEIVICESvvuivvrrierrrierissinssisssssssssssss s ssssssssssssssssssnns 708
13.2.8.1 AH=0: Read a Key From the Keyboardc.ccocomermermmrnisinssinsenssnnions 709
13.2.8.2 AH=1: See if a Key is Available at the Keyboardccccovvverinnrnnrnnnnns 709
13.2.8.3 AH=2: Return Keyboard Shift Key Statuscccccomermerimmrnirinrsinsensrnnions 710
13.2.9 INT 170 - PriNtEr SEIVICES .ouvvuvireririersrsiesssessisssssssssssesssssssess s ssssssssssssssssssnns 710

Page xiv

The Art of Assembly Language

13.2.9.1 AH=0: Print @ CharaCtercccooervmrmmersmrrmssnssrnssnsssssssssssssssssssssssssssenns 711
13.2.9.2 AH=1: INItialize PrINEr ...vvvvvrcvrcrierseissiesssssess s ssssenns 711
13.2.9.3 AH=2: Return Printer StAtUScoerrmrrmrermrsrnmsrnsrssssssssssssssssssssssssesenns 711
13.2.20 INT 18N - RUNBASIC ..ottt ssensseens 712
13.2.11 INT 19h - RebOOt COMPULET ..o s ssssssesssnens 712
13.2.12 INT 1Ah - Real TIME ClOCK ..o s ssssssssesssnnns 712
13.2.12.1 AH=0: Read the Real Time CIOCKcccovvrrvrrmrinniinnrisssssrnssssesssenennn, 712
13.2.12.2 AH=1: Setting the Real TIMe ClOCKcccvvvvmrmmrnsriinrsissinsssssrssseesenns 713
13.3 An Introduction 10 MS-DOSTI ... issessssssissssss st sssssssssssssssssnns 713
13.3.1 MS-DOS Calling SEQUENCEvvuvverirerirersensssssssssssssssssssesssssssssssssssssesssnses 714
13.3.2 MS-DOS Character Oriented FUNCHIONSvvveevrererinsssessssssssssssssssesssesssnnees 714
13.3.3 MS-DOS Drive COMMANGS ...vvuvverererireisrsesssssssssssssssssssssssssssssssssssssssesssnses 716
13.3.4 MS-DOS “Obsolete” FiliNg Callsc.covvevvverennrresrssrnssissssissssssssssssssssssessssnens 717
13.3.5 MS-DOS Date and Time FUNCLONS vvvvverernnrinerssesssssssssssssssssssssssssesssnnees 718
13.3.6 MS-DOS Memory Management FUNCHONS ovvvevvrvvernnrnnensrisssisssssssssessennens 718
13.3.6.1 AllOCALE MEMOIY ...cvvvvivrvrrecissrier s sttt 719
13.3.6.2 Deallocate MEMOIYvvvvrvierrcrierssisssessssssesssssssssssssessssss s sssssenns 719
13.3.6.3 Modify Memory AlIOCALIONccovvvrirrrrieriesissssesissssssss s ssesenns 719
13.3.6.4 Advanced Memory Management FUNCHIONScccoovveevnernnronrensssnnnnnn, 720
13.3.7 MS-DOS Process Control FUNCHIONS ovvvenernrrisniissssssess s ssesssesssnees 721
13.3.7.1 Terminate Program EXECULIONc.covvvrvevvnmirnmrnnsisssssssssessssssssssesenns 721
13.3.7.2 Terminate, but Stay RESIAENEovvvvesrriereeessr s 721
13.3.7.3 EXECULE @ PIOGIAM ...coevrveererinetesiseiesisssesssss s sssesssssesssssssesssssns 122
13.3.8 MS-DOS “New” FiliNg CallS c.ovrverririirrieriississssssisssissssesssss s sssssssssssnnes 725
13.3.8.1 OPENFIIE oot st 725
13.3.8.2 Create File oot ess s 726
13.3.8.3 ClOSE FlB .uvvveevicvvcrierssisstessss s st 727
13.3.8.4 Read FrOM @ File ...covvvvreriececrrer s 727
13.3.8.5 WrtE 0 AFIlE orucvvcriervrsriessese st 728
13.3.8.6 Seek (MOVE Filg POINLE) ..o ssss s ssssenns 728
13.3.8.7 Set Disk Transfer Address (DTA) ..o ssssssesesenns 729
13.3.8.8 FINA FIrSt FIl ...ovvvecvicriirissieeisciee st st s 729
13.3.8.9 FINANEXLFIIE .o 730
13.3.8.10 DEIEte Fle ..oooeeeereeieeieeceeiei e s 730
13.3.8.11 RENAME Fl oottt 730
13.3.8.12 Change/Get File AtHDUIESc.ovvveerereeinerineceeeeeeee e 731
13.3.8.13 Get/Set File Date and TIMEccvrereereerinereeresessesee e sesesennes 731
13.3.8.14 Other DOS CallScvvrerereereirrerieiineeisesisesesesssssses s 732
13.3.9 File I/O EXAMPIES ..ot ssssssseens 734
13.3.9.1 Example #1: A Hex DUMP ULIlILYoooerercriieneceeseee e 734
13.3.9.2 Example #2: Upper Case CONVEISIONc.uveveeermeereeeerinneissessssesennees 735
13.3.10 BIOCKEA File 1/O oottt 737
13.3.11 The Program Segment PrefiX (PSP) ... ssesssssisens 739
13.3.12 Accessing Command Ling PArameterscooemeeerneeenerenesenessnssisnnens 742
13.3.13 ARGC @NU ARGY ..ottt ettt ss st essens 750
13.4 UCR Standard Library File I/O ROULINES vvomeererierieiinerisesiseseseseessssesssssssenens 751
1341 FOPEBN ottt 751
134.2 FOIBAIE .ottt 752
1343 FCIOSE oottt s 752
1344 FAIUSN oo bbb e 752
T35 FOBIC oottt 752
1346 FIEAA oottt bbb 753
T3AT FPULE oottt bbb e 753

Page xv

13.4.8 FWIITE oot et s s s s s s 753

13.4.9 Redirecting 1/0 Through the StdLib File I/O ROULINESovvvvvvrrreerrenrinnrinsrinnns 753
13.4.10 AFile /O EXAMPIE oot sssssssess s sssssssssssnssnns 755

13.5 SaMPIE PrOGIAM oot sss s st sss s st snssns s s 758
13.6 LabOratory EXEICISES ..vvuvveevrrrrerisesesissssssissssssssssssssssssssessssssssssssssssssssssessssnssensenssensenes 763
13.7 Programming PrOJECES cvuvvirvrrrieresisesnssisssissssssssssssssssssssssssesssssssssssssssesssssssensenssensenes 768
138 SUMMAIY oo 768
13.9 QUESLIONS ...ooeecviecici ettt ettt 770

Chapter 14 Floating Point AftMELIC ... 771

14.0 ChapLer OVEIVIEW ... resisssssss st sssss s ssss s ssssssssssssssnsesssssssnes 771
14.1 The Mathematics of Floating Point AfithMELIC ccvvrvvrverierririssrissesersss e, 771
14.2 |EEE Floating POINE FOMMALSvouvivverresrrissersssiessssssssssessssssssssessssssssssessssssssssssssssenes 774
14.3 The UCR Standard Library Floating Point ROULINESccevreererirennrinnernsrinsrssesssssenennns 777
14.3.1 Load and StOre ROULINESc.cvvveeieieisieie et 778
14.3.2 Integer/Floating POINt CONVEISION cvouvevverrerserssinsssssssssssssssesssssssessssssnses 779
14.3.3 Floating POiNt AMtNMELIC ...vvcvieriieisseesessrssnssissssss s ssesssssssssenssnns 780
14.3.4 Float/Text Conversion and Printff ... 780
14.4 The 80x87 Floating POINt COPIrOCESSOIS ...ovveurerrerisrsssieressssssssssssssssssnsssessssnsssssssssnssnns 781
1441 FPUREQISIEIS vourivreriressessssssssssssssssssssssessssssssssssssssssessssssssssessssssssssssnssnssones 781
14.4.1.1 The FPU Data REJISIErS ...cvuvrvrerirersrisserssssssisssssssssssssssssssssssssssssenssnses 782

14.4.1.2 The FPU CoNtrol REGISIErvvvcreerierisriesissssssesssessssssssssssssesssesssnsons 782

14.4.1.3 The FPU StatUS REGISTENvuevvreverrerreieerrnsrsesissssssssssssssssssssssssssssssenssnnses 785

14.4.2 FPU DA TYPES ovveeeriecieriesier st 788
14.4.3 The FPU INSLIUCHON SEE ..e.vveeeeese et 789
14.4.4 FPU Data Movement INSLIUCLIONS cvveeeeieisisiscsisss e 789
14.4.4.1 The FLD INSEIUCHION ovuveveceieeiisieis et ssaes 789

14.4.4.2 The FST and FSTP INSTUCLIONSvvevvivieirsiesisirsssiessises s 790

14.4.4.3 The FXCH INSEIUCHION ...vvvvieieisiece et sss 790

14.4.5 CONVETSIONS ovvveieeceieceiisict st 791
14.4.5.1 The FILD INSETUCION vuvvveieieiiiisieeeiess et sees 791

14.4.5.2 The FIST and FISTP INSLIUCLIONScvvvieisiisisiseessis e 791

14.4.5.3 The FBLD and FBSTP INSIUCLIONScvevvivvirsiisiesisieisises e 792

14.4.6 Arithmetic INSEIUCLIONS ...v.vveieieieeies et 792
14.4.6.1 The FADD and FADDP INStIUCHIONScvvveeieeieeiisieisiseiss e 792

14.4.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP INStructionsc.cceevverrvrevnnen. 793

14.4.6.3 The FMUL and FMULP INSEFUCIONScovvvieviiniisisisesisee e 794

14.4.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP INStructionsc..ceeovevvevernninn, 794

14.4.6.5 The FSQRT INSITUCHION ..., 795

14.4.6.6 The FSCALE INSLIUCHION ...uvvveieiiiiiisieccsisi s 795

14.4.6.7 The FPREM and FPREML INSEFUCLIONScvvveivieisisisisee s 795

14.4.6.8 The FRNDINT INSTIUCHION ...vvivieieiisiesisesses s 796

14.4.6.9 The FXTRACT INSITUCLION w.evvviveiveecisiiecisiscissssss s 796
14.4.6.10 The FABS INSEFUCLION ...coucvieiiisiccsiesess s 796
14.4.6.11 The FCHS INSEIUCION ..cvocveieivisiecsieis e sis 797

14.4.7 Comparison INSLIUCLIONS c.ocvveviieisnsesiee s 797
14.4.7.1 The FCOM, FCOMP, and FCOMPP INStTUCLIONScevvieirsiisirsisisisieinans 797

14.4.7.2 The FUCOM, FUCOMP, and FUCOMPP INStructionsc.cecvvveesieinans 798

14.4.7.3 The FTST INSITUCLION ..evveieieeirisieie ettt 798

14.4.7.4 The FXAM INSTUCHION ...vvvevieciiseecsicsess s 798

14.4.8 ConStaNt INSEFUCLIONS ...v.cvuveieieiie st 798

Page xvi

The Art of Assembly Language

14.4.9 Transcendental INStTUCLIONS voucveeriernrriessssisr s sssesssnees 799
14.4.9.1 The F2XML INSEFUCHION ..cvvevvicevcrierieisssensssssssssssssssssssessssss s sssssenns 799

14.49.2 The FSIN, FCOS, and FSINCOS INStIUCIONScovvvererriveirisieisieeesiveisens 799

14.4.9.3 The FPTAN INSLIUCLION .cvvuvviecercrieriieisssesssssssssssssssessssssssssesssssssesenns 799

14.4.9.4 The FPATAN INSLUCLION .vvvvoecvrcrierisrissiessses s sssssssssenns 800

14.4.9.5 The FYL2X and FYL2XPL INSLFUCHIONSovvevrereriririnneenersssissssssesssssenennes 800

14.4.10 Miscellaneous INSLFUCHIONS c.ocveervrisrressisesess s sssesssnees 800
14.4.10.1 The FINIT and FNINIT INSErUCHIONS ...ovvvvererierssressssssssssss oo 800
14.4.10.2 The FWAIT INSFUCLION vvvvvvvecvvcricriesissiesssssssssssssssssssssssssss s sssssenns 801
14.4.10.3 The FLDCW and FSTCW INSEIUCLIONScvovverrverirrsnrienrressssssssessssesennes 801
14.4.10.4 The FCLEX and FNCLEX INStTUCLIONSvveevereriirisnseseresrssssssessssenennns 801
14.4.10.5 The FLDENV, FSTENV, and FNSTENV INStructionsccoceeovevevirens 801
14.4.10.6 The FSAVE, FNSAVE, and FRSTOR INStrUCtIONScovvvvevveerierersiens 802
14.4.10.7 The FSTSW and FNSTSW INSEIUCLIONScvvvvveviversnsierisesrinsseesessssenennes 803
14.4.10.8 The FINCSTP and FDECSTP INStrUCHIONSvvvvvvvvvrrrereresrississessssesenne, 803

14.4.10.9 The FNOP INSLUCLION .vvvuvvicircrierssisssesssssssssssssssssssssssss s sssssenns 803
14.4.10.10 The FFREE INSITUCHION c.v.vvvucvvecvicriisisniesssssssssssssssssssssssssss s ssssenns 803

14.4.11 INteger OPEIAtiONScvvvivverievinerierissssss s s ssss s sssss s s sssesssnses 803
14.5 Sample Program: Additional Trigonometric FUNCLIONS ovvvcvncrnnrissnisssssssssiins 804
14.6 LaDOratory EXEICISES ...uvvvrevererrrsirsissssssissssssssessssssssssssssssssssssssasssss st ssssssssssssssones 810
14.6.1 FPU VS StALID ACCUTACY vvvvvverrievrerierississssss s ssssssssssssss s sssssssssssnses 811

14.7 Programming PrOJECES vvvuvvrrrirerssriesissssssiessssssssssssssssssssssssssssess s sssessssssssssones 814
148 SUMMAIY oot s b bbb bbb 814
14.9 QUESLIONS o.vecvicictiesteet ettt et bbb st bbbttt 817

Chapter 15 Strings and CharaCter SELS ... 819

15.0 ChapLer OVEIVIEW ..o ssssssess st ssssssssssssssssessesssasssssssssssssssones 819
15.1 The 80X86 String INSLIUCLIONScvecverereririsrsessssssssssssssssssssssssssssss s ssssssssnssnssenes 819
15.1.1 How the String INStructions OPErateccocomervmrmmresmrsimssinsssssinssssssesssesssnnees 819
15.1.2 The REP/REPE/REPZ and REPNZ/REPNE PrefiXeSccurimmrrinmrrnmerrnmsrenssreinnens 820
15.1.3 The DIreCtION FIAY ...vvveverrerrreernssse s s esssssssssessssssssss s sssssssnsns 821
15.1.4 The MOVS INSIFUCHION .ooovvecrcveresssisss s s ssssssenssnens 822
15.1.5 The CMPS INSEFUCHION ...vvovvecreceeeresssssssss s sssss s sssesssnens 826
15.1.6 The SCAS INSIIUCHION vovvvovverreereererss st s sssesssnens 828
15.1.7 The STOS INSLUCHION vovvvvvveereeeieeriersssss s s sssssss s sssesssnses 828
15.1.8 The LODS INSLIUCLION ...cvvuvvereievrerierississsssssssssssssssssssssssessssssssssssssssssesssnses 829
15.1.9 Building Complex String Functions from LODS and STOScc.covvvvvviervinsrnnnns 830
15.1.10 Prefixes and the String INSEFUCHIONScvovvicvrecisersssres s 830
15.2 CRAraCter SNGS ..vovverveeriieeisss s ssss s sttt sss s st ssssssssssenes 831
15.2.1 TYPES OF SLHNGS cvvvvverieriirisnsessesssse st s ess s ssssssssnens 831
15.2.2 String ASSIGNMENE ...t sttt nees 832
15.2.3 StrinG COMPANISON .oucvvvverrirrseriressessssssssessssssessssssssssssessssss s sssssssesssnses 834

15.3 Character String FUNCLIONS ccvvrvereississs s ssssssssssssnsenns 835
15.3.1 SUBSHE oot s s 835
15.3.2 INAEX ettt s 838
15.3.3 REPEAL oot b 840
1534 INSEIT oot bbb s 841
15.3.5 DEIBLE .ot 843
15.3.6 CONCALENALION oovverirriririsss e st 844
15.4 String Functions in the UCR Standard LIDIANYc.cocvvvrvvvvenineinnrnssnsssssssssnssnssnns 845

Page xvii

15.4.1 SUBDEI, SUBDEIM ..o s st 846

15.4.2 Strcat, Streatl, Streatm, STrCatMl ..o 847
1543 SHCRE et bbb 848
15.4.4 Stremp, Strempl, Stricmp, SECMPL oo s 848
15.4.5 Strepy, Strepyl, Strdup, SEAUPL oo s 849
15.4.6 Strdel, SITABIM oottt b 850
15.4.7 Strins, Strinsl, SErNSM, SEANSMI .o 851
1548 SHIBN ettt bbb 852
15.4.9 Strlwr, Striwrm, SErUPE, SEUPIM oo 852
15.4.10 SHTEV, SHITEVIM oo et 853
15.4.11 SESEL, SIISEIM oo 853
15.4.12 Strspan, Strspanl, Strespan, SESPaNT ... s 854
15.4.13 SESHE, SEISET oottt b sttt 855
15.4.14 SEEAM, SIIEMM oottt ettt 855
15.4.15 Other String Routines in the UCR Standard Libraryccccovevvvineinerinniinninnnns 856
15.5 The Character Set Routines in the UCR Standard Libraryccccoeeineinervnrinsrnsrirnnnnnn, 856
15.6 Using the String Instructions on Other Data TYPES ...vvvvveereereisenssinsessrsssssssssessanns 859
15.6.1 Multi-precision INtEQEr SLNGS ...vvvivvereerrresrsrsssisssessssssss s ssessssssssssssseens 859
15.6.2 Dealing with Whole Arrays and RECOIUSc.covvvvmrinmrnerinmrnissinssessssssnsssssennns 860
15.7 SAMPIE PrOGIAMS ouvvvvvevriies e riesisssssssssss s ssss s s sssss st sssssssssssnsesssnssnns 860
15.7.0 FINGLASIT 1ottt 860
15.7.2 SUDEMO.ASMN ..o et 862
15.7.3 FOMPLASIM oottt bbb 865
15.8 LabOratory EXEICISES uvvverririreriesisissssssisssiss st ssssssssssessssssssssssssssssssssesssssssssessssnsenns 868
15.8.1 MOVS Performance EXErCISE #1c.ouvrereemeeneeinnerinnssisessse e sssessssssssesssans 868
15.8.2 MOVS Performance EXErCISE #2c.ouvuvmreenmeerneesneiinsssisesse e sssesissssssessnans 870
15.8.3 Memory Performance Exercise
15.8.4 The Performance of Length-Prefixed vs. Zero-Terminated Strings ..o, 874
15.9 Programming PrOJECES cvvurirerieriisisssisssissssssssssssssesssss s sssssssssssssssssssssssessssssenes 878
1510 SUMMAIY oottt bbb 878
1511 QUESHIONS ooovevicict ettt ettt bbbt 881
Chapter 16 Pattern MatChing ..o 883
16.1 An Introduction to Formal Language (Automata) TREOTY cvevvvvvinevnnrnnrnseessresennnne, 883
16.1.1 Machings VS. LANQUAGES ..v.ucveerermeeriersrsiessrsssssssssssssssesssssssssssssssssssssssssnssssssnnes 883
16.1.2 ReqUIAr LANQUAGESvvvrerercrreriesisisssssssssesssssssssssssssssssesssssssssssssssssssssssnsssssnes 884
16.1.2.1 Regular EXPIESSIONSc.vvveermmresirssssissesssnses 885
16.1.2.2 Nondeterministic Finite State Automata (NFAS)oovverivmrnirernnrinsernnrinneens 887
16.1.2.3 Converting Regular EXpressions t0 NFASccvvernernmrnssnssssssssinneens 888
16.1.2.4 Converting an NFA to Assembly LaNQUAGEc.covvvevrverimreinsensensrnsssneens 890
16.1.2.5 Deterministic Finite State Automata (DFAS)c.ovviververnmrnsrsiersisssessneens 893
16.1.2.6 Converting a DFA to Assembly LANQUAJEocvvvvrvvrerimeiisssessssssesssneens 895
16.1.3 Context Free LANQUAGES ..o.vveerveeerieeier st 900
16.1.4 Eliminating Left Recursion and Left Factoring CFGS —.....c.covvvvvvvrrieernsrnsinsiinnnns 903
16.1.5 Converting RESt0 CFGS cvuvrvrirrssrisssssssssnssssssesssssssss s ssssssssssssssnns 905
16.1.6 Converting CFGS to ASSembly LaNQUAGEovvvvvveevinerrnerirersssssssesssssesssssnnns 905
16.1.7 Some Final COMMENLS 0N CFGS oouvvmrieieerineeinssesssessesssesse s 912
16.1.8 Beyond Context Free LANGUAGES erererrrinssinssissinssssssesssssssssssesssssssssssssanees 912
16.2 The UCR Standard Library Pattern Matching ROULINESovvvvvvvivvnerinnernsrssrnssissrisennnnn, 913
16.3 The Standard Library Pattern Matching FUNCIONS cocvvvievivinnrisninsresrsssissseenionn, 914

Page xviii

The Art of Assembly Language

16.3.1 SPANCSEL oot s 914
16.3.2 BIKCSEL ..ottt bbb 915
16.3.3 ANYCSEL oottt b b s 915
16.3.4 NOTANYCSEL voovvevierier ettt bbbt 916
16.3.5 MALCRSIE .ooooierieicieer bbb s 916
16.3.6 MALCRISIT ...ocieoieieeee bbb 916
16.3.7 MALCATOSIE .ooooieiceiciieriet ettt 917
16.3.8 MALCCRAr ooieiiiiiiieee bbb 917
16.3.9 MALChTOCNAT ...eeoieeiieeiier ettt 918
16.3.10 MALCNCREIScoouieicererirereeie ittt s 918
16.3.11 MALCNTOPAL ..ottt bbb 918
16.3.12 EOS oottt sttt ss s st s s 919
16.3.13 ARB oomieireeetiseeeieeesi sttt s 919
16.3.14 ARBNUM ..oocviireerieeeiseeesisessisesess et ssss e ssssessss st ssssss st sessss s ssssnesses 920
16.3.15 SKIP ovvereeeerreeessneesiseeesssessssseessssessss st seess sttt s 920
16.3.16 POS oottt e e 921
16.3.17 RPOS ooooueerreeesiaseessseeesssessssssessssessssssess st ss st s sesss st sesens 921
16.3.18 GOLOPOS ...oovuericeiiieriseiet e bbb s 921
16.3.19 RGOOPOS ...coouviriiriererissises e s 922
16.3.20 SL_MAICN2 ..ottt st 922
16.4 Designing Your Own Pattern Matching ROULINESocvvvvevvrecirnnrnssinssisssssisssnssinns 922
16.5 Extracting Substrings from Matched Patternsccccvvvvrimrneinnrinmsnssssssssssssnssinnns 925
16.6 Semantic RUIES AN ACLIONS c..oevureeriereeeiesese i 929
16.7 Constructing Patterns for the MATCH ROULINE c.ovvvrvvvvveeiesiesrssssssssessss s 933
16.8 Some Sample Pattern Matching ApPlICAtIONS cc.oveveeienerinerinineeeseeeeiieiens 935
16.8.1 Converting Written NUMDErS t0 INTEJEISvvvvvvverrrrsriierrseiesrsessssesssesssnnens 935
16.8.2 ProCeSSING DALES ...vvuvevvirriinressisssiesissssssess s sssssssssssssssssss s s s sssssssnses 941
16.8.3 Evaluating Arithmetic EXPressionsccouervnernmrmsnssssssisssnssssssssssssssssnnens 948
16.8.4 ATINY ASSEMDIET ...oocvvrvirrissies s s neen 953
16.8.5 The “MADVENTURE” GAMEveouevererermeessreresnnssssssesssssssssssessssssssssssssssseses 963
16.9 LADOrAtOrY EXEITISES ...ouuveuciereiirereiesiseieseissses st 979
16.9.1 Checking for Stack Overflow (Infinite LOOPS) ..vvvevevvvevrverrreernsrnerinssisssssessinnnns 979
16.9.2 Printing Diagnostic Messages from a Patterncoccvvvveinernnrinsrnsrsssssssnnnns 984
16.10 Programming PrOJECES ...vvuevvirerreinsirerississsssssssssss s ssssssssssssssssssss s sssssssssssssssnes 988
16.11 SUMMAIY oottt ettt s s bbb bbb bbb 988
16.12 QUESLIONS ..oooieeeieereesseieeiee st bbb 991
SECHON FOUR vt 993
Advanced Assembly Language Programmingcoceeeernmrnrnssnssnsssssssssssssssssnsssnes 993
Chapter 17 Interrupts, Traps, and EXCEPIONScovvvvrivrreieiecninsissseesseensiseens 995
17.1 80x86 Interrupt Structure and Interrupt Service Routings (ISRS) vcvvevrvevverererennnnne, 996
17.2 TIAPS oottt ettt bbbt 999
17.3 EXCEPLONS ooooieerceiseeieiiest et es s bbb 1000
17.3.1 Divide Error EXCeption (INT 0) .oovoerverrrieressessrssessssssssssssssssssssssssssesssnees 1000
17.3.2 Single Step (Trace) EXCEPtion (INT 1) oo sssssessssenssnnens 1000
17.3.3 Breakpoint EXCeption (INT 3) oo sssssssssssssssssesssnees 1001
17.3.4 Overflow Exception (INT 4/INTO) ..oovvvrrierenerissrnssisssssssssssssssssssssssesssessssnens 1001
17.3.5 Bounds Exception (INT 5/BOUND) cccoovvivreimernmrnnrissssisssissssssssssssssssssesssnnees 1001
17.3.6 Invalid Opcode EXCEPtion (INT 6) ...o.ovvevvrerernnrrrsrssissssssssssssssssssssssesssessssnees 1004

Page xix

17.3.7 Coprocessor Not Available (INT 7) o ssssessssssess s 1004

17.4 Hardware INEITUDLS ..ottt s 1004
17.4.1 The 8259A Programmable Interrupt Controller (PIC)ovvvvvvvvvecrnnrsrrinsrinnnns 1005
17.4.2 The Timer INterrupt (INT 8) oo ssssssssssnns 1007
17.4.3 The Keyboard INterrupt (INT 9) oo ssssssssssssssssnns 1008
17.4.4 The Serial Port Interrupts (INT 0Bh and INT OCh) ..o 1008
17.4.5 The Parallel Port Interrupts (INT ODh and INT OFR) ..o 1008
17.4.6 The Diskette and Hard Drive Interrupts (INT OEh and INT 76h)c.cccoovvrrvrinns 1009
17.4.7 The Real-Time Clock Interrupt (INT 70N)ovvvverrirerserrernssrssssessssssss s 1009
17.4.8 The FPU INterrupt (INT 75h) ..o sssessssssssssssssnns 1009
17.4.9 Nonmaskable INterrupts (INT 2) oovvvevvieeveerssrinssssssssssssss s 1009
17410 Other INEEITUPLS ovvvvvvcvreeeerseresissssss s sssssssess s ssess s sssssssssssnns 1009

17.5 Chaining Interrupt SEIVICE ROULINES uuvvivveerierissrsssessssssssssssssssssssssssssssssssssssenns 1010

17.6 ReeNtranCy ProbIEMSccovveriereriisisss s ssss st essssss s esssssenas 1012

17.7 The Efficiency of an Interrupt Driven SYSEEM ..., 1014
17.7.1 Interrupt Driven 1/O VS, POIING .oovvvrvecveerssrnssissiessssssss s s ssssnns 1014
17.7.2 INterrupt SEIVICE TIME oot sss s s ssss s 1015
17.7.3 INEEITUPLLAIENCY oo 1016
17.7.4 Prioritized INTEITUPLS .o.vvvevviecvreciseriisisssess s sssssssssss s sssssssssssnssnes 1020

17.8 DEDUGGING ISRS oot st sss s s st s 1020

17.9 SUMMAIY oo s 1021

Chapter 18 ReSIENt PrOGramscocivmrrermerininsisssesssssssisnsssssessesss s, 1025

18.1 DOS Memory Usage and TSRSuvevverrrinreinsriesisssssssssssssssssessssssssssesssssssssssssssssenns 1025

18.2 ACHIVE VS. PASSIVE TSRS ..ueeuiiiueiirersieess e s st st 1029

18.3 REENMIANCY oovviiecereeeees s s 1032
18.3.1 Reentrancy Problems With DOS ..o sssssssssssssssssssnns 1032
18.3.2 Reentrancy Problems With BIOSc.covvviinrineinninersrssssssssssssssess s 1033
18.3.3 Reentrancy Problems with Other COOE ovvvvriverinernsrrernssrisssee s 1034

18.4 The Multiplex Interrupt (INT 2Fh) ..o 1034

18.5 INSEAllING @ TSR oo s s s s 1035

18.6 REMOVING @ TSR oot sttt esssss s esssnssnes 1037

18.7 Other DOS Related ISSUBSouuevererereriseieieieiseeeesesseis s sssssssessesssesssnees 1039

18.8 A Keyboard MONILOr TSR ..o sssssssss s sessssssssssessssssssssessssssenes 1041

18.9 SeMIreSident PrOGIAMSvvvverrereresiresssissssssssssssssssssssessssssssssssssssssssssesssssssnsesssessenes 1055

18.10 SUMMAIY oot 1064

Chapter 19 Processes, Coroutines, and CONCUITENCYvvvvrvrerrerrerrnrerneisnsersneennns 1065

19.1 DOS PIOCESSES ooveouecereeserserseesseisseesssessses st ssssssess s sess s s sssssssss s 1065

19.1.1 Child Processes in DOS oveveeimeeieiieiieesseessssssssssssssssssse s sssssss 1065
19.1.1.1 LoAd 8N EXECULEuveveierieieeeieeseriss e sessssssssess s sssssessessssens 1066
19.1.1.2 LOAA PrOGramcvoeevreeresersriesssssssssssssssssssssssssssssssssessssssssssssssssssesssnses 1068
19.1.1.3 L0Ading OVEIAYScovvvreerrcrierisrsssesssnses 1069
19.1.1.4 Terminating @ PrOCESSvvrrvrrrrermmermsssssinsssssssssisssssssssssssssssssssesssesssssens 1069
19.1.1.5 Obtaining the Child Process Return COdecovvrvernvrnirnssinsernnrneens 1070

19.1.2 Exception Handling in DOS: The Break Handlercccovvvvvnriierinninninninnnns 1070

19.1.3 Exception Handling in DOS: The Critical Error Handlerccocooeveevivrriniinnnns 1071

19.1.4 Exception Handling in DOS: TrAPS ...vvvevrermmrisissssssssssssssssssssssssssssssssssssnns 1075

19.1.5 Redirection of /O for Child PrOCESSES cceeveevrerierierieiise e 1075

Page xx

The Art of Assembly Language

19.2 SNArEd MEIMOTY .vuvieviviesiiseisss s s st nes 1078
19.2.1 Static ShAred MEMOIY ...ttt 1078
19.2.2 Dynamic Shared MEMOIY ..o sssssssssessssss s ssssssesssnens 1088

19.3 COMOULINES .cevueeereesseesseesesese bbb bbb 1103

19.4 MUILISKING ovoovvrereerisrississ s s ss s st sss s st sssssssssnes 1124
19.4.1 Lightweight and HeavyWeight PrOCESSES c.vvrermrisrrnssinssnsrnssssssesssesssnnees 1124
19.4.2 The UCR Standard Library Processes Packagecovverimmrnnrnssensinssinssennins 1125
19.4.3 Problems with MUItItASKING cvoeverieirriieriississs s 1126
19.4.4 A Sample Program With TRIEAdScocevvvverennrnerinnsnnrsssssssssssssssssssssesssnens 1127

19.5 SYNCAONIZALION 1..voevveiiereesisnr s s s ns s 1129
19.5.1 Atomic Operations, Test & Set, and Busy-Waitingcccovvrvmrrmrrrinrinnensrennnns 1132
19.5.2 SEMAPNOIES ..vouvievierirrirsisss s sss st 1134
19.5.3 The UCR Standard Library Semaphore SUPPOM ..o 1136
19.5.4 Using Semaphores to Protect Critical REJIONS cc.vvvevrvrrnsrirerssrssissssesennnns 1136
19.5.5 Using Semaphores for Barrier Synchronizationccccoeevvvvnmrneenssnssinssennnns 1140

19.6 DEALIOCK eouvveeeieieiieiieiiei it 1146

19.7 SUMMAIY oot 1147

SECLION FIVE! ..t 1151
TREPC'S IO POMS oottt bbb 1151
Chapter 20 The PC KeYDOArdcccovvimiiniiiinsssessessssssississsssssssnns 1153

20.1 KeyDOard BASICS cvverirrerirrnrsinssinssssisssssssssssssssssssssssssssssssssssssssesssssssessesssasssssssssnses 1153

20.2 The Keyboard Hardware INtErface ... sssssssssssssssssssssnees 1159

20.3 The Keyboard DOS INEITACE cvevverrrisrisrisssssssesse s ssssssssesssnnes 1167

20.4 The Keyboard BIOS INEIACE cvvvveriiriierinnississssssse s sssssssssesssnnes 1168

20.5 The Keyboard Interrupt SErvice ROULING coovvvvvveensrversessssss s ssssssssesssesssnees 1174

20.6 Patching into the INT 9 Interrupt SErvice ROULINEouveerervvenereeeserrsesssessssesssessseees 1184

20.7 SIMUIALING KEYSITOKES ..vvvvevvrererereerreriessssesssssssssssssss s sessssssssssssssssnssassesssssssssssseses 1186
20.7.1 Stuffing Characters in the Type Ahead BUFTEr ... 1186
20.7.2 Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructionsccccoeveen. 1187
20.7.3 Using the 8042 Microcontroller to Simulate KeYStroKEScc.vvvevvermrenrersrernnerns 1192

20.8 SUMMAIY oottt 1196

Chapter 21 The PC Parallel POMS ..., 1199

21.1 Basic Parallel Port INfOrMAtion cc.oveieeinerieicineeiiesississsess e 1199

21.2 The Parallel POrt HAFAWArE ccvueiieiseeie et 1201

21.3 Controlling a Printer Through the Parallel POrt ... 1202
21.3.1 Printing VIa DOS ...ovcrrrereessr sttt ss s s 1203
21.3.2 Printing VIa BIOS ...t sssss st ssssss st ssssssesssens 1203
21.3.3 An INT 17h Interrupt SErVICe ROULINE ovvrcverreeresrissrssissssssssssessssssssssesenns 1203

21.4 Inter-Computer Communications on the Parallel POrt ... 1209

215 SUMMAIY oottt 1222

Chapter 22 The PC Serial POTSc.cocvriiinnnsenesess s 1223

22.1 The 8250 Serial CommuNICations CRIP voovvrvvrrerssesseseresessssss s sssssssssnees 1223
22.1.1 The Data Register (Transmit/Receive REGIStEr) coocvveenrernrerinneenseriserinneiens 1224
22.1.2 The Interrupt Enable Register (IER) ..vvvvvvrinrrisrensrssrsssissssssssssessssssssssssenns 1224
22.1.3 The Baud RAE DIVISOT cvereereiiirieeeie e siesssesssssssssss s sssssssssssens 1225

Page xxi

22.1.4 The Interrupt Identification Register (IIR) vvvvvvrveernrrrerssrsssesssssssssssennns 1226

22.1.5 The Ling CONtrol REGISIEN cvvuveriereriessssessssssssssssssessssssessssssssssssssesssenees 1227
22.1.6 The Modem CONtrol REJISIEr uvvvveeriererr s ssssssssesssnees 1228
22.1.7 The Ling Status REGISIEr (LSR) ..uvvvrerererirrrsrrinssrnsssssssssssssessssssessssssssssssssesssenees 1229
22.1.8 The Modem Status REgISter (MSR) vvvcverinrensrserssisssessssssssssssssssssssesssenees 1230
22.1.9 The Auxiliary INPUL REGISEENcvevveererirrenssssnss s s sssssssssesssenees 1231
22.2 The UCR Standard Library Serial Communications Support ROUtINEScc.vvvererernenne, 1231
22.3 Programming the 8250 (Examples from the Standard Library)ccoccoeeiverinvrrsrernnnnne, 1233
224 SUMMATY oottt st s st st 1244
Chapter 23 The PC Video DiSplay ..., 1247
23.1 Memory Mapped VIdEO ... sisssssssss s sssssssssssssssssssssssnns 1247
23.2 The Video AtHDULE BYIEcvvcrerisriesississs s sssssssssess s ssssssssssssssssssssssssnes 1248
23.3 Programming the TeXt DISPIAY cvererererieernnresnssisssissssssesssssssssssssssssssssessssnssesssnes 1249
234 SUMMAIY oottt ettt bbb bbbt 1252
Chapter 24 The PC Game ATAPLET ..o, 1255
24.1 TypIiCal GAME DEVICES ...vvvuvvrcrrecrieriisissssssssssssssssssssssssssssssesssesssess s sssssssssesssassssssones 1255
24.2 The Game Adapter HAMAWAEcvvvvverereeisnrinessssisesissssss s ssssssssssssssssessssssssssnes 1257
24.3 Using BIOS' Game I/O FUNCLIONS vvvvvrrernnirsinssessisssssssessssssssssssssssssssesssssssesssnes 1259
24.4 Writing Your Own Game /O ROULINES cvuvvievrrrinrensisssisssssssssssssssssssssssssssssnsssnns 1260
24.5 The Standard Game Device Interface (SGDI) ...vuvvevvereeennrinrrnrssssisessssssssssssssesesennns 1262
24.5.1 Application Programmer’s INterface (API) ..o 1262
2452 REAGASW ..ottt 1263
24.5.3 REAUAPOLS: ..ottt bbb 1263
2454 REAAPOLveieeecieceieeetee ettt 1264
2455 REAGA: .ooooeeeee et 1264
24.5.6 CalIDIAIEPOL ...ooocvorciiie e 1264
24.5.7 TeStPOLCAIIDIAtION ..o 1264
24.5.8 REARAW ..voovoeecieeeiecesiee ittt ss sttt st 1265
24.5.9 REAASWILCR ..ottt 1265
24.5.10 REAALOSW ..oovevvrererrcesineeeieeessne st sess st sss st sss s sss st sessssnsnes 1265
24.5.11 REIMOVE ..ottt et 1265
24.5.12 TESIPIESENCE ...ceoreereereereeser e ses s s 1265
24.5.13 An SGDI Driver for the Standard Game Adapter Cardcccoovvrrverrenrinrinsrnnnns 1265
24.6 An SGDI Driver for the CH Products’ Flight Stick Prol] —........vvevvievvnervernsssssessneeninnn, 1280
24.7 Patching EXIStING GAMES vovvverrierisriesisssssssssssssssssssssssssessesssessssssssssssssessssssssssonss 1293
248 SUMMATY oottt st bbbttt 1306
SEOLION SIX: vvveveseeserisees st 1309
L] 011117 10 3 OO 1309
Chapter 25 Optimizing YOUT PrOgrams ..o, 1311
25.0 Chapter OVEIVIEW ..o sissssssssss s st ssss s ssess s ssssssssesssssssnssenes 1311
25.1 When to Optimize, When NOt to Optimize ..o ssssssssssssssssnsrnns 1311
25.2 How Do You Find the Slow Code in Your Programs?ccevvmeemmensrnssrnnsessssnssnnn, 1313
25.3 15 OPtiMIZation NECESSANY? ...c.ovviererreesssnsssnsssssssssssssssssssssesssesssessssssssssssssesssasssesssonss 1314
25.4 The Three Types of OPtMIZatioN ..o 1315
25.5 Improving the Implementation of an Algorithm ..., 1317

Page xxii

The Art of Assembly Language

25,6 SUMMAIY oot 1341
SECION SEVEIN: .oviveiieiiieie s 1343

ADPPENGIXES vvvvvevrerieesrsiesssssssssssssssssssesss s ses s s s sssss s st sssesssssssnssesssesssss st sssnss 1343
Appendix A: ASCII/IBM CharaCter SEtccvvuevrneemiimiiineierernsnsinsssssesssesnnes 1345
Appendix B: Annotated BiblOgraphy ... 1347
Appendix C: Keyboard Scan COUBS ..o, 1351
Appendix D: InStruction Set REFEIENCEccovvvvveeiierereeesse s 1361

Page xxiii

Page xxiv

Why Would Anyone Learn This Stuff? Forward

Amazing! You're actually reading this. That puts you into one of three categories: a student who is
being forced to read this stuff for a class, someone who picked up this book by accident (probably
because you have yet to be indoctrinated by the world at large), or one of the few who actually have an
interest in learning assembly language.

Egads. What kind of book begins this way? What kind of author would begin the book with a forward
like this one? Well, the truth is, | considered putting this stuff into the first chapter since most people never
bother reading the forward. A discussion of what's right and what’s wrong with assembly language is very
important and sticking it into a chapter might encourage someone to read it. However, | quickly found
that university students can skip Chapter One as easily as they can skip a forward, so this stuff wound up
in a forward after all.

So why would anyone learn this stuff, anyway? Well, there are several reasons which come to mind:

« Your major requires a course in assembly language; i.e., you're here against your will.

e A programmer where you work quit. Most of the source code left behind was written
in assembly language and you were elected to maintain it.

* Your boss has the audacity to insist that you write your code in assembly against your
strongest wishes.

< Your programs run just a little too slow, or are a little too large and you think assembly
language might help you get your project under control.

* You want to understand how computers actually work.

« You're interested in learning how to write efficient code.

* You want to try something new.

Well, whatever the reason you're here, welcome aboard. Let's take a look at the subject you're about
to study.

1 What's Wrong With Assembly Language

Assembly language has a pretty bad reputation. The common impression about assembly language
programmers today is that they are all hackers or misguided individuals who need enlightenment. Here
are the reasons people give for not using assembly™:

e Assembly is hard to learn.

e Assembly is hard to read and understand.

e Assembly is hard to debug.

e Assembly is hard to maintain.

e Assembly is hard to write.

« Assembly language programming is time consuming.

< Improved compiler technology has eliminated the need for assembly language.

e Today, machines are so fast that we no longer need to use assembly.

« Ifyou need more speed, you should use a better algorithm rather than switch to assem-
bly language.

= Machines have so much memory today, saving space using assembly is not important.

* Assembly language is not portable.

1. This text will use the terms “Assembly language” and “assembly” interchangeably.

Page 1

Forward

Page 2

These are some strong statements indeed!

Given that this is a book which teaches assembly language programming, written for college level
students, written by someone who appears to know what he’s talking about, your natural tendency is to
believe something if it appears in print. Having just read the above, you're starting to assume that assembly
must be pretty bad. And that, dear friend, is eighty percent of what's wrong with assembly language. That
is, people develop some very strong misconceptions about assembly language based on what they've
heard from friends, instructors, articles, and books. Oh, assembly language is certainly not perfect. It does
have many real faults. Those faults, however, are blown completely out of proportion by those unfamiliar
with assembly language. The next time someone starts preaching about the evils of assembly language,
ask, “how many years of assembly language programming experience do you have?” Of course assembly
is hard to understand if you don’t know it. It is surprising how many people are willing to speak out
against assembly language based only on conversations they've had or articles they've read.

Assembly language users also use high level languages (HLLs); assembly’s most outspoken oppo-
nents rarely use anything but HLLs. Who would you believe, an expert well versed in both types of pro-
gramming languages or someone who has never taken the time to learn assembly language and develop
an honest opinion of its capabilities?

In a conversation with someone, | would go to great lengths to address each of the above issues.
Indeed, in a rough draft of this chapter | spent about ten pages explaining what is wrong with each of the
above statements. However, this book is long enough and | felt that very little was gained by going on and
on about these points. Nonetheless, a brief rebuttal to each of the above points is in order, if for no other
reason than to keep you from thinking there isn't a decent defense for these statements.

Assembly is hard to learn. So is any language you don't already know. Try learning (really learn-
ing) APL, Prolog, or Smalltalk sometime. Once you learn Pascal, learning another language like C, BASIC,
FORTRAN, Modula-2, or Ada is fairly easy because these languages are quite similar to Pascal. On the
other hand, learning a dissimilar language like Prolog is not so simple. Assembly language is also quite dif-
ferent from Pascal. It will be a little harder to learn than one of the other Pascal-like languages. However,
learning assembly isn't much more difficult than learning your first programming language.

Assembly is hard to read and understand. It sure is, if you don't know it. Most people who make
this statement simply don’t know assembly. Of course, it's very easy to write impossible-to-read assembly
language programs. It's also quite easy to write impossible-to-read C, Prolog, and APL programs. With
experience, you will find assembly as easy to read as other languages.

Assembly is hard to debug. Same argument as above. If you don't have much experience debug-
ging assembly language programs, it's going to be hard to debug them. Remember what it was like finding
bugs in your first Pascal (or other HLL) programs? Anytime you learn a new programming language you'll
have problems debugging programs in that language until you gain experience.

Assembly is hard to maintain. C programs are hard to maintain. Indeed, programs are hard to
maintain period. Inexperienced assembly language programmers tend to write hard to maintain programs.
Writing maintainable programs isn't a talent. It's a skill you develop through experience.

Assembly language is hard. This statement actually has a ring of truth to it. For the longest time
assembly language programmers wrote their programs completely from scratch, often “re-inventing the
wheel.” HLL programmers, especially C, Ada, and Modula-2 programmers, have long enjoyed the benefits
of a standard library package which solves many common programming problems. Assembly language
programmers, on the other hand, have been known to rewrite an integer output routine every time they
need one. This book does not take that approach. Instead, it takes advantage of some work done at the
University of California, Riverside: the UCR Standard Library for 80x86 Assembly Language Programmers.
These subroutines simplify assembly language just as the C standard library aids C programmers. The
library source listings are available electronically via Internet and various other communication services as
well as on a companion diskette.

Assembly language programming is time consuming. Software engineers estimate that devel-
opers spend only about thirty percent of their time coding a solution to a problem. Even if it took twice as

Why Would Anyone Learn This Stuff?

much time to write a program in assembly versus some HLL, there would only be a fifteen percent differ-
ence in the total project completion time. In fact, good assembly language programmers do not need twice
as much time to implement something in assembly language. It is true using a HLL will save some time;
however, the savings is insufficient to counter the benefits of using assembly language.

Improved compiler technology has eliminated the need for assembly language. This isn't
true and probably never will be true. Optimizing compilers are getting better every day. However, assem-
bly language programmers get better performance by writing their code differently than they would if they
were using some HLL. If assembly language programmers wrote their programs in C and then translated
them manually into assembly, a good C compiler would produce equivalent, or even better, code. Those
who make this claim about compiler technology are comparing their hand-compiled code against that
produced by a compiler. Compilers do a much better job of compiling than humans. Then again, you'll
never catch an assembly language programmer writing “C code with MOV instructions.” After all, that's
why you use C compilers.

Today, machines are so fast that we no longer need to use assembly. It is amazing that people
will spend lots of money to buy a machine slightly faster than the one they own, but they won't spend any
extra time writing their code in assembly so it runs faster on the same hardware. There are many raging
debates about the speed of machines versus the speed of the software, but one fact remains: users always
want rpore speed. On any given machine, the fastest possible programs will be written in assembly lan-
guage”.

If you need more speed, you should use a better algorithm rather than switch to assembly
language. Why can't you use this better algorithm in assembly language? What if you're already using the
best algorithm you can find and it's still too slow? This is a totally bogus argument against assembly lan-
guage. Any algorithm you can implement in a HLL you can implement in assembly. On the other hand,
there are many algorithms you can implement in assembly which you cannot implement in a HLL,

Machines have so much memory today, saving space using assembly is not important. If
you give someone an inch, they'll take a mile. Nowhere in programming does this saying have more appli-
cation than in program memory use. For the longest time, programmers were quite happy with 4 Kbytes.
Later, machines had 32 or even 64 Kilobytes. The programs filled up memory accordingly. Today, many
machines have 32 or 64 megabytes of memory installed and some applications use it all. There are lots of
technical reasons why programmers should strive to write shorter programs, though now is not the time to
go into that. Let’s just say that space is important and programmers should strive to write programs as short
as possible regardless of how much main memory they have in their machine.

Assembly language is not portable. This is an undeniable fact. An 80x86 assembly language pro-
gram written for an IBM PC will not run on an Apple Macintosh*. Indeed, assembly language programs
written for the Apple Macintosh will not run on an Amiga, even though they share the same 680x0 micro-
processor. If you need to run your program on different machines, you'll have to think long and hard
about using assembly language. Using C (or some other HLL) is no guarantee that your program will be
portable. C programs written for the IBM PC won't compile and run on a Macintosh. And even if they did,
most Mac owners wouldn't accept the result.

Portability is probably the biggest complaint people have against assembly language. They refuse to
use assembly because it is not portable, and then they turn around and write equally non-portable pro-
gramsin C.

Yes, there are lots of lies, misconceptions, myths, and half-truths concerning assembly language.
Whatever you do, make sure you learn assembly language before forming your own opinions®. Speaking

2. That is not to imply that assembly language programs are always faster than HLL programs. A poorly written assembly language program can run
much slower than an equivalent HLL program. On the other hand, if a program is written in an HLL it is certainly possible to write a faster one in

3. We'll see some of these algorithms later in the book. They deal with instruction sequencing and other tricks based on how the processor oper-

4. Strictly speaking, this is not true. There is a program called SoftPC which emulates an IBM PC using an 80286 interpreter. However, 80x86 assem-
bly language programs will not run in native mode on the Mac's 680x0 microprocessor.

Page 3

Forward

out in ignorance may impress others who know less than you do, but it won't impress those who know
the truth.

2 What's Right With Assembly Language?

An old joke goes something like this; “There are three reasons for using assembly language: speed,
speed, and more speed.” Even those who absolutely hate assembly language will admit that if speed is
your primary concern, assembly language is the way to go. Assembly language has several benefits:

* Speed. Assembly language programs are generally the fastest programs around.

e Space. Assembly language programs are often the smallest.

« Capability. You can do things in assembly which are difficult or impossible in HLLs.

« Knowledge. Your knowledge of assembly language will help you write better pro-
grams, even when using HLLS.

Assembly language is the uncontested speed champion among programming languages. An expert
assembly language programmer will almost always produce a faster program than an expert C program-
mer®. While certain programs may not benefit much from implementation in assembly, you can speed up
many programs by a factor of five or ten over their HLL counterparts by careful coding in assembly lan-
guage; even greater improvement is possible if you're not using an optimizing compiler. Alas, speedups
on the order of five to ten times are generally not achieved by beginning assembly language programmers.
However, if you spend the time to learn assembly language really well, you too can achieve these impres-
sive performance gains.

Despite some people’s claims that programmers no longer have to worry about memory constraints,
there are many programmers who need to write smaller programs. Assembly language programs are often
less than one-half the size of comparable HLL programs. This is especially impressive when you consider
the fact that data items generally consume the same amount of space in both types of programs, and that
data is responsible for a good amount of the space used by a typical application. Saving space saves
money. Pure and simple. If a program requires 1.5 megabytes, it will not fit on a 1.44 Mbyte floppy. Like-
wise, if an application requires 2 megabytes RAM, the user will have to install an extra megabyte if there is
only one available in the machine’. Even on big machines with 32 or more megabytes, writing gigantic
applications isn’t excusable. Most users put more than eight megabytes in their machines so they can run
multiple programs from memory at one time. The bigger a program is, the fewer applications will be able
to coexist in memory with it. Virtual memory isn't a particularly attractive solution either. With virtual
memory, the bigger an application is, the slower the system will run as a result of that program’s size.

Capability is another reason people resort to assembly language. HLLs are an abstraction of a typical
machine architecture. They are designed to be independent of the particular machine architecture. As a
result, they rarely take into account any special features of the machine, features which are available to
assembly language programmers. If you want to use such features, you will need to use assembly lan-
guage. A really good example is the input/output instructions available on the 80x86 microprocessors.
These instructions let you directly access certain 1/0 devices on the computer. In general, such access is
not part of any high level language. Indeed, some languages like C pride themselves on not supporting

5. Alas, a typical ten-week course is rarely sufficient to learn assembly language well enough to develop an informed opinion on the subject. Prob-
ably three months of eight-hour days using the stuff would elevate you to the point where you could begin to make some informed statements on
the subject. Most people wouldn't be able to consider themselves “good” at assembly language programs until they've been using the stuff for at
least a year.

6. There is absolutely no reason why an assembly language programmer would produce a slower program since that programmer could look at the
output of the C compiler and copy whatever code runs faster than the hand produced code. HLL programmers don't have an equivalent option.

7. You can substitute any numbers here you like. One fact remains though, programmers are famous for assuming users have more memory than
they really do.

Page 4

Why Would Anyone Learn This Stuff?

any specific /0 operations®. In assembly language you have no such restrictions. Anything you can do on
the machine you can do in assembly language. This is definitely not the case with most HLLs.

Of course, another reason for learning assembly language is just for the knowledge. Now some of
you may be thinking, “Gee, that would be wonderful, but I've got lots to do. My time would be better
spent writing code than learning assembly language.” There are some practical reasons for learning assem-
bly, even if you never intend to write a single line of assembly code. If you know assembly language well,
you'll have an appreciation for the compiler, and you'll know exactly what the compiler is doing with all
those HLL statements. Once you see how compilers translate seemingly innocuous statements into a ton of
machine code, you'll want to search for better ways to accomplish the same thing. Good assembly lan-
guage programmers make better HLL programmers because they understand the limitations of the com-
piler and they know what it's doing with their code. Those who don’t know assembly language will accept
the poor performance their compiler produces and simply shrug it off.

Yes, assembly language is definitely worth the effort. The only scary thing is that once you learn it
really well, you'll probably start using it far more than you ever dreamed you would. That is a common
malady among assembly language programmers. Seems they can't stand what the compilers are doing
with their programs.

Organization of This Text and Pedagogical Concerns

This book is divided into seven main sections: a section on machine organization and architecture, a
section on basic assembly language, a section on intermediate assembly language, a section on interrupts
and resident programs, a section covering IBM PC hardware peculiarities, a section on optimization, and
various appendices. It is doubtful that any single (even year-long) college course could cover all this mate-
rial, the final chapters were included to support compiler design, microcomputer design, operating sys-
tems, and other courses often found in a typical CS program.

Developing a text such as this one is a very difficult task. First of all, different universities have differ-
ent ideas about how this course should be taught. Furthermore, different schools spend differing amounts
of time on this subject (one or two quarters, a semester, or even a year). Furthermore, different schools
cover different material in the course. For example, some schools teach a “Machine Organization” course
that emphasizes hardware concepts and presents the assembly language instruction set, but does not
expect students to write real assembly language programs (that's the job of a compiler). Other schools
teach a “Machine Organization and Assembly Language” course that combines hardware and software
issues together into one course. Still others teach a “Machine Organization” or “Digital Logic” course as a
prerequisite to an “Assembly Language” course. Still others teach “Assembly Language Programming” as a
course and leave the hardware for a “Computer Architecture” course later in the curriculum. Finally, let us
not forget that some people will pick up this text and use it to learn machine organization or assembly lan-
guage programming on their own, without taking a formal course on the subject. A good textbook in this
subject area must be adaptable to the needs of the course, instructor, and student. These requirements
place enough demands on an author, but | wanted more for this text. Many textbooks teach a particular
subject well, but once you've read and understood them, they do not serve well as a reference guide.
Given the cost of textbooks today, it is a real shame that many textbooks' value diminishes once the
course is complete. | sought to create a textbook that will explain many difficult concepts in as friendly a
manner as possible and will serve as a reference guide once you've mastered the topic. By moving
advanced material you probably won't cover in a typical college course into later chapters and by organiz-
ing this text so you can continue using it once the course is over, | hope to provide you with an excellent
value in this text.

Since this volume attempts to satisfy the requirements of several different courses, as well as provide
an excellent reference, you will probably find that it contains far more material than any single course

8. Certain languages on the PC support extensions to access the 1/O devices since this is such an obvious limitation of the language. However, such
extensions are not part of the actual language.

Page 5

Forward

Page 6

would actually cover. For example, the first section of this text covers machine organization. If you've
already covered this material in a previous course, your instructor may elect to skip the first four chapters
or so. For those courses that teach only assembly language, the instructor may decide to skip chapters two
and three. Schools operating on a ten-week quarter system may cover the material in each chapter only
briefly (about one week per chapter). Other schools may cover the material in much greater depth
because they have more time.

When writing this text, | choose to pick a subject and cover it in depth before proceeding to the next
topic. This pedagogy (teaching method) is unusual. Most assembly language texts jump around to differ-
ent topics, lightly touching on each one and returning to them as further explanation is necessary. Unfor-
tunately, such texts make poor references; trying to lookup information in such a book is difficult, at best,
because the information is spread throughout the book. Since | want this text to serve as a reasonable ref-
erence manual, such an organization was unappealing.

The problem with a straight reference manual is three-fold. First, reference manuals are often orga-
nized in a manner that makes it easy to look something up, not in a logical order that makes the material
easy to learn. For example, most assembly language reference manuals introduce the instruction set in
alphabetical order. However, you do not learn the instruction set in this manner. The second problem with
a (good) reference manual is that it presents the material in far greater depth than most beginners can han-
dle; this is why most texts keep returning to a subject, they add a little more depth on each return to the
subject. Finally, reference texts can present material in any order. The author need not ensure that a dis-
cussion only include material appearing earlier in the text. Material in the early chapters of a reference
manual can refer to later chapters; a typical college textbook should not do this.

To receive maximum benefit from this text, you need to read it understanding its organization. This is
not a text you read from front to back, making sure you understand each and every little detail before pro-
ceeding to the next. I've covered many topics in this text in considerable detail. Someone learning assem-
bly language for the first time will become overwhelmed with the material that appears in each chapter.
Typically, you will read over a chapter once to learn the basic essentials and then refer back to each chap-
ter learning additional material as you need it. Since it is unlikely that you will know which material is
basic or advanced, I've taken the liberty of describing which sections are basic, intermediate, or advanced
at the beginning of each chapter. A ten-week course, covering this entire text for example, might only deal
with the basic topics. In a semester course, there is time to cover the intermediate material as well.
Depending on prerequisites and length of course, the instructor can elect to teach this material at any level
of detail (or even jump around in the text).

In the past, if a student left an assembly language class and could actually implement an algorithm in
assembly language, the instructor probably considered the course a success. However, compiler technol-
ogy has progressed to the point that simply “getting something to work” in assembly language is pure
folly. If you don't write your code efficiently in assembly language, you may as well stick with HLLs.
They're easy to use, and the compiler will probably generate faster code than you if you're careless in the
coding process.

This text spends a great deal of time on machine and data organization. There are two important rea-
sons for this. First of all, to write efficient code on modern day processors requires an intimate knowledge
of what's going on in the hardware. Without this knowledge, your programs on the 80486 and later could
run at less than half their possible speed. To write the best possible assembly language programs you must
be familiar with how the hardware operates. Another reason this text emphasizes computer organization is
that most colleges and universities are more interested in teaching machine organization than they are a
particular assembly language. While the typical college student won't have much need for assembly lan-
guage during the four years as an undergraduate, the machine organization portion of the class is useful in
several upper division classes. Classes like data structures and algorithms, computer architecture, operat-
ing systems, programming language design, and compilers all benefit from an introductory course in com-
puter organization. That's why this text devotes an entire section to that subject.

Why Would Anyone Learn This Stuff?

4 Obtaining Program Source Listings and Other Materials in This Text

All of the software appearing in this text is available on the companion diskette. The material for this
text comes in two parts: source listings of various examples presented in this text and the code for the UCR
Standard Library for 80x86 Assembly Language Programmers. The UCR Standard Library is also available
electronically from several different sources (including Internet, BIX, and other on-line services).

You may obtain the files electronically via ftp from the following Internet address:
ftp.cs.ucr.edu

Log onto ftp.cs.ucr.edu using the anonymous account name and any password. Switch to the “/pub/pc/
ibmpcdir” subdirectory (this is UNIX so make sure you use lowercase letters). You will find the appropri-
ate files by searching through this directory.

The exact filename(s) of this material may change with time, and different services use different
names for these files. Generally posting a message enquiring about the UCR Standard Library or this text
will generate appropriate responses.

Page 7

Forward

Page 8

Data Representation Chapter One

Probably the biggest stumbling block most beginners encounter when attempting to
learn assembly language is the common use of the binary and hexadecimal numbering
systems. Many programmers think that hexadecimal (or hex!) numbers represent abso-
lute proof that God never intended anyone to work in assembly language. While it is true
that hexadecimal numbers are a little different from what you may be used to, their
advantages outweigh their disadvantages by a large margin. Nevertheless, understanding
these numbering systems is important because their use simplifies other complex topics
including boolean algebra and logic design, signed numeric representation, character
codes, and packed data.

1.0 Chapter Overview

This chapter discusses several important concepts including the binary and hexadeci-
mal numbering systems, binary data organization (bits, nibbles, bytes, words, and double
words), signed and unsigned numbering systems, arithmetic, logical, shift, and rotate
operations on binary values, bit fields and packed data, and the ASCII character set. This
is basic material and the remainder of this text depends upon your understanding of these
concepts. If you are already familiar with these terms from other courses or study, you
should at least skim this material before proceeding to the next chapter. If you are unfa-
miliar with this material, or only vaguely familiar with it, you should study it carefully
before proceeding. All of the material in this chapter is important! Do not skip over any mate-
rial.

1.1 Numbering Systems

Most modern computer systems do not represent numeric values using the decimal
system. Instead, they typically use a binary or two’s complement nhumbering system. To
understand the limitations of computer arithmetic, you must understand how computers
represent numbers.

1.1.1 A Review of the Decimal System

You’ve been using the decimal (base 10) numbering system for so long that you prob-
ably take it for granted. When you see a number like “123”, you don’t think about the
value 123; rather, you generate a mental image of how many items this value represents.
In reality, however, the number 123 represents:

1¥10%2 + 2 * 10! + 3*10°
or

100+20+3

Each digit appearing to the left of the decimal point represents a value between zero
and nine times an increasing power of ten. Digits appearing to the right of the decimal
point represent a value between zero and nine times an increasing negative power of ten.
For example, the value 123.456 means:

1*10%2 + 2*10' + 3*10° + 4101 + 5102 + 6*10°3
or

1. Hexadecimal is often abbreviated as hex even though, technically speaking, hex means base six, not base six-
teen.

Page 11

Chapter 01

100 + 20 + 3 + 0.4 + 0.05 + 0. 006

1.1.2 The Binary Numbering System

Page 12

Most modern computer systems (including the IBM PC) operate using binary logic.
The computer represents values using two voltage levels (usually Ov and +5v). With two
such levels we can represent exactly two different values. These could be any two differ-
ent values, but by convention we use the values zero and one. These two values, coinci-
dentally, correspond to the two digits used by the binary numbering system. Since there is
a correspondence between the logic levels used by the 80x86 and the two digits used in
the binary numbering system, it should come as no surprise that the IBM PC employs the
binary numbering system.

The binary numbering system works just like the decimal numbering system, with
two exceptions: binary only allows the digits 0 and 1 (rather than 0-9), and binary uses
powers of two rather than powers of ten. Therefore, it is very easy to convert a binary
number to decimal. For each “1” in the binary string, add in 2" where “n” is the
zero-based position of the binary digit. For example, the binary value 11001010, repre-
sents:

1*27 + 1*26 + 0*25 + 0*24 + 1*23 + 0*22 + 1*21 + 0*20

128 + 64 + 8 + 2

205lO
To convert decimal to binary is slightly more difficult. You must find those powers of
two which, when added together, produce the decimal result. The easiest method is to
work from the a large power of two down to 20. Consider the decimal value 1359:

e 2101024, 211=2048. So 1024 is the largest power of two less than 1359.
Subtract 1024 from 1359 and begin the binary value on the left with a “1”
digit. Binary = 1", Decimal result is 1359 - 1024 = 335.

= The next lower power of two (29 = 512) is greater than the result from
above, so add a “0” to the end of the binary string. Binary = “10”, Decimal
result is still 335.

= The next lower power of two is 256 (28). Subtract this from 335 and add a
“1” digit to the end of the binary number. Binary = “101”, Decimal result
is79.

- 128 (27) is greater than 79, so tack a “0” to the end of the binary string.
Binary = “1010”, Decimal result remains 79.

= The next lower power of two (26 = 64) is less than79, so subtract 64 and
append a “1” to the end of the binary string. Binary = “10101”, Decimal
result is 15.

e 15is less than the next power of two (2° = 32) so simply add a “0” to the
end of the binary string. Binary = “101010”, Decimal result is still 15.

- 16 (2% is greater than the remainder so far, so append a “0” to the end of
the binary string. Binary = “1010100”, Decimal result is 15.

- 23 (eight) is less than 15, so stick another “1” digit on the end of the binary
string. Binary = “10101001”, Decimal result is 7.

- 22js less than seven, so subtract four from seven and append another one
to the binary string. Binary = “101010011”, decimal result is 3.

« 2%is less than three, so append a one to the end of the binary string and
subtract two from the decimal value. Binary = “1010100111, Decimal
result is now 1.

= Finally, the decimal result is one, which is 20, so add a final “1” to the end
of the binary string. The final binary result is “10101001111”

Data Representation

Binary numbers, although they have little importance in high level languages, appear
everywhere in assembly language programs.

1.1.3 Binary Formats

In the purest sense, every binary number contains an infinite number of digits (or bits
which is short for binary digits). For example, we can represent the number five by:

101 00000101 0000000000101
000000000000101
Any number of leading zero bits may precede the binary number without changing its
value.

We will adopt the convention ignoring any leading zeros. For example, 101, repre-
sents the number five. Since the 80x86 works with groups of eight bits, we’ll find it much
easier to zero extend all binary numbers to some multiple of four or eight bits. Therefore,
following this convention, we’d represent the number five as 0101, or 00000101,.

In the United States, most people separate every three digits with a comma to make
larger numbers easier to read. For example, 1,023,435,208 is much easier to read and com-
prehend than 1023435208. We’ll adopt a similar convention in this text for binary num-
bers. We will separate each group of four binary bits with a space. For example, the binary
value 1010111110110010 will be written 1010 1111 1011 0010.

We often pack several values together into the same binary number. One form of the
80x86 MOV instruction (see appendix D) uses the binary encoding 1011 Orrr dddd dddd to
pack three items into 16 bits: a five-bit operation code (10110), a three-bit register field
(rrr), and an eight-bit immediate value (dddd dddd). For convenience, we’ll assign a
numeric value to each bit position. We’ll number each bit as follows:

1) The rightmost bit in a binary number is bit position zero.
2) Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:
X1 X6 X5 Xq X3 Xo X1 Xo
A 16-bit binary value uses bit positions zero through fifteen:
X5 X4 X13 X12 X131 X190 X9 Xg X7 X6 X5 Xg X3 %o X1 X

Bit zero is usually referred to as the low order (L.O.) bit. The left-most bit is typically
called the high order (H.O.) bit. We’ll refer to the intermediate bits by their respective bit
numbers.

1.2 Data Organization

In pure mathematics a value may take an arbitrary number of bits. Computers, on the
other hand, generally work with some specific number of bits. Common collections are
single bits, groups of four bits (called nibbles), groups of eight bits (called bytes), groups of
16 bits (called words), and more. The sizes are not arbitrary. There is a good reason for
these particular values. This section will describe the bit groups commonly used on the
Intel 80x86 chips.

Page 13

Chapter 01

1.2.1 Bits

The smallest “unit” of data on a binary computer is a single bit. Since a single bit is
capable of representing only two different values (typically zero or one) you may get the
impression that there are a very small number of items you can represent with a single bit.
Not true! There are an infinite number of items you can represent with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero or
one, true or false, on or off, male or female, and right or wrong. However, you are not lim-
ited to representing binary data types (that is, those objects which have only two distinct
values). You could use a single bit to represent the numbers 723 and 1,245. Or perhaps
6,254 and 5. You could also use a single bit to represent the colors red and blue. You could
even represent two unrelated objects with a single bit,. For example, you could represent
the color red and the number 3,256 with a single bit. You can represent any two different
values with a single bit. However, you can represent only two different values with a sin-
gle bit.

To confuse things even more, different bits can represent different things. For exam-
ple, one bit might be used to represent the values zero and one, while an adjacent bit
might be used to represent the values true and false. How can you tell by looking at the
bits? The answer, of course, is that you can’t. But this illustrates the whole idea behind
computer data structures: data is what you define it to be. If you use a bit to represent a bool-
ean (true/false) value then that bit (by your definition) represents true or false. For the bit
to have any true meaning, you must be consistent. That is, if you’re using a bit to represent
true or false at one point in your program, you shouldn’t use the true/false value stored in
that bit to represent red or blue later.

Since most items you’ll be trying to model require more than two different values, sin-
gle bit values aren’t the most popular data type you’ll use. However, since everything else
consists of groups of bits, bits will play an important role in your programs. Of course,
there are several data types that require two distinct values, so it would seem that bits are
important by themselves. However, you will soon see that individual bits are difficult to
manipulate, so we’ll often use other data types to represent boolean values.

1.2.2 Nibbles

A nibble is a collection of four bits. It wouldn’t be a particularly interesting data struc-
ture except for two items: BCD (binary coded decimal) numbers and hexadecimal numbers.
It takes four bits to represent a single BCD or hexadecimal digit. With a nibble, we can rep-
resent up to 16 distinct values. In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4,
56,7, 8 9 A B, C, D, E, and F are represented with four bits (see “The Hexadecimal
Numbering System” on page 17). BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and
requires four bits. In fact, any sixteen distinct values can be represented with a nibble, but
hexadecimal and BCD digits are the primary items we can represent with a single nibble.

1.2.3 Bytes

Page 14

Without question, the most important data structure used by the 80x86 microproces-
sor is the byte. A byte consists of eight bits and is the smallest addressable datum (data
item) on the 80x86 microprocessor. Main memory and 1/0 addresses on the 80x86 are all
byte addresses. This means that the smallest item that can be individually accessed by an
80x86 program is an eight-bit value. To access anything smaller requires that you read the
byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven using the convention in Figure 1.1.

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most significant
bit of the byte. We’ll refer to all other bits by their number.

Data Representation

Figure 1.1: Bit Numbering in a Byte

Note that a byte also contains exactly two nibbles (see Figure 1.2).

7 6 5 4 3

H.O. Nibble L.O. Nibble

Figure 1.2: The Two Nibbles in a Byte

Bits 0..3 comprise the low order nibble, bits 4..7 form the high order nibble. Since a byte
contains exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally,
we’ll use a byte to represent numeric values in the range 0..255, signed numbers in the
range -128..+127 (see “Signed and Unsigned Numbers” on page 23), ASCII/IBM character
codes, and other special data types requiring no more than 256 different values. Many
data types have fewer than 256 items so eight bits is usually sufficient.

Since the 80x86 is a byte addressable machine (see “Memory Layout and Access” on
page 145), it turns out to be more efficient to manipulate a whole byte than an individual
bit or nibble. For this reason, most programmers use a whole byte to represent data types
that require no more than 256 items, even if fewer than eight bits would suffice. For exam-
ple, we’ll often represent the boolean values true and false by 00000001, and 00000000,
(respectively).

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values. To allow it to communicate with the rest of the world, the IBM PC uses a
variant of the ASCII character set (see “The ASCII Character Set” on page 28). There are
128 defined codes in the ASCII character set. IBM uses the remaining 128 possible values
for extended character codes including European characters, graphic symbols, Greek let-
ters, and math symbols. See Appendix A for the character/code assignments.

1.2.4 Words

A word is a group of 16 bits. We’ll number the bits in a word starting from zero on up to
fifteen. The bit numbering appears in Figure 1.3.

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

Figure 1.3: Bit Numbers in a Word

Like the byte, bit 0 is the low order bit and bit 15 is the high order bit. When referencing
the other bits in a word use their bit position number.

Page 15

Chapter 01

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte,
bits 8 through 15 form the high order byte (see Figure 1.4).

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 O
H. O. Byte L. O. Byte
Figure 1.4: The Two Bytes in a Word

Naturally, a word may be further broken down into four nibbles as shown in Figure 1.5.

15 14 13 12 11 10 9 7 6 5 4 3 2

8 1 O
o O

Nibble #3 Nibble #2 Nibble #1 Nibble #0
H. O. Nibble L. O. Nibble

Figure 1.5: Nibbles in a Word

Nibble zero is the low order nibble in the word and nibble three is the high order nib-
ble of the word. The other two nibbles are “nibble one” or “nibble two”.

With 16 bits, you can represent 216 (65,536) different values. These could be the values
in the range 0..65,535 (or, as is usually the case, -32,768..+32,767) or any other data type
with no more than 65,536 values. The three major uses for words are integer values, off-
sets, and segment values (see“Memory Layout and Access” on page 145 for a description
of segments and offsets).

Words can represent integer values in the range 0..65,535 or -32,768..32,767. Unsigned
numeric values are represented by the binary value corresponding to the bits in the word.
Signed numeric values use the two’s complement form for numeric values (see “Signed
and Unsigned Numbers” on page 23). Segment values, which are always 16 bits long, con-
stitute the paragraph address of a code, data, extra, or stack segment in memory.

1.2.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a double
word quantity is 32 bits long as shown in Figure 1.6.

31 23 15 7 0

Figure 1.6: Bit Numbers in a Double Word

Naturally, this double word can be divided into a high order word and a low order
word, or four different bytes, or eight different nibbles (see Figure 1.7).

Double words can represent all kinds of different things. First and foremost on the list
is a segmented address. Another common item represented with a double word is a 32-bit

Page 16

Data Representation

31 23 15 7 0
I T
H.O. Word L.O. Word
31 23 15 7 0
T O [
H.O. Byte Byte # 2 Byte # 1 L.O. Byte
31 23 15 7 0
AR | meee | | AeEw | eeeE
Nibble #7 #6 #5 #4 #3 #2 #1 #0
H. O. L. O.

Figure 1.7: Nibbles, Bytes, and Words in a Double Word

integer value (which allows unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range -2,147,483,648..2,147,483,647). 32-bit floating point values also fit
into a double word. Most of the time, we’ll use double words to hold segmented
addresses.

1.3 The Hexadecimal Numbering System

A big problem with the binary system is verbosity. To represent the value 202,
requires eight binary digits. The decimal version requires only three decimal digits and,
thus, represents numbers much more compactly than does the binary numbering system.
This fact was not lost on the engineers who designed binary computer systems. When
dealing with large values, binary numbers quickly become too unwieldy. Unfortunately,
the computer thinks in binary, so most of the time it is convenient to use the binary num-
bering system. Although we can convert between decimal and binary, the conversion is
not a trivial task. The hexadecimal (base 16) numbering system solves these problems.
Hexadecimal numbers offer the two features we’re looking for: they’re very compact, and
it’s simple to convert them to binary and vice versa. Because of this, most binary computer
systems today use the hexadecimal numbering systemz. Since the radix (base) of a hexa-
decimal number is 16, each hexadecimal digit to the left of the hexadecimal point repre-
sents some value times a successive power of 16. For example, the number 1234, is equal
to:

1*16% + 2*162 + 3*168 + 4 16°
or

4096 + 512 + 48 + 4 = 4660y,

Each hexadecimal digit can represent one of sixteen values between 0 and 15,4. Since
there are only ten decimal digits, we need to invent six additional digits to represent the
values in the range 10, through 15;;. Rather than create new symbols for these digits,
we’ll use the letters A through F. The following are all examples of valid hexadecimal
numbers:

2. Digital Equipment is the only major holdout. They still use octal numbers in most of their systems. A legacy of
the days when they produced 12-bit machines.

Page 17

Chapter 01

1234, DEAD;; BEEF;; 0AFB,; FEED;q DEAF4

Since we’ll often need to enter hexadecimal numbers into the computer system, we’ll
need a different mechanism for representing hexadecimal numbers. After all, on most
computer systems you cannot enter a subscript to denote the radix of the associated value.
We’ll adopt the following conventions:

All numeric values (regardless of their radix) begin with a decimal digit.

All hexadecimal values end with the letter “h”, e.g., 123A4h3,
All binary values end with the letter “b”.
Decimal numbers may have a “t” or “d” suffix.

Examples of valid hexadecimal numbers:
1234h ODEADh 0BEEFh OAFBh OFEEDh ODEAFh

As you can see, hexadecimal numbers are compact and easy to read. In addition, you
can easily convert between hexadecimal and binary. Consider the following table:

Table 1: Binary/Hex Conversion

Binary Hexadecimal

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

M| M| O|O0O|m|>P|o|low|vN|lojlon|d|w|[NM|R,|oO

1111

This table provides all the information you’ll ever need to convert any hexadecimal num-
ber into a binary number or vice versa.

To convert a hexadecimal number into a binary number, simply substitute the corre-
sponding four bits for each hexadecimal digit in the number. For example, to convert

3. Actually, following hexadecimal values with an “h” is an Intel convention, not a general convention. The 68000
and 65c816 assemblers used in the Macintosh and Apple Il denote hexadecimal numbers by prefacing the hex
value with a “$” symbol.

Page 18

Data Representation

0ABCDh into a binary value, simply convert each hexadecimal digit according to the table
above:

0 A B C D Hexadecimal
0000 1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy. The first step is
to pad the binary number with zeros to make sure that there is a multiple of four bits in
the number. For example, given the binary number 1011001010, the first step would be to
add two bits to the left of the number so that it contains 12 bits. The converted binary
value is 001011001010. The next step is to separate the binary value into groups of four
bits, e.g., 0010 1100 1010. Finally, look up these binary values in the table above and substi-
tute the appropriate hexadecimal digits, e.g., 2CA. Contrast this with the difficulty of con-
version between decimal and binary or decimal and hexadecimal!

Since converting between hexadecimal and binary is an operation you will need to
perform over and over again, you should take a few minutes and memorize the table
above. Even if you have a calculator that will do the conversion for you, you’ll find man-
ual conversion to be a lot faster and more convenient when converting between binary
and hex.

1.4 Arithmetic Operations on Binary and Hexadecimal Numbers

There are several operations we can perform on binary and hexadecimal numbers.
For example, we can add, subtract, multiply, divide, and perform other arithmetic opera-
tions. Although you needn’t become an expert at it, you should be able to, in a pinch, per-
form these operations manually using a piece of paper and a pencil. Having just said that
you should be able to perform these operations manually, the correct way to perform such
arithmetic operations is to have a calculator which does them for you. There are several
such calculators on the market; the following table lists some of the manufacturers who
produce such devices:

Manufacturers of Hexadecimal Calculators:

e (Casio
e Hewlett-Packard
= Sharp

e Texas Instruments

This list is, by no means, exhaustive. Other calculator manufacturers probably pro-
duce these devices as well. The Hewlett-Packard devices are arguably the best of the
bunch . However, they are more expensive than the others. Sharp and Casio produce units
which sell for well under $50. If you plan on doing any assembly language programming
at all, owning one of these calculators is essential.

Another alternative to purchasing a hexadecimal calculator is to obtain a TSR (Termi-
nate and Stay Resident) program such as SideKick!™ which contains a built-in calculator.
However, unless you already have one of these programs, or you need some of the other
features they offer, such programs are not a particularly good value since they cost more
than an actual calculator and are not as convenient to use.

To understand why you should spend the money on a calculator, consider the follow-
ing arithmetic problem:

9h
+ 1h

You’re probably tempted to write in the answer “10h” as the solution to this problem. But
that is not correct! The correct answer is ten, which is “0Ah”, not sixteen which is “10h”. A
similar problem exists with the arithmetic problem:

Page 19

Chapter 01

10h
- 1h

You’re probably tempted to answer “9h” even though the true answer is “OFh”. Remem-
ber, this problem is asking “what is the difference between sixteen and one?”” The answer,
of course, is fifteen which is “0Fh”.

Even if the two problems above don’t bother you, in a stressful situation your brain
will switch back into decimal mode while you’re thinking about something else and you’ll
produce the incorrect result. Moral of the story — if you must do an arithmetic computa-
tion using hexadecimal numbers by hand, take your time and be careful about it. Either
that, or convert the numbers to decimal, perform the operation in decimal, and convert
them back to hexadecimal.

You should never perform binary arithmetic computations. Since binary numbers
usually contain long strings of bits, there is too much of an opportunity for you to make a
mistake. Always convert binary numbers to hex, perform the operation in hex (preferably
with a hex calculator) and convert the result back to binary, if necessary.

1.5 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexadecimal and
binary numbers: AND, OR, XOR (exclusive-or), and NOT. Unlike the arithmetic opera-
tions, a hexadecimal calculator isn’t necessary to perform these operations. It is often eas-
ier to do them by hand than to use an electronic device to compute them. The logical AND
operation is a dyadic4 operation (meaning it accepts exactly two operands). These oper-
ands are single binary (base 2) bits. The AND operation is:

0and0=0
0Oand1=0
land0=0
land1=1

A compact way to represent the logical AND operation is with a truth table. A truth
table takes the following form:

Table 2: AND Truth Table

AND 0 1
0 0 0
1 0 1

This is just like the multiplication tables you encountered in elementary school. The
column on the left and the row at the top represent input values to the AND operation.
The value located at the intersection of the row and column (for a particular pair of input
values) is the result of logically ANDing those two values together. In English, the logical
AND operation is, “If the first operand is one and the second operand is one, the result is
one; otherwise the result is zero.”

One important fact to note about the logical AND operation is that you can use it to
force a zero result. If one of the operands is zero, the result is always zero regardless of the
other operand. In the truth table above, for example, the row labelled with a zero input

4. Many texts call this a binary operation. The term dyadic means the same thing and avoids the confusion with
the binary numbering system.

Page 20

Data Representation

contains only zeros and the column labelled with a zero only contains zero results. Con-
versely, if one operand contains a one, the result is exactly the value of the second oper-
and. These features of the AND operation are very important, particularly when working
with bit strings and we want to force individual bits in the string to zero. We will investi-
gate these uses of the logical AND operation in the next section.

The logical OR operation is also a dyadic operation. Its definition is:

Oor0=0
Oorl=1
lor0=1
lorl=1

The truth table for the OR operation takes the following form:

Table 3: OR Truth Table

OR 0 1
0 0 1
1 1 1

Colloquially, the logical OR operation is, “If the first operand or the second operand
(or both) is one, the result is one; otherwise the result is zero.” This is also known as the
inclusive-OR operation.

If one of the operands to the logical-OR operation is a one, the result is always one
regardless of the second operand’s value. If one operand is zero, the result is always the
value of the second operand. Like the logical AND operation, this is an important
side-effect of the logical-OR operation that will prove quite useful when working with bit
strings (see the next section).

Note that there is a difference between this form of the inclusive logical OR operation
and the standard English meaning. Consider the phrase “I am going to the store or | am
going to the park.” Such a statement implies that the speaker is going to the store or to the
park but not to both places. Therefore, the English version of logical OR is slightly differ-
ent than the inclusive-OR operation; indeed, it is closer to the exclusive-OR operation.

The logical XOR (exclusive-or) operation is also a dyadic operation. It is defined as
follows:

Oxor0=0
Oxorl=1
1xor0=1
1xorl=0

The truth table for the XOR operation takes the following form:

Table 4: XOR Truth Table

XOR 0 1
0 0 1
1 1 0

Page 21

Chapter 01

In English, the logical XOR operation is, “If the first operand or the second operand,
but not both, is one, the result is one; otherwise the result is zero.” Note that the exclu-
sive-or operation is closer to the English meaning of the word “or” than is the logical OR
operation.

If one of the operands to the logical exclusive-OR operation is a one, the result is
always the inverse of the other operand; that is, if one operand is one, the result is zero if
the other operand is one and the result is one if the other operand is zero. If the first oper-
and contains a zero, then the result is exactly the value of the second operand. This feature
lets you selectively invert bits in a bit string.

The logical NOT operation is a monadic® operation (meaning it accepts only one
operand). It is:

NOTO0=1
NOT1=0

The truth table for the NOT operation takes the following form:

Table5: NOT Truth Table

NOT ‘ 0 1

‘ 1 0

1.6 Logical Operations on Binary Numbers and Bit Strings

As described in the previous section, the logical functions work only with single bit
operands. Since the 80x86 uses groups of eight, sixteen, or thirty-two bits, we need to
extend the definition of these functions to deal with more than two bits. Logical functions
on the 80x86 operate on a bhit-by-bit (or bitwise) basis. Given two values, these functions
operate on bit zero producing bit zero of the result. They operate on bit one of the input
values producing bit one of the result, etc. For example, if you want to compute the logical
AND of the following two eight-bit numbers, you would perform the logical AND opera-
tion on each column independently of the others:

1011 0101
1110 1110

1010 0100

This bit-by-bit form of execution can be easily applied to the other logical operations as
well.

Since we’ve defined logical operations in terms of binary values, you’ll find it much
easier to perform logical operations on binary values than on values in other bases. There-
fore, if you want to perform a logical operation on two hexadecimal numbers, you should
convert them to binary first. This applies to most of the basic logical operations on binary
numbers (e.g., AND, OR, XOR, etc.).

The ability to force bits to zero or one using the logical AND/OR operations and the
ability to invert bits using the logical XOR operation is very important when working
with strings of bits (e.g., binary numbers). These operations let you selectively manipulate
certain bits within some value while leaving other bits unaffected. For example, if you
have an eight-bit binary value ‘X’ and you want to guarantee that bits four through seven
contain zeros, you could logically AND the value ‘X’ with the binary value 0000 1111. This

5. Monadic means the operator has one operand.

Page 22

Data Representation

bitwise logical AND operation would force the H.O. four bits to zero and pass the L.O.
four bits of ‘X’ through unchanged. Likewise, you could force the L.O. bit of ‘X’ to one and
invert bit number two of ‘X’ by logically ORing ‘X’ with 0000 0001 and logically exclu-
sive-ORing ‘X’ with 0000 0100, respectively. Using the logical AND, OR, and XOR opera-
tions to manipulate bit strings in this fashion is know as masking bit strings. We use the
term masking because we can use certain values (one for AND, zero for OR/XOR) to ‘mask
out’ certain bits from the operation when forcing bits to zero, one, or their inverse.

1.7 Signed and Unsigned Numbers

So far, we’ve treated binary numbers as unsigned values. The binary number ...00000
represents zero, ...00001 represents one, ...00010 represents two, and so on toward infinity.
What about negative numbers? Signed values have been tossed around in previous sec-
tions and we’ve mentioned the two’s complement numbering system, but we haven’t dis-
cussed how to represent negative numbers using the binary numbering system. That is
what this section is all about!

To represent sighed numbers using the binary humbering system we have to place a
restriction on our numbers: they must have a finite and fixed number of bits. As far as the
80x86 goes, this isn’t too much of a restriction, after all, the 80x86 can only address a finite
number of bits. For our purposes, we’re going to severely limit the number of bits to eight,
16, 32, or some other small number of bits.

With a fixed number of bits we can only represent a certain number of objects. For
example, with eight bits we can only represent 256 different objects. Negative values are
objects in their own right, just like positive numbers. Therefore, we’ll have to use some of
the 256 different values to represent negative numbers. In other words, we’ve got to use
up some of the positive numbers to represent negative numbers. To make things fair, we’ll
assign half of the possible combinations to the negative values and half to the positive val-
ues. So we can represent the negative values -128..-1 and the positive values 0..127 with a
single eight bit bytee. With a 16-bit word we can represent values in the range
-32,768..+32,767. With a 32-bit double word we can represent values in the range
-2,147,483,648..+2,147,483,647. In general, with n bits we can represent the signed values in
the range -2"1 to +2"1-1.

Okay, so we can represent negative values. Exactly how do we do it? Well, there are
many ways, but the 80x86 microprocessor uses the two’s complement notation. In the
two’s complement system, the H.O. bit of a number is a sign bit. If the H.O. bit is zero, the
number is positive; if the H.O. bit is one, the number is negative. Examples:

For 16-bit numbers:
8000h is negative because the H.O. bit is one.
100h is positive because the H.O. bit is zero.
7FFFh is positive.
OFFFFh is negative.
OFFFh is positive.

If the H.O. bit is zero, then the number is positive and is stored as a standard binary
value. If the H.O. bit is one, then the number is negative and is stored in the two’s comple-
ment form. To convert a positive number to its negative, two’s complement form, you use
the following algorithm:

1) Invert all the bits in the number, i.e., apply the logical NOT function.

6. Technically, zero is neither positive nor negative. For technical reasons (due to the hardware involved), we’ll
lump zero in with the positive numbers.

Page 23

Chapter 01

Page 24

2) Add one to the inverted result.

For example, to compute the eight bit equivalent of -5:

0000 0101 Five (in binary).
1111 1010 Invert all the bits.
1111 1011 Add one to obtain result.

If we take minus five and perform the two’s complement operation on it, we get our
original value, 00000101, back again, just as we expect:

1111 1011 Two's conpl erent for -5.
0000 0100 Invert all the bits.
0000 0101 Add one to obtain result (+5).

The following examples provide some positive and negative 16-bit signed values:
7FFFh: +32767, the largest 16-bit positive number.
8000h: -32768, the smallest 16-bit negative number.
4000h: +16,384.

To convert the numbers above to their negative counterpart (i.e., to negate them), do the
following:

TFFFh: 0111 1111 1111 1111 +32, 767t
1000 0000 0000 0000 Invert all the bits (8000h)
1000 0000 0000 0001 Add one (8001h or -32,767t)
8000h: 1000 0000 0000 0000 - 32, 768t
0111 1111 1111 1111 Invert all the bits (7FFFh)
1000 0000 0000 0000 Add one (8000h or -32768t)
4000h: 0100 0000 0000 0000 16, 384t
1011 1111 1111 1111 Invert all the bits (BFFFh)
1100 0000 0000 0000 Add one (0Q000h or -16, 384t)

8000h inverted becomes 7FFFh. After adding one we obtain 8000h! Wait, what’s going
on here? -(-32,768) is -32,768? Of course not. But the value +32,768 cannot be represented
with a 16-bit signed number, so we cannot negate the smallest negative value. If you
attempt this operation, the 80x86 microprocessor will complain about signed arithmetic
overflow.

Why bother with such a miserable numbering system? Why not use the H.O. bit as a
sign flag, storing the positive equivalent of the number in the remaining bits? The answer
lies in the hardware. As it turns out, negating values is the only tedious job. With the two’s
complement system, most other operations are as easy as the binary system. For example,
suppose you were to perform the addition 5+(-5). The result is zero. Consider what hap-
pens when we add these two values in the two’s complement system:

00000101
11111011

1 00000000

We end up with a carry into the ninth bit and all other bits are zero. As it turns out, if we
ignore the carry out of the H.O. bit, adding two signed values always produces the correct
result when using the two’s complement numbering system. This means we can use the
same hardware for signed and unsigned addition and subtraction. This wouldn’t be the
case with some other numbering systems.

Except for the questions at the end of this chapter, you will not need to perform the
two’s complement operation by hand. The 80x86 microprocessor provides an instruction,
NEG (negate), which performs this operation for you. Furthermore, all the hexadecimal

Data Representation

calculators will perform this operation by pressing the change sign key (+/- or CHS).
Nevertheless, performing a two’s complement by hand is easy, and you should know how
todoiit.

Once again, you should note that the data represented by a set of binary bits depends
entirely on the context. The eight bit binary value 11000000b could represent an
IBM/ASCII character, it could represent the unsigned decimal value 192, or it could repre-
sent the signed decimal value -64, etc. As the programmer, it is your responsibility to use
this data consistently.

1.8 Sign and Zero Extension

Since two’s complement format integers have a fixed length, a small problem devel-
ops. What happens if you need to convert an eight bit two’s complement value to 16 bits?
This problem, and its converse (converting a 16 bit value to eight bits) can be accom-
plished via sign extension and contraction operations. Likewise, the 80x86 works with fixed
length values, even when processing unsigned binary numbers. Zero extension lets you
convert small unsigned values to larger unsigned values.

Consider the value “-64”. The eight bit two’s complement value for this number is
0COh. The 16-bit equivalent of this number is OFFCOh. Now consider the value “+64”. The
eight and 16 bit versions of this value are 40h and 0040h. The difference between the eight
and 16 bit numbers can be described by the rule: “If the number is negative, the H.O. byte
of the 16 bit number contains OFFh; if the number is positive, the H.O. byte of the 16 bit
guantity is zero.”

To sign extend a value from some number of bits to a greater number of bits is easy,
just copy the sign bit into all the additional bits in the new format. For example, to sign
extend an eight bit number to a 16 bit number, simply copy bit seven of the eight bit num-
ber into bits 8..15 of the 16 bit number. To sign extend a 16 bit number to a double word,
simply copy bit 15 into bits 16..31 of the double word.

Sign extension is required when manipulating signed values of varying lengths. Often
you’ll need to add a byte quantity to a word quantity. You must sign extend the byte quan-
tity to a word before the operation takes place. Other operations (multiplication and divi-
sion, in particular) may require a sign extension to 32-bits. You must not sign extend
unsigned values.

Examples of sign extension:

Eight Bits Sixteen Bits Thirty-two Bits
80h FF80h FFFFFF80h
28h 0028h 00000028h
9Ah FF9AN FFFFFF9AN
7Fh 007Fh 0000007Fh
_— 1020h 00001020h
— 8088h FFFF8088h

To extend an unsigned byte you must zero extend the value. Zero extension is very
easy — just store a zero into the H.O. byte(s) of the smaller operand. For example, to zero
extend the value 82h to 16-bits you simply add a zero to the H.O. byte yielding 0082h.

E ght Bits Sixteen Bits Thirty-two Bits
80h 0080h 00000080h
28h 0028h 00000028h
9Ah 009Ah 0000009Ah
7Fh 007Fh 0000007Fh
— 1020h 00001020h
— 8088h 00008088h

Sign contraction, converting a value with some number of bits to the identical value
with a fewer number of bits, is a little more troublesome. Sign extension never fails. Given
an m-bit signed value you can always convert it to an n-bit number (where n > m) using

Page 25

Chapter 01

sign extension. Unfortunately, given an n-bit number, you cannot always convert it to an
m-bit number if m < n. For example, consider the value -448. As a 16-bit hexadecimal num-
ber, its representation is O0FE40h. Unfortunately, the magnitude of this number is too great
to fit into an eight bit value, so you cannot sign contract it to eight bits. This is an example
of an overflow condition that occurs upon conversion.

To properly sign contract one value to another, you must look at the H.O. byte(s) that
you want to discard. The H.O. bytes you wish to remove must all contain either zero or
OFFh. If you encounter any other values, you cannot contract it without overflow. Finally,
the H.O. bit of your resulting value must match every bit you’ve removed from the num-
ber. Examples (16 bits to eight bits):

FF80h can be sign contracted to 80h
0040h can be sign contracted to 40h

FE40h cannot be sign contracted to 8 bits.
0100h cannot be sign contracted to 8 bits.

1.9

Shifts

and Rotates

Another set of logical operations which apply to bit strings are the shift and rotate
operations. These two categories can be further broken down into left shifts, left rotates,
right shifts, and right rotates. These operations turn out to be extremely useful to assembly
language programmers.

The left shift operation moves each bit in a bit string one position to the left (see Fig-
ure 1.8).

Figure 1.8: Shift Left Operation

Page 26

Bit zero moves into bit position one, the previous value in bit position one moves into
bit position two, etc. There are, of course, two questions that naturally arise: “What goes
into bit zero?” and “Where does bit seven wind up?” Well, that depends on the context.
We’ll shift the value zero into the L.O. bit, and the previous value of bit seven will be the
carry out of this operation.

Note that shifting a value to the left is the same thing as multiplying it by its radix. For
example, shifting a decimal number one position to the left (adding a zero to the right of
the number) effectively multiplies it by ten (the radix):

1234 SH. 1 = 12340 (SHL 1 = shift left one position)
Since the radix of a binary number is two, shifting it left multiplies it by two. If you shift a
binary value to the left twice, you multiply it by two twice (i.e., you multiply it by four). If
you shift a binary value to the left three times, you multiply it by eight (2*2*2). In general,
if you shift a value to the left n times, you multiply that value by 2".

A right shift operation works the same way, except we’re moving the data in the
opposite direction. Bit seven moves into bit six, bit six moves into bit five, bit five moves
into bit four, etc. During a right shift, we’ll move a zero into bit seven, and bit zero will be
the carry out of the operation (see Figure 1.9).

Since a left shift is equivalent to a multiplication by two, it should come as no surprise
that a right shift is roughly comparable to a division by two (or, in general, a division by
the radix of the number). If you perform n right shifts, you will divide that number by 2",

Data Representation

Figure 1.9: Shift Right Operation

There is one problem with shift rights with respect to division: as described above a
shift right is only equivalent to an unsigned division by two. For example, if you shift the
unsigned representation of 254 (OFEh) one place to the right, you get 127 (07Fh), exactly
what you would expect. However, if you shift the binary representation of -2 (OFEh) to the
right one position, you get 127 (07Fh), which is not correct. This problem occurs because
we’re shifting a zero into bit seven. If bit seven previously contained a one, we’re chang-
ing it from a negative to a positive number. Not a good thing when dividing by two.

To use the shift right as a division operator, we must define a third shift operation:
arithmetic shift right7. An arithmetic shift right works just like the normal shift right opera-
tion (a logical shift right) with one exception: instead of shifting a zero into bit seven, an
arithmetic shift right operation leaves bit seven alone, that is, during the shift operation it
does not modify the value of bit seven as Figure 1.10 shows.

Figure 1.10: Arithmetic Shift Right Operation

This generally produces the result you expect. For example, if you perform the arithmetic
shift right operation on -2 (OFEh) you get -1 (OFFh). Keep one thing in mind about arith-
metic shift right, however. This operation always rounds the numbers to the closest inte-
ger which is less than or equal to the actual result. Based on experiences with high level
programming languages and the standard rules of integer truncation, most people
assume this means that a division always truncates towards zero. But this simply isn’t the
case. For example, if you apply the arithmetic shift right operation on -1 (OFFh), the result
is -1, not zero. -1 is less than zero so the arithmetic shift right operation rounds towards
minus one. This is not a “bug” in the arithmetic shift right operation. This is the way inte-
ger division typically gets defined. The 80x86 integer division instruction also produces
this result.

Another pair of useful operations are rotate left and rotate right. These operations
behave like the shift left and shift right operations with one major difference: the bit
shifted out from one end is shifted back in at the other end.

Figure 1.11: Rotate Left Operation

7. There is no need for an arithmetic shift left. The standard shift left operation works for both signed and
unsigned numbers, assuming no overflow occurs.

Page 27

Chapter 01

Figure 1.12: Rotate Right Operation

1.10 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and double word data
types, occasionally you’ll need to work with a data type that uses some number of bits
other than eight, 16, or 32. For example, consider a date of the form “4/2/88”. It takes
three numeric values to represent this date: a month, day, and year value. Months, of
course, take on the values 1..12. It will require at least four bits (maximum of sixteen dif-
ferent values) to represent the month. Days range between 1..31. So it will take five bits
(maximum of 32 different values) to represent the day entry. The year value, assuming
that we’re working with values in the range 0..99, requires seven bits (which can be used
to represent up to 128 different values). Four plus five plus seven is 16 bits, or two bytes.
In other words, we can pack our date data into two bytes rather than the three that would
be required if we used a separate byte for each of the month, day, and year values. This
saves one byte of memory for each date stored, which could be a substantial saving if you
need to store a lot of dates. The bits could be arranged as shown in .

15 14 13 12 11 10 9 8 5 4 3 2 1 O

M

MMM.__[._\YYYYYYY

Figure 1.13: Packed Date Format

MMMM represents the four bits making up the month value, DDDDD represents the
five bits making up the day, and YYYYYYY is the seven bits comprising the year. Each col-
lection of bits representing a data item is a bit field. April 2nd, 1988 would be represented
as 4158h:

0100 00010 1011000 = 0100 0001 0101 1000b or 4158h

4 2 88
Although packed values are space efficient (that is, very efficient in terms of memory

usage), they are computationally inefficient (slow!). The reason? It takes extra instructions
to unpack the data packed into the various bit fields. These extra instructions take addi-
tional time to execute (and additional bytes to hold the instructions); hence, you must
carefully consider whether packed data fields will save you anything.

Examples of practical packed data types abound. You could pack eight boolean values
into a single byte, you could pack two BCD digits into a byte, etc.

1.11 The ASCII Character Set

Page 28

The ASCII character set (excluding the extended characters defined by IBM) is
divided into four groups of 32 characters. The first 32 characters, ASCII codes 0 through

Data Representation

1Fh (31), form a special set of non-printing characters called the control characters. We call
them control characters because they perform various printer/display control operations
rather than displaying symbols. Examples include carriage return, which positions the cur-
sor to the left side of the current line of characters®, line feed (which moves the cursor
down one line on the output device), and back space (which moves the cursor back one
position to the left). Unfortunately, different control characters perform different opera-
tions on different output devices. There is very little standardization among output
devices. To find out exactly how a control character affects a particular device, you will
need to consult its manual.

The second group of 32 ASCII character codes comprise various punctuation symbols,
special characters, and the numeric digits. The most notable characters in this group
include the space character (ASCIl code 20h) and the numeric digits (ASCIl codes
30h..39h). Note that the numeric digits differ from their numeric values only in the H.O.
nibble. By subtracting 30h from the ASCII code for any particular digit you can obtain the
numeric equivalent of that digit.

The third group of 32 ASCII characters is reserved for the upper case alphabetic char-
acters. The ASCII codes for the characters “A”..”Z” lie in the range 41h..5Ah (65..90). Since
there are only 26 different alphabetic characters, the remaining six codes hold various spe-
cial symbols.

The fourth, and final, group of 32 ASCII character codes are reserved for the lower
case alphabetic symbols, five additional special symbols, and another control character
(delete). Note that the lower case character symbols use the ASCII codes 61h..7Ah. If you
convert the codes for the upper and lower case characters to binary, you will notice that
the upper case symbols differ from their lower case equivalents in exactly one bit position.
For example, consider the character code for “E” and “e” in Figure 1.14.

7 6 5 4 3 2 1 0
- 0 o o o))
5 4 3 2

7 6 1 O
€ | o o E N

Figure 1.14: ASCII Codes for “E” and “e”.

The only place these two codes differ is in bit five. Upper case characters always con-
tain a zero in bit five; lower case alphabetic characters always contain a one in bit five. You
can use this fact to quickly convert between upper and lower case. If you have an upper
case character you can force it to lower case by setting bit five to one. If you have a lower
case character and you wish to force it to upper case, you can do so by setting bit five to
zero. You can toggle an alphabetic character between upper and lower case by simply
inverting bit five.

Indeed, bits five and six determine which of the four groups in the ASCII character set
you're in:

8. Historically, carriage return refers to the paper carriage used on typewriters. A carriage return consisted of phys-
ically moving the carriage all the way to the right so that the next character typed would appear at the left hand
side of the paper.

Page 29

Chapter 01

Page 30

Bit 6 Bit 5 Group
0 0 Control Characters
0 1 Digits & Punctuation
1 0 Upper Case & Special
1 1 Lower Case & Special

So you could, for instance, convert any upper or lower case (or corresponding special)
character to its equivalent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:
Char Dec Hex

‘0 48 30h
“1 49 31h
“2 50 32h
“3 51 33h
“4r 52 34h
‘5 53 35h
“6” 54 36h
“T 55 37h
“8” 56 38h
‘9 57 39h

The decimal representations of these ASCII codes are not very enlightening. However,
the hexadecimal representation of these ASCII codes reveals something very important —
the L.O. nibble of the ASCII code is the binary equivalent of the represented number. By
stripping away (i.e., setting to zero) the H.O. nibble of a numeric character, you can con-
vert that character code to the corresponding binary representation. Conversely, you can
convert a binary value in the range 0..9 to its ASCII character representation by simply set-
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the
H.O. bits to zero; likewise, you can use the logical-OR operation to force the H.O. bits to
0011 (three).

Note that you cannot convert a string of numeric characters to their equivalent binary
representation by simply stripping the H.O. nibble from each digit in the string. Convert-
ing 123 (31h 32h 33h) in this fashion yields three bytes: 010203h, not the correct value
which is 7Bh. Converting a string of digits to an integer requires more sophistication than
this; the conversion above works only for single digits.

Bit seven in standard ASCII is always zero. This means that the ASCII character set
consumes only half of the possible character codes in an eight bit byte. IBM uses the
remaining 128 character codes for various special characters including international char-
acters (those with accents, etc.), math symbols, and line drawing characters. Note that
these extra characters are a hon-standard extension to the ASCII character set. Of course,
the name IBM has considerable clout, so almost all modern personal computers based on
the 80x86 with a video display support the extended IBM/ASCII character set. Most print-
ers support IBM’s character set as well.

Data Representation

Should you need to exchange data with other machines which are not PC-compatible,
you have only two alternatives: stick to standard ASCII or ensure that the target machine
supports the extended IBM-PC character set. Some machines, like the Apple Macintosh,
do not provide native support for the extended IBM-PC character set; however you may
obtain a PC font which lets you display the extended character set. Other machines (e.g.,
Amiga and Atari ST) have similar capabilities. However, the 128 characters in the stan-
dard ASCII character set are the only ones you should count on transferring from system
to system.

Despite the fact that it is a “standard”, simply encoding your data using standard
ASCII characters does not guarantee compatibility across systems. While it’s true that an
“A” on one machine is most likely an “A” on another machine, there is very little stan-
dardization across machines with respect to the use of the control characters. Indeed, of
the 32 control codes plus delete, there are only four control codes commonly supported —
backspace (BS), tab, carriage return (CR), and line feed (LF). Worse still, different
machines often use these control codes in different ways. End of line is a particularly trou-
blesome example. MS-DOS, CP/M, and other systems mark end of line by the two-char-
acter sequence CR/LF. Apple Macintosh, Apple 11, and many other systems mark the end
of line by a single CR character. UNIX systems mark the end of a line with a single LF
character. Needless to say, attempting to exchange simple text files between such systems
can be an experience in frustration. Even if you use standard ASCII characters in all your
files on these systems, you will still need to convert the data when exchanging files
between them. Fortunately, such conversions are rather simple.

Despite some major shortcomings, ASCII data is the standard for data interchange
across computer systems and programs. Most programs can accept ASCII data; likewise
most programs can produce ASCII data. Since you will be dealing with ASCII characters
in assembly language, it would be wise to study the layout of the character set and memo-
rize a few key ASCII codes (e.g., “0”, “A”, “a”, etc.).

1.12 Summary

Most modern computer systems use the binary numbering system to represent val-
ues. Since binary values are somewhat unwieldy, we’ll often use the hexadecimal repre-
sentation for those values. This is because it is very easy to convert between hexadecimal
and binary, unlike the conversion between the more familiar decimal and binary systems.
A single hexadecimal digit consumes four binary digits (bits), and we call a group of four
bits a nibble. See:

= “The Binary Numbering System” on page 12
< “Binary Formats” on page 13
= “The Hexadecimal Numbering System” on page 17

The 80x86 works best with groups of bits which are eight, 16, or 32 bits long. We call
objects of these sizes bytes, words, and double words, respectively. With a byte, we can
represent any one of 256 unique values. With a word we can represent one of 65,536 differ-
ent values. With a double word we can represent over four billion different values. Often
we simply represent integer values (signed or unsigned) with bytes, words, and double
words; however we’ll often represent other quantities as well. See:

= “Data Organization” on page 13
= “Bytes” on page 14

< “Words” on page 15

= “Double Words” on page 16

In order to talk about specific bits within a nibble, byte, word, double word, or other
structure, we’ll number the bits starting at zero (for the least significant bit) on up to n-1

Page 31

Chapter 01

Page 32

(where n is the number of bits in the object). We’ll also number nibbles, bytes, and words
in large structures in a similar fashion. See:

< “Binary Formats” on page 13

There are many operations we can perform on binary values including normal arith-
metic (+, -, *, and /) and the logical operations (AND, OR, XOR, NOT, Shift Left, Shift
Right, Rotate Left, and Rotate Right). Logical AND, OR, XOR, and NOT are typically
defined for single bit operations. We can extend these to n bits by performing bitwise
operations. The shifts and rotates are always defined for a fixed length string of bits. See:

= “Arithmetic Operations on Binary and Hexadecimal Numbers” on
page 19

= “Logical Operations on Bits” on page 20

= “Logical Operations on Binary Numbers and Bit Strings” on page 22

« “Shifts and Rotates” on page 26

There are two types of integer values which we can represent with binary strings on
the 80x86: unsigned integers and signed integers. The 80x86 represents unsigned integers
using the standard binary format. It represents signed integers using the two’s comple-
ment format. While unsigned integers may be of arbitrary length, it only makes sense to
talk about fixed length signed binary values. See:

< “Signed and Unsigned Numbers” on page 23
= “Sign and Zero Extension” on page 25

Often it may not be particularly practical to store data in groups of eight, 16, or 32 bits.
To conserve space you may want to pack various pieces of data into the same byte, word,
or double word. This reduces storage requirements at the expense of having to perform
extra operations to pack and unpack the data. See:

= “Bit Fields and Packed Data” on page 28

Character data is probably the most common data type encountered besides integer
values. The IBM PC and compatibles use a variant of the ASCII character set — the
extended IBM/ASCII character set. The first 128 of these characters are the standard
ASCII characters, 128 are special characters created by IBM for international languages,
mathematics, and line drawing. Since the use of the ASCII character set is so common in
modern programs, familiarity with this character set is essential. See:

= “The ASCII Character Set” on page 28

Data Representation

1.13 Laboratory Exercises

Accompanying this text is a significant amount of software. This software is divided
into four basic categories: source code for examples appearing throughout this text, the
UCR Standard Library for 80x86 assembly language programmers, sample code you mod-
ify for various laboratory exercises, and application software to support various labora-
tory exercises. This software has been written using assembly language, C++, Flex/Bison,
and Delphi (object Pascal). Most of the application programs include source code as well
as executable code.

Much of the software accompanying this text runs under Windows 3.1, Windows 95,
or Windows NT. Some software, however, directly manipulates the hardware and will
only run under DOS or a DOS box in Windows 3.1. This text assumes that you are familiar
with the DOS and Windows operating systems; if you are unfamiliar with DOS or Win-
dows operation, you should refer to an appropriate text on those systems for additional
details.

1.13.1 Installing the Software

The software accompanying this text is generally supplied on CD-ROM?®. You can use
most of it as-is directly off the CD-ROM. However, for speed and convenience you will
probably want to install the software on a hard disk!. To do this, you will need to create
two subdirectories in the root directory on your hard drive: ARTOFASM and STDLIB. The
ARTOFASM directory will contain the files specific to this text book, the STDLIB directory
will contain the files associated with the UCR Standard Library for 80x86 assembly lan-
guage programmers. Once you create these two subdirectories, copy all the files and sub-
directories from the corresponding directories on the CD to your hard disk. From DOS (or
a DOS window), you can use the following XCOPY commands to accomplish this:

xcopy r:\artofasm=*.* c:\artofasm /s
xcopy r:\stdlib*.* c:\stdlib /s

These commands assume that your CD-ROM is drive R: and you are installing the soft-
ware on the C: hard disk. They also assume that you have created the ARTOFASM and
STDLIB subdirectories prior to executing the XCOPY commands.

To use the Standard Library in programming projects, you will need to add or modify
two lines in your AUTOEXEC.BAT file. If similar lines are not already present, add the fol-
lowing two lines to your AUTOEXEC.BAT file:

set lib=c:\stdlib\lib
set include=c:\stdlib\include

These commands tell MASM (the Microsoft Macro Assembler) where it can find the
library and include files for the UCR Standard Library. Without these lines, MASM will
report an error anytime you use the standard library routines in your programs.

If there are already a “set include = ...” and “set lib=...” lines in your AUTOEXEC.BAT
file, you should not replace them with the lines above. Instead, you should append the
string “;c:\stdlib\lib” to the end of the existing “set lib=..." statement and

“-.c:\stdlib\include” to the end of the existing “set include=...” statement. Several lan-
guages (like C++) also use these “set” statements; if you arbitrarily replace them with the
statements above, your assembly language programs will work fine, but any attempt to
compile a C++ (or other language) program may fail.

9. It is also available via anonymous ftp, although there are many files associated with this text.

10. If you are using this software in a laboratory at school, your instructor has probably installed this software on
the machines in the laboratory. As a general rule, you should never install software on machines in the laboratory.
Check with your laboratory instruction before installing this software on machines in the laboratory.

Page 33

Chapter 01

If you forget to put these lines in your AUTOEXEC.BAT file, you can temporarily
(until the next time you boot the system) issue these commands by simply typing them at
the DOS command line prompt. By typing “set” by itself on the command line prompt,
you can see if these set commands are currently active.

If you do not have a CD-ROM player, you can obtain the software associated with this
textbook via anonymous ftp from cs.ucr.edu. Check in the “/pub/pc/ibmpc” subdirec-
tory. The files on the ftp server will be compressed. A “README” file will describe how to
decompress the data.

The STDLIB directory you’ve created holds the source and library files for the UCR
Standard Library for 80x86 Assembly Language Programmers. This is a core set of assem-
bly language subroutines you can call that mimic many of the routines in the C standard
library. These routines greatly simplify writing programs in assembly language. Further-
more, they are public domain so you can use them in any programs you write without
fear of licensing restrictions.

The ARTOFASM directory contains files specific to this text. Within the ARTOFASM
directory you will see a sequence of subdirectories named chl, ch2, ch3, etc. These subdi-
rectories contain the files associated with Chapter One, Chapter Two, and so on. Within
some of these subdirectories, you will find two subdirectories named “DOS” and “WIN-
DOWS”. If these subdirectories are present, they separate those files that must run under
MS-Windows from those that run under DOS. Many of the DOS programs require a
*“real-mode” environment and will not run in a DOS box window in Windows 95 or Windows NT.
You will need to run this software directory from MS-DOS. The Windows applications
require a color monitor.

There is often a third subdirectory present in each chapter directory: SOURCES. This
subdirectory contains the source listings (where appropriate or feasible) to the software
for that chapter. Most of the software for this text is written in assembly language using
MASM 6.x, generic C++, Turbo Pascal, or Borland Delphi (visual object Pascal). If you are
interested in seeing how the software operates, you can look in this subdirectory.

This text assumes you already know how to run programs from MS-DOS and Win-
dows and you are familiar with common DOS and Windows terminology. It also assumes
you know some simple MS-DOS commands like DIR, COPY, DEL, RENAME, and so on.
If you are new to Windows and DOS, you should pick up an appropriate reference man-
ual on these operating systems.

The files for Chapter One’s laboratory exercises appear in the ARTOFASM\CH1 sub-
directory. These are all Windows programs, so you will need to be running Windows 3.1,
Windows 95, Windows NT, or some later (and compatible) version of Windows to run
these programs.

1.13.2 Data Conversion Exercises

Page 34

In this exercise you will be using the “convert.exe” program found in the ARTO-
FASM\CHL1 subdirectory. This program displays and converts 16-bit integers using
signed decimal, unsigned decimal, hexadecimal, and binary notation.

When you run this program it opens a window with four edit boxes. (one for each data
type). Changing a value in one of the edit boxes immediately updates the values in the
other boxes so they all display their corresponding representations for the new value. If
you make a mistake on data entry, the program beeps and turns the edit box red until you
correct the mistake. Note that you can use the mouse, cursor control keys, and the editing
keys (e.g., DEL and Backspace) to change individual values in the edit boxes.

For this exercise and your laboratory report, you should explore the relationship
between various binary, hexadecimal, unsigned decimal, and signed decimal values. For
example, you should enter the unsigned decimal values 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384, and 32768 and comment on the values that appear in the in
the other text boxes.

Data Representation

The primary purpose of this exercise is to familiarize yourself with the decimal equiv-
alents of some common binary and hexadecimal values. In your lab report, for example,
you should explain what is special about the binary (and hexadecimal) equivalents of the
decimal numbers above.

Another set of experiments to try is to choose various binary numbers that have
exactly two bits set, e.g., 11, 110, 1100, 1 1000, 11 0000, etc. Be sure to comment on the deci-
mal and hexadecimal results these inputs produce.

Try entering several binary numbers where the L.O. eight bits are all zero. Comment
on the results in your lab report. Try the same experiment with hexadecimal numbers
using zeros for the L.O. digit or the two L.O. digits.

You should also experiment with negative numbers in the signed decimal text entry
box; try using values like -1, -2, -3, -256, -1024, etc. Explain the results you obtain using
your knowledge of the two’s complement numbering system.

Try entering even and odd numbers in unsigned decimal. Discover and describe the
difference between even and odd numbers in their binary representation. Try entering
multiples of other values (e.g., for three: 3, 6, 9, 12, 15, 18, 21, ...) and see if you can detect a
pattern in the binary results.

Verify the hexadecimal <-> binary conversion this chapter describes. In particular,
enter the same hexadecimal digit in each of the four positions of a 16-bit value and com-
ment on the position of the corresponding bits in the binary representation. Try several
entering binary values like 1111, 11110, 111100, 1111000, and 11110000. Explain the results
you get and describe why you should always extend binary values so their length is an
even multiple of four before converting them.

In your lab report, list the experiments above plus several you devise yourself.
Explain the results you expect and include the actual results that the convert.exe program
produces. Explain any insights you have while using the convert.exe program.

1.13.3 Logical Operations Exercises

The logical.exe program is a simple calculator that computes various logical func-
tions. It allows you to enter binary or hexadecimal values and then it computes the result
of some logical operation on the inputs. The calculator supports the dyadic logical AND,
OR, and XOR. It also supports the monadic NOT, NEG (two’s complement), SHL (shift
left), SHR (shift right), ROL (rotate left), and ROR (rotate right).

When you run the logical.exe program it displays a set of buttons on the left hand side
of the window. These buttons let you select the calculation. For example, pressing the
AND button instructs the calculator to compute the logical AND operation between the
two input values. If you select a monadic (unary) operation like NOT, SHL, etc., then you
may only enter a single value; for the dyadic operations, both sets of text entry boxes will
be active.

The logical.exe program lets you enter values in binary or hexadecimal. Note that this
program automatically converts any changes in the binary text entry window to hexadec-
imal and updates the value in the hex entry edit box. Likewise, any changes in the hexa-
decimal text entry box are immediately reflected in the binary text box. If you enter an
illegal value in a text entry box, the logical.exe program will turn the box red until you
correct the problem.

For this laboratory exercise, you should explore each of the bitwise logical operations.
Create several experiments by carefully choosing some values, manually compute the
result you expect, and then run the experiment using the logical.exe program to verify
your results. You should especially experiment with the masking capabilities of the logical
AND, OR, and XOR operations. Try logically ANDing, ORing, and XORing different val-
ues with values like 000F, 00FF, 00F0, OFFF, FFOO, etc. Report the results and comment on
them in your laboratory report.

Page 35

Chapter 01

Some experiments you might want to try, in addition to those you devise yourself,
include the following:

= Devise a mask to convert ASCII values ‘0’..’9’ to their binary integer coun-
terparts using the logical AND operation. Try entering the ASCII codes of
each of these digits when using this mask. Describe your results. What
happens if you enter non-digit ASCII codes?

= Devise a mask to convert integer values in the range 0..9 to their corre-
sponding ASCII codes using the logical OR operation. Enter each of the
binary values in the range 0..9 and describe your results. What happens if
you enter values outside the range 0..9? In particular, what happens if
you enter values outside the range 0h..0fh?

= Devise a mask to determine whether a 16-bit integer value is positive or
negative using the logical AND operation. The result should be zero if the
number is positive (or zero) and it should be non-zero if the number is
negative. Enter several positive and negative values to test your mask.
Explain how you could use the AND operation to test any single bit to
determine if it is zero or one.

= Devise a mask to use with the logical XOR operation that will produce the
same result on the second operand as applying the logical NOT operator
to that second operand.

= \erify that the SHL and SHR operators correspond to an integer multipli-
cation by two and an integer division by two, respectively. What happens
if you shift data out of the H.O. or L.O. bits? What does this correspond to
in terms of integer multiplication and division?

= Apply the ROL operation to a set of positive and negative numbers.
Based on your observations in Section 1.13.3, what can you say will about
the result when you rotate left a negative number or a positive number?

= Apply the NEG and NOT operators to a value. Discuss the similarity and
the difference in their results. Describe this difference based on your
knowledge of the two’s complement numbering system.

1.13.4 Sign and Zero Extension Exercises

Page 36

The signext.exe program accepts eight-bit binary or hexadecimal values then sign and
zero extends them to 16 bits. Like the logical.exe program, this program lets you enter a
value in either binary or hexadecimal and immediate zero and sign extends that value.

For your laboratory report, provide several eight-bit input values and describe the
results you expect. Run these values through the signext.exe program and verify the
results. For each experiment you run, be sure to list all the results in your lab report. Be
sure to try values like 0, 7fh, 80h, and Offh.

While running these experiments, discover which hexadecimal digits appearing in the
H.O. nibble produce negative 16-bit numbers and which produce positive 16-bit values.
Document this set in your lab report.

Enter sets of values like (1,10), (2,20), (3,30), ..., (7,70), (8,80), (9,90), (A,A0), ..., (FF0).
Explain the results you get in your lab report. Why does “F” sign extend with zeros while
“F0” sign extends with ones?

Explain in your lab report how one would sign or zero extend 16 bit values to 32 bit
values. Explain why zero extension or sign extension is useful.

Data Representation

1.13.5 Packed Data Exercises

The packdata.exe program uses the Date data type appearing in this chapter (see “Bit
Fields and Packed Data” on page 28). It lets you input a date value in binary or decimal
and it packs that date into a single 16-bit value.

When you run this program, it will give you a window with six data entry boxes:
three to enter the date in decimal form (month, day, year) and three text entry boxes that
let you enter the date in binary form. The month value should be in the range 1..12, the
day value should be in the range 1..31, and the year value should be in the range 0..99. If
you enter a value outside this range (or some other illegal value), then the packdata.exe
program will turn the data entry box red until you correct the problem.

Choose several dates for your experiments and convert these dates to the 16-bit
packed binary form by hand (if you have trouble with the decimal to binary conversion,
use the conversion program from the first set of exercises in this laboratory). Then run
these dates through the packdata.exe program to verify your answer. Be sure to include all
program output in your lab report.

At a bare minimum, you should include the following dates in your experiments:

2/4/68,1/1/80, 8/16/64, 7/20/60, 11/2/72, 12/25/99, Today’s Date, a birthday (not
necessarily yours), the due date on your lab report.

Page 37

Chapter 01

1.14 Questions

1)

2)

3)
4)

5)
6)
7)
8)

9)
10)

11)

12)

13)

14)

15)

Page 38

Convert the following decimal values to binary:

a) 128 b) 4096 c) 256 d) 65536 e) 254

f)9 g) 1024 h) 15 i) 344 j) 998

k) 255 1) 512 m) 1023 n) 2048 0) 4095

p) 8192 q) 16,384 r) 32,768 s) 6,334 t) 12,334

u) 23,465 v) 5,643 w) 464 X) 67 y) 888
Convert the following binary values to decimal:

a) 1001 1001 b) 1001 1101 c) 1100 0011 d) 0000 1001 e)1111 1111
f) 0000 1111 g) 01111111 h)10100101 i)01000101 j) 01011010

k) 1111 0000
p) 0001 1000
u) 0110 1001

1) 1011 1101
q) 1001 111 1
v) 0101 1011

m) 1100 0010
r) 0100 0010
w) 1011 1001

n) 0111 1110
s) 1101 1100
x) 1110 0110

Convert the binary values in problem 2 to hexadecimal.

Convert the following hexadecimal values to binary:

a) 0ABCD
f) 8

k) OFEBA
p) ODAB
u) 0BEAD

Perform the following hex computations (leave the result in hex):

1234 +9876
OFFF - OF34
100-1
OFFE -1

b) 1024
g) 05AAF
1) 35

q) 4321
v) 0ABE

c) ODEAD
h) OFFFF
m) OBA

r) 334

w) ODEAF

What is the importance of a nibble?

How many hexadecimal digits in:

a) a byte

b) a word

How many bits in a:

a) nibble

b) byte

d) 0ADD
i) OACDB
n) 0OABA

s) 45

X) 0DAD

c) a double word

c) word

Which bit (number) is the H.O. bitin a;

a) nibble

b) byte

c) word

d) double word

d) double word

0) 1110 1111
t) 1111 0001
y) 1001 0111

e) OBEEF
j) OCDBA
0) 0BAD

t) OE65

y) 9876

What character do we use as a suffix for hexadecimal numbers? Binary numbers? Decimal

numbers?

Assuming a 16-bit two’s complement format, determine which of the values in question 4
are positive and which are negative.

Sign extend all of the values in question two to sixteen bits. Provide your answer in hex.

16)

17)
18)
19)

20)

21)

22)

23)
24)

25)

26)

27)

28)

29)

30)

Data Representation

Perform the bitwise AND operation on the following pairs of hexadecimal values. Present
your answer in hex. (Hint: convert hex values to binary, do the operation, then convert
back to hex).

a) OFF00, OFF0 b) OFOOF, 1234) 4321, 1234 d) 2341,3241 e) OFFFF, OEDCB

f) 1111, 5789 g) OFABA, 4322 h) 5523, 0F572 i) 2355, 7466 j) 4765, 6543

k) 0ABCD, OEFDCI) 0DDDD, 1234m) 0CCCC, 0ABCDn) 0BBBB, 12340) 0AAAA, 1234
p) OEEEE, 1248 () 8888, 1248 r) 8086, 124F s) 8086, 0CFA7 t) 8765, 3456

u) 7089, OFEDC v) 2435, 0BCDE w) 6355, 0EFDC x) 0CBA, 6884 y) 0AC7, 365
Perform the logical OR operation on the above pairs of numbers.

Perform the logical XOR operation on the above pairs of numbers.

Perform the logical NOT operation on all the values in question four. Assume all values
are 16 bits.

Perform the two’s complement operation on all the values in question four. Assume 16 bit
values.

Sign extend the following hexadecimal values from eight to sixteen bits. Present your
answer in hex.

a) FF b) 82 c) 12 d) 56 e) 98
f) BF g) OF h) 78 i) 7F i) F7
k) OE 1) AE m) 45 n) 93 0) CO
p) 8F q) DA r) 1D s) 0D t) DE
u) 54 V) 45 w) FO xX) AD y) DD

Sign contract the following values from sixteen bits to eight bits. If you cannot perform the
operation, explain why.

a) FF00 b) FF12 ¢) FFFO d) 12 e) 80
f) FFFF g) FF88 h) FF7F i) 7F j)2

k) 8080 1) 8OFF m) FF80 n) FF 0)8
p) F q1 r) 834 5) 34 t) 23
u) 67 v) 89 w) 98 x) FF98 y) F98

Sign extend the 16-bit values in question 22 to 32 bits.

Assuming the values in question 22 are 16-bit values, perform the left shift operation on
them.

Assuming the values in question 22 are 16-bit values, perform the right shift operation on
them.

Assuming the values in question 22 are 16-bit values, perform the rotate left operation on
them.

Assuming the values in question 22 are 16-bit values, perform the rotate right operation
on them.

Convert the following dates to the packed format described in this chapter (see “Bit Fields
and Packed Data” on page 28). Present your values as a 16-bit hex number.

a)1/1/92 b) 274/56 c) 6/19/60 d) 6/16/86 e) 171799

Describe how to use the shift and logical operations to extract the day field from the
packed date record in question 28. That is, wind up with a 16-bit integer value in the range
0..31.

Suppose you have a value in the range 0..9. Explain how you could convert it to an ASCII
character using the basic logical operations.

Page 39

Chapter 01

31)

32)

33)

34)

35)

Page 40

The following C++ function locates the first set bit in the BitMap parameter starting at bit
position start and working up to the H.O. bit. If no such bit exists, it returns -1. Explain, in
detail, how this function works.

int FindFirstSet(unsigned BitMap, unsigned start)

{
unsi gned Mask = (1 << start);
whi | e (Mask)
{
if (BitMap & Mask) return start;
++start;
Mask <<= 1;
return -1,
}

The C++ programming language does not specify how many bits there are in an unsigned
integer. Explain why the code above will work regardless of the number of bits in an
unsigned integer.

The following C++ function is the complement to the function in the questions above. It
locates the first zero bit in the BitMap parameter. Explain, in detail, how it accomplishes
this.

int FindFirstdr(unsigned BitMp, unsigned start)
{

}

The following two functions set or clear (respectively) a particular bit and return the new
result. Explain, in detail, how these functions operate.

return FindFirstSet(~BitMap, start);

unsi gned Set Bit(unsigned BitMap, unsigned position)

{
return BitMap | (1 << position);
}
unsi gned A rBit(unsigned BitMp, unsigned position)
{
return BitMap & ~(1 << position);
}

In code appearing in the questions above, explain what happens if the start and position
parameters contain a value greater than or equal to the number of bits in an unsigned inte-
ger.

Data Representation

1.15 Programming Projects

1)

2)

3)

4)

5)

6)

The following programming projects assume you are using C, C++, Turbo Pascal, Bor-
land Pascal, Delphi, or some other programming language that supports bitwise logical
operations. Note that C and C++ use the “&”, “]”, and “~” operators for logical AND, OR,
and XOR, respectively. The Borland Pascal products let you use the “and”, “or”, and “xor”
operators on integers to perform bitwise logical operations. The following projects all
expect you to use these logical operators. There are other solutions to these problems that
do not involve the use of logical operations, do not employ such a solution. The purpose
of these exercises is to introduce you to the logical operations available in high level lan-
guages. Be sure to check with your instructor to determine which language you are to
use.

The following descriptions typically describe functions you are to write. However,
you will need to write a main program to call and test each of the functions you write as
part of the assignment.

Write to functions, toupper and tolower, that take a single character as their parameter and
convert this character to upper case (if it was lowercase) or to lowercase (if it was upper-
case) respectively. Use the logical operations to do the conversion. Pascal users may need
to use the chr() and ord() functions to successfully complete this assignment.

Write a function “CharTolnt” that you pass a string of characters and it returns the corre-
sponding integer value. Do not use a built-in library routine like atoi (C) or strtoint (Pascal) to
do this conversion. You are to process each character passed in the input string, convert it
from a character to an integer using the logical operations, and accumulate the result until
you reach the end of the string. An easy algorithm for this task is to multiply the accumu-
lated result by 10 and then add in the next digit. Repeat this until you reach the end of the
string. Pascal users will probably need to use the ord() function in this assignment.

Write a ToDate function that accepts three parameters, a month, day, and year value. This
function should return the 16-bit packed date value using the format given in this chapter
(see “Bit Fields and Packed Data” on page 28). Write three corresponding functions
ExtractMonth, ExtractDay, and ExtractYear that expect a 16-bit date value and return the
corresponding month, day, or year value. The ToDate function should automatically con-
vert dates in the range 1900-1999 to the range 0..99.

Write a “CntBits” function that counts the number of one bits in a 16-bit integer value. Do
not use any built-in functions in your language’s library to count these bits for you.

Write a “TestBit” function. This function requires two 16-bit integer parameters. The first
parameter is a 16-bit value to test; the second parameter is a value in the range 0..15
describing which bit to test. The function should return true if the corresponding bit con-
tains a one, the function should return false if that bit position contains a zero. The func-
tion should always return false if the second parameter holds a value outside the range
0..15.

Pascal and C/C++ provide shift left and shift right operators (SHL/SHR in Pascal, “<<*
and “>>" in C/C++). However, they do not provide rotate right and rotate left operators.
Write a pair of functions, ROL and ROR, that perform the rotate tasks. Hint: use the func-
tion from exercise five to test the H.O. bit. Then use the corresponding shift operation and
the logical OR operation to perform the rotate.

Page 41

Chapter 01

Page 42

Boolean Algebra Chapter Two

Logic circuits are the basis for modern digital computer systems. To appreciate how
computer systems operate you will need to understand digital logic and boolean algebra.

This Chapter provides only a basic introduction to boolean algebra. This subject alone
is often the subject of an entire textbook. This Chapter will concentrate on those subject
that support other chapters in this text.

2.0 Chapter Overview

Boolean logic forms the basis for computation in modern binary computer systems.
You can represent any algorithm, or any electronic computer circuit, using a system of
boolean equations. This chapter provides a brief introduction to boolean algebra, truth
tables, canonical representation, of boolean functions, boolean function simplification,
logic design, combinatorial and sequential circuits, and hardware/software equivalence.

The material is especially important to those who want to design electronic circuits or
write software that controls electronic circuits. Even if you never plan to design hardware
or write software than controls hardware, the introduction to boolean algebra this chapter
provides is still important since you can use such knowledge to optimize certain complex
conditional expressions within IF, WHILE, and other conditional statements.

The section on minimizing (optimizing) logic functions uses Veitch Diagrams or Kar-
naugh Maps. The optimizing techniques this chapter uses reduce the number of terms in a
boolean function. You should realize that many people consider this optimization tech-
nique obsolete because reducing the number of terms in an equation is not as important as
it once was. This chapter uses the mapping method as an example of boolean function
optimization, not as a technique one would regularly employ. If you are interested in cir-
cuit design and optimization, you will need to consult a text on logic design for better
techniques.

Although this chapter is mainly hardware-oriented, keep in mind that many concepts
in this text will use boolean equations (logic functions). Likewise, some programming
exercises later in this text will assume this knowledge. Therefore, you should be able to
deal with boolean functions before proceeding in this text.

2.1 Boolean Algebra

Boolean algebra is a deductive mathematical system closed over the values zero and
one (false and true). A binary operator “°” defined over this set of values accepts a pair of
boolean inputs and produces a single boolean value. For example, the boolean AND oper-
ator accepts two boolean inputs and produces a single boolean output (the logical AND of
the two inputs).

For any given algebra system, there are some initial assumptions, or postulates, that
the system follows. You can deduce additional rules, theorems, and other properties of the
system from this basic set of postulates. Boolean algebra systems often employ the follow-
ing postulates:

- Closure. The boolean system is closed with respect to a binary operator if for every
pair of boolean values, it produces a boolean result. For example, logical AND is
closed in the boolean system because it accepts only boolean operands and pro-
duces only boolean results.

- Commutativity. A binary operator “°” is said to be commutative if A°B = B°A for
all possible boolean values A and B.

Page 43

Chapter 02

Page 44

- Associativity. A binary operator “°” is said to be associative if
(A°B)°C=A°(B°QC)
for all boolean values A, B, and C.
- Distribution. Two binary operators “°”” and “%” are distributive if
A°B%C)=(A°B)% (A°C)
for all boolean values A, B, and C.

- Identity. A boolean value | is said to be the identity element with respect to some
binary operator “°” if A ° I = A.

- Inverse. A boolean value | is said to be the inverse element with respect to some
binary operator “°” if A ° I = B and B=A (i.e., B is the opposite value of Ain a
boolean system).

For our purposes, we will base boolean algebra on the following set of operators and
values:

The two possible values in the boolean system are zero and one. Often we will call
these values false and true (respectively).

The symbol “=” represents the logical AND operation; e.g., A e B is the result of logi-
cally ANDing the boolean values A and B. When using single letter variable names, this
text will drop the “=” symbol; Therefore, AB also represents the logical AND of the vari-
ables A and B (we will also call this the product of A and B).

The symbol “+” represents the logical OR operation; e.g., A + B is the result of logi-
cally ORing the boolean values A and B. (We will also call this the sum of A and B.)

Logical complement, negation, or not, is a unary operator. This text will use the (") sym-
bol to denote logical negation. For example, A’ denotes the logical NOT of A.

If several different operators appear in a single boolean expression, the result of the
expression depends on the precedence of the operators. We’ll use the following precedences
(from highest to lowest) for the boolean operators: parenthesis, logical NOT, logical AND,
then logical OR. The logical AND and OR operators are left associative. If two operators
with the same precedence are adjacent, you must evaluate them from left to right. The log-
ical NOT operation is right associative, although it would produce the same result using
left or right associativity since it is a unary operator.

We will also use the following set of postulates:
P1 Boolean algebra is closed under the AND, OR, and NOT operations.

P2 The identity element with respect to « is one and + is zero. There is no identity
element with respect to logical NOT.

P3 The « and + operators are commutative.

P4 = and + are distributive with respect to one another. Thatis, A ® (B + C) = (A ¢ B)
+(AeC)and A+ (BeC)=(A+B)e(A+C).

P5 For every value A there exists a value A’ such that AeA’ = 0 and A+A’ = 1. This
value is the logical complement (or NOT) of A.

P6 = and + are both associative. That is, (AeB)eC = Ae(BeC) and (A+B)+C = A+(B+C).

You can prove all other theorems in boolean algebra using these postulates. This text
will not go into the formal proofs of these theorems, however, it is a good idea to familiar-
ize yourself with some important theorems in boolean algebra. A sampling include:

Thl: A+A=A
Th2: Ae-A=A
Th3: A+0=A
Th4: Ael=A

Boolean Algebra

Th5: A-0=0

The: A+1=1

Th7. (A+B)=AeB’
Th8: (A<B)Y=A"+PB’
Th: A+A<B=A

Th10: A<(A+B)=A
Thil: A+AB=A+B
Thi2: A’ e (A+B’)=AB
Thl3: AB+AB =A
Thil4: (A'+B’) e (A’+B)=A
Thl5: A+A'=

Thi6: A-A' =0

Theorems seven and eight above are known as DeMorgan’s Theorems after the mathemati-
cian who discovered them.

The theorems above appear in pairs. Each pair (e.g., Thl & Th2, Th3 & Th4, etc.) form
a dual. An important principle in the boolean algebra system is that of duality. Any valid
expression you can create using the postulates and theorems of boolean algebra remains
valid if you interchange the operators and constants appearing in the expression. Specifi-
cally, if you exchange the « and + operators and swap the 0 and 1 values in an expression,
you will wind up with an expression that obeys all the rules of boolean algebra. This does
not mean the dual expression computes the same values, it only means that both expressions are
legal in the boolean algebra system. Therefore, this is an easy way to generate a second
theorem for any fact you prove in the boolean algebra system.

Although we will not be proving any theorems for the sake of boolean algebra in this
text, we will use these theorems to show that two boolean equations are identical. This is
an important operation when attempting to produce canonical representations of a boolean
expression or when simplifying a boolean expression.

2.2 Boolean Functions and Truth Tables

A boolean expression is a sequence of zeros, ones, and literals separated by boolean
operators. A literal is a primed (negated) or unprimed variable name. For our purposes,
all variable names will be a single alphabetic character. A boolean function is a specific
boolean expression; we will generally give boolean functions the name “F” with a possible
subscript. For example, consider the following boolean:

FO = AB+C

This function computes the logical AND of A and B and then logically ORs this result with
C. If A=1, B=0, and C=1, then Fg returns the value one (1=0 + 1 =1).

Another way to represent a boolean function is via a truth table. The previous chapter
used truth tables to represent the AND and OR functions. Those truth tables took the
forms:

Table 6: AND Truth Table

AND 0 1
0 0 0
1 0 1

Page 45

Chapter 02

Table7: OR Truth Table

OR 0 1
0 0 1
1 1 1

For binary operators and two input variables, this form of a truth table is very natural and
convenient. However, reconsider the boolean function Fy above. That function has three
input variables, not two. Therefore, one cannot use the truth table format given above.
Fortunately, it is still very easy to construct truth tables for three or more variables. The
following example shows one way to do this for functions of three or four variables:

Table 8: Truth Tablefor a Function with Three Variables

BA
F=AB+C
00 01 10 11
0 0 0 0 1
C
1
Table9: Truth Tablefor a Function with Four Variables
BA
F=AB+CD
00 01 10 11
00 0 0 0 1
01 0 0 0 1
DC
10 0 0 0 1
11 1 1 1 1

Page 46

In the truth tables above, the four columns represent the four possible combinations of
zeros and ones for A & B (B is the H.O. or leftmost bit, A is the L.O. or rightmost bit). Like-
wise the four rows in the second truth table above represent the four possible combina-
tions of zeros and ones for the C and D variables. As before, D is the H.O. bit and C is the
L.O. bit.

Table 10 shows another way to represent truth tables. This form has two advantages
over the forms above - it is easier to fill in the table and it provides a compact representa-
tion for two or more functions.

Note that the truth table above provides the values for three separate functions of three
variables.

Although you can create an infinite variety of boolean functions, they are not all
unique. For example, F=A and F=AA are two different functions. By theorem two, how-
ever, it is easy to show that these two functions are equivalent, that is, they produce
exactly the same outputs for all input combinations. If you fix the number of input vari-
ables, there are a finite number of unique boolean functions possible. For example, there
are only 16 unique boolean functions with two inputs and there are only 256 possible
boolean functions of three input variables. Given n input variables, there are 2**(2") (two
raised to the two raised to the nt power) unique boolean functions of those n input val-
ues. For two input variables, 2(2%) = 2% or 16 different functions. With three input vari-

Boolean Algebra

Table 10: Another Format for Truth Tables

>

F=ABC F=AB+C F=A+BC

0

RlrRr|kRr|rRr|lo|lo|o]lol|lO
Rrlrr|o|lo|lr|r|o|lo||lm
Rrlo|lr|o|lr|lo|lr]|o
r|lo|lo|lo|lo|lo|o
RlrRr|lRP|rR|r|lo|o|lo
RrlkRr|Rr|o|lr|o| R

ables there are 2*%(2%) = 28 or 256 possible functions. Four input variables create 2+*(2%) or
216 or 65,536 different unique boolean functions.

When dealing with only 16 boolean functions, it’s easy enough to name each function.
The following table lists the 16 possible boolean functions of two input variables along
with some common names for those functions:

Table 11: The 16 Possible Boolean Functions of Two Variables

Function # Description

0 Zero or Clear. Always returns zero regardless of A and B input
values.

1 Logical NOR (NOT (A OR B)) = (A+B)’

2 Inhibition = BA’ (B, not A). Also equivalent to B>A or A <B.

3 NOT A. Ignores B and returns A’.

4 Inhibition = AB’ (A, not B). Also equivalent to A>B or B<A.

5 NOT B. Returns B’ and ignores A

6 Exclusive-or (XOR) = A U B. Also equivalent to AZB.

7 Logical NAND (NOT (A AND B)) = (A=B)’

8 Logical AND = A=B. Returns A AND B.

9 Equivalence = (A = B). Also known as exclusive-NOR (not
exclusive-or).

10 Copy B. Returns the value of B and ignores A’s value.

11 Implication, B implies A = A + B. (if B then A). Also equiva-
lentto B>= A.

12 Copy A. Returns the value of A and ignores B’s value.

13 Implication, A implies B =B + A’ (if A then B). Also equivalent
to A>=B.

14 Logical OR = A+B. Returns A OR B.

15 One or Set. Always returns one regardless of A and B input
values.

Beyond two input variables there are too many functions to provide specific names.
Therefore, we will refer to the function’s number rather than the function’s name. For
example, Fg denotes the logical AND of A and B for a two-input function and Fq, is the
logical OR operation. Of course, the only problem is to determine a function’s number. For

Page 47

Chapter 02

example, given the function of three variables F=AB+C, what is the corresponding func-
tion number? This number is easy to compute by looking at the truth table for the function
(see Table 14 on page 50). If we treat the values for A, B, and C as bits in a binary number
with C being the H.O. bit and A being the L.O. bit, they produce the binary numbers in the
range zero through seven. Associated with each of these binary strings is a zero or one
function result. If we construct a binary value by placing the function result in the bit posi-
tion specified by A, B, and C, the resulting binary number is that function’s number. Con-
sider the truth table for F=AB+C:

CBA: 7 6 5 4 3 2 1 0
F=AB+C: 1 1 1 1 1 0 0 0

If we treat the function values for F as a binary number, this produces the value F8;¢ or
2481,. We will usually denote function numbers in decimal.

This also provides the insight into why there are 2**2" different functions of n vari-
ables: if you have n input variables, there are 2" bits in function’s number. If you have m
bits, there are 2™ different values. Therefore, for n input variables there are m=2" possible
bits and 2™ or 2**2" possible functions.

2.3 Algebraic Manipulation of Boolean Expressions

Page 48

You can transform one boolean expression into an equivalent expression by applying
the postulates the theorems of boolean algebra. This is important if you want to convert a
given expression to a canonical form (a standardized form) or if you want to minimize the
number of literals (primed or unprimed variables) or terms in an expression. Minimizing
terms and expressions can be important because electrical circuits often consist of individ-
ual components that implement each term or literal for a given expression. Minimizing
the expression allows the designer to use fewer electrical components and, therefore, can
reduce the cost of the system.

Unfortunately, there are no fixed rules you can apply to optimize a given expression.
Much like constructing mathematical proofs, an individual’s ability to easily do these
transformations is usually a function of experience. Nevertheless, a few examples can
show the possibilities:

+

CoTOY®+T
o
o

P4
P5
Tha
Th3
PS5
P4
P5
Tha

ab + ab’ +ab

* ~

++++++ROT
+++ T+
e
Y

Ry oCOoTOO—
N

* —~

W n
DODOODODLDLDDW®

(@b +ab +b) P4
PS5
Ths

definition of not

(a(bth) +b)’
a +b)

((ab)’)’

ab

P4
P4
P5
Tha

ba + bc + ab’ + bc’ + ¢
a(b+b’) + b(c +c¢’') + ¢
a*l + bel + ¢
a+b+c

b(atc) + ab’ + bc’ + ¢

222y 22272 Q2232222

Although these examples all use algebraic transformations to simplify a boolean
expression, we can also use algebraic operations for other purposes. For example, the next
section describes a canonical form for boolean expressions. Canonical forms are rarely
optimal.

Boolean Algebra

2.4 Canonical Forms

Since there are a finite number of boolean functions of n input variables, yet an infinite
number of possible logic expressions you can construct with those n input values, clearly
there are an infinite number of logic expressions that are equivalent (i.e., they produce the
same result given the same inputs). To help eliminate possible confusion, logic designers
generally specify a boolean function using a canonical, or standardized, form. For any
given boolean function there exists a unique canonical form. This eliminates some confu-
sion when dealing with boolean functions.

Actually, there are several different canonical forms. We will discuss only two here
and employ only the first of the two. The first is the so-called sum of minterms and the sec-
ond is the product of maxterms. Using the duality principle, it is very easy to convert
between these two.

A term is a variable or a product (logical AND) of several different literals. For exam-
ple, if you have two variables, A and B, there are eight possible terms: A, B, A’, B’, A’B’,
A’B, AB’, and AB. For three variables we have 26 different terms: A, B, C, A’, B’, C’, A’B’,
A’B, AB’, AB, A’C’, A’C, AC’, AC, B’C’, B’C, BC’, BC, A’B’C’, AB’C’, A’BC’, ABC’, A’'B’C,
AB’C, A’BC, and ABC. As you can see, as the number of variables increases, the number
of terms increases dramatically. A minterm is a product containing exactly n literals. For
example, the minterms for two variables are A’B’, AB’, A’B, and AB. Likewise, the min-
terms for three variables A, B, and Care A’B’C’, AB’C’, A’BC’, ABC’, A’B’C, AB’C, A’BC,
and ABC. In general, there are 2" minterms for n variables. The set of possible minterms is
very easy to generate since they correspond to the sequence of binary numbers:

Table 12: Mintermsfor Three Input Variables

Binary Minterm
Equivalent

(CBA)
000 A'B’C’
001 AB’'C’
010 A’BC’
011 ABC’
100 A'B'C
101 AB’C
110 A’BC
111 ABC

We can specify any boolean function using a sum (logical OR) of minterms. Given
Fo4s=AB+C the equivalent canonical form is ABC+A'BC+AB’C+A’B’C+ABC’. Algebra-
ically, we can show that these two are equivalent as follows:

ABC+A' BC+AB' C+A' B C+ABC BOAtA') + B (AtA) + ABC
BC1 +B C1 + ABC

QB+B') + ABC

C + ABC

C+ AB

Obviously, the canonical form is not the optimal form. On the other hand, there is a big
advantage to the sum of minterms canonical form: it is very easy to generate the truth
table for a function from this canonical form. Furthermore, it is also very easy to generate
the logic equation from the truth table.

To build the truth table from the canonical form, simply convert each minterm into a
binary value by substituting a “1” for unprimed variables and a “0” for primed variables.

Page 49

Chapter 02

Page 50

Then place a “1” in the corresponding position (specified by the binary minterm value) in
the truth table:

1) Convert minterms to binary equivalents:
Fo4s= CBA+ CBA'+ CB’A+ CB’A’ + C'BA
=111+ 110+ 101 + 100 + 011
2) Substitute a one in the truth table for each entry above

Table 13: Creating a Truth Table from Minterms, Step One
F=AB+C

(@]
W
>

PPl POl OC|O|O
PR, O|lO(FRL,|FL,|O|O
POl O(FRL,|O|FL,|O

RPlRr|lRr| PR

Finally, put zeros in all the entries that you did not fill with ones in the first step
above:

Table 14: Creating a Truth Table from Minterms, Step Two

C B A F=AB+C
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Going in the other direction, generating a logic function from a truth table, is almost
as easy. First, locate all the entries in the truth table with a one. In the table above, these are
the last five entries. The number of table entries containing ones determines the number of
minterms in the canonical equation. To generate the individual minterms, substitute A, B,
or C for ones and A’, B’, or C’ for zeros in the truth table above. Then compute the sum of
these items. In the example above, F,4g contains one for CBA = 111, 110, 101, 100, and 011.
Therefore, Fy4g5 = CBA + CBA' + CB’A + CB’A’ + C’AB. The first term, CBA, comes from
the last entry in the table above. C, B, and A all contain ones so we generate the minterm
CBA (or ABC, if you prefer). The second to last entry contains 110 for CBA, so we generate
the minterm CBA'. Likewise, 101 produces CB’A; 100 produces CB’A’, and 011 produces
C’BA. Of course, the logical OR and logical AND operations are both commutative, so we
can rearrange the terms within the minterms as we please and we can rearrange the min-
terms within the sum as we see fit. This process works equally well for any number of

Boolean Algebra

variables. Consider the function Fg3594 = ABCD + A'BCD + A'B’'CD + A'B’C’D. Placing
ones in the appropriate positions in the truth table generates the following:

Table 15: Creating a Truth Table with Four Variablesfrom Minterms

D c B A F=ABCD + A’'BCD + A'B'CD +
A’'B’C’'D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0 1

1 1 0 1

1 1 1 0

1 1 1 1 1

The remaining elements in this truth table all contain zero.

Perhaps the easiest way to generate the canonical form of a boolean function is to first
generate the truth table for that function and then build the canonical form from the truth
table. We’ll use this technique, for example, when converting between the two canonical
forms this chapter presents. However, it is also a simple matter to generate the sum of
minterms form algebraically. By using the distributive law and theorem 15 (A + A’ = 1)
makes this task easy. Consider F,4g = AB + C. This function contains two terms, AB and C,
but they are not minterms. Minterms contain each of the possible variables in a primed or
unprimed form. We can convert the first term to a sum of minterms as follows:

AB = AB . 1 By Th4
= AB+ (C+C) By Th 15
= ABC + ABC By distributive | aw
= CBA + C BA By associative | aw

Similarly, we can convert the second term in Fy4g to a sum of minterms as follows:

C = Ce 1 By Th4
= Ce (A+A) By This
= CA + CA By distributive | aw
= CAsl + CA -1 By Th4
= CAe (B+B) +CA » (B+B) By Thi5
= CAB+CAB + CAB+ CAPB By distributive | aw
= CBA+ CBA + (BA+ BA By associative | aw

The last step (rearranging the terms) in these two conversions is optional. To obtain the
final canonical form for F,4g we need only sum the results from these two conversions:

(CBA+ CBA + (CBA+CBA + (BA+ (BA)
CBA+ CBA + (BA+CBA +CBA

Another way to generate a canonical form is to use products of maxterms. A maxterm is
the sum (logical OR) of all input variables, primed or unprimed. For example, consider
the following logic function G of three variables:

G= (A+B+Q) « (A +B+Q) + (A+B +0).

Fosg

Page 51

Chapter 02

Like the sum of minterms form, there is exactly one product of maxterms for each pos-
sible logic function. Of course, for every product of maxterms there is an equivalent sum
of minterms form. In fact, the function G, above, is equivalent to

Foug = CBA+ CBA + (B A+ OBA + CBA = AB +C
Generating a truth table from the product of maxterms is no more difficult than build-
ing it from the sum of minterms. You use the duality principle to accomplish this. Remem-
ber, the duality principle says to swap AND for OR and zeros for ones (and vice versa).
Therefore, to build the truth table, you would first swap primed and non-primed literals.
In G above, this would yield:
G (A +B +C) s« (A+B +C) « (A +B+C)
The next step is to swap the logical OR and logical AND operators. This produces
G=ABC +ABC +ABC
Finally, you need to swap all zeros and ones. This means that you store zeros into the
truth table for each of the above entries and then fill in the rest of the truth table with ones.

This will place a zero in entries zero, one, and two in the truth table. Filling the remaining
entries with ones produces Fy,g.

You can easily convert between these two canonical forms by generating the truth
table for one form and working backwards from the truth table to produce the other form.
For example, consider the function of two variables, F; = A + B. The sum of minterms
formis F; = A’'B + AB’ + AB. The truth table takes the form:

Table 16: F; (OR) Truth Table for Two Variables

K A B

0 0 0
0 1 0
1 0 1
1 1 1

Working backwards to get the product of maxterms, we locate all entries that have a
zero result. This is the entry with A and B equal to zero. This gives us the first step of
G=A'B’. However, we still need to invert all the variables to obtain G=AB. By the duality
principle we need to swap the logical OR and logical AND operators obtaining G=A+B.
This is the canonical product of maxterms form.

Since working with the product of maxterms is a little messier than working with
sums of minterms, this text will generally use the sum of minterms form. Furthermore, the
sum of minterms form is more common in boolean logic work. However, you will encoun-
ter both forms when studying logic design.

2.5 Simplification of Boolean Functions

Page 52

Since there are an infinite variety of boolean functions of n variables, but only a finite
number of unique boolean functions of those n variables, you might wonder if there is
some method that will simplify a given boolean function to produce the optimal form. Of
course, you can always use algebraic transformations to produce the optimal form, but
using heuristics does not guarantee an optimal transformation. There are, however, two
methods that will reduce a given boolean function to its optimal form: the map method
and the prime implicants method. In this text we will only cover the mapping method, see
any text on logic design for other methods.

Boolean Algebra

Since for any logic function some optimal form must exist, you may wonder why we
don’t use the optimal form for the canonical form. There are two reasons. First, there may
be several optimal forms. They are not guaranteed to be unique. Second, it is easy to con-
vert between the canonical and truth table forms.

Using the map method to optimize boolean functions is practical only for functions of
two, three, or four variables. With care, you can use it for functions of five or six variables,
but the map method is cumbersome to use at that point. For more than six variables,
attempting map simplifications by hand would not be wise?.

The first step in using the map method is to build a two-dimensional truth table for
the function (see Figure 2.1).

BA
A
0 1 00 01 11 10
0| BA' B'A 0[CBA"'|CBA | CAB | CBA'
B C
1| BA' BA 1|CB'A' |CB'A | CAB | CBA'
Two Variable Truth Table Three Variable Truth Table

BA
00 01 11 10

00 |D'CB'A'| D'CB'A| D'CAB |D'CBA'

01 |D'CB'A’'| D'CB'A | D'CAB |D'CBA'

DC
11 |DCB'A' | DCB'A | DCAB |DCBA'

10 |DCB'A’'| DCB'A | DCAB |DCBA'

Four Variable Truth Table

Figure 2.1 Two, Three, and Four Dimensional Truth Maps

Warning: Take a careful look at these truth tables. They do not use the same forms
appearing earlier in this chapter. In particular, the progression of the values is 00, 01, 11,
10, not 00, 01, 10, 11. This is very important! If you organize the truth tables in a binary
sequence, the mapping optimization method will not work properly. We will call this a
truth map to distinguish it from the standard truth table.

Assuming your boolean function is in canonical form (sum of minterms), insert ones
for each of the truth map entries corresponding to a minterm in the function. Place zeros
everywhere else. For example, consider the function of three variables F=C’'B’A + C’'BA’ +
C’BA + CB’A’ + CB’A + CBA’ + CBA. Figure 2.2 shows the truth map for this function.

1. However, it’s probably quite reasonable to write a program that uses the map method for seven or more vari-

ables.

Page 53

Chapter 02

BA
00 01 11 10
0] 0 1 1 1
C
1 1 1 1 1

F=C'B'A + C'BA’+ C'BA + CB'A’+ CB'A + CBA' + CBA.

Figure 2.2 T A Sample Truth Map

The next step is to draw rectangles around rectangular groups of ones. The rectangles
you enclose must have sides whose lengths are powers of two. For functions of three vari-
ables, the rectangles can have sides whose lengths are one, two, and four. The set of rect-
angles you draw must surround all cells containing ones in the truth map. The trick is to
draw all possible rectangles unless a rectangle would be completely enclosed within
another. Note that the rectangles may overlap if one does not enclose the other. In the
truth map in Figure 2.2 there are three such rectangles (see Figure 2.3)

BA
00 01 11 10

0Ol o 1 1 1

C

11|12 1 1 1

Three possible rectangles whose lengths
and widths are powers of two.

Igure 2.3 : Surrounding Rectangular Groups of Ones In a Truth Map

Page 54

Each rectangle represents a term in the simplified boolean function. Therefore, the
simplified boolean function will contain only three terms. You build each term using the
process of elimination. You eliminate any variables whose primed and unprimed form
both appear within the rectangle. Consider the long skinny rectangle above that is sitting
in the row where C=1. This rectangle contains both A and B in primed and unprimed
form. Therefore, we can eliminate A and B from the term. Since the rectangle sits in the
C=1 region, this rectangle represents the single literal C.

Now consider the solid square above. This rectangle includes C, C’, B, B’ and A.
Therefore, it represents the single term A. Likewise, the square with the dotted line above
contains C, C’, A, A’ and B. Therefore, it represents the single term B.

The final, optimal, function is the sum (logical OR) of the terms represented by the
three squares. Therefore, F= A + B + C. You do not have to consider squares containing
Zeros.

When enclosing groups of ones in the truth map, you must consider the fact that a
truth map forms a torus (i.e., a doughnut shape). The right edge of the map wraps around to
the left edge (and vice-versa). Likewise, the top edge wraps around to the bottom edge.
This introduces additional possibilities when surrounding groups of ones in a map. Con-
sider the boolean function F=C’B’A’ + C’BA’ + CB’A’ + CBA’. Figure 2.4 shows the truth
map for this function.

Boolean Algebra

BA
00 01 11 10

1 1 0 0 1

F=C"B'A’+ C'BA'+ CB'A’+ CBA"
Figure 2.4 : Truth Map for F=C'B'A™ + C’BA” + CB'A” + CBA

At first glance, you would think that there are two possible rectangles here as Figure 2.5
shows. However, because the truth map is a continuous object with the right side and left
sides connected, we can form a single, square rectangle, as Figure 2.6 shows.

So what? Why do we care if we have one rectangle or two in the truth map? The
answer is because the larger the rectangles are, the more terms they will eliminate. The
fewer rectangles that we have, the fewer terms will appear in the final boolean function.
For example, the former example with two rectangles generates a function with two
terms. The first rectangle (on the left) eliminates the C variable, leaving A'B’ as its term.
The second rectangle, on the right, also eliminates the C variable, leaving the term BA'’.
Therefore, this truth map would produce the equation F=A’B’ + A’B. We know this is not
optimal, see Th 13. Now consider the second truth map above. Here we have a single rect-
angle so our boolean function will only have a single term. Obviously this is more optimal
than an equation with two terms. Since this rectangle includes both C and C’ and also B
and B’, the only term left is A’. This boolean function, therefore, reduces to F=A'.

There are only two cases that the truth map method cannot handle properly: a truth
map that contains all zeros or a truth map that contains all ones. These two cases corre-
spond to the boolean functions F=0 and F=1, respectively. These functions are easy to gen-
erate by inspection of the truth map.

An important thing you must keep in mind when optimizing boolean functions using
the mapping method is that you always want to pick the largest rectangles whose sides’

BA
00 01 1 10
0 1 0 0 1
C
1 1 0 0 1

Figure 2.5 : First attempt at surrounding Rectangles Formed by Ones

BA
00 01 1 10
- >
0 1 0 0 1
C
1 1 0 0 1
- >

Figure 2.6 : Correct Rectangle Tor the Function

Page 55

Chapter 02

lengths are a power of two. You must do this even for overlapping rectangles (unless one
rectangle encloses another). Consider the boolean function F = C'B'A" + C'BA' + CB'A" +
C'AB + CBA' + CBA. This produces the truth map appearing in Figure 2.7.

The initial temptation is to create one of the sets of rectangles found in Figure 2.8. How-
ever, the correct mapping appears in Figure 2.9.

All three mappings will produce a boolean function with two terms. However, the first
two will produce the expressions F= B + A'B' and F = AB + A'. The third form produces F
=B + A'". Obviously, this last form is more optimal than the other two forms (see theorems
11 and 12).

For functions of three variables, the size of the rectangle determines the number of
terms it represents:

= A rectangle enclosing a single square represents a minterm. The associ-
ated term will have three literals.

= Arectangle surrounding two squares containing ones represents a term
containing two literals.

= Arectangle surrounding four squares containing ones represents a term
containing a single literal.

= Avrectangle surrounding eight squares represents the function F = 1.

Truth maps you create for functions of four variables are even trickier. This is because
there are lots of places rectangles can hide from you along the edges. Figure 2.10 shows
some possible places rectangles can hide.

BA
00 01 11 10
0 1 0 1 1
C
1 1 0 1 1

Figure 2.7 : Truth Map for I = C'B'A" + C'BA" + CB'A" + C'AB + CBA™ + CBA

BA BA
00 01 11 10 00 01 11 10
<
Ol|1 0 1 1 0] 1 0 1 1
C C
1 1
1 1 0 1 1 _41 1 0
Figure 2.8 : Obvious ChoiCes for Rectangles
BA
00 01 11 10
- >
0] 1 0 1 1
C
_41 1 0 1 1 >

igure 2.9 Correct Set of Rectangles for I = C'B'A™ + C'BA™ + CB'A" + C"AB + CBA"™ + CBA

Page 56

Boolean Algebra

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 00 00 00
01 01 01 01
11 11 11 11
10 10 10 10

Figure 2.10 : Partial Pattern List for 4x4 Truth Map

This list of patterns doesn’t even begin to cover all of them! For example, these dia-
grams show none of the 1x2 rectangles. You must exercise care when working with four
variable maps to ensure you select the largest possible rectangles, especially when overlap
occurs. This is particularly important with you have a rectangle next to an edge of the

truth map.

Page 57

Chapter 02

As with functions of three variables, the size of the rectangle in a four variable truth
map controls the number of terms it represents:

= A rectangle enclosing a single square represents a minterm. The associ-
ated term will have four literals.

= Arectangle surrounding two squares containing ones represents a term
containing three literals.

= Arectangle surrounding four squares containing ones represents a term
containing two literals.

= Arectangle surrounding eight squares containing ones represents a term
containing a single literal.

= Arrectangle surrounding sixteen squares represents the function F=1.

This last example demonstrates an optimization of a function containing four vari-
ables. The functionis F = D’C’'B’A’ + D’C'B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA +
DCB’A + DCBA + DC’B’A’ + DC’BA’, the truth map appears in Figure 2.11.

Here are two possible sets of maximal rectangles for this function, each producing
three terms (see Figure 2.12). Both functions are equivalent; both are as optimal as you
can get?. Either will suffice for our purposes.

First, let’s consider the term represented by the rectangle formed by the four corners.
This rectangle contains B, B’, D, and D’; so we can eliminate those terms. The remaining
terms contained within these rectangles are C’ and A’, so this rectangle represents the term
CA.

The second rectangle, common to both maps in Figure 2.12, is the rectangle formed by
the middle four squares. This rectangle includes the terms A, B, B’, C, D, and D’. Eliminat-
ing B, B’, D, and D’ (since both primed and unprimed terms exist), we obtain CA as the
term for this rectangle.

The map on the left in Figure 2.12 has a third term represented by the top row. This
term includes the variables A, A’, B, B’, C’ and D’. Since it contains A, A’, B, and B’, we can

BA
00 01 11 10

00
01 |:| _
DC 1
11
[]=0

10

igure 211 : TruinMap for F=D'CBA+ DCBA+ DCBA+ DCBA + DCB'A+ DCBA+ DCB'A+
DCBA + DC'B'A’ + DC'BA’

-

- > - >

\/
A
\/

vy vy

igure Z2.12 1 Two Combinations of Surrounded Values Yielding Three Terms

2. Remember, there is no guarantee that there is a unique optimal solution.

Page 58

Boolean Algebra

eliminate these terms. This leaves the term C’D’. Therefore, the function represented by
the map on the left is F=C’A’ + CA + C'D’.

The map on the right in Figure 2.12 has a third term represented by the top/middle
four squares. This rectangle subsumes the variables A, B, B’, C, C’, and D’. We can elimi-
nate B, B’, C, and C’ since both primed and unprimed versions appear, this leaves the term
AD. Therefore, the function represented by the function on the right is F=C’A’ + CA +
AD’.

Since both expressions are equivalent, contain the same number of terms, and the
same number of operators, either form is equivalent. Unless there is another reason for
choosing one over the other, you can use either form.

2.6 What Does This Have To Do With Computers, Anyway?

Although there is a tenuous relationship between boolean functions and boolean
expressions in programming languages like C or Pascal, it is fair to wonder why we’re
spending so much time on this material. However, the relationship between boolean logic
and computer systems is much stronger. There is a one-to-one relationship between bool-
ean functions and electronic circuits. Electrical engineers who design CPUs and other
computer related circuits need to be intimately familiar with this stuff. Even if you never
intend to design your own electronic circuits, understanding this relationship is important
if you want to make the most of any computer system.

26.1 Correspondence Between Electronic Circuits and Boolean Functions

There is a one-to-one correspondence between an electrical circuits and boolean func-
tions. For any boolean function you can design an electronic circuit and vice versa. Since
boolean functions only require the AND, OR, and NOT boolean operators, we can con-
struct any electronic circuit using these operations exclusively. The boolean AND, OR, and
NOT functions correspond to the following electronic circuits, the AND, OR, and inverter
(NOT) gates (see Figure 2.13).

One interesting fact is that you only need a single gate type to implement any elec-
tronic circuit. This gate is the NAND gate, shown in Figure 2.14.

To prove that we can construct any boolean function using only NAND gates, we need
only show how to build an inverter (NOT), AND gate, and OR gate from a NAND (since
we can create any boolean function using only AND, NOT, and OR). Building an inverter
is easy, just connect the two inputs together (see Figure 2.15).

Once we can build an inverter, building an AND gate is easy — just invert the output
of a NAND gate. After all, NOT (NOT (A AND B)) is equivalent to A AND B (see). Of
course, this takes two NAND gates to construct a single AND gate, but no one said that

A A
Aand B AorB A A
B B

Figure 2.13 : AND, OR, and Inverter (NOT) Gates

not (A and B)

Figure 2.14 : The NAND Gate

Page 59

Chapter 02

A A

igure 2.15 : Inverter Bullt Trom a NAND Gate

A
B

Aand B

igure 2.16 : Construciing an AND Gate From Two NAND Gates

AorB

B —

Figure 2.17 : Constructing an OR Gate From NAND Gaies

circuits constructed only with NAND gates would be optimal, only that it is possible to
do.

The remaining gate we need to synthesize is the logical-OR gate. We can easily con-
struct an OR gate from NAND gates by applying DeMorgan’s theorems.

(Aor B’ = A and B DeMorgan’ s Theor em
Aor B = (A and B)’ Invert both sides of the equation.
Aor B = A nand B Definition of NAND operation.

By applying these transformations, you get the circuit in Figure 2.17.

Now you might be wondering why we would even bother with this. After all, why
not just use logical AND, OR, and inverter gates directly? There are two reasons for this.
First, NAND gates are generally less expensive to build than other gates. Second, it is also
much easier to build up complex integrated circuits from the same basic building blocks
than it is to construct an integrated circuit using different basic gates.

Note, by the way, that it is possible to construct any logic circuit using only NOR
gates3. The correspondence between NAND and NOR logic is orthogonal to the corre-
spondence between the two canonical forms appearing in this chapter (sum of minterms
vs. product of maxterms). While NOR logic is useful for many circuits, most electronic
designs use NAND logic. See the exercises for more examples.

2.6.2

Combinatorial Circuits

A combinatorial circuit is a system containing basic boolean operations (AND, OR,
NOT), some inputs, and a set of outputs. Since each output corresponds to an individual
logic function, a combinatorial circuit often implements several different boolean func-
tions. It is very important that you remember this fact — each output represents a different
boolean function.

A computer’s CPU is built up from various combinatorial circuits. For example, you
can implement an addition circuit using boolean functions. Suppose you have two one-bit

3. NOR is NOT (A OR B).

Page 60

Boolean Algebra

numbers, A and B. You can produce the one-bit sum and the one-bit carry of this addition
using the two boolean functions:

S AB + AB Sum of A and B.

C AB Carry fromaddition of A and B

These two boolean functions implement a half-adder. Electrical engineers call it a half

adder because it adds two bits together but cannot add in a carry from a previous opera-
tion. A full adder adds three one-bit inputs (two bits plus a carry from a previous addition)
and produces two outputs; the sum and the carry. The two logic equations for a full adder
are

S ABG,+ABG, +ABG, +ABG,

Gout AB + AG, + BG,

Although these logic equations only produce a single bit result (ignoring the carry), it is
easy to construct an n-bit sum by combining adder circuits (see Figure 2.18). So, as this
example clearly illustrates, we can use logic functions to implement arithmetic and bool-
ean operations.

Another common combinatorial circuit is the seven-segment decoder. This is a combina-
torial circuit that accepts four inputs and determines which of the seven segments on a
seven-segment LED display should be on (logic one) or off (logic zero). Since a seven seg-
ment display contains seven output values (one for each segment), there will be seven
logic functions associated with the display (segment zero through segment six). See
Figure 2.19 for the segment assignments. Figure 2.20 shows the segment assignments for
each of the ten decimal values.

The four inputs to each of these seven boolean functions are the four bits from a
binary number in the range 0..9. Let D be the H.O. bit of this number and A be the L.O. bit
of this number. Each logic function should produce a one (segment on) for a given input if
that particular segment should be illuminated. For example S, (segment four) should be

Ao — ——Sgo
Bp — Half Adder |
Carry
A1 — Full Adder S1
Bl —
Carry
A2 = Full Adder S2
Bo — — Carry

Figure 2.18 : Bullding an N-Bit Adder Using Halt and Full Adders

So
s s
s s
4| s5 |°6

Figure 2.19 : Seven Segment Display

Page 61

Chapter 02

=t
5 1B

L1

igure 2.20 : Seven Segment Values for "0” through ™97,

on for binary values 0000, 0010, 0110, and 1000. For each value that illuminates a segment,
you will have one minterm in the logic equation:

S, =DCBA +DCBA +DCA +DCBA.
S,, as a second example, is on for values zero, two, three, five, six, seven, eight, and
nine. Therefore, the logic function for Sy is
S =DCBA +DCBA +DCBA+DOBA+DCBA +DBA+DCBA +DCBA
You can generate the other five logic functions in a similar fashion (see the exercises).

Combinatorial circuits are the basis for many components of a basic computer system.
You can construct circuits for addition, subtraction, comparison, multiplication, division,
and many other operations using combinatorial logic.

2.6.3

Sequential and Clocked Logic

One major problem with combinatorial logic is that it is memoryless. In theory, all logic
function outputs depend only on the current inputs. Any change in the input values is
immediately reflected in the outputs®. Unfortunately, computers need the ability to remem-
ber the results of past computations. This is the domain of sequential or clocked logic.

A memory cell is an electronic circuit that remembers an input value after the removal
of that input value. The most basic memory unit is the set/reset flip-flop. You can construct
an SR flip-flop using two NAND gates, as shown in Figure 2.21.

The S and R inputs are normally high. If you temporarily set the S input to zero and
then bring it back to one (toggle the S input), this forces the Q output to one. Likewise, if
you toggle the R input from one to zero back to one, this sets the Q output to zero. The Q’
input is generally the inverse of the Q output.

Note that if both S and R are one, then the Q output depends upon Q. That is, what-
ever Q happens to be, the top NAND gate continues to output that value. If Q was origi-
nally one, then there are two ones as inputs to the bottom flip-flop (Q nand R). This

R —

Figure 2.21 : Set/Reset Flip Flop Constructed From NAND Gates

4. In practice, there is a short propagation delay between a change in the inputs and the corresponding outputs in
any electronic implementation of a boolean function.

Page 62

Boolean Algebra

produces an output of zero (Q’). Therefore, the two inputs to the top NAND gate are zero
and one. This produces the value one as an output (matching the original value for Q).

If the original value for Q was zero, then the inputs to the bottom NAND gate are Q=0
and R=1. Therefore, the output of this NAND gate is one. The inputs to the top NAND
gate, therefore, are S=1 and Q’=1. This produces a zero output, the original value of Q.

Suppose Q is zero, S is zero and R is one. This sets the two inputs to the top flip-flop to
one and zero, forcing the output (Q) to one. Returning S to the high state does not change
the output at all. You can obtain this same result if Q is one, S is zero, and R is one. Again,
this produces an output value of one. This value remains one even when S switches from
zero to one. Therefore, toggling the S input from one to zero and then back to one pro-
duces a one on the output (i.e., sets the flip-flop). The same idea applies to the R input,
except it forces the Q output to zero rather than to one.

There is one catch to this circuit. It does not operate properly if you set both the S and
R inputs to zero simultaneously. This forces both the Q and Q’ outputs to one (which is
logically inconsistent). Whichever input remains zero the longest determines the final
state of the flip-flop. A flip-flop operating in this mode is said to be unstable.

The only problem with the S/R flip-flop is that you must use separate inputs to
remember a zero or a one value. A memory cell would be more valuable to us if we could
specify the data value to remember on one input and provide a clock input to latch the
input value. This type of flip-flop, the D flip-flop (for data) uses the circuit in Figure 2.22.

Assuming you fix the Q and Q’ outputs to either 0/1 or 1/0, sending a clock pulse that goes
from zero to one back to zero will copy the D input to the Q output. It will also copy D’ to
Q’. The exercises at the end of this chapter will expect you to describe this operation in
detail, so study this diagram carefully.

Although remembering a single bit is often important, in most computer systems you
will want to remember a group of bits. You can remember a sequence of bits by combining
several D flip-flops in parallel. Concatenating flip-flops to store an n-bit value forms a reg-
ister. The electronic schematic in Figure 2.23 shows how to build an eight-bit register from
a set of D flip-flops.

P

Data -

Figure 2.2Z Tmplementing a D flip-flop with NAND Gates

Clk

Qo

Q1 Q2 Q3 Q4 Qs Q6 Q7

Figure 2.23 : An Eight-bit Register Implemented with Eight D Flip-tflops

Page 63

Chapter 02

Note that the eight D flip-flops use a common clock line. This diagram does not show the
Q’ outputs on the flip-flops since they are rarely required in a register.

D flip-flops are useful for building many sequential circuits above and beyond simple
registers. For example, you can build a shift register that shifts the bits one position to the
left on each clock pulse. A four-bit shift register appears in Figure 2.24.

You can even build a counter, that counts the number of times the clock toggles from
one to zero and back to one using flip-flops. The circuit in Figure 2.25 implements a four
bit counter using D flip-flops.

Surprisingly, you can build an entire CPU with combinatorial circuits and only a few
additional sequential circuits beyond these.

2.7 Okay, What Does It Have To Do With Programming, Then?

Once you have registers, counters, and shift registers, you can build state machines.
The implementation of an algorithm in hardware using state machines is well beyond the
scope of this text. However, one important point must be made with respect to such cir-
cuitry — any algorithm you can implement in software you can also implement directly in hard-
ware. This suggests that boolean logic is the basis for computation on all modern computer
systems. Any program you can write, you can specify as a sequence of boolean equations.

Of course, it is much easier to specify a solution to a programming problem using lan-
guages like Pascal, C, or even assembly language than it is to specify the solution using
boolean equations. Therefore, it is unlikely that you would ever implement an entire pro-
gram using a set of state machines and other logic circuitry. Nevertheless, there are times
when a hardware implementation is better. A hardware solution can be one, two, three, or
more orders of magnitude faster than an equivalent software solution. Therefore, some time
critical operations may require a hardware solution.

A more interesting fact is that the converse of the above statement is also true. Not
only can you implement all software functions in hardware, but it is also possible to imple-
ment all hardware functions in software. This is an important revelation because many opera-
tions you would normally implement in hardware are much cheaper to implement using
software on a microprocessor. Indeed, this is a primary use of assembly language in modern

Clk

Data In—|

| | | |
Qo Q1 Q2 Q3

igure 2.24 : A Four-bit Shiit Register Bullt from D Flip-flops

Clie

Figure 2.25 T A Four-bit Counter Bullt from D Flip-tlops

Page 64

Boolean Algebra

systems — to inexpensively replace a complex electronic circuit. It is often possible to
replace many tens or hundreds of dollars of electronic components with a single $25
microcomputer chip. The whole field of embedded systems deals with this very problem.
Embedded systems are computer systems embedded in other products. For example,
most microwave ovens, TV sets, video games, CD players, and other consumer devices
contain one or more complete computer systems whose sole purpose is to replace a com-
plex hardware design. Engineers use computers for this purpose because they are less
expensive and easier to design with than traditional electronic circuitry.

You can easily design software that reads switches (input variables) and turns on
motors, LEDs or lights, locks or unlocks a door, etc. (output functions). To write such soft-
ware, you will need an understanding of boolean functions and how to implement such
functions in software.

Of course, there is one other reason for studying boolean functions, even if you never
intend to write software intended for an embedded system or write software that manipu-
lates real-world devices. Many high level languages process boolean expressions (e.g.,
those expressions that control an if statement or while loop). By applying transformations
like DeMorgan’s theorems or a mapping optimization it is often possible to improve the
performance of high level language code. Therefore, studying boolean functions is impor-
tant even if you never intend to design an electronic circuit. It can help you write better
code in a traditional programming language.

For example, suppose you have the following statement in Pascal:
if ((x=y) and (a <> b)) or ((x=y) and (c <= d)) then SoneStnt;
You can use the distributive law to simplify this to:
if ((x=y) and ((a <> b) or (c <= d)) then SoneStnt;

Likewise, we can use DeMorgan’s theorem to reduce
while (not((a=b) and (c=d)) do Sornet hi ng;

to

while (a <> b) or (c <> d) do Sonethi ng;

2.8

Generic Boolean Functions

For a specific application, you can create a logic function that achieves some specific
result. Suppose, however, that you wanted to write a program to simulate any possible
boolean function? For example, on the companion diskette, there is a program that lets
you enter an arbitrary boolean function with one to four different variables. This program
will read the inputs and produce and necessary function results. Since the number of
unique four variable functions is large (65,536, to be exact), it is not practical to include a
specific solution for each one in a program. What is necessary is a generic logic function, one
that will compute the results for any arbitrary function. This section describes how to
write such a function.

A generic boolean function of four variables requires five parameters — the four input
parameters and a fifth parameter that specifies the function to compute. While there are
lots of ways to specify the function to compute, we’ll pass the boolean function’s number
as this fifth parameter.

At first glance you might wonder how we can compute a function using the function’s
number. However, keep in mind that the bits that make up the function’s number come
directly from the truth table for that function. Therefore, if we extract the bits from the
function’s number, we can construct the truth table for that function. Indeed, if we just
select the it bit of the function number, where i = D*8 + C*4 + B*2 +A you will get the

Page 65

Chapter 02

function result for that particular value of A, B, C, and D°. The following examples, in C
and Pascal, show how to write such functions:

/**/

/* */
/* This C programdenonstrates howto wite a generic |logic function */
/* that can conpute any logic function of four variables. Gven Cs */
/* bit manipul ation operators, along with hexadecimal I/Q thisis an */
;* easy task to acconplish in the C programm ng | anguage. *;

/**/

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

/* CGeneric logic function. The “Func” parameter contains the 16-bit */
/* logical function nunber. This is actually an encoded truth table */
/* for the function. The a, b, ¢, and d paraneters are the inputs to */
/* the logic function. |If we treat “func” as a 2x2x2x2 array of bits, */
/* this particular function selects bit “func[d,c,b,a]” fromfunc. */

int
generic(int func, int a, int b, int c, int d)

/* Return the bit specified by a, b, ¢, and d */

return (func >> (a + b*2 + c*4 + d*8)) & 1;

}
/* Main programto drive the generic logic function witten in C */
nmai n()
int func, a, b, ¢, d;
/* Repeat the following until the user enters zero. */
do
{
/* Get the function's nunber (truth table) */
printf(“Enter function value (hex): “);
scanf (“9%”, &func);
/* 1If the user specified zero as the function #, stop */
/* the program */
if (func !'=0)
{
printf(“Enter values for d, c, b, &a: “);
scanf (“ %%l%l%l”
&, &c, &b, &a);
printf(“The result is %\ n", generic(func,a,b,c,d));
printf(“Func = %, A=%l, B=%l, C=%l, D=%l\n",
func, a, b, c, d);
}
} while (func !'=0);
}

The following Pascal program is written for Standard Pascal. Standard Pascal does not
provide any bit manipulation operations, so this program is lengthy since it has to simu-
late bits using an array of integers. Most modern Pascals (especially Turbo Pascal) provide
built-in bit operations or library routines that operate on bits. This program would be
much easier to write using such non-standard features.

5. Chapter Five explains why this multiplication works.

Page 66

Boolean Algebra

pr ogram Generi cFunc(i nput, out put);

(* Since standard Pascal does not provide an easy way to directly nan- *)
(* ipulate bits in an integer, we will simulate the function nunber *)
(* using an array of 16 integers. “GFTYPE' is the type of that array. *)

type
gftype = array [0..15] of integer;

var
a, b, ¢, d:integer;
fresult:integer;
func: gftype;

St andard Pascal does not provide the ability to shift integer data
to the left or right. Therefore, we will similate a 16-bit val ue
using an array of 16 integers. W can simulate shifts by noving
data around in the array.

ever, this code is witten to work with standard Pascal, not just
Turbo Pascal .

ShiftLeft shifts the values in func on position to the left and in-

*
(L
(*
(*
(*
(* Note that Turbo Pascal *does* provide shl and shr operators. How
(*
*
L
(*
(* serts the shiftin value into “bit position” zero.

*OX X X X X X X X X X
R

procedure ShiftlLeft(shiftin:integer);
var i:integer;
begi n

for i := 15 downto 1 do func[i] := func[i-1];
func[0] := shiftin;

end;

(* ShiftN bble shifts the data in func to the left four positions and *)
(* inserts the four bits a (L.Q), b, ¢, and d (HQ) into the vacated *)
(* positions. *)

procedure ShiftN bble(d,c,b,a:integer);
begi n

ShiftLeft(d);
ShiftLleft(c):
ShiftLeft(b):
ShiftLleft(a):

end;

(* ShiftRght shifts the data in func one position to the right. It *)

(* shifts a zero into the HQO bit of the array. *)
procedure ShiftR ght;
var i:integer;
begi n
for i :=0to 14 do func[i] := func[i+1];
func[15] := O;
end;
(* ToUpper converts a |lower case character to upper case. *)
procedur e toupper(var ch:char);
begi n
if (chin[‘a..”z']) then ch := chr(ord(ch) - 32);
end;

(* ReadFunc reads a hexadeci mal function nunber fromthe user and puts *)
(* this value into the func array (bit by bit). *)

function ReadFunc:i nt eger;

Page 67

Chapter 02

var ch:char,
i, val:integer;

begi n
wite('Enter function nunber (hexadecinal): ‘);
for i :=0to 15 do func[i] := 0;
r epeat
read(ch);
if not eoln then begin
t oupper (ch);
case ch of
‘0': ShiftN bble(0,0,0,0);
“1': ShiftN bble(0,0,0,1);
‘2': ShiftN bble(0,0,1,0);
‘3 : ShiftN bble(0,0,1,1);
“4': ShiftN bble(0,1,0,0);
‘5': ShiftN bble(0,1,0,1);
‘6': ShiftN bble(0,1,1,0);
‘7 ShiftN bble(0,1,1,1);
‘8 : ShiftN bble(1,0,0,0);
‘9': ShiftN bble(1,0,0,1);
‘A ShiftN bble(1,0,1,0);
‘B: ShiftNbble(1,0,1,1);
‘C: ShiftN bble(1,1,0,0);
‘D: ShiftNbble(1,1,0,1);
‘E: ShiftNibble(1,1,1,0);
‘F: ShiftNbble(1,1,1,1);
else wite(chr(7),chr(8));
end;
end;
until eoln;
val := 0;
for i :=0to 15 do val :=val + func[i];

ReadFunc : = val;
end;

(* CGeneric - Conputes the generic logical function specified by *)

(* the function nunber “func” on the four Input vars *)
(* a, b, ¢, and d. It does this by returning bit *)
(* d*8 + c*4 + b*2 + a fromfunc. *)
function Generic(var func:gftype; a,b,c,d:integer):integer;
begi n

CGeneric := func[a + b*2 + c*4 + d*8];
end;

begin (* nmain *)
r epeat

fresult := ReadFunc;
if (fresult <> 0) then begin

wite('Enter values for Db C B, & A (0/1):");
readl n(d, c, b, a);
witeln(‘The result is ‘,Generic(func,a,b,c,d));

end;
until fresult = 0;

end.

The following code demonstrates the power of bit manipulation operations. This ver-
sion of the code above uses special features present in the Turbo Pascal programming lan-
guage that allows programmers to shift left or right and do a bitwise logical AND on
integer variables:
pr ogram Generi cFunc(i nput, out put);
const

hex = [*a ..’ f", "A.."F];
decimal = ['0".."9];

var

Page 68

Boolean Algebra

a, b, ¢, d:integer;
fresult:integer;
func: integer;

(* Here is a second version of the Pascal generic function that uses *)
(* the features of Turbo Pascal to sinplify the program *

function ReadFunc:i nt eger;
var ch:char;
i, val:integer;

begi n
wite('Enter function nunber (hexadecinal): ‘);
r epeat
read(ch);
func : = 0;
if not eoln then begin
if (chin Hex) then
func := (func shl 4) + (ord(ch) and 15) + 9
else if (ch in Decimal) then
func := (func shl 4) + (ord(ch) and 15)
else wite(chr(7));
end;
until eoln;

ReadFunc : = func;
end;

(* Generic - Conputes the generic |logical function specified by *)

(* the function nunber “func” on the four Input vars *)
(* a, b, ¢, and d. It does this by returning bit *)
(* d*8 + c*4 + b*2 + a fromfunc. This version re- *)
(* lies on Turbo Pascal’s shift right operator and *)
(* its ability to do bitwi se operations on integers. *)
function Generic(func,a,b,c,d:integer):integer;
begi n

g Generic := (func shr (a + b*2 + c*4 + d*8)) and 1;
end;

begin (* nmain *)
r epeat

fresult := ReadFunc;
if (fresult <> 0) then begin

wite('Enter values for Db C B, & A (0/1):");
readl n(d, c, b, a);
witeln(‘The result is ‘,Generic(func,a,b,c,d));

end;
until fresult = 0;

end.

2.9 Laboratory Exercises

This laboratory uses several Windows programs to manipulate truth tables and logic
expressions, optimize logic equations, and simulate logic equations. These programs will
help you understand the relationship between logic equations and truth tables as well as
gain a fuller understanding of logic systems.

The WLOGIC.EXE program simulates logic circuitry. WLOGIC stores several logic
equations that describe an electronic circuit and then it simulates that circuit using
“switches” as inputs and “LEDs” as outputs. For those who would like a more
“real-world” laboratory, there is an optional program you can run from DOS,

Page 69

Chapter 02

LOGICEV.EXE, that controls a real set of LEDs and switches that you construct and attach
to the PC’s parallel port. The directions for constructing this hardware appear in the
appendices. The use of either program will let you easily observe the behavior of a set of
logic functions.

If you haven’t done so already, please install the software for this text on your
machine. See the laboratory exercises in Chapter One for more details.

29.1

Truth Tables and Logic Equations Exercises

In this laboratory exercise you will create several different truth tables of two, three,
and four variables. The TRUTHTBL.EXE program (found in the CH2 subdirectory) will
automatically convert the truth tables you input into logic equations in the sum of min-
terms canonical form.

The TRUTHTBL.EXE file is a Windows program; it requires some version of Windows
for proper operation. In particular, it will not run properly from DOS. It should, however,
work just fine with any version of Windows from Windows 3.1 on up.

The TRUTHTBL.EXE program provides three buttons that let you choose a two vari-
able, three variable, or four variable truth table. Pressing one of these buttons rearranges
the truth table in an appropriate fashion. By default, the TRUTHTBL program assumes
you want to work with a four variable truth table. Try pressing the Two Variables, Three
Variables, and Four Variables buttons and observe the results. Describe what happens in
your lab report.

To change the truth table entries, all you need do is click on the square associated with
the truth table value you want to change. Clicking on one of these boxes toggles (inverts)
that value in that square. For example, try clicking on the DCBA square several times and
observe the results.

Note that as you click on different truth table entries, the TRUTHTBL program auto-
matically recomputes the sum of minterms canonical logic equation and displays it at the
bottom of the window. What equation does the program display if you set all squares in
the truth table to zero?®

Set up the TRUTHTBL program to work with four variables. Set the DCBA square to
one. Now press the Two Variables button. Press the Four Variables button and set all the
squares to one. Now press the Two Variables button again. Finally, press the Four Variables
button and examine the results. What does the TRUTHTBL program do when you switch
between different sized truth tables? Feel free to try additional experiments to verify your
hypothesis. Describe your results in your lab report.

Switch to two variable mode. Input the truth tables for the logical AND, OR, XOR,
and NAND truth tables. Verify the correctness of the resulting logic equations. Write up
the results in your lab report. Note: if there is a Windows-compatible printer attached to
your computer, you can print each truth table you create by pressing the Print button in
the window. This makes it very easy to include the truth table and corresponding logic
equation in your lab report. For additional credit: input the truth tables for all 16 func-
tions of two variables. In your lab report, present the results for these 16 functions.

Design several two, three, and four variable truth tables by hand. Manually determine
their logic equations in sum of minterms canonical form. Input the truth tables and verify
the correctness of your logic equations. Include your hand designed truth tables and logic
equations as well as the machine produced versions in your lab report.

6. Note: On initial entry to the program, TRUTHTBL does not display a logic equation. Therefore, you will need to
set at least one square to one and then back to zero to see this equation.

Page 70

Boolean Algebra

Consider the following layout for a seven-segment display:

E

F G
H

I J
K

Here are the segments to light for the bmary values DCBA = 0000 - 1001

B 'E'HLi

:I:II

D'CB'A’+D'CBA'+ D'C'BA + D'CB'A + D'CBA' + D'CBA + DC'B'A'+ DC'B'A
D'CB'A'+ D'CB'A’+ D'CB'A+ D'CBA’ + DC'B'A’ + DCB'A
D'CB'A'+D'CBA+D'CBA'+D'CBA+D'CB'A" + D'CBA + DCB'A’ + DC'B'A
D'CBA'+D'CBA+D'CB'A’+ D'CB'A+ D'CBA’ + DC'B'A’ + DCB'A

D'CB'A’+ D'C'BA’ + D'CBA' + DCB'A’

D'CB'A’+D'CB'A+D'CBA+D'CB'A"+ D'CB’A+D'CBA' + D'CBA + DC'B'A’ + DC'B'A
D'CB'A'+D'CBA'+ D'C'BA+ D'CB'A + D'CBA' + DC'B'A’

AeTIOTM

Convert each of these logic equations to a truth table by setting all entries in the table
to zero and then clicking on each square corresponding to each minterm in the equation.
Verify by observing the equation that TRUTHTBL produces that you’ve successfully con-
verted each equation to a truth table. Describe the results and provide the truth tables in
your lab report.

For Additional Credit: Modify the equations above to include the following hexadec-
imal characters. Determine the new truth tables and use the TRUTHTBL program to ver-
ify that your truth tables and logic equations are correct.

dt -

2.9.2 Canonical Logic Equations Exercises

In this laboratory you will enter several different logic equations and compute their
canonical forms as well as generate their truth table. In a sense, this exercise is the oppo-
site of the previous exercise where you generated a canonical logic equation from a truth
table.

This exercise uses the CANON.EXE program found in the CH2 subdirectory. Run this
program from Windows by double clicking on its icon. This program displays a text box, a
truth table, and several buttons. Unlike the TRUTHTBL.EXE program from the previous
exercise, you cannot modify the truth table in the CANON.EXE program; it is a dis-
play-only table. In this program you will enter logic equations in the text entry box and
then press the “Compute” button to see the resulting truth table. This program also pro-
duces the sum of minterms canonical form for the logic equation you enter (hence this
program’s name).

Valid logic equations take the following form:

- A term is either a variable (A, B, C, or D) or a logic expression surrounded by
parentheses.

Page 71

Chapter 02

- A factor is either a term, or a factor followed by the prime symbol (an apostrophe,
i.e.,, “”). The prime symbol logically negates the factor immediately preceding it.
- A product is either a factor, or a factor concatenated with a product. The concate-

nation denotes logical AND operation.

- An expression is either a product or a product followed by a “+” (denoting logical
OR) and followed by another expression.

Note that logical OR has the lowest precedence, logical AND has an intermediate pre-
cedence, and logical NOT has the highest precedence of these three operators. You can use
parentheses to override operator precedence. The logical NOT operator, since its prece-
dence is so high, applies only to a variable or a parenthesized expression. The following
are all examples of legal expressions:

AB C+ DB +C)

AB(CtD)’ + A B (CtD)
ABCD + ABCD + A(B+Q
(A+B)’ + A B

For this set of exercises, you should create several logic expression and feed them
through CANON.EXE. Include the truth tables and canonical logic forms in your lab
report. Also verify that the theorems appearing in this chapter (See “Boolean Algebra” on
page 43.) are valid by entering each side of the theorem and verifying that they both pro-
duce the same truth table (e.g., (AB)’ = A’ + B’). For additional credit, create several com-
plex logic equations and generate their truth tables and canonical forms by hand. Then
input them into the CANON.EXE program to verify your work.

29.3 Optimization Exercises

In this set of laboratory exercises, the OPTIMZP.EXE program (found in the CH2 sub-
directory) will guide you through the steps of logic function optimization. The OPTI-
MZP.EXE program uses the Karnaugh Map technique to produce an equation with the
minimal number of terms.

Run the OPTIMZP.EXE program by clicking on its icon or running the OPTIMZP.EXE
program using the program manager’s File]Run menu option. This program lets you
enter an arbitrary logic equation using the same syntax as the CANON.EXE program in
the previous exercise.

After entering an equation press the “Optimize” button in the OPTIMZP.EXE win-
dow. This will construct the truth table, canonical equation, and an optimized form of the
logic equation you enter. Once you have optimized the equation, OPTIMZP.EXE enables
the “Step” button. Pressing this button walks you through the optimization process
step-by-step.

For this exercise you should enter the seven equations for the seven-segment display.
Generate and record the optimize versions of these equations for your lab report and the
next set of exercises. Single step through each of the equations to make sure you under-
stand how OPTIMZP.EXE produces the optimal expressions.

For additional credit: OPTIMZP.EXE generates a single optimal expression for any
given logic function. Other optimal functions may exist. Using the Karnaugh mapping
technique, see if you can determine if other, equivalent, optimal expressions exist. Feed
the optimal equations OPTIMZP.EXE produces and your optimal expressions into the
CANON.EXE program to verify that their canonical forms are identical (and, hence, the
functions are equivalent.

294 Logic Evaluation Exercises

In this set of laboratory exercises you will use the LOGIC.EXE program to enter, edit,
initialize, and evaluation logic expressions. This program lets you enter up to 22 distinct

Page 72

Boolean Algebra

logic equations involving as many as 26 variables plus a clock value. LOGIC.EXE pro-
vides four input variables and 11 output variables (four simulated LEDs and a simulated
seven-segment display). Note: this program requires that you install two files in your
WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH2 subdirectory
for more details.

Execute the LOGIC.EXE program by double-clicking on its icon or using the program
manager’s “File | Run” menu option. This program consists of three main parts: an equa-
tion editor, an initialization screen, and an execution module. LOGIC.EVE uses a set of
tabbed notebook screens to switch between these three modules. By clicking on the “Create”,
Initialize, and Execute tabs at the top of the screen with your mouse, you can select the spe-
cific module you want to use. Typically, you would first create a set of equations on the
Create page and then execute those functions on the Execute page. Optionally, you can ini-
tialize any necessary logic variables (D-Z) on the Initialize page. At any time you can easily
switch between modules by pressing on the appropriate notebook tab. For example, you
could create a set of equations, execute them, and then go back and modify the equations
(e.g., to correct any mistakes) by pressing on the Create tab.

The Create page lets you add, edit, and delete logic equations. Logic equations may
use the variables A-Z plus the “#” symbol (“#” denotes the clock). The equations use a
syntax that is very similar to the logic expressions you’ve used in previous exercises in
this chapter. In fact, there are only two major differences between the functions
LOGIC.EXE allows and the functions that the other programs allow. First, LOGIC.EXE lets
you use the variables A-Z and “#” (the other programs only let you enter functions of four
variables using A-D). The second difference is that LOGIC.EXE functions must take the
form:

variable = expression

where variable is a single alphabetic character E-Z’ and expression is a logic expression
using the variables A-Z and #. An expression may use a maximum of four different vari-
ables (A-Z) plus the clock value (#). During the expression evaluation, the LOGIC.EXE
program will evaluate the expression and store the result into the specified destination
variable.

If you enter more than four variables, LOGIC.EXE will complain about your expression.
LOGIC.EXE can only evaluation expressions that contain a maximum of four alphabetic
characters (not counting the variable to the left of the equals sign). Note that the destina-
tion variable may appear within the expression; the following is perfectly legal:

F = FA+FB

This expression would use the current value of F, along with the current values of Aand B
to compute the new value for F.

Unlike a programming language like “C++”, LOGIC.EXE does not evaluate this
expression only once and store the result into F. It will evaluate the expression several times
until the value for F stabilizes. That is, it will evaluate the expression several times until the
evaluation produces the same result twice in a row. Certain expressions will produce an
infinite loop since they will never produce the same value twice in a row. For example, the
following function is unstable:

F=F
Note that instabilities can cross function boundaries. Consider the following pair of
equations:
F=G
G=F

LOGIC.EXE will attempt to execute this set of equations until the values for the variables
stop changing. However, the system above will produce an infinite loop.

7. A-D are read-only values that you read from a set of switches. Therefore, you cannot store a value into these
variables.

Page 73

Chapter 02

Page 74

Sometimes a system of logic equations will only produce an infinite loop given certain
data values. For example, consider the following of logic equation:

F=G +GF(F=Gxor F

If G’s value is one, this system is unstable. If G’s value is zero, this equation is stable.
Unstable equations like this one are somewhat harder to discover.

LOGIC.EXE will detect and warn you about logic system instabilities when you
attempt to execute the logic functions. Unfortunately, it will not pinpoint the problem for
you; it will simply tell you that the problem exists and expect you to fix it.

The A-D, E-K, and W-Z variables are special. A-D are read-only input variables. E-K
correspond to the seven segments of a simulated seven-segment display on the Execute
page:

W-Z correspond to four output LEDs on the Execute page. If the variables E-K or W-Z con-
tain a one, then the corresponding LED (or segment) turns red (on). If the variable con-
tains zero, the corresponding LED is off.

The Create page contains three important buttons: Add, Edit, and Delete. When you
press the Add button LOGIC.EXE opens a dialog box that lets you enter an equation. Type
your equation (or edit the default equation) and press the Okay button. If there is a prob-
lem with the equation you enter, LOGIC.EXE will report the error and make you fix the
problem, otherwise, LOGIC.EXE will attempt to add this equation to the system you are
building. If a function already exists that has the same destination variable as the equation
you’ve just added, LOGIC.EXE will ask you if you really want to replace that function
before proceeding with the replacement. Once LOGIC.EXE adds your equation to its list,
it also displays the truth table for that equation. You can add up to 22 equations to the sys-
tem (since there are 22 possible destination variables, E-Z). LOGIC.EXE displays those
functions in the list box on the right hand side of the window.

Once you’ve entered two or more logic functions, you can view the truth table for a
given logic function by simply clicking on that function with the mouse in the function list
box.

If you make a mistake in a logic function you can delete that function by selecting
with the mouse and pressing the delete button, or you can edit it by selecting it with the
mouse and pressing the edit button. You can also edit a function by double-clicking on the
function in the expression list.

The Initialize page displays boxes for each of the 26 possible variables. It lets you view
the current values for these 26 variables and change the values of the E-Z variables
(remember, A-D are read-only). As a general rule, you will not need to initialize any of the
variables, so you can skip this page if you don’t need to initialize any variables.

The Execute page contains five buttons of importance: A-D and Pulse.. The A-D toggle
switches let you set the input values for the A-D variables. The Pulse switch toggles the
clock value from zero to one and then back to zero, evaluating the system of logic func-
tions while the clock is in each state.

In addition to the input buttons, there are several outputs on the Execute page. First, of
course, are the four LEDs (W, X, Y, and Z) as well as the seven-segment display (output
variables E-K as noted above). In addition to the LEDs, there is an Instability annunciator
that turns red if LOGIC.EXE detects an instability in the system. There is also a small
panel that displays the current values of all the system variables at the bottom of the win-
dow.

Boolean Algebra

To execute the system of equations simply change one of the input values (A-D) or
press the Pulse button. LOGIC.EXE will automatically reevaluate the system of equations
whenever A-D or # changes.

To familiarize yourself with the LOGIC.EXE program, enter the following equations
into the equation editor:

W= AB A and B
X=A+B Aor B
Y=AB+ AB A xor B
Z=A not A

After entering these equations, go to the execute page and enter the four values 00, 01, 10,
and 11 for BA. Note the values for W, X, Y, and Z for your lab report.

The LOGIC.EXE program simulates a seven segment display. Variables E-K light the
individual segments as follows:

<

Here are the segments to light for the binary values DCBA = 0000 - 1001:

U iddH
S0

Enter the seven equations for these segments into LOGIC.EXE and try out each of the pat-
terns (0000 through 1111). Hint: use the optimized equations you developed earlier.
Optional, for additional credit: enter the equations for the 16 hexadecimal values and
cycle through those 16 values. Include the results in your lab manual.

A simple sequential circuit. For this exercise you will enter the logic equations for a
simple set / reset flip-flop. The circuit diagram is

A_

B_

A Set/Reset Flip-Flop
Since there are two outputs, this circuit has two corresponding logic equations. They
are
X = (A’
Y = (BX)’
These two equations form a sequential circuit since they both use variables that are
function outputs. In particular, Y uses the previous value for X and X uses the previous
value for Y when computing new values for X and Y.

Enter these two equations into LOGIC.EXE. Set the A and B inputs to one (the normal
or quiescent state) and run the logic simulation. Try setting the A switch to zero and deter-

Page 75

Chapter 02

Clk (#)

Page 76

mine what happens. Press the Pulse button several times with A still at zero to see what
happens. Then switch A back to one and repeat this process. Now try this experiment
again, this time setting B to zero. Finally, try setting both A and B to zero and then press the
Pulse key several times while they are zero. Then set A back to one. Try setting both to zero
and then set B back to one. For your lab report: provide diagrams for the switch settings
and resultant LED values for each time you toggle one of the buttons.

A true D flip-flop only latches the data on the D input during a clock transition from
low to high. In this exercise you will simulate a D flip-flop. The circuit diagram for a true
D flip-flop is

"

D

M?W\
o

-

ATrue D flip-flop

F=(19]
G = (#F)’
H=(GH)’
L= (D9
X = (G’
Y= (9

Enter this set of equations and then test your flip-flop by entering different values on
the D input switch and pressing the clock pulse button. Explain your results in your lab
report.

In this exercise you will build a three-bit shift register using the logic equations for a
true D flip-flop. To construct a shift register, you connect the outputs from each flip-flop to
the input of the next flip-flop. The data input line provides the input to the first flip-flop,
the last output line is the “carry out” of the circuit. Using a simple rectangle to represent a
flip-flop and ignoring the Q’ output (since we don’t use it), the schematic for a four-bit
shift register looks something like the following:

Boolean Algebra

Clk (#)

Data In—l

D D
(I? Q
|

=—TO00

X Y
A Three-hit Shift Register Built from D Flip-flops

In the previous exercise you used six boolean expressions to define the D flip-flop.
Therefore, we will need a total of 18 boolean expressions to implement a three-bit
flip-flop. These expressions are

Flip-Flop #1:
W= (R’
F=(09’
G = (F#)’
H=(G#)’
| = (D’
R=(HwW’

Fl i p-Flop #2:
X = (Kg)’
J = (M’
K= (J#)"
L = (K#M’
M= (W)’
S = (LX)’

Flip-Flop #3:
Y = (0n’
N=(Q’
O = (N#)’
P=(xQ’
Q= (XP)’
T = (PY)’

Enter these equations into LOGIC.EXE. Initialize W, X, and Y to zero. Set D to one and
press the Pulse button once to shift a one into W. Now set D to zero and press the pulse
button several times to shift that single bit through each of the output bits. For your lab
report: try shifting several bit patterns through the shift register. Describe the step-by-step
operation in your lab report.

For additional credit: Describe how to create a recirculating shift register. One whose
output from bit four feeds back into bit zero. What would be the logic equations for such a
shift register? How could you initialize it (since you cannot use the D input) when using
LOGIC.EXE?

Post-lab, for additional credit: Design a two-bit full adder that computes the sum of
BA and DC and stores the binary result to the WXY LEDs. Include the equations and sam-
ple results in your lab report.

2.10 Programming Projects

1

You may write these programs in any HLL your instructor allows (typically C, C++,
or some version of Borland Pascal or Delphi). You may use the generic logic functions
appearing in this chapter if you so desire.

Write a program that reads four values from the user, I, J, K, and L, and plugs these values
into a truth table with B’A’ = I, B’A =], BA’ = K, and BA = L. Ensure that these input val-
ues are only zero or one. Then input a series of pairs of zeros or ones from the user and

Page 77

Chapter 02

2)

3)

4)

5)

plug them into the truth table. Display the result for each computation. Note: do not use
the generic logic function for this program.

Write a program that, given a 4-bit logic function number, displays the truth table for that
function of two variables.

Write a program that, given an 8-bit logic function number, displays the truth table for
that function of three variables.

Write a program that, given a 16-bit logic function number, displays the truth table for that
function of four variables.

Write a program that, given a 16-bit logic function number, displays the canonical equa-
tion for that function (hint: build the truth table).

2.11 Summary

Page 78

Boolean algebra provides the foundation for both computer hardware and software.
A cursory understanding of this mathematical system can help you better appreciate the
connection between software and hardware.

Boolean algebra is a mathematical system with its own set of rules (postulates), theo-
rems, and values. In many respects, boolean algebra is similar to the real-arithmetic alge-
bra you studied in high school. In most respects, however, boolean algebra is actually
easier to learn than real arithmetic algebra. This chapter begins by discussing features of
any algebraic system including operators, closure, commutativity, associativity, distribu-
tion, identity, and inverse. Then it presents some important postulates and theorems from
boolean algebra and discusses the principle of duality that lets you easily prove additional
theorems in boolean algebra. For the details, see

= “Boolean Algebra” on page 43

The Truth Table is a convenient way to visually represent a boolean function or expres-
sion. Every boolean function (or expression) has a corresponding truth table that provides
all possible results for any combination of input values. This chapter presents several dif-
ferent ways to construct boolean truth tables.

Although there are an infinite number of boolean functions you can create given n
input values, it turns out that there are a finite number of unique functions possible for a
given number of inputs. In particular, there are 22" unique boolean functions of n inputs.
For example, there are 16 functions of two variables (2’\22 =16).

Since there are so few boolean functions with only two inputs, it is easy to assign dif-
ferent names to each of these functions (e.g.,, AND, OR, NAND, etc.). For functions of
three or more variables, the number of functions is too large to give each function its own
name. Therefore, we’ll assign a number to these functions based on the bits appearing in
the function’s truth table. For the details, see

= “Boolean Functions and Truth Tables” on page 45

We can manipulate boolean functions and expression algebraically. This allows us to
prove new theorems in boolean algebra, simplify expressions, convert expressions to
canonical form, or show that two expressions are equivalent. To see some examples of
algebraic manipulation of boolean expressions, check out

= “Algebraic Manipulation of Boolean Expressions” on page 48

Since there are an infinite variety of possible boolean functions, yet a finite number of
unique boolean functions (for a fixed number of inputs), clearly there are an infinite num-
ber of different functions that compute the same results. To avoid confusion, logic design-
ers usually specify a boolean function using a canonical form. If two canonical equations
are different, then they represent different boolean functions. This book describes two dif-
ferent canonical forms: the sum of minterms form and the product of maxterms form. To

Boolean Algebra

learn about these canonical forms, how to convert an arbitrary boolean equation to canon-
ical form, and how to convert between the two canonical forms, see

= “Canonical Forms” on page 49

Although the canonical forms provide a unique representation for a given boolean
function, expressions appearing in canonical form are rarely optimal. That is, canonical
expressions often use more literals and operators than other, equivalent, expressions.
When designing an electronic circuit or a section of software involving boolean expres-
sions, most engineers prefer to use an optimized circuit or program since optimized ver-
sions are less expensive and, probably, faster. Therefore, knowing how to create an
optimized form of a boolean expression is very important. This text discusses this subject
in

= “Simplification of Boolean Functions™ on page 52

Boolean algebra isn’t a system designed by some crazy mathematician that has little
importance in the real world. Boolean algebra is the basis for digital logic that is, in turn,
the basis for computer design. Furthermore, there is a one-to-one correspondence between
digital hardware and computer software. Anything you can build in hardware you can
construct with software, and vice versa. This text describes how to implement addition,
decoders, memory, shift registers, and counters using these boolean functions. Likewise,
this text describes how to improve the efficiency of software (e.g., a Pascal program) by
applying the rules and theorems of boolean algebra. For all the details, see

= “What Does This Have To Do With Computers, Anyway?”” on page 59

= “Correspondence Between Electronic Circuits and Boolean Functions” on
page 59

« “Combinatorial Circuits” on page 60

= “Sequential and Clocked Logic” on page 62

= “Okay, What Does It Have To Do With Programming, Then?” on page 64

Page 79

Chapter 02

2.12 Questions

1.

10.

11.
12.

13.
14.
15.

Page 80

What is the identity element with respect to

a) AND b) OR) XOR d) NOT e) NAND f) NOR
Provide truth tables for the following functions of two input variables:

a) AND b) OR) XOR d) NAND e) NOR

f) Equivalence g)A<B h)A>B i) Aimplies B

Provide the truth tables for the following functions of three input variables:
a) ABC (and) b) A+B+C (OR) c) (ABC)’ (NAND)d) (A+B+C)’ (NOR)
e) Equivalence (ABC) + (A’'B’C’) f) XOR (ABC + A'B'C’)’

Provide schematics (electrical circuit diagrams) showing how to implement each of the
functions in question three using only two-input gates and inverters. E.g.,

A) ABC =

A ABC
B

Provide implementations of an AND gate, OR gate, and inverter gate using one or more
NOR gates.

What is the principle of duality? What does it do for us?

Build a single truth table that provides the outputs for the following three boolean func-
tions of three variables:

F.=A+BC

Fy-AB+CB

F,=AB’C' + ABC +C'B'A
Provide the function numbers for the three functions in question seven above.
How many possible (unique) boolean functions are there if the function has
a)oneinput b)twoinputs c)threeinputs d)fourinputs e) five inputs

Simplify the following boolean functions using algebraic transformations. Show your
work.

a) F=AB + AB’ b) F=ABC + BC’ + AC + ABC’

c)F=AB'C’'D’+ A'B'C'D + A'B’'CD + A'B'CD’

d) F=ABC + ABC'+ A'BC’ + AB'C’ + ABC + AB’C

Simplify the boolean functions in question 10 using the mapping method.

Provide the logic equations in canonical form for the boolean functions S;..S¢ for the seven
segment display (see “Combinatorial Circuits” on page 60).

Provide the truth tables for each of the functions in question 12
Minimize each of the functions in question 12 using the map method.
The logic equation for a half-adder (in canonical form) is

Sum =AB’ + A'B Carry = AB

a) Provide an electronic circuit diagram for a half-adder using AND, OR, and Inverter
gates

b) Provide the circuit using only NAND gates

16.

17.

18.

19.

20.

Boolean Algebra

The canonical equations for a full adder take the form:

Sum =A'B’C + ABC’ + AB’C’ + ABC

Carry = ABC + ABC’ + AB’C + A'BC
a) Provide the schematic for these circuits using AND, OR, and inverter gates.
b) Optimize these equations using the map method.

c¢) Provide the electronic circuit for the optimized version (using AND, OR, and inverter
gates).

Assume you have a D flip-flop (use this definition in this text) whose outputs currently
are Q=1 and Q’=0. Describe, in minute detail, exactly what happens when the clock line
goes

a) from low to high with D=0

b) from high to low with D=0

Rewrite the following Pascal statements to make them more efficient:
a) if (x or (not x and y)) then write(‘1’);

b) while(not x and not y) do somefunc(x,y);

¢) if not((x <>y) and (a = b)) then Something;

Provide canonical forms (sum of minterms) for each of the following:
a) F(AB,C)=ABC+AB+BC b)F(ABCD)=A+B+CD’ +D

¢) F(AB,C)=AB+B’A d) F(AB,C,D) = A +BD’

e) F(A,B,C,D) =A'B'C’'D + AB’'C’'D’ + CD + A'BCD’

Convert the sum of minterms forms in question 19 to the product of maxterms forms.

Page 81

Chapter 02

Page 82

System Organization Chapter Three

To write even a modest 80x86 assembly language program requires considerable
familiarity with the 80x86 family. To write good assembly language programs requires a
strong knowledge of the underlying hardware. Unfortunately, the underlying hardware is
not consistent. Techniques that are crucial for 8088 programs may not be useful on 80486
systems. Likewise, programming techniques that provide big performance boosts on an
80486 chip may not help at all on an 80286. Fortunately, some programming techniques
work well whatever microprocessor you’re using. This chapter discusses the effect hard-
ware has on the performance of computer software.

3.0 Chapter Overview

This chapter describes the basic components that make up a computer system: the
CPU, memory, I/0, and the bus that connects them. Although you can write software that
is ignorant of these concepts, high performance software requires a complete understand-
ing of this material.

This chapter begins by discussing bus organization and memory organization. These
two hardware components will probably have a bigger performance impact on your soft-
ware than the CPU’s speed. Understanding the organization of the system bus will allow
you to design data structures that operate and maximum speed. Similarly, knowing about
memory performance characteristics, data locality, and cache operation can help you
design software that runs as fast as possible. Of course, if you’re not interested in writing
code that runs as fast as possible, you can skip this discussion; however, most people do
care about speed at one point or another, so learning this information is useful.

Unfortunately, the 80x86 family microprocessors are a complex group and often over-
whelm beginning students. Therefore, this chapter describes four hypothetical members
of the 80x86 family: the 886, 8286, the 8486, and the 8686 microprocessors. These represent
simplified versions of the 80x86 chips and allow a discussion of various architectural fea-
tures without getting bogged down by huge CISC instruction sets. This text uses the x86
hypothetical processors to describe the concepts of instruction encoding, addressing
modes, sequential execution, the prefetch queue, pipelining, and superscalar operation.
Once again, these are concepts you do not need to learn if you only want to write correct
software. However, if you want to write fast software as well, especially on advanced pro-
cessors like the 80486, Pentium, and beyond, you will need to learn about these concepts.

Some might argue that this chapter gets too involved with computer architecture.
They feel such material should appear in an architectural book, not an assembly language
programming book. This couldn’t be farther from the truth! Writing good assembly lan-
guage programs requires a strong knowledge of the architecture. Hence the emphasis on
computer architecture in this chapter.

3.1 The Basic System Components

The basic operational design of a computer system is called its architecture. John Von
Neumann, a pioneer in computer design, is given credit for the architecture of most com-
puters in use today. For example, the 80x86 family uses the Von Neumann architecture
(VNA). A typical Von Neumann system has three major components: the central processing
unit (or CPU), memory, and input/output (or 1/O). The way a system designer combines
these components impacts system performance (see Figure 3.1).

In VNA machines, like the 80x86 family, the CPU is where all the action takes place.
All computations occur inside the CPU. Data and CPU instructions reside in memory
until required by the CPU. To the CPU, most 170 devices look like memory because the

Page 83

Chapter 03

Memory

/O Devices

Figure 3.1 Typical Von Neumann Machine

CPU can store data to an output device and read data from an input device. The major dif-
ference between memory and 170 locations is the fact that 1/0 locations are generally
associated with external devices in the outside world.

3.1.1 The System Bus

The system bus connects the various components of a VNA machine. The 80x86 family
has three major busses: the address bus, the data bus, and the control bus. A bus is a collec-
tion of wires on which electrical signals pass between components in the system. These
busses vary from processor to processor. However, each bus carries comparable informa-
tion on all processors; e.g., the data bus may have a different implementation on the 80386
than on the 8088, but both carry data between the processor, /0, and memory.

A typical 80x86 system component uses standard TTL logic levels. This means each
wire on a bus uses a standard voltage level to represent zero and onel. We will always
specify zero and one rather than the electrical levels because these levels vary on different
processors (especially laptops).

3.1.1.1 The Data Bus

The 80x86 processors use the data bus to shuffle data between the various components
in a computer system. The size of this bus varies widely in the 80x86 family. Indeed, this
bus defines the “size” of the processor.

On typical 80x86 systems, the data bus contains eight, 16, 32, or 64 lines. The 8088 and
80188 microprocessors have an eight bit data bus (eight data lines). The 8086, 80186, 80286,
and 80386SX processors have a 16 bit data bus. The 80386DX, 80486, and Pentium Over-
drived processors have a 32 bit data bus. The Pentiumd and Pentium Pro processors
have a 64 bit data bus. Future versions of the chip (the 80686/80786?) may have a larger
bus.

Having an eight bit data bus does not limit the processor to eight bit data types. It
simply means that the processor can only access one byte of data per memory cycle (see

1. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the
range 2.4-5v. If the signal on a bus line is between 0.8v and 2.4y, it’s value is indeterminate. Such a condition
should only exist when a bus line is changing from one state to the other.

Page 84

System Organization

The “Size” of a Processor

There has been a considerable amount of disagreement among hardware and software engineers
concerning the “size” of a processor like the 8088. From a hardware designer’s perspective, the 8088
is purely an eight bit processor — it has only eight data lines and is bus compatible with memory
and 1/0 devices designed for eight bit processors. Software engineers, on the other hand, have
argued that the 8088 is a 16 bit processor. From their perspective they cannot distinguish between
the 8088 (with an eight-bit data bus) and the 8086 (which has a 16-bit data bus). Indeed, the only dif-
ference is the speed at which the two processors operate; the 8086 with a 16 bit data bus is faster.
Eventually, the hardware designers won out. Despite the fact that software engineers cannot differ-
entiate the 8088 and 8086 in their programs, we call the 8088 an eight bit processor and the 8086 a 16
bit processor. Likewise, the 80386SX (which has a sixteen bit data bus) is a 16 bit processor while the
80386DX (which has a full 32 bit data bus) is a 32 bit processor.

“The Memory Subsystem” on page 87 for a description of memory cycles). Therefore, the
eight bit bus on an 8088 can only transmit half the information per unit time (memory
cycle) as the 16 bit bus on the 8086. Therefore, processors with a 16 bit bus are naturally
faster than processors with an eight bit bus. Likewise, processors with a 32 bit bus are
faster than those with a 16 or eight bit data bus. The size of the data bus affects the perfor-
mance of the system more than the size of any other bus.

You’ll often hear a processor called an eight, 16, 32, or 64 hit processor. While there is a
mild controversy concerning the size of a processor, most people now agree that the num-
ber of data lines on the processor determines its size. Since the 80x86 family busses are
eight, 16, 32, or 64 bits wide, most data accesses are also eight, 16, 32, or 64 bits. Although
it is possible to process 12 bit data with an 8088, most programmers process 16 bits since
the processor will fetch and manipulate 16 bits anyway. This is because the processor
always fetches eight bits. To fetch 12 bits requires two eight bit memory operations. Since
the processor fetches 16 bits rather than 12, most programmers use all 16 bits. In general,
manipulating data which is eight, 16, 32, or 64 bits in length is the most efficient.

Although the 16, 32, and 64 bit members of the 80x86 family can process data up to the
width of the bus, they can also access smaller memory units of eight, 16, or 32 bits. There-
fore, anything you can do with a small data bus can be done with a larger data bus as well;
the larger data bus, however, may access memory faster and can access larger chunks of
data in one memory operation. You'll read about the exact nature of these memory
accesses a little later (see “The Memory Subsystem” on page 87).

Table 17: 80x86 Processor Data Bus Sizes

Processor DataBus Size

8088 8
80188 8
8086 16
80186 16
80286 16
80386sx 16
80386dx 32
80486 32

80586 class/ Pentium (Pro) 64

Page 85

Chapter 03

3.1.1.2

The Address Bus

The data bus on an 80x86 family processor transfers information between a particular
memory location or I/0 device and the CPU. The only question is, “Which memory location
or 1/O device? ” The address bus answers that question. To differentiate memory locations
and 170 devices, the system designer assigns a uniqgue memory address to each memory
element and 1/0 device. When the software wants to access some particular memory
location or 1/0 device, it places the corresponding address on the address bus. Circuitry
associated with the memory or 1/0 device recognizes this address and instructs the mem-
ory or I/0 device to read the data from or place data on the data bus. In either case, all
other memory locations ignore the request. Only the device whose address matches the
value on the address bus responds.

With a single address line, a processor could create exactly two unique addresses: zero
and one. With n address lines, the processor can provide 2" unique addresses (since there
are 2" unique values in an n-bit binary number). Therefore, the number of bits on the
address bus will determine the maximum number of addressable memory and 170 loca-
tions. The 8088 and 8086, for example, have 20 bit address busses. Therefore, they can
access up to 1,048,576 (or 220) memory locations. Larger address busses can access more
memory. The 8088 and 8086, for example, suffer from an anemic address space2 — their
address bus is too small. Later processors have larger address busses:

Table 18: 80x86 Family Address Bus Sizes

Processor Addre_ss Bus Max Addressable In English!
Size Memory

8088 20 1,048,576 One Megabyte
8086 20 1,048,576 One Megabyte
80188 20 1,048,576 One Megabyte
80186 20 1,048,576 One Megabyte
80286 24 16,777,216 Sixteen Megabytes
803865« 24 16,777,216 Sixteen Megabytes
803860x 32 4,294,976,296 Four Gigabytes
80486 32 4,294,976,296 Four Gigabytes
80586 / Pentium (Pro) 32 4,294,976,296 Four Gigabytes

Future 80x86 processors will probably support 48 bit address busses. The time is com-
ing when most programmers will consider four gigabytes of storage to be too small, much
like they consider one megabyte insufficient today. (There was a time when one megabyte
was considered far more than anyone would ever need!) Fortunately, the architecture of
the 80386, 80486, and later chips allow for an easy expansion to a 48 bit address bus
through segmentation.

3.1.13

The Control Bus

The control bus is an eclectic collection of signals that control how the processor com-
municates with the rest of the system. Consider for a moment the data bus. The CPU
sends data to memory and receives data from memory on the data bus. This prompts the
question, “Is it sending or receiving?” There are two lines on the control bus, read and
write, which specify the direction of data flow. Other signals include system clocks, inter-
rupt lines, status lines, and so on. The exact make up of the control bus varies among pro-

2. The address space is the set of all addressable memory locations.

Page 86

System Organization

cessors in the 80x86 family. However, some control lines are common to all processors and
are worth a brief mention.

The read and write control lines control the direction of data on the data bus. When
both contain a logic one, the CPU and memory-1/0 are not communicating with one
another. If the read line is low (logic zero), the CPU is reading data from memory (that is,
the system is transferring data from memory to the CPU). If the write line is low, the sys-
tem transfers data from the CPU to memory.

The byte enable lines are another set of important control lines. These control lines
allow 16, 32, and 64 bit processors to deal with smaller chunks of data. Additional details
appear in the next section.

The 80x86 family, unlike many other processors, provides two distinct address spaces:
one for memory and one for 1/0. While the memory address busses on various 80x86 pro-
cessors vary in size, the 1/0 address bus on all 80x86 CPUs is 16 bits wide. This allows the
processor to address up to 65,536 different 1/0 locations. As it turns out, most devices (like
the keyboard, printer, disk drives, etc.) require more than one 1/0 location. Nonetheless,
65,536 170 locations are more than sufficient for most applications. The original IBM PC
design only allowed the use of 1,024 of these.

Although the 80x86 family supports two address spaces, it does not have two address
busses (for /0 and memory). Instead, the system shares the address bus for both 1/0 and
memory addresses. Additional control lines decide whether the address is intended for
memory or 1/0. When such signals are active, the 170 devices use the address on the L.O.
16 bits of the address bus. When inactive, the 1/0 devices ignore the signals on the
address bus (the memory subsystem takes over at that point).

3.1.2 The Memory Subsystem

A typical 80x86 processor addresses a maximum of 2" different memory locations,
where n is the number of bits on the address bus®. As you’ve seen already, 80x86 proces-
sors have 20, 24, and 32 bit address busses (with 48 bits on the way).

Of course, the first question you should ask is, “What exactly is a memory location?”
The 80x86 supports byte addressable memory. Therefore, the basic memory unit is a byte. So
with 20, 24, and 32 address lines, the 80x86 processors can address one megabyte, 16
megabytes, and four gigabytes of memory, respectively.

Think of memory as a linear array of bytes. The address of the first byte is zero and the
address of the last byte is 2"-1. For an 8088 with a 20 bit address bus, the following
pseudo-Pascal array declaration is a good approximation of memory:

Memory: array [0..1048575] of byte;

To execute the equivalent of the Pascal statement “Memory [125] := 0;” the CPU places
the value zero on the data bus, the address 125 on the address bus, and asserts the write
line (since the CPU is writing data to memory, see Figure 3.2)

To execute the equivalent of “CPU := Memory [125];” the CPU places the address 125
on the address bus, asserts the read line (since the CPU is reading data from memory), and
then reads the resulting data from the data bus (see Figure 3.2).

The above discussion applies only when accessing a single byte in memory. So what
happens when the processor accesses a word or a double word? Since memory consists of
an array of bytes, how can we possibly deal with values larger than eight bits?

Different computer systems have different solutions to this problem. The 80x86 family
deals with this problem by storing the L.O. byte of a word at the address specified and the
H.O. byte at the next location. Therefore, a word consumes two consecutive memory

3. This is the maximum. Most computer systems built around 80x86 family do not include the maximum address-
able amount of memory.

Page 87

Chapter 03

Address = 125 Memory
Data =0 Location

CPU > 125
Write = O

=

Figure 3.2 Memory Write Operation

Address = 125 Memory
Data = Memory[125] Location
Read =0

=

Figure 3.3 Memory Read Operation

Page 88

addresses (as you would expect, since a word consists of two bytes). Similarly, a double
word consumes four consecutive memory locations. The address for the double word is
the address of its L.O. byte. The remaining three bytes follow this L.O. byte, with the H.O.
byte appearing at the address of the double word plus three (see Figure 3.4) Bytes, words,
and double words may begin at any valid address in memory. We will soon see, however,
that starting larger objects at an arbitrary address is not a good idea.

Note that it is quite possible for byte, word, and double word values to overlap in
memory. For example, in Figure 3.4 you could have a word variable beginning at address
193, a byte variable at address 194, and a double word value beginning at address 192.
These variables would all overlap.

The 8088 and 80188 microprocessors have an eight bit data bus. This means that the
CPU can transfer eight bits of data at a time. Since each memory address corresponds to
an eight bit byte, this turns out to be the most convenient arrangement (from the hardware
perspective), see Figure 3.5.

The term “byte addressable memory array” means that the CPU can address memory
in chunks as small as a single byte. It also means that this is the smallest unit of memory
you can access at once with the processor. That is, if the processor wants to access a four
bit value, it must read eight bits and then ignore the extra four bits. Also realize that byte
addressability does not imply that the CPU can access eight bits on any arbitrary bit
boundary. When you specify address 125 in memory, you get the entire eight bits at that
address, nothing less, nothing more. Addresses are integers; you cannot, for example,
specify address 125.5 to fetch fewer than eight bits.

The 8088 and 80188 can manipulate word and double word values, even with their
eight bit data bus. However, this requires multiple memory operations because these pro-
cessors can only move eight bits of data at once. To load a word requires two memory
operations; to load a double word requires four memory operations.

System Organization

195+
Double Word
at address 194

192

191

Address

190
Word at 189
address 188

188

187
Byte at N
address 186 186

Figure 3.4 Byte, Word, and Double word Storage in Memory

CPU

Address

Data comes from memory
eight bits at a time.

Data

Figure 3.5 Eight-Bit CPU-Memory Interface

The 8086, 80186, 80286, and 80386sx processors have a 16 bit data bus. This allows
these processors to access twice as much memory in the same amount of time as their
eight bit brethren. These processors organize memory into two banks: an “even” bank and
an “odd” bank (see Figure 3.6). Figure 3.7 illustrates the connection to the CPU (D0-D7
denotes the L.O. byte of the data bus, D8-D15 denotes the H.O. byte of the data bus):

The 16 bit members of the 80x86 family can load a word from any arbitrary address.
As mentioned earlier, the processor fetches the L.O. byte of the value from the address
specified and the H.O. byte from the next consecutive address. This creates a subtle prob-
lem if you look closely at the diagram above. What happens when you access a word on
an odd address? Suppose you want to read a word from location 125. Okay, the L.O. byte
of the word comes from location 125 and the H.O. word comes from location 126. What'’s
the big deal? It turns out that there are two problems with this approach.

Page 89

Chapter 03

Even Odd
6 7
4 5
2 3
0 1

Figure 3.6 Byte Addresses in Word Memory

Even Odd

Address

Figure 3.7 16-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

Page 90

First, look again at Figure 3.7. Data bus lines eight through 15 (the H.O. byte) connect
to the odd bank, and data bus lines zero through seven (the L.O. byte) connect to the even
bank. Accessing memory location 125 will transfer data to the CPU on the H.O. byte of the
data bus; yet we want this data in the L.O. byte! Fortunately, the 80x86 CPUs recognize
this situation and automatically transfer the data on D8-D15 to the L.O. byte.

The second problem is even more obscure. When accessing words, we’re really access-
ing two separate bytes, each of which has its own byte address. So the question arises,
“What address appears on the address bus?” The 16 bit 80x86 CPUs always place even
addresses on the bus. Even bytes always appear on data lines D0O-D7 and the odd bytes
always appear on data lines D8-D15. If you access a word at an even address, the CPU can
bring in the entire 16 bit chunk in one memory operation. Likewise, if you access a single
byte, the CPU activates the appropriate bank (using a “byte enable” control line). If the
byte appeared at an odd address, the CPU will automatically move it from the H.O. byte
on the bus to the L.O. byte.

So what happens when the CPU accesses a word at an odd address, like the example
given earlier? Well, the CPU cannot place the address 125 onto the address bus and read
the 16 bits from memory. There are no odd addresses coming out of a 16 bit 80x86 CPU.
The addresses are always even. So if you try to put 125 on the address bus, this will put
124 on to the address bus. Were you to read the 16 bits at this address, you would get the
word at addresses 124 (L.O. byte) and 125 (H.O. byte) — not what you’d expect. Accessing
a word at an odd address requires two memory operations. First the CPU must read the
byte at address 125, then it needs to read the byte at address 126. Finally, it needs to swap
the positions of these bytes internally since both entered the CPU on the wrong half of the
data bus.

System Organization

D16-D23
D24-D31

Figure 3.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

Figure 3.9 Accessing a Word at (Address mod 4) = 3.

Fortunately, the 16 bit 80x86 CPUs hide these details from you. Your programs can
access words at any address and the CPU will properly access and swap (if necessary) the
data in memory. However, to access a word at an odd address requires two memory oper-
ations (just like the 8088/80188). Therefore, accessing words at odd addresses on a 16 bit
processor is slower than accessing words at even addresses. By carefully arranging how
yOu use memory, you can improve the speed of your program.

Accessing 32 bit quantities always takes at least two memory operations on the 16 bit
processors. If you access a 32 bit quantity at an odd address, the processor will require
three memory operations to access the data.

The 32 bit 80x86 processors (the 80386, 80486, and Pentium Overdrive) use four banks
of memory connected to the 32 bit data bus (see Figure 3.8). The address placed on the
address bus is always some multiple of four. Using various “byte enable” lines, the CPU
can select which of the four bytes at that address the software wants to access. As with the
16 bit processor, the CPU will automatically rearrange bytes as necessary.

With a 32 bit memory interface, the 80x86 CPU can access any byte with one memory
operation. If (address MOD 4) does not equal three, then a 32 bit CPU can access a word at
that address using a single memory operation. However, if the remainder is three, then it
will take two memory operations to access that word (see Figure 3.9). This is the same
problem encountered with the 16 bit processor, except it occurs half as often.

A 32 bit CPU can access a double word in a single memory operation if the address of
that value is evenly divisible by four. If not, the CPU will require two memory operations.

Once again, the CPU handles all of this automatically. In terms of loading correct data
the CPU handles everything for you. However, there is a performance benefit to proper
data alignment. As a general rule you should always place word values at even addresses
and double word values at addresses which are evenly divisible by four. This will speed
up your program.

Page 91

Chapter 03

3.1.3

The 1/0O Subsystem

Besides the 20, 24, or 32 address lines which access memory, the 80x86 family provides
a 16 bit 1/0 address bus. This gives the 80x86 CPUs two separate address spaces: one for
memory and one for 1/0 operations. Lines on the control bus differentiate between mem-
ory and I/0 addresses. Other than separate control lines and a smaller bus, 1/0 address-
ing behaves exactly like memory addressing. Memory and 1/0 devices both share the
same data bus and the L.O. 16 lines on the address bus.

There are three limitations to the 1/0 subsystem on the IBM PC.: first, the 80x86 CPUs
require special instructions to access 1/0 devices; second, the designers of the IBM PC
used the “best” 1/0 locations for their own purposes, forcing third party developers to
use less accessible locations; third, 80x86 systems can address no more than 65,536 (216)
1/0 addresses. When you consider that a typical VGA display card requires over 128,000
different locations, you can see a problem with the size of 1/0 bus.

Fortunately, hardware designers can map their 1/0 devices into the memory address
space as easily as they can the 1/0 address space. So by using the appropriate circuitry,
they can make their 1/0 devices look just like memory. This is how, for example, display
adapters on the IBM PC work.

Accessing 1/0 devices is a subject we’ll return to in later chapters. For right now you
can assume that I/0 and memory accesses work the same way.

3.2 System Timing

Although modern computers are quite fast and getting faster all the time, they still
require a finite amount of time to accomplish even the smallest tasks. On Von Neumann
machines, like the 80x86, most operations are serialized. This means that the computer exe-
cutes commands in a prescribed order. It wouldn’t do, for example, to execute the state-
ment 1:=1*5+2; before 1:=J; in the following sequence:

I J;
I I * 5+ 2;

Clearly we need some way to control which statement executes first and which executes
second.

Of course, on real computer systems, operations do not occur instantaneously. Mov-
ing a copy of J into | takes a certain amount of time. Likewise, multiplying I by five and
then adding two and storing the result back into | takes time. As you might expect, the sec-
ond Pascal statement above takes quite a bit longer to execute than the first. For those
interested in writing fast software, a natural question to ask is, “How does the processor
execute statements, and how do we measure how long they take to execute?”

The CPU is a very complex piece of circuitry. Without going into too many details, let
us just say that operations inside the CPU must be very carefully coordinated or the CPU
will produce erroneous results. To ensure that all operations occur at just the right
moment, the 80x86 CPUs use an alternating signal called the system clock.

3.2.1

Page 92

The System Clock

At the most basic level, the system clock handles all synchronization within a computer
system. The system clock is an electrical signal on the control bus which alternates
between zero and one at a periodic rate (see Figure 3.10). CPUs are a good example of a
complex synchronous logic system (see the previous chapter). The system clock gates
many of the logic gates that make up the CPU allowing them to operate in a synchronized
fashion.

System Organization

One Clock
“Period”

[——

: |

Time —

Figure 3.10 The System Clock

The frequency with which the system clock alternates between zero and one is the sys-
tem clock frequency. The time it takes for the system clock to switch from zero to one and
back to zero is the clock period. One full period is also called a clock cycle. On most modern
systems, the system clock switches between zero and one at rates exceeding several mil-
lion times per second. The clock frequency is simply the number of clock cycles which
occur each second. A typical 80486 chip runs at speeds of 66million cycles per second.
“Hertz” (Hz) is the technical term meaning one cycle per second. Therefore, the aforemen-
tioned 80486 chip runs at 66 million hertz, or 66 megahertz (MHz). Typical frequencies for
80x86 parts range from 5 MHz up to 200 MHz and beyond. Note that one clock period (the
amount of time for one complete clock cycle) is the reciprocal of the clock frequency. For
example, a 1 MHz clock would have a clock period of one microsecond (1/1,000,000th ofa
second). Likewise, a 10 MHz clock would have a clock period of 100 nanoseconds (100 bil-
lionths of a second). A CPU running at 50 MHz would have a clock period of 20 nanosec-
onds. Note that we usually express clock periods in millionths or billionths of a second.

—

To ensure synchronization, most CPUs start an operation on either the falling edge
(when the clock goes from one to zero) or the rising edge (when the clock goes from zero to
one). The system clock spends most of its time at either zero or one and very little time
switching between the two. Therefore clock edge is the perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot perform
tasks any faster than the clock®. However, just because a CPU is running at some clock fre-
quency doesn’t mean that it is executing that many operations each second. Many opera-
tions take multiple clock cycles to complete so the CPU often performs operations at a
significantly lower rate.

3.2.2 Memory Access and the System Clock

Memory access is probably the most common CPU activity. Memory access is defi-
nitely an operation synchronized around the system clock. That is, reading a value from
memory or writing a value to memory occurs no more often than once every clock cycle®.
Indeed, on many 80x86 processors, it takes several clock cycles to access a memory loca-
tion. The memory access time is the number of clock cycles the system requires to access a
memory location; this is an important value since longer memory access times result in
lower performance.

Different 80x86 processors have different memory access times ranging from one to
four clock cycles. For example, the 8088 and 8086 CPUs require four clock cycles to access
memory; the 80486 requires only one. Therefore, the 80486 will execute programs which
access memory faster than an 8086, even when running at the same clock frequency.

4. Some later versions of the 80486 use special clock doubling circuitry to run twice as fast as the input clock fre-
quency. For example, with a 25 MHz clock the chip runs at an effective rate of 50 MHz. However, the internal
clock frequency is 50 MHz. The CPU still won’t execute operations faster than 50 million operations per second.
5. This is true even on the clock doubled CPUs.

Page 93

Chapter 03

period

the address bus
during this time

-

:cr:: a%iil:epsﬂ:gﬁs / The CPU reads the
datafromthedata
bus during this time

The memory system must period

decodetheaddressand
placethedataonthedata
bus during this time period

Figure 3.11 An 80486 Memory Read Cycle

at this time

The CPU places Sometime before theend
theaddressand of the clock period the
dataontothebus memory subsystem must
grab and store the specified
\ value
|

Figure 3.12 An 80486 Memory Write Cycle

Page 94

Memory access time is the amount of time between a memory operation request (read
or write) and the time the memory operation completes. On a 5 MHz 8088/8086 CPU the
memory access time is roughly 800 ns (nanoseconds). On a 50 MHz 80486, the memory
access time is slightly less than 20 ns. Note that the memory access time for the 80486 is 40
times faster than the 8088/8086. This is because the 80486’s clock frequency is ten times
faster and it uses one-fourth the clock cycles to access memory:.

When reading from memory, the memory access time is the amount of time from the
point that the CPU places an address on the address bus and the CPU takes the data off
the data bus. On an 80486 CPU with a one cycle memory access time, a read looks some-
thing like shown in Figure 3.11. Writing data to memory is similar (see Figure 3.11).

Note that the CPU doesn’t wait for memory. The access time is specified by the clock
frequency. If the memory subsystem doesn’t work fast enough, the CPU will read garbage
data on a memory read operation and will not properly store the data on a memory write
operation. This will surely cause the system to fail.

Memory devices have various ratings, but the two major ones are capacity and speed
(access time). Typical dynamic RAM (random access memory) devices have capacities of
four (or more) megabytes and speeds of 50-100 ns. You can buy bigger or faster devices,
but they are much more expensive. A typical 33 MHz 80486 system uses 70 ns memory
devices.

Wait just a second here! At 33 MHz the clock period is roughly 33 ns. How can a sys-
tem designer get away with using 70 ns memory? The answer is wait states.

System Organization

5 ns delay
through —p
decoder

address

5 ns delay

<4—— through
buffer

Figure 3.13 Decoding and Buffing Delays

3.2.3

Wait States

A wait state is nothing more than an extra clock cycle to give some device time to
complete an operation. For example, a 50 MHz 80486 system has a 20 ns clock period. This
implies that you need 20 ns memory. In fact, the situation is worse than this. In most com-
puter systems there is additional circuitry between the CPU and memory: decoding and
buffering logic. This additional circuitry introduces additional delays into the system (see
Figure 3.13). In this diagram, the system loses 10ns to buffering and decoding. So if the
CPU needs the data back in 20 ns, the memory must respond in less than 10 ns.

You can actually buy 10ns memory. However, it is very expensive, bulky, consumes a
lot of power, and generates a lot of heat. These are bad attributes. Supercomputers use this
type of memory. However, supercomputers also cost millions of dollars, take up entire
rooms, require special cooling, and have giant power supplies. Not the kind of stuff you
want sitting on your desk.

If cost-effective memory won’t work with a fast processor, how do companies manage
to sell fast PCs? One part of the answer is the wait state. For example, if you have a 20
MHz processor with a memory cycle time of 50 ns and you lose 10 ns to buffering and
decoding, you’ll need 40 ns memory. What if you can only afford 80 ns memory in a 20
MHz system? Adding a wait state to extend the memory cycle to 100 ns (two clock cycles)
will solve this problem. Subtracting 10ns for the decoding and buffering leaves 90 ns.
Therefore, 80 ns memory will respond well before the CPU requires the data.

Almost every general purpose CPU in existence provides a signal on the control bus
to allow the insertion of wait states. Generally, the decoding circuitry asserts this line to
delay one additional clock period, if necessary. This gives the memory sufficient access
time, and the system works properly (see Figure 3.14).

Sometimes a single wait state is not sufficient. Consider the 80486 running at 50 MHz.
The normal memory cycle time is less than 20 ns. Therefore, less than 10 ns are available
after subtracting decoding and buffering time. If you are using 60 ns memory in the sys-
tem, adding a single wait state will not do the trick. Each wait state gives you 20 ns, so
with a single wait state you would need 30 ns memory. To work with 60 ns memory you
would need to add three wait states (zero wait states = 10 ns, one wait state = 30 ns, two
wait states = 50 ns, and three wait states = 70 ns).

Needless to say, from the system performance point of view, wait states are not a good
thing. While the CPU is waiting for data from memory it cannot operate on that data.

Page 95

Chapter 03

|
The CPU reads the
f datafromthedata
The memory system must bus during this time

The CPU places decodetheaddressand period
theaddresson placethedataonthedata
the address bus bus during this time period,
during this time since one clock cycle is insufficient,
period the systems adds a second clock cycle,

await state

Figure 3.14 Inserting a Wait State into a Memory Read Operation

Adding a single wait state to a memory cycle on an 80486 CPU doubles the amount of time
required to access the data. This, in turn, halves the speed of the memory access. Running
with a wait state on every memory access is almost like cutting the processor clock fre-
quency in half. You’re going to get a lot less work done in the same amount of time.

You’ve probably seen the ads. “80386DX, 33 MHz, 8 megabytes 0 wait state RAM...
only $1,000!” If you look closely at the specs you’ll notice that the manufacturer is using 80
ns memory. How can they build systems which run at 33 MHz and have zero wait states?
Easy. They lie.

There is no way an 80386 can run at 33 MHz, executing an arbitrary program, without
ever inserting a wait state. It is flat out impossible. However, it is quite possible to design
a memory subsystem which under certain, special, circumstances manages to operate with-
out wait states part of the time. Most marketing types figure if their system ever operates
at zero wait states, they can make that claim in their literature. Indeed, most marketing
types have no idea what a wait state is other than it’s bad and having zero wait states is
something to brag about.

However, we’re not doomed to slow execution because of added wait states. There are
several tricks hardware designers can play to achieve zero wait states most of the time. The
most common of these is the use of cache (pronounced “cash”) memory.

3.2.4

Page 96

Cache Memory

If you look at a typical program (as many researchers have), you’ll discover that it
tends to access the same memory locations repeatedly. Furthermore, you also discover
that a program often accesses adjacent memory locations. The technical names given to
this phenomenon are temporal locality of reference and spatial locality of reference. When
exhibiting spatial locality, a program accesses neighboring memory locations. When dis-
playing temporal locality of reference a program repeatedly accesses the same memory
location during a short time period. Both forms of locality occur in the following Pascal
code segment:

for i :=0to 10 do
Al[i] :=0;

There are two occurrences each of spatial and temporal locality of reference within this
loop. Let’s consider the obvious ones first.

System Organization

In the Pascal code above, the program references the variable i several times. The for
loop compares i against 10 to see if the loop is complete. It also increments i by one at the
bottom of the loop. The assignment statement also uses i as an array index. This shows
temporal locality of reference in action since the CPU accesses i at three points in a short
time period.

This program also exhibits spatial locality of reference. The loop itself zeros out the
elements of array A by writing a zero to the first location in A, then to the second location
in A, and so on. Assuming that Pascal stores the elements of A into consecutive memory
locations®, each loop iteration accesses adjacent memory locations.

There is an additional example of temporal and spatial locality of reference in the Pas-
cal example above, although it is not so obvious. Computer instructions which tell the sys-
tem to do the specified task also appear in memory. These instructions appear
sequentially in memory — the spatial locality part. The computer also executes these
instructions repeatedly, once for each loop iteration — the temporal locality part.

If you look at the execution profile of a typical program, you’d discover that the pro-
gram typically executes less than half the statements. Generally, a typical program might
only use 10-20% of the memory allotted to it. At any one given time, a one megabyte pro-
gram might only access four to eight kilobytes of data and code. So if you paid an outra-
geous sum of money for expensive zero wait state RAM, you wouldn’t be using most of it
at any one given time! Wouldn’t it be nice if you could buy a small amount of fast RAM
and dynamically reassign its address(es) as the program executes?

This is exactly what cache memory does for you. Cache memory sits between the CPU
and main memory. It is a small amount of very fast (zero wait state) memory. Unlike nor-
mal memory, the bytes appearing within a cache do not have fixed addresses. Instead,
cache memory can reassign the address of a data object. This allows the system to keep
recently accessed values in the cache. Addresses which the CPU has never accessed or
hasn’t accessed in some time remain in main (slow) memory. Since most memory accesses
are to recently accessed variables (or to locations near a recently accessed location), the
data generally appears in cache memory.

Cache memory is not perfect. Although a program may spend considerable time exe-
cuting code in one place, eventually it will call a procedure or wander off to some section
of code outside cache memory. In such an event the CPU has to go to main memory to
fetch the data. Since main memory is slow, this will require the insertion of wait states.

A cache hit occurs whenever the CPU accesses memory and finds the data in the
cache. In such a case the CPU can usually access data with zero wait states. A cache miss
occurs if the CPU accesses memory and the data is not present in cache. Then the CPU has
to read the data from main memory, incurring a performance loss. To take advantage of
locality of reference, the CPU copies data into the cache whenever it accesses an address
not present in the cache. Since it is likely the system will access that same location shortly,
the system will save wait states by having that data in the cache.

As described above, cache memory handles the temporal aspects of memory access,
but not the spatial aspects. Caching memory locations when you access them won’t speed
up the program if you constantly access consecutive locations (spatial locality of refer-
ence). To solve this problem, most caching systems read several consecutive bytes from
memory when a cache miss occurs’. The 80486, for example, reads 16 bytes at a shot upon
a cache miss. If you read 16 bytes, why read them in blocks rather than as you need them?
As it turns out, most memory chips available today have special modes which let you
quickly access several consecutive memory locations on the chip. The cache exploits this
capability to reduce the average number of wait states needed to access memory.

If you write a program that randomly accesses memory, using a cache might actually
slow you down. Reading 16 bytes on each cache miss is expensive if you only access a few

6. It does, see “Memory Layout and Access” on page 145.
7. Engineers call this block of data a cache line.

Page 97

Chapter 03

Main
Memory

On-chip (primary)

cache Secondary Cache

Figure 3.15 A Two Level Caching System

bytes in the corresponding cache line. Nonetheless, cache memory systems work quite
well.

It should come as no surprise that the ratio of cache hits to misses increases with the
size (in bytes) of the cache memory subsystem. The 80486 chip, for example, has 8,192
bytes of on-chip cache. Intel claims to get an 80-95% hit rate with this cache (meaning
80-95% of the time the CPU finds the data in the cache). This sounds very impressive.
However, if you play around with the numbers a little bit, you’ll discover it’s not all that
impressive. Suppose we pick the 80% figure. Then one out of every five memory accesses,
on the average, will not be in the cache. If you have a 50 MHz processor and a 90 ns mem-
ory access time, four out of five memory accesses require only one clock cycle (since they
are in the cache) and the fifth will require about 10 wait states®, Altogether, the system
will require 15 clock cycles to access five memory locations, or three clock cycles per
access, on the average. That’s equivalent to two wait states added to every memory
access. Now do you believe that your machine runs at zero wait states?

There are a couple of ways to improve the situation. First, you can add more cache
memory. This improves the cache hit ratio, reducing the number of wait states. For exam-
ple, increasing the hit ratio from 80% to 90% lets you access 10 memory locations in 20
cycles. This reduces the average number of wait states per memory access to one wait
state — a substantial improvement. Alas, you can’t pull an 80486 chip apart and solder
more cache onto the chip. However, the 80586/Pentium CPU has a significantly larger
cache than the 80486 and operates with fewer wait states.

Another way to improve performance is to build a two-level caching system. Many
80486 systems work in this fashion. The first level is the on-chip 8,192 byte cache. The next
level, between the on-chip cache and main memory, is a secondary cache built on the com-
puter system circuit board (see Figure 3.15).

A typical secondary cache contains anywhere from 32,768 bytes to one megabyte of mem-
ory. Common sizes on PC subsystems are 65,536 and 262,144 bytes of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache
to begin with?” Well, the secondary cache generally does not operate at zero wait states.
The circuitry to support 262,144 bytes of 10 ns memory (20 ns total access time) would be
very expensive. So most system designers use slower memory which requires one or two
wait states. This is still much faster than main memory. Combined with the on-chip cache,
you can get better performance from the system.

8. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90).
However, the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive
addresses in about 40 ns after accessing the first location. Therefore, the 80486 will require an additional six clock
cycles to read the remaining three double words. The total is 11 clock cycles or 10 wait states.

Page 98

System Organization

Consider the previous example with an 80% hit ratio. If the secondary cache requires
two cycles for each memory access and three cycles for the first access, then a cache miss
on the on-chip cache will require a total of six clock cycles. All told, the average system
performance will be two clocks per memory access. Quite a bit faster than the three
required by the system without the secondary cache. Furthermore, the secondary cache
can update its values in parallel with the CPU. So the number of cache misses (which
affect CPU performance) goes way down.

You’re probably thinking, “So far this all sounds interesting, but what does it have to
do with programming?” Quite a bit, actually. By writing your program carefully to take
advantage of the way the cache memory system works, you can improve your program’s
performance. By colocating variables you commonly use together in the same cache line,
you can force the cache system to load these variables as a group, saving extra wait states
on each access.

If you organize your program so that it tends to execute the same sequence of instruc-
tions repeatedly, it will have a high degree of temporal locality of reference and will, there-
fore, execute faster.

3.3 The 886, 8286, 8486, and 8686 “Hypothetical” Processors

To understand how to improve system performance, it’s time to explore the internal
operation of the CPU. Unfortunately, the processors in the 80x86 family are complex
beasts. Discussing their internal operation would probably cause more confusion than
enlightenment. So we will use the 886, 8286, 8486, and 8686 processors (the “x86” proces-
sors). These “paper processors” are extreme simplifications of various members of the
80x86 family. They highlight the important architectural features of the 80x86.

The 886, 8286, 8486, and 8686 processors are all identical except for the way they exe-
cute instructions. They all have the same register set, and they “execute” the same instruc-
tion set. That sentence contains some new ideas; let’s attack them one at a time.

3.3.1 CPU Registers

CPU registers are very special memory locations constructed from flip-flops. They are
not part of main memory; the CPU implements them on-chip. Various members of the
80x86 family have different register sizes. The 886, 8286, 8486, and 8686 (x86 from now on)
CPUs have exactly four registers, all 16 bits wide. All arithmetic and location operations
occur in the CPU registers.

Because the x86 processor has so few registers, we’ll give each register its own name
and refer to it by that name rather than its address. The names for the x86 registers are

AX —The accurmul ator register
BX —The base address register
X —The count register
DX —The data register

Besides the above registers, which are visible to the programmer, the x86 processors also
have an instruction pointer register which contains the address of the next instruction to
execute. There is also a flags register that holds the result of a comparison. The flags regis-
ter remembers if one value was less than, equal to, or greater than another value.

Because registers are on-chip and handled specially by the CPU, they are much faster
than memory. Accessing a memory location requires one or more clock cycles. Accessing
data in a register usually takes zero clock cycles. Therefore, you should try to keep vari-
ables in the registers. Register sets are very small and most registers have special purposes
which limit their use as variables, but they are still an excellent place to store temporary
data.

Page 99

Chapter 03

wn 00000000
we 00000000
ws 00000000

Figure 3.16 Patch Panel Programming

3.3.2

The Arithmetic & Logical Unit

The arithmetic and logical unit (ALU) is where most of the action takes place inside
the CPU. For example, if you want to add the value five to the AX register, the CPU:

= Copies the value from AX into the ALU,

= Sends the value five to the ALU,

= Instructs the ALU to add these two values together,
= Moves the result back into the AX register.

3.3.3

The Bus Interface Unit

The bus interface unit (BIU) is responsible for controlling the address and data busses
when accessing main memory. If a cache is present on the CPU chip then the BIU is also
responsible for accessing data in the cache.

3.3.4

Page 100

The Control Unit and Instruction Sets

A fair question to ask at this point is “How exactly does a CPU perform assigned
chores?” This is accomplished by giving the CPU a fixed set of commands, or instructions,
to work on. Keep in mind that CPU designers construct these processors using logic gates
to execute these instructions. To keep the number of logic gates to a reasonably small set
(tens or hundreds of thousands), CPU designers must necessarily restrict the number and
complexity of the commands the CPU recognizes. This small set of commands is the
CPU’s instruction set.

Programs in early (pre-Von Neumann) computer systems were often “hard-wired”
into the circuitry. That is, the computer’s wiring determined what problem the computer
would solve. One had to rewire the circuitry in order to change the program. A very diffi-
cult task. The next advance in computer design was the programmable computer system,
one that allowed a computer programmer to easily “rewire” the computer system using a
sequence of sockets and plug wires. A computer program consisted of a set of rows of
holes (sockets), each row representing one operation during the execution of the program.
The programmer could select one of several instructions by plugging a wire into the par-
ticular socket for the desired instruction (see Figure 3.16). Of course, a major difficulty
with this scheme is that the number of possible instructions is severely limited by the
number of sockets one could physically place on each row. However, CPU designers
quickly discovered that with a small amount of additional logic circuitry, they could
reduce the number of sockets required from n holes for n instructions to log,(n) holes for n
instructions. They did this by assigning a numeric code to each instruction and then

System Organization

C B A CBA Instruction
N eXeXe 001 add
e Yo Xe 01 muliply
s O OO 00 and
110 or
111 xor
Figure 3.17 Encoding Instructions
C B A DD SS
Instr #1 O O O O O O O
Instr #2 O O O O O O O
Instr #3 O O O O O O O
CBA Instruction
000 move DD -or- SS Register
001 add
010 subtract 00 AX
011 multiply 01 BX
100 divide 10 CX
101 and 11 DX
110 or
111 xor

Figure 3.18 Encoding Instructions with Source and Destination Fields

encode that instruction as a binary number using log,(n) holes (see Figure 3.17). This
addition requires eight logic functions to decode the A, B, and C bits from the patch panel,
but the extra circuitry is well worth the cost because it reduces the number of sockets that
must be repeated for each instruction.

Of course, many CPU instructions are not stand-alone. For example, the move instruc-
tion is a command that moves data from one location in the computer to another (e.g.,
from one register to another). Therefore, the move instruction requires two operands: a
source operand and a destination operand. The CPU’s designer usually encodes these source
and destination operands as part of the machine instruction, certain sockets correspond to
the source operand and certain sockets correspond to the destination operand.
Figure 3.17 shows one possible combination of sockets to handle this. The move instruc-
tion would move data from the source register to the destination register, the add instruc-
tion would add the value of the source register to the destination register, etc.

One of the primary advances in computer design that the VNA provides is the con-
cept of a stored program. One big problem with the patch panel programming method is
that the number of program steps (machine instructions) is limited by the number of rows
of sockets available on the machine. John Von Neumann and others recognized a relation-
ship between the sockets on the patch panel and bits in memory; they figured they could
store the binary equivalents of a machine program in main memory and fetch each pro-
gram from memory, load it into a special decoding register that connected directly to the
instruction decoding circuitry of the CPU.

Page 101

Chapter 03

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the con-
trol unit (CU), fetches instruction codes (also known as operation codes or opcodes) from
memory and moves them to the instruction decoding register. The control unit contains a
special registers, the instruction pointer that contains the address of an executable instruc-
tion. The control unit fetches this instruction’s code from memory and places it in the
decoding register for execution. After executing the instruction, the control unit incre-
ments the instruction pointer and fetches the next instruction from memory for execution,
and so on.

When designing an instruction set, the CPU’s designers generally choose opcodes that
are a multiple of eight bits long so the CPU can easily fetch complete instructions from
memory. The goal of the CPU’s designer is to assign an appropriate number of bits to the
instruction class field (move, add, subtract, etc.) and to the operand fields. Choosing more
bits for the instruction field lets you have more instructions, choosing additional bits for
the operand fields lets you select a larger number of operands (e.g., memory locations or
registers). There are additional complications. Some instructions have only one operand
or, perhaps, they don’t have any operands at all. Rather than waste the bits associated
with these fields, the CPU designers often reuse these fields to encode additional opcodes,
once again with some additional circuitry. The Intel 80x86 CPU family takes this to an
extreme with instructions ranging from one to about ten bytes long. Since this is a little too
difficult to deal with at this early stage, the x86 CPUs will use a different, much simpler,
encoding scheme.

3.3.5

Page 102

The x86 Instruction Set

The x86 CPUs provide 20 basic instruction classes. Seven of these instructions have
two operands, eight of these instructions have a single operand, and five instructions have
no operands at all. The instructions are mov (two forms), add, sub, cmp, and, or, not, je, jne,
ib, jbe, ja, jae, jmp, brk, iret, halt, get, and put. The following paragraphs describe how each of
these work.

The mov instruction is actually two instruction classes merged into the same instruc-
tion. The two forms of the mov instruction take the following forms:

nov reg, reg/ nenory/constant
nov nenory, reg

where reg is any of ax, bx, cx, or dx; constant is @ numeric constant (using hexadecimal nota-
tion), and memory is an operand specifying a memory location. The next section describes
the possible forms the memory operand can take. The “reg/memory/constant” operand
tells you that this particular operand may be a register, memory location, or a constant.

The arithmetic and logical instructions take the following forms:

add reg, reg/ menory/constant
sub reg, reg/ menory/constant
cnp reg, reg/ menory/constant
and reg, reg/ menory/constant
or reg, reg/ menory/constant
not reg/ nenory

The add instruction adds the value of the second operand to the first (register) operand,
leaving the sum in the first operand. The sub instruction subtracts the value of the second
operand from the first, leaving the difference in the first operand. The cmp instruction
compares the first operand against the second and saves the result of this comparison for
use with one of the conditional jump instructions (described in a moment). The and and or
instructions compute the corresponding bitwise logical operation on the two operands
and store the result into the first operand. The not instruction inverts the bits in the single
memory or register operand.

The control transfer instructions interrupt the sequential execution of instructions in
memory and transfer control to some other point in memory either unconditionally, or

System Organization

after testing the result of the previous cmp instruction. These instructions include the fol-

lowing:
ja dest -- Junp if above
j ae dest -- Junp if above or equal
ib dest -- Junp if bel ow
j be dest -- Junp if bel ow or equal
je dest -- Junp if equal
j ne dest -- Junp i f not equal
jmp dest -- Uncondi tional junp
iret -- Return froman interrupt

The first six instructions in this class let you check the result of the previous cmp instruc-
tion for greater than, greater or equal, less than, less or equal, equality, or inequality®. For
example, if you compare the ax and bx registers with the cmp instruction and execute the ja
instruction, the x86 CPU will jump to the specified destination location if ax was greater
than bx. If ax is not greater than bx, control will fall through to the next instruction in the
program. The jmp instruction unconditionally transfers control to the instruction at the
destination address. The iret instruction returns control from an interrupt service routine,
which we will discuss later.

The get and put instructions let you read and write integer values. Get will stop and
prompt the user for a hexadecimal value and then store that value into the ax register. Put
displays (in hexadecimal) the value of the ax register.

The remaining instructions do not require any operands, they are halt and brk. Halt ter-
minates program execution and brk stops the program in a state that it can be restarted.

The x86 processors require a unique opcode for every different instruction, not just the
instruction classes. Although “mov ax, bx” and “mov ax, cx” are both in the same class,
they must have different opcodes if the CPU is to differentiate them. However, before
looking at all the possible opcodes, perhaps it would be a good idea to learn about all the
possible operands for these instructions.

3.3.6 Addressing Modes on the x86

The x86 instructions use five different operand types: registers, constants, and three
memory addressing schemes. Each form is called an addressing mode. The x86 processors
support the register addressing model®, the immediate addressing mode, the indirect
addressing mode, the indexed addressing mode, and the direct addressing mode. The fol-
lowing paragraphs explain each of these modes.

Register operands are the easiest to understand. Consider the following forms of the
mov instruction:

nov ax, ax
nov ax, bx
nov ax, cx
nov ax, dx

The first instruction accomplishes absolutely nothing. It copies the value from the ax
register back into the ax register. The remaining three instructions copy the value of bx, cx
and dx into ax. Note that the original values of bx, cx, and dx remain the same. The first
operand (the destination) is not limited to ax; you can move values to any of these registers.

Constants are also pretty easy to deal with. Consider the following instructions:

mov ax, 25
nov bx, 195
mov cx, 2056
nov dx, 1000

9. The x86 processors only performed unsigned comparisons.
10. Technically, registers do not have an address, but we apply the term addressing mode to registers nonetheless.

Page 103

Chapter 03

These instructions are all pretty straightforward; they load their respective registers with
the specified hexadecimal constant™'.

There are three addressing modes which deal with accessing data in memory. These
addressing modes take the following forms:

nov ax, [1000]
nov ax, [bx]
nov ax, [1000+bx]

The first instruction above uses the direct addressing mode to load ax with the 16 bit
value stored in memory starting at location 1000 hex.

The nov ax, [bx] instruction loads ax from the memory location specified by the
contents of the bx register. This is an indirect addressing mode. Rather than using the value
in bx, this instruction accesses to the memory location whose address appears in bx. Note
that the following two instructions:

nov bx, 1000
nov ax, [bx]

are equivalent to the single instruction:
nov ax, [1000]

Of course, the second sequence is preferable. However, there are many cases where the
use of indirection is faster, shorter, and better. We’ll see some examples of this when we
look at the individual processors in the x86 family a little later.

The last memory addressing mode is the indexed addressing mode. An example of this
memory addressing mode is

nov ax, [1000+bx]

This instruction adds the contents of bx with 1000 to produce the address of the memory
value to fetch. This instruction is useful for accessing elements of arrays, records, and
other data structures.

3.3.7

Encoding x86 Instructions

Although we could arbitrarily assign opcodes to each of the x86 instructions, keep in
mind that a real CPU uses logic circuitry to decode the opcodes and act appropriately on
them. A typical CPU opcode uses a certain number of bits in the opcode to denote the
instruction class (e.g., mov, add, sub), and a certain number of bits to encode each of the
operands. Some systems (e.g., CISC, or Complex Instruction Set Computers) encode these
fields in a very complex fashion producing very compact instructions. Other systems (e.g.,
RISC, or Reduced Instruction Set Computers) encode the opcodes in a very simple fashion
even if it means wasting some bits in the opcode or limiting the number of operations. The
Intel 80x86 family is definitely CISC and has one of the most complex opcode decoding
schemes ever devised. The whole purpose for the hypothetical x86 processors is to present
the concept of instruction encoding without the attendant complexity of the 80x86 family,
while still demonstrating CISC encoding.

A typical x86 instruction takes the form shown in Figure 3.19. The basic instruction is
either one or three bytes long. The instruction opcode consists of a single byte that con-
tains three fields. The first field, the H.O. three bits, defines the instruction class. This pro-
vides eight combinations. As you may recall, there are 20 instruction classes; we cannot
encode 20 instruction classes with three bits, so we’ll have to pull some tricks to handle
the other classes. As you can see in Figure 3.19, the basic opcode encodes the mov instruc-
tions (two classes, one where the rr field specifies the destination, one where the mmm
field specifies the destination), the add, sub, cmp, and, and or instructions. There is one

11. All numeric constants on the x86 are given in hexadecimal. The “h” suffix is not necessary.

Page 104

System Organization

[i [r|r |m|m|m
i rr mmm This 16-bit field is present
only if the instruction is a
000 = special 00 = AX 000=AX jump instruction or an operand
001 =or 01 = BX 001 =BX isa memory addressing mode
010=and 10 = CX 010=0CX of the form [bx+xxxx], [xxxxx],
011 =cmp 11 = DX 011=DX or a constant.
100 = sub 1 00 = [BX]
101 = add 1 01 = [xxxx+BX]
110 = movreg, mem/reg/const 1 1 0 = [xxxx]
111 = mov mem, reg 1 11 =constant
Figure 3.19 Basic x86 Instruction Encoding.
0 Ofi [i [m|[m|[m
i mmm (if ii = 10) This 16-bit field is present
only if the instruction is a

00 = zero operand instructions 000 = AX jump instruction or an operand
01 = jump instructions 001 = BX isa memory addressing mode
10 = not 010 = CX of the form [bx+xxxx], [xxxxx],
11 = illegal (reserved) 011 = DX or a constant.

100 = [BX]

101 = [xxxx+BX]

110 = [xxxx]

111 = constant

Figure 3.20 Single Operand Instruction Encodings

additional class: special. The special instruction class provides a mechanism that allows us
to expand the number of available instruction classes, we will return to this class shortly.

To determine a particular instruction’s opcode, you need only select the appropriate
bits for the iii, rr, and mmm fields. For example, to encode the mov ax, bx instruction you
would select iii=110 (mov reg, reg), rr=00 (ax), and mmm=001 (bx). This produces the
one-byte instruction 11000001 or 0COh.

Some x86 instructions require more than one byte. For example, the instruction
mov ax, [1000] loads the ax register from memory location 1000. The encoding for the
opcode is 11000110 or 0C6h. However, the encoding for mov ax,[2000]'s opcode is also
0C6h. Clearly these two instructions do different things, one loads the ax register from
memory location 1000h while the other loads the ax register from memory location 2000.
To encode an address for the [xxxx] or [xxxx+bx] addressing modes, or to encode the con-
stant for the immediate addressing mode, you must follow the opcode with the 16-bit
address or constant, with the L.O. byte immediately following the opcode in memory and
the H.O. byte after that. So the three byte encoding for mov ax, [1000] would be 0C6h, 00h,
10h'? and the three byte encoding for mov ax, [2000] would be 0C6h, 00h, 20h.

The special opcode allows the x86 CPU to expand the set of available instructions.
This opcode handles several zero and one-operand instructions as shown in Figure 3.20
and Figure 3.21.

12. Remember, all numeric constants are hexadecimal.

Page 105

Chapter 03

O[O i i [i

i

000 = illegal

001 = illegal

010 = illegal

011 = brk

100 = iret

101 = halt

110 =get

111 = put

Figure 3.21 Zero Operand Instruction Encodings

0100 (0|1

mmm (if ii = 10)

000 = je
001 = jne
010=jb
011 = jbe
100 = ja
101 = jae
110 = jmp
111 = illegal

This 16-bit field is always present
andcontains the target address to
jump move into the instruction
pointer register if the jump

is taken.

Figure 3.22 Jump Instruction Encodings

Page 106

There are four one-operand instruction classes. The first encoding (00) further
expands the instruction set with a set of zero-operand instructions (see Figure 3.21). The
second opcode is also an expansion opcode that provides all the x86 jump instructions (see
Figure 3.22). The third opcode is the not instruction. This is the bitwise logical not opera-
tion that inverts all the bits in the destination register or memory operand. The fourth sin-
gle-operand opcode is currently unassigned. Any attempt to execute this opcode will halt
the processor with an illegal instruction error. CPU designers often reserve unassigned
opcodes like this one to extend the instruction set at a future date (as Intel did when mov-
ing from the 80286 processor to the 80386).

There are seven jump instructions in the x86 instruction set. They all take the follow-
ing form:

j Xx addr ess

The jmp instruction copies the 16-bit immediate value (address) following the opcode
into the IP register. Therefore, the CPU will fetch the next instruction from this target
address; effectively, the program “jumps” from the point of the jmp instruction to the
instruction at the target address.

The jmp instruction is an example of an unconditional jump instruction. It always trans-
fers control to the target address. The remaining six instructions are conditional jump
instructions. They test some condition and jump if the condition is true; they fall through
to the next instruction if the condition is false. These six instructions, ja, jae, jb, jbe, je, and
jne let you test for greater than, greater than or equal, less than, less than or equal, equality,
and inequality. You would normally execute these instructions immediately after a cmp

System Organization

instruction since it sets the less than and equality flags that the conditional jump instruc-
tions test. Note that there are eight possible jump opcodes, but the x86 uses only seven of
them. The eighth opcode is another illegal opcode.

The last group of instructions, the zero operand instructions, appear in Figure 3.21.
Three of these instructions are illegal instruction opcodes. The brk (break) instruction
pauses the CPU until the user manually restarts it. This is useful for pausing a program
during execution to observe results. The iret (interrupt return) instruction returns control
from an interrupt service routine. We will discuss interrupt service routines later. The halt
program terminates program execution. The get instruction reads a hexadecimal value
from the user and returns this value in the ax register; the put instruction outputs the value
in the ax register.

3.3.8 Step-by-Step Instruction Execution

The x86 CPUs do not complete execution of an instruction in a single clock cycle. The
CPU executes several steps for each instruction. For example, the CU issues the following
commands to execute the mov reg, reg/memory/constant instruction:

= Fetch the instruction byte from memory.

= Update the ip register to point at the next byte.

= Decode the instruction to see what it does.

= If required, fetch a 16-bit instruction operand from memory.

= If required, update ip to point beyond the operand.

= Compute the address of the operand, if required (i.e., bX+xxxx) .
= Fetch the operand.

= Store the fetched value into the destination register

A step-by-step description may help clarify what the CPU is doing. In the first step,
the CPU fetches the instruction byte from memory. To do this, it copies the value of the ip
registear to the address bus and reads the byte at that address. This will take one clock
cyclets.

After fetching the instruction byte, the CPU updates ip so that it points at the next byte
in the instruction stream. If the current instruction is a multibyte instruction, ip will now
point at the operand for the instruction. If the current instruction is a single byte instruc-
tion, ip would be left pointing at the next instruction. This takes one clock cycle.

The next step is to decode the instruction to see what it does. This will tell the CPU,
among other things, if it needs to fetch additional operand bytes from memory. This takes
one clock cycle.

During decoding, the CPU determines the types of operands the instruction requires.
If the instruction requires a 16 bit constant operand (i.e., if the mmm field is 101, 110, or
111) then the CPU fetches that constant from memory. This step may require zero, one, or
two clock cycles. It requires zero cycles if there is no 16 bit operand; it requires one clock
cycle if the 16 bit operand is word-aligned (that is, begins at an even address); it requires
two clock cycles if the operand is not word aligned (that is, begins at an odd address).

If the CPU fetches a 16 bit memory operand, it must increment ip by two so that it
points at the next byte following the operand. This operation takes zero or one clock
cycles. Zero clock cycles if there is no operand; one if an operand is present.

Next, the CPU computes the address of the memory operand. This step is required
only when the mmm field of the instruction byte is 101 or 100. If the mmm field contains
101, then the CPU computes the sum of the bx register and the 16 bit constant; this
requires two cycles, one cycle to fetch bx’s value, the other to computer the sum of bx and
xxxX. If the mmm field contains 100, then the CPU fetches the value in bx for the memory

13. We will assume that clock cycles and memory cycles are equivalent.

Page 107

Chapter 03

Page 108

address, this requires one cycle. If the mmm field does not contain 100 or 101, then this step
takes zero cycles.

Fetching the operand takes zero, one, two, or three cycles depending upon the oper-
and itself. If the operand is a constant (mmm=111), then this step requires zero cycles
because we’ve already fetched this constant from memory in a previous step. If the oper-
and is a register (mmm = 000, 001, 010, or 011) then this step takes one clock cycle. If this is
a word aligned memory operand (mmm=100, 101, or 110) then this step takes two clock
cycles. If it is an unaligned memory operand, it takes three clock cycles to fetch its value.

The last step to the mov instruction is to store the value into the destination location.
Since the destination of the load instruction is always a register, this operation takes a sin-
gle cycle.

Altogether, the mov instruction takes between five and eleven cycles, depending on its
operands and their alignment (starting address) in memory.

The CPU does the following for the mov memory, reg instruction:

= Fetch the instruction byte from memory (one clock cycle).

= Update ip to point at the next byte (one clock cycle).

= Decode the instruction to see what it does (one clock cycle).

= If required, fetch an operand from memory (zero cycles if [bx] addressing
mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode and the
value xxxx immediately following the opcode starts on an even address,
or two clock cycles if the value xxxx starts at an odd address).

= If required, update ip to point beyond the operand (zero cycles if no such
operand, one clock cycle if the operand is present).

= Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

= Get the value of the register to store (one clock cycle).

= Store the fetched value into the destination location (one cycle if a regis-
ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

The timing for the last two items is different from the other mov because that instruction
can read data from memory; this version of mov instruction “loads” its data from a regis-
ter. This instruction takes five to eleven clock cycles to execute.

The add, sub, cmp, and, and or instructions do the following:

= Fetch the instruction byte from memory (one clock cycle).

< Update ip to point at the next byte (one clock cycle).

= Decode the instruction (one clock cycle).

= If required, fetch a constant operand from memory (zero cycles if [bx]
addressing mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode
and the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

= If required, update ip to point beyond the constant operand (zero or one
clock cycles).

< Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

= Get the value of the operand and send it to the ALU (zero cycles if a con-
stant, one cycle if a register, two cycles if a word-aligned memory oper-
and, or three clock cycles if an odd-address aligned memory operand).

= Fetch the value of the first operand (a register) and send it to the ALU
(one clock cycle).

< Instruct the ALU to add, subtract, compare, logically and, or logically or
the values (one clock cycle).

= Store the result back into the first register operand (one clock cycle).

System Organization
These instructions require between eight and seventeen clock cycles to execute.

The not instruction is similar to the above, but may be a little faster since it only has a
single operand:

= Fetch the instruction byte from memory (one clock cycle).

= Update ip to point at the next byte (one clock cycle).

= Decode the instruction (one clock cycle).

< If required, fetch a constant operand from memory (zero cycles if [bx]
addressing mode, one cycle if [xxxx] or [xxxx+bx] addressing mode and
the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

< If required, update ip to point beyond the constant operand (zero or one
clock cycles).

= Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

e Get the value of the operand and send it to the ALU (one cycle if a regis-
ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

= Instruct the ALU to logically not the values (one clock cycle).

= Store the result back into the operand (one clock cycle if a register, two
clock cycles if an even-aligned memory location, three cycles if
odd-aligned memory location).

The not instruction takes six to fifteen cycles to execute.
The conditional jump instructions work as follows:

= Fetch the instruction byte from memory (one clock cycle).

= Update ip to point at the next byte (one clock cycle).

= Decode the instructions (one clock cycle).

= Fetch the target address operand from memory (one cycle if xxxx is at an
even address, two clock cycles if at an odd address).

= Update ip to point beyond the address (one clock cycle).

= Test the “less than” and “equality” CPU flags (one cycle).

< If the flag values are appropriate for the particular conditional jump, the
CPU copies the 16 bit constant into the ip register (zero cycles if no branch,
one clock cycle if branch occurs).

The unconditional jump instruction is identical in operation to the mov reg, xxxx
instruction except the destination register is the x86’s ip register rather than ax, bx, cx, or
dx.

The brk, iret, halt, put, and get instructions are of no interest to us here. They appear in the
instruction set mainly for programs and experiments. We can’t very well give them
“cycle” counts since they may take an indefinite amount of time to complete their task.

3.3.9 The Differences Between the x86 Processors

All the x86 processors share the same instruction set, the same addressing modes, and
execute their instructions using the same sequence of steps. So what'’s the difference? Why
not invent one processor rather than four?

The main reason for going through this exercise is to explain performance differences
related to four hardware features: pre-fetch queues, caches, pipelines and superscalar designs.
The 886 processor is an inexpensive “device” which doesn’t implement any of these fancy
features. The 8286 processor implements the prefetch queue. The 8486 has a pre-fetch
queue, a cache, and a pipeline. The 8686 has all of the above features with superscalar
operation. By studying each of these processors you can see the benefits of each feature.

Page 109

Chapter 03

3.3.10 The 886 Processor
The 886 processor is the slowest member of the x86 family. Timings for each instruc-
tion were discussed in the previous sections. The mov instruction, for example, takes
between five and twelve clock cycles to execute depending upon the operands. The fol-
lowing table provides the timing for the various forms of the instructions on the 886 pro-
cessors.
Table 19: Execution Timesfor 886 I nstructions
Instruction [mov add, sub, not im e

Addressing Mode (both forms) cmp, and, or, Imp y

reg, reg 5 7

reg, XxXxx 6-7 8-9

reg, [bx] 7-8 9-10

reg, [Xxxx] 8-10 10-12

reg, [Xxxx+bx] 10-12 12-14

[bx], reg 7-8

[xxxx], reg 8-10

[xxxx+bx], reg 10-12

reg 6

[bx] 9-11

[xxxx] 10-13

[xxxx+bx] 12-15

XXXX 6-7 6-8

There are three important things to note from this. First, longer instructions take more
time to execute. Second, instructions that do not reference memory generally execute
faster; this is especially true if there are wait states associated with memory access (the
table above assumes zero wait states). Finally, instructions using complex addressing
modes run slower. Instructions which use register operands are shorter, do not access
memory, and do not use complex addressing modes. This is why you should attempt to keep
your variables in registers.
3.3.11 The 8286 Processor

Page 110

The key to improving the speed of a processor is to perform operations in parallel. If,
in the timings given for the 886, we were able to do two operations on each clock cycle, the
CPU would execute instructions twice as fast when running at the same clock speed.
However, simply deciding to execute two operations per clock cycle is not so easy. Many
steps in the execution of an instruction share functional units in the CPU (functional units
are groups of logic that perform a common operation, e.g., the ALU and the CU). A func-
tional unit is only capable of one operation at a time. Therefore, you cannot do two opera-
tions that use the same functional unit concurrently (e.g., incrementing the ip register and
adding two values together). Another difficulty with doing certain operations concur-
rently is that one operation may depend on the other’s result. For example, the last two
steps of the add instruction involve adding to values and then storing their sum. You can-
not store the sum into a register until after you’ve computed the sum. There are also some
other resources the CPU cannot share between steps in an instruction. For example, there

System Organization
is only one data bus; the CPU cannot fetch an instruction opcode at the same time it is try-
ing to store some data to memory. The trick in designing a CPU that executes several steps
in parallel is to arrange those steps to reduce conflicts or add additional logic so the two
(or more) operations can occur simultaneously by executing in different functional units.

Consider again the steps the mov reg, mem/reg/const instruction requires:

= Fetch the instruction byte from memory.

= Update the ip register to point at the next byte.

= Decode the instruction to see what it does.

= If required, fetch a 16-bit instruction operand from memory.

= If required, update ip to point beyond the operand.

= Compute the address of the operand, if required (i.e., bX+xxxx) .
= Fetch the operand.

= Store the fetched value into the destination register

The first operation uses the value of the ip register (so we cannot overlap incrementing
ip with it) and it uses the bus to fetch the instruction opcode from memory. Every step that
follows this one depends upon the opcode it fetches from memory, so it is unlikely we will
be able to overlap the execution of this step with any other.

The second and third operations do not share any functional units, nor does decoding
an opcode depend upon the value of the ip register. Therefore, we can easily modify the
control unit so that it increments the ip register at the same time it decodes the instruction.
This will shave one cycle off the execution of the mov instruction.

The third and fourth operations above (decoding and optionally fetching the 16-bit
operand) do not look like they can be done in parallel since you must decode the instruc-
tion to determine if it the CPU needs to fetch a 16-bit operand from memory. However, we
could design the CPU to go ahead and fetch the operand anyway, so that it’s available if
we need it. There is one problem with this idea, though, we must have the address of the
operand to fetch (the value in the ip register) and if we must wait until we are done incre-
menting the ip register before fetching this operand. If we are incrementing ip at the same
time we’re decoding the instruction, we will have to wait until the next cycle to fetch this
operand.

Since the next three steps are optional, there are several possible instruction sequences
at this point:

#1 (step 4, step 5, step 6, and step 7) — e.g., mov ax, [1000+bx]
#2 (step 4, step 5, and step 7) — e.g., mov ax, [1000]

#3 (step 6 and step 7) — e.g., mov ax, [bx]

#4 (step 7) — e.g., mov ax, bx

In the sequences above, step seven always relies on the previous set in the sequence.
Therefore, step seven cannot execute in parallel with any of the other steps. Step six also
relies upon step four. Step five cannot execute in parallel with step four since step four
uses the value in the ip register, however, step five can execute in parallel with any other
step. Therefore, we can shave one cycle off the first two sequences above as follows:

#1 (step 4, step 5/6, and step 7)
#2 (step 4, step 5/7)

#3 (step 6 and step 7)

#4 (step 7)

Of course, there is no way to overlap the execution of steps seven and eight in the mov
instruction since it must surely fetch the value before storing it away. By combining these
steps, we obtain the following steps for the mov instruction:

= Fetch the instruction byte from memory.

= Decode the instruction and update ip

= If required, fetch a 16-bit instruction operand from memory.

= Compute the address of the operand, if required (i.e., bx+xxxx) .
= Fetch the operand, if required update ip to point beyond xxxx.

Page 111

Chapter 03

Page 112

= Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we’ve shaved one or two cycles off the
execution of the mov instruction. This simple optimization works with most of the other
instructions as well.

Another problem with the execution of the mov instruction concerns opcode align-
ment. Consider the mov ax, [1000] instruction that appears at location 100 in memory. The
CPU spends one cycle fetching the opcode and, after decoding the instruction an deter-
mining it has a 16-bit operand, it takes two additional cycles to fetch that operand from
memory (because that operand appears at an odd address — 101). The real travesty here is
that the extra clock cycle to fetch these two bytes is unnecessary, after all, the CPU fetched
the L.O. byte of the operand when it grabbed the opcode (remember, the x86 CPUs are
16-bit processors and always fetch 16 bits from memory), why not save that byte and use
only one additional clock cycle to fetch the H.O. byte? This would shave one cycle off the
execution time when the instruction begins at an even address (so the operand falls on an
odd address). It would require only a one-byte register and a small amount of additional
logic to accomplish this, well worth the effort.

While we are adding a register to buffer up operand bytes, let’s consider some addi-
tional optimizations that could use the same logic. For example, consider what happens
with that same mov instruction above executes. If we fetch the opcode and L.O. operand
byte on the first cycle and the H.O. byte of the operand on the second cycle, we’ve actually
read four bytes, not three. That fourth byte is the opcode of the next instruction. If we
could save this opcode until the execution of the next instruction, we could shave a cycle
of its execution time since it would not have to fetch the opcode byte. Furthermore, since
the instruction decoder is idle while the CPU is executing the mov instruction, we can
actually decode the next instruction while the current instruction is executing, thereby
shaving yet another cycle off the execution of the next instruction. On the average, we will
fetch this extra byte on every other instruction. Therefore, implementing this simple
scheme will allow us to shave two cycles off about 50% of the instructions we execute.

Can we do anything about the other 50% of the instructions? The answer is yes. Note
that the execution of the mov instruction is not accessing memory on every clock cycle.
For example, while storing the data into the destination register the bus is idle. During
time periods when the bus is idle we can pre-fetch instruction opcodes and operands and
save these values for executing the next instruction.

The major improvement to the 8286 over the 886 processor is the prefetch queue. When-
ever the CPU is not using the Bus Interface Unit (BIU), the BIU can fetch additional bytes
from the instruction stream. Whenever the CPU needs an instruction or operand byte, it
grabs the next available byte from the prefetch queue. Since the BIU grabs two bytes at a
time from memory at one shot and the CPU generally consumes fewer than two bytes per
clock cycle, any bytes the CPU would normally fetch from the instruction stream will
already be sitting in the prefetch queue.

Note, however, that we’re not guaranteed that all instructions and operands will be
sitting in the prefetch queue when we need them. For example, the jmp 1000 instruction
will invalidate the contents of the prefetch queue. If this instruction appears at location
400, 401, and 402 in memory, the prefetch queue will contain the bytes at addresses 403,
404, 405, 406, 407, etc. After loading ip with 1000 the bytes at addresses 403, etc., won’t do
us any good. So the system has to pause for a moment to fetch the double word at address
1000 before it can go on.

Another improvement we can make is to overlap instruction decoding with the last
step of the previous instruction. After the CPU processes the operand, the next available
byte in the prefetch queue is an opcode, and the CPU can decode it in anticipation of its
execution. Of course, if the current instruction modifies the ip register, any time spent
decoding the next instruction goes to waste, but since this occurs in parallel with other
operations, it does not slow down the system.

System Organization

Execution
Unit

»w SO +0 QoD

Prefetch

Figure 3.23 CPU With a Prefetch Queue

This sequence of optimizations to the system requires quite a few changes to the hard-
ware. A block diagram of the system appears in Figure 3.23. The instruction execution
sequence now assumes that the following events occur in the background:

CPU Prefetch Events:

= |If the prefetch queue is not full (generally it can hold between eight and
thirty-two bytes, depending on the processor) and the BIU is idle on the
current clock cycle, fetch the next word from memory at the address in ip
at the beginning of the clock cycle®.

= If the instruction decoder is idle and the current instruction does not
require an instruction operand, begin decoding the opcode at the front of
the prefetch queue (if present), otherwise begin decoding the third byte in
the prefetch queue (if present). If the desired byte is not in the prefetch
queue, do not execute this event.

The instruction execution timings make a few optimistic assumptions, namely that
any necessary opcodes and instruction operands are already present in the prefetch queue
and that it has already decoded the current instruction opcode. If either cause is not true,
an 8286 instruction’s execution will delay while the system fetches the data from memory
or decodes the instruction. The following are the steps for each of the 8286 instructions:

mov reg, mem/reg/const

= If required, compute the sum of [xxxx+bx] (1 cycle, if required).

= Fetch the source operand. Zero cycles if constant (assuming already in the
prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

= Store the result in the destination register, one cycle.

mov mem, reg

= If required, compute the sum of [xxxx+bx] (1 cycle, if required).

= Fetch the source operand (a register), one cycle.

= Store into the destination operand. Two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

instr reg, mem/reg/const (instr = add, sub, cmp, and, or)

= If required, compute the sum of [xxxx+bx] (1 cycle, if required).

14. This operation fetches only a byte if ip contains an odd value.

Page 113

Chapter 03

Page 114

= Fetch the source operand. Zero cycles if constant (assuming already in the
prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

= Fetch the value of the first operand (a register), one cycle.

= Compute the sum, difference, etc., as appropriate, one cycle.

= Store the result in the destination register, one cycle.

not mem/reg

= If required, compute the sum of [xxxx+bx] (1 cycle, if required).

e Fetch the source operand. One cycle if a register, two cycles if
even-aligned memory value, three cycles if odd-aligned memory value.

< Logically not the value, one cycle.

= Store the result, one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

JCC XXXX (conditional jump, cc=a, ae, b, be, e, ne)

= Test the current condition code (less than and equal) flags, one cycle.
= |fthe flag values are appropriate for the particular conditional branch, the
CPU copies the 16-bit instruction operand into the ip register, one cycle.

jmp XxXxx

< The CPU copies the 16-bit instruction operand into the ip register, one
cycle.

As for the 886, we will not consider the execution times of the other x86 instructions since
most of them are indeterminate.

The jump instructions look like they execute very quickly on the 8286. In fact, they
may execute very slowly. Don’t forget, jumping from one location to another invalidates
the contents of the prefetch queue. So although the jmp instruction looks like it executes in
one clock cycle, it forces the CPU to flush the prefetch queue and, therefore, spend several
cycles fetching the next instruction, fetching additional operands, and decoding that
instruction. Indeed, it make be two or three instructions after the jmp instruction before
the CPU is back to the point where the prefetch queue is operating smoothly and the CPU
is decoding opcodes in parallel with the execution of the previous instruction. The has one
very important implication to your programs: if you want to write fast code, make sure to
avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they
actually make the jump. If the condition is false, they fall through to the next instruction
and continue to use the values in the prefetch queue as well as any pre-decoded instruc-
tion opcodes. Therefore, if you can determine, while writing the program, which condi-
tion is most likely (e.g., less than vs. not less than), you should arrange your program so
that the most common case falls through and conditional jump rather than take the
branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. It
never requires more than one clock cycle to fetch a single byte instruction, but it always
requires two cycles to fetch a three-byte instruction. Therefore, if the target of a jump
instruction is two one-byte instructions, the BIU can fetch both instructions in one clock
cycle and begin decoding the second one while executing the first. If these instructions are
three-byte instructions, the CPU may not have enough time to fetch and decode the sec-
ond or third instruction by the time it finishes the first. Therefore, you should attempt to
use shorter instructions whenever possible since they will improve the performance of the
prefetch queue.

The following table provides the (optimistic) execution times for the 8286 instructions:

System Organization

Table 20: Execution Timesfor 8286 I nstructions

Instruction O mov add, sub, . .
Addressing Mode (both forms) cmp, and, or, not Imp XX
reg, reg 2 4
reg, XXxx 1 3
reg, [bx] 34 5-6
reg, [xxxx] 34 5-6
reg, [xxxx+bx] 4-5 6-7
[bx], reg 34 5-6
[xxxx], reg 34 5-6
[xxoxx-+bx], reg 45 67
reg 3
[bx] 5-7
[xxxx] 5-7
[xxxx+bx] 6-8
XXXX 1+pfd@ 20
2+pfd

a. Cost of prefetch and decode on the next instruction.
b. If not taken.

Note how much faster the mov instruction runs on the 8286 compared to the 886. This is
because the prefetch queue allows the processor to overlap the execution of adjacent
instructions. However, this table paints an overly rosy picture. Note the disclaimer:
“assuming the opcode is present in the prefetch queue and has been decoded.” Consider
the following three instruction sequence:

2?77 jnp 1000
1000: jnp 2000
2000: nov cX, 3000[bx]

The second and third instructions will not execute as fast as the timings suggest in the
table above. Whenever we modify the value of the ip register the CPU flushes the prefetch
queue. So the CPU cannot fetch and decode the next instruction. Instead, it must fetch the
opcode, decode it, etc., increasing the execution time of these instructions. At this point
the only improvement we’ve made is to execute the “update ip” operation in parallel with
another step.

Usually, including the prefetch queue improves performance. That’s why Intel pro-
vides the prefetch queue on every model of the 80x86, from the 8088 on up. On these pro-
cessors, the BIU is constantly fetching data for the prefetch queue whenever the program
is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8286 processor runs
much faster than the 886 because it can keep the prefetch queue full. However, consider
the following instructions:

100: nov ax, [1000]
105: nov bx, [2000]
10A nov cx, [3000]

Page 115

Chapter 03

Since the ax, bx, and cx registers are 16 bits, here’s what happens (assuming the first
instruction is in the prefetch queue and decoded):

= Fetch the opcode byte from the prefetch queue (zero cycles).

= Decode the instruction (zero cycles).

= There is an operand to this instruction, so get it from the prefetch queue
(zero cycles).

= Get the value of the second operand (one cycle). Update ip.

= Store the fetched value into the destination register (one cycle). Fetch two
bytes from code stream. Decode the next instruction.

End of first instruction. Two bytes currently in prefetch queue.

= Fetch the opcode byte from the prefetch queue (zero cycles).

= Decode the instruction to see what it does (zero cycles).

« |If there is an operand to this instruction, get that operand from the
prefetch queue (one clock cycle because we’re still missing one byte).

= Get the value of the second operand (one cycle). Update ip.

= Store the fetched value into the destination register (one cycle). Fetch two
bytes from code stream. Decode the next instruction.

End of second instruction. Three bytes currently in prefetch queue.

= Fetch the opcode byte from the prefetch queue (zero cycles).

= Decode the instruction (zero cycles).

= If there is an operand to this instruction, get that operand from the
prefetch queue (zero cycles).

= Get the value of the second operand (one cycle). Update ip.

= Store the fetched value into the destination register (one cycle). Fetch two
bytes from code stream. Decode the next instruction.

As you can see, the second instruction requires one more clock cycle than the other
two instructions. This is because the BIU cannot fill the prefetch queue quite as fast as the
CPU executes the instructions. This problem is exasperated when you limit the size of the
prefetch queue to some number of bytes. This problem doesn’t exist on the 8286 processor,
but most certainly does exist in the 80x86 processors.

You’ll soon see that the 80x86 processors tend to exhaust the prefetch queue quite eas-
ily. Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch
new opcodes from memory, slowing the program. Executing shorter instructions helps
keep the prefetch queue full. For example, the 8286 can load two one-byte instructions
with a single memory cycle, but it takes 1.5 clock cycles to fetch a single three-byte instruc-
tion. Usually, it takes longer to execute those four one-byte instructions than it does to exe-
cute the single three-byte instruction. This gives the prefetch queue time to fill and decode
new instructions. In systems with a prefetch queue, it’s possible to find eight two-byte
instructions which operate faster than an equivalent set of four four-byte instructions. The
reason is that the prefetch queue has time to refill itself with the shorter instructions.

Moral of the story: when programming a processor with a prefetch queue, always use the
shortest instructions possible to accomplish a given task.

3.3.12

Page 116

The 8486 Processor

Executing instructions in parallel using a bus interface unit and an execution unit is a
special case of pipelining. The 8486 incorporates pipelining to improve performance. With
just a few exceptions, we’ll see that pipelining allows us to execute one instruction per
clock cycle.

The advantage of the prefetch queue was that it let the CPU overlap instruction fetch-
ing and decoding with instruction execution. That is, while one instruction is executing,
the BIU is fetching and decoding the next instruction. Assuming you’re willing to add

System Organization

Stage 1 2 3 4 5 6
Fetch Decode Compute || Fetch Compute Store
Opcode Opcode/ ||Address || Source Result Result

Prefetch and Dest
Operand Values
>

Figure 3.24 A Pipelined Implementation of Instruction Execution

T1 T2 T3 T4 TS5 T6 T7 T8 T9

Opcode Decode | Address Vakues Compute] Store Instr #1

Opcode Decode | Address Vakues Compute] Store Instr #2

Opcode Decode | Address Vakues Compute] Store Instr #3
Etc.

Figure 3.25 Instruction Execution in a Pipeline

hardware, you can execute almost all operations in parallel. That is the idea behind pipe-
lining.

3.3.12.1 The 8486 Pipeline

Consider the steps necessary to do a generic operation:

« Fetch opcode.

< Decode opcode and (in parallel) prefetch a possible 16-bit operand.

= Compute complex addressing mode (e.g., [xxxx+bx]), if applicable.

= Fetch the source value from memory (if a memory operand) and the des-
tination register value (if applicable).

< Compute the result.

= Store result into destination register.

Assuming you're willing to pay for some extra silicon, you can build a little
“mini-processor” to handle each of the above steps. The organization would look some-
thing like Figure 3.24.

If you design a separate piece of hardware for each stage in the pipeline above, almost
all these steps can take place in parallel. Of course, you cannot fetch and decode the
opcode for any one instruction at the same time, but you can fetch one opcode while
decoding the previous instruction. If you have an n-stage pipeline, you will usually have n
instructions executing concurrently. The 8486 processor has a six stage pipeline, so it over-
laps the execution of six separate instructions.

Figure 3.25, Instruction Execution in a Pipeline, demonstrates pipelining. T1, T2, T3, etc.,
represent consecutive “ticks” of the system clock. At T=T1 the CPU fetches the opcode
byte for the first instruction.

At T=T2, the CPU begins decoding the opcode for the first instruction. In parallel, it
fetches 16-bits from the prefetch queue in the event the instruction has an operand. Since
the first instruction no longer needs the opcode fetching circuitry, the CPU instructs it to
fetch the opcode of the second instruction in parallel with the decoding of the first instruc-
tion. Note there is a minor conflict here. The CPU is attempting to fetch the next byte from
the prefetch queue for use as an operand, at the same time it is fetching 16 bits from the

Page 117

Chapter 03

TS5 T6 T7 T8 T9 T10 T11
Value Load Compute Store Instr #1
Address Value Load Compute Store Instr #2
Operand | Address Value Load Compute Store Instr #3

Pipeline stall occurs here /

because Instr #1 is fetching
a value at the same time the
CPU wants to fetch an opcode

Instr #3 appears to take two
clock cycles to complete
because of the pipeline stall

Figure 3.26 A Pipeline Stall

prefetch queue for use as an opcode. How can it do both at once? You’ll see the solution in
a few moments.

At T=T3 the CPU computes an operand address for the first instruction, if any. The
CPU does nothing on the first instruction if it does not use the [xxxx+bx] addressing mode.
During T3, the CPU also decodes the opcode of the second instruction and fetches any
necessary operand. Finally the CPU also fetches the opcode for the third instruction. With
each advancing tick of the clock, another step in the execution of each instruction in the
pipeline completes, and the CPU fetches yet another instruction from memory.

At T=T6 the CPU completes the execution of the first instruction, computes the result
for the second, etc., and, finally, fetches the opcode for the sixth instruction in the pipeline.
The important thing to see is that after T=T5 the CPU completes an instruction on every
clock cycle. Once the CPU fills the pipeline, it completes one instruction on each cycle. Note that
this is true even if there are complex addressing modes to be computed, memory oper-
ands to fetch, or other operations which use cycles on a non-pipelined processor. All you
need to do is add more stages to the pipeline, and you can still effectively process each
instruction in one clock cycle.

3.3.12.2 Stalls in a Pipeline

Page 118

Unfortunately, the scenario presented in the previous section is a little too simplistic.
There are two drawbacks to that simple pipeline: bus contention among instructions and
non-sequential program execution. Both problems may increase the average execution
time of the instructions in the pipeline.

Bus contention occurs whenever an instruction needs to access some item in memory.
For example, if a mov mem, reg instruction needs to store data in memory and a
mov reg, mem instruction is reading data from memory, contention for the address and
data bus may develop since the CPU will be trying to simultaneously fetch data and write
data in memory.

One simplistic way to handle bus contention is through a pipeline stall. The CPU, when
faced with contention for the bus, gives priority to the instruction furthest along in the
pipeline. The CPU suspends fetching opcodes until the current instruction fetches (or
stores) its operand. This causes the new instruction in the pipeline to take two cycles to
execute rather than one (see Figure 3.26).

This example is but one case of bus contention. There are many others. For example,
as noted earlier, fetching instruction operands requires access to the prefetch queue at the
same time the CPU needs to fetch an opcode. Furthermore, on processors a little more
advanced than the 8486 (e.g., the 80486) there are other sources of bus contention popping
up as well. Given the simple scheme above, it’s unlikely that most instructions would exe-
cute at one clock per instruction (CPI).

System Organization

Fortunately, the intelligent use of a cache system can eliminate many pipeline stalls
like the ones discussed above. The next section on caching will describe how this is done.
However, it is not always possible, even with a cache, to avoid stalling the pipeline. What
you cannot fix in hardware, you can take care of with software. If you avoid using mem-
ory, you can reduce bus contention and your programs will execute faster. Likewise, using
shorter instructions also reduces bus contention and the possibility of a pipeline stall.

What happens when an instruction modifies the ip register? By the time the instruction
j mp 1000

completes execution, we’ve already started five other instructions and we’re only one
clock cycle away from the completion of the first of these. Obviously, the CPU must not
execute those instructions or it will compute improper results.

The only reasonable solution is to flush the entire pipeline and begin fetching opcodes
anew. However, doing so causes a severe execution time penalty. It will take six clock
cycles (the length of the 8486 pipeline) before the next instruction completes execution.
Clearly, you should avoid the use of instructions which interrupt the sequential execution
of a program. This also shows another problem — pipeline length. The longer the pipeline
is, the more you can accomplish per cycle in the system. However, lengthening a pipeline
may slow a program if it jumps around quite a bit. Unfortunately, you cannot control the
number of stages in the pipeline. You can, however, control the number of transfer instruc-
tions which appear in your programs. Obviously you should keep these to a minimum in
a pipelined system.

3.3.12.3 Cache, the Prefetch Queue, and the 8486

System designers can resolve many problems with bus contention through the intelli-
gent use of the prefetch queue and the cache memory subsystem. They can design the
prefetch queue to buffer up data from the instruction stream, and they can design the
cache with separate data and code areas. Both techniques can improve system perfor-
mance by eliminating some conflicts for the bus.

The prefetch queue simply acts as a buffer between the instruction stream in memory
and the opcode fetching circuitry. Unfortunately, the prefetch queue on the 8486 does not
enjoy the advantage it had on the 8286. The prefetch queue works well for the 8286
because the CPU isn’t constantly accessing memory. When the CPU isn’t accessing mem-
ory, the BIU can fetch additional instruction opcodes for the prefetch queue. Alas, the 8486
CPU is constantly accessing memory since it fetches an opcode byte on every clock cycle.
Therefore, the prefetch queue cannot take advantage of any “dead” bus cycles to fetch
additional opcode bytes — there aren’t any “dead” bus cycles. However, the prefetch
queue is still valuable on the 8486 for a very simple reason: the BIU fetches two bytes on
each memory access, yet some instructions are only one byte long. Without the prefetch
queue, the system would have to explicitly fetch each opcode, even if the BIU had already
“accidentally” fetched the opcode along with the previous instruction. With the prefetch
queue, however, the system will not refetch any opcodes. It fetches them once and saves
them for use by the opcode fetch unit.

For example, if you execute two one-byte instructions in a row, the BIU can fetch both
opcodes in one memory cycle, freeing up the bus for other operations. The CPU can use
these available bus cycles to fetch additional opcodes or to deal with other memory
accesses.

Of course, not all instructions are one byte long. The 8486 has two instruction sizes:
one byte and three bytes. If you execute several three-byte load instructions in a row,
you’re going to run slower, e.g.,

mov ax, 1000
nov bx, 2000
mov cx, 3000
add ax, 5000

Page 119

Chapter 03

/O Devices
Data Memory

Data/Memory Bus

Instruction Bus Instruction Memory

Figure 3.27 A Typical Harvard Machine

Each of these instructions reads an opcode byte and a 16 bit operand (the constant).
Therefore, it takes an average of 1.5 clock cycles to read each instruction above. As a result,
the instructions will require six clock cycles to execute rather than four.

Once again we return to that same rule: the fastest programs are the ones which use the
shortest instructions. If you can use shorter instructions to accomplish some task, do so. The
following instruction sequence provides a good example:

nmov ax, 1000
nmov bx, 1000
nmov cx, 1000
add ax, 1000

We can reduce the size of this program and increase its execution speed by changing it to:

nmov ax, 1000
nov bx, ax
nov cX, ax
add ax, ax

This code is only five bytes long compared to 12 bytes for the previous example. The
previous code will take a minimum of five clock cycles to execute, more if there are other
bus contention problems. The latter example takes only four®. Furthermore, the second
example leaves the bus free for three of those four clock periods, so the BIU can load addi-
tional opcodes. Remember, shorter often means faster.

While the prefetch queue can free up bus cycles and eliminate bus contention, some
problems still exist. Suppose the average instruction length for a sequence of instructions
is 2.5 bytes (achieved by having three three-byte instructions and one one-byte instruction
together). In such a case the bus will be kept busy fetching opcodes and instruction oper-
ands. There will be no free time left to access memory. Assuming some of those instruc-
tions access memory the pipeline will stall, slowing execution.

Suppose, for a moment, that the CPU has two separate memory spaces, one for
instructions and one for data, each with their own bus. This is called the Harvard Archi-
tecture since the first such machine was built at Harvard. On a Harvard machine there
would be no contention for the bus. The BIU could continue to fetch opcodes on the
instruction bus while accessing memory on the data/memory bus (see Figure 3.27),

15. Actually, both of these examples will take longer to execute. See the section on hazards for more details.

Page 120

System Organization

8486 CPU

Data/Address
Busses

o ~+ o O

~+ — 3 C
||

nstruction
ache

530 T C O O X m

Prefetch
Queue

Figure 3.28 Internal Structure of the 8486 CPU

In the real world, there are very few true Harvard machines. The extra pins needed on
the processor to support two physically separate busses increase the cost of the processor
and introduce many other engineering problems. However, microprocessor designers
have discovered that they can obtain many benefits of the Harvard architecture with few
of the disadvantages by using separate on-chip caches for data and instructions.
Advanced CPUs use an internal Harvard architecture and an external Von Neumann
architecture. Figure 3.28 shows the structure of the 8486 with separate data and instruc-
tion caches.

Each path inside the CPU represents an independent bus. Data can flow on all paths
concurrently. This means that the prefetch queue can be pulling instruction opcodes from
the instruction cache while the execution unit is writing data to the data cache. Now the
BIU only fetches opcodes from memory whenever it cannot locate them in the instruction
cache. Likewise, the data cache buffers memory. The CPU uses the data/address bus only
when reading a value which is not in the cache or when flushing data back to main mem-
ory.

By the way, the 8486 handles the instruction operand / opcode fetch contention prob-
lem in a sneaky fashion. By adding an extra decoder circuit, it decodes the instruction at
the beginning of the prefetch queue and three bytes into the prefetch queue in parallel.
Then, if the previous instruction did not have a 16-bit operand, the CPU uses the result
from the first decoder; if the previous instruction uses the operand, the CPU uses the
result from the second decoder.

Although you cannot control the presence, size, or type of cache on a CPU, as an
assembly language programmer you must be aware of how the cache operates to write
the best programs. On-chip instruction caches are generally quite small (8,192 bytes on the
80486, for example). Therefore, the shorter your instructions, the more of them will fit in
the cache (getting tired of “shorter instructions” yet?). The more instructions you have in
the cache, the less often bus contention will occur. Likewise, using registers to hold tempo-
rary results places less strain on the data cache so it doesn’t need to flush data to memory
or retrieve data from memory quite so often. Use the registers wherever possible!

Page 121

Chapter 03

T1

T2 T3 T4 TS5 T6 T7 ...

Opcode

Operand | Address Load Compute I Store I mov bX, [1 OOO]

1000 *kk from [1000] into bx

Opcode | Operand | Address Load Load Store mov ax. [bx
)

bx [bx] into ax

Figure 3.29 A Hazard on the 8486

T3 T4 T5 T6 T7 ...
Address Load Compute I Store I mov bX, [1 OOO]
*kk from [1000] into bx
Operand | Address Delay Delay I Load I Load Store mov ax, [bx]

bx [bx] into ax

Figure 3.30 A Hazard on the 8486

3.3.12.4 Hazards on the 8486

There is another problem with using a pipeline: the data hazard. Let’s look at the exe-
cution profile for the following instruction sequence:

nov bx, [1000]
nov ax, [bx]
When these two instructions execute, the pipeline will look something like
Figure 3.29.

Note a major problem here. These two instructions fetch the 16 bit value whose
address appears at location 1000 in memory. But this sequence of instructions won’t work
properly! Unfortunately, the second instruction has already used the value in bx before the
first instruction loads the contents of memory location 1000 (T4 & T6 in the diagram
above).

CISC processors, like the 80x86, handle hazards automatically'®. However, they will
stall the pipeline to synchronize the two instructions. The actual execution on the 8486
would look something like shown in Figure 3.29.

By delaying the second instruction two clock cycles, the 8486 guarantees that the load
instruction will load ax from the proper address. Unfortunately, the second load instruc-
tion now executes in three clock cycles rather than one. However, requiring two extra
clock cycles is better than producing incorrect results. Fortunately, you can reduce the
impact of hazards on execution speed within your software.

Note that the data hazard occurs when the source operand of one instruction was a
destination operand of a previous instruction. There is nothing wrong with loading bx
from [1000] and then loading ax from [bx], unless they occur one right after the other. Suppose
the code sequence had been:

nov cx, 2000
nov bx, [1000]
nov ax, [bx]

16. RISC chips do not. If you tried this sequence on a RISC chip you would get an incorrect answer.

Page 122

System Organization

8686 CPU
E U E U
X njpfxon Data/Address
e et Busses
c t c t
u u
t # t #
i 2 i1
) o)
n n

Prefetch
Queue

Figure 3.31 Internal Structure of the 8686 CPU

We could reduce the effect of the hazard that exists in this code sequence by simply
rearranging the instructions. Let’s do that and obtain the following:

nov bx, [1000]
nmov cx, 2000
nov ax, [bx]

Now the mov ax instruction requires only one additional clock cycle rather than two. By
inserting yet another instruction between the mov bx and mov ax instructions you can elim-
inate the effects of the hazard altogether’.

On a pipelined processor, the order of instructions in a program may dramatically
affect the performance of that program. Always look for possible hazards in your instruc-
tion sequences. Eliminate them wherever possible by rearranging the instructions.

3.3.13 The 8686 Processor

With the pipelined architecture of the 8486 we could achieve, at best, execution times
of one CPI (clock per instruction). Is it possible to execute instructions faster than this? At
first glance you might think, “Of course not, we can do at most one operation per clock
cycle. So there is no way we can execute more than one instruction per clock cycle.” Keep
in mind however, that a single instruction is not a single operation. In the examples pre-
sented earlier each instruction has taken between six and eight operations to complete. By
adding seven or eight separate units to the CPU, we could effectively execute these eight
operations in one clock cycle, yielding one CPI. If we add more hardware and execute, say,
16 operations at once, can we achieve 0.5 CPI? The answer is a qualified “yes.” A CPU
including this additional hardware is a superscalar CPU and can execute more than one
instruction during a single clock cycle. That’s the capability that the 8686 processor adds.

A superscalar CPU has, essentially, several execution units (see Figure 3.31). If it
encounters two or more instructions in the instruction stream (i.e., the prefetch queue)
which can execute independently, it will do so.

There are a couple of advantages to going superscalar. Suppose you have the follow-
ing instructions in the instruction stream:

17. Of course, any instruction you insert at this point must not modify the values in the ax and bx registers.

Page 123

Chapter 03

mov ax, 1000
nov bx, 2000

If there are no other problems or hazards in the surrounding code, and all six bytes for
these two instructions are currently in the prefetch queue, there is no reason why the CPU
cannot fetch and execute both instructions in parallel. All it takes is extra silicon on the
CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up
program sequences which have hazards. One limitation of the 8486 CPU is that once a
hazard occurs, the offending instruction will completely stall the pipeline. Every instruc-
tion which follows will also have to wait for the CPU to synchronize the execution of the
instructions. With a superscalar CPU, however, instructions following the hazard may
continue execution through the pipeline as long as they don’t have hazards of their own.
This alleviates (though does not eliminate) some of the need for careful instruction sched-
uling.

As an assembly language programmer, the way you write software for a superscalar
CPU can dramatically affect its performance. First and foremost is that rule you’re proba-
bly sick of by now: use short instructions. The shorter your instructions are, the more
instructions the CPU can fetch in a single operation and, therefore, the more likely the
CPU will execute faster than one CPI. Most superscalar CPUs do not completely duplicate
the execution unit. There might be multiple ALUs, floating point units, etc. This means
that certain instruction sequences can execute very quickly while others won’t. You have
to study the exact composition of your CPU to decide which instruction sequences pro-
duce the best performance.

3.4 1/O (Input/Output)

There are three basic forms of input and output that a typical computer system will
use: 1/O-mapped 1/0, memory-mapped input/output, and direct memory access (DMA).
1/0-mapped input/output uses special instructions to transfer data between the com-
puter system and the outside world; memory-mapped 1/0 uses special memory locations
in the normal address space of the CPU to communicate with real-world devices; DMA is
a special form of memory-mapped 1/0 where the peripheral device reads and writes
memory without going through the CPU. Each 1/0 mechanism has its own set of advan-
tages and disadvantages, we will discuss these in this section.

The first thing to learn about the input/output subsystem is that 1/0 in a typical com-
puter system is radically different than I/0 in a typical high level programming language.
In a real computer system you will rarely find machine instructions that behave like
writeln, printf, or even the x86 Get and Put instructions®®. In fact, most input/output
instructions behave exactly like the x86’s mov instruction. To send data to an output
device, the CPU simply moves that data to a special memory location (in the 1/0 address
space if 1/0-mapped input/output [see “The 1/0 Subsystem” on page 92] or to an
address in the memory address space if using memory-mapped 1/0). To read data from
an input device, the CPU simply moves data from the address (/0 or memory) of that
device into the CPU. Other than there are usually more wait states associated with a typi-
cal peripheral device than actual memory, the input or output operation looks very simi-
lar to a memory read or write operation (see “Memory Access and the System Clock” on
page 93).

An 170 port is a device that looks like a memory cell to the computer but contains con-
nections to the outside world. An I/0 port typically uses a latch rather than a flip-flop to
implement the memory cell. When the CPU writes to the address associated with the
latch, the latch device captures the data and makes it available on a set of wires external to
the CPU and memory system (see Figure 3.32). Note that 1/0 ports can be read-only,
write-only, or read/write. The port in Figure 3.32, for example, is a write-only port. Since

18. Get and Put behave the way they do in order to simplify writing x86 programs.

Page 124

System Organization

CPU write control line

L
Address decode line a
t
c

N
Data Bus from CPU iData h | Datato outside world

Figure 3.32 An Output Port Created with a Single Latch

CPU write control line

WL

Address decode line a
En t

N\ c

DataBus from CPU iData h

CPU read control line Data to outside world

R L

Address decode line a
En t

c

DataBusto CPU Data h

Figure 3.33 An Input/Output Port Requires Two Latches

the outputs on the latch do not loop back to the CPU’s data bus, the CPU cannot read the
data the latch contains. Both the address decode and write control lines must be active for
the latch to operate; when reading from the latch’s address the decode line is active, but
the write control line is not.

Figure 3.33 shows how to create a read/write input/output port. The data written to
the output port loops back to a transparent latch. Whenever the CPU reads the decoded
address the read and decode lines are active and this activates the lower latch. This places
the data previously written to the output port on the CPU’s data bus, allowing the CPU to
read that data. A read-only (input) port is simply the lower half of Figure 3.33; the system
ignores any data written to an input port.

A perfect example of an output port is a parallel printer port. The CPU typically
writes an ASCII character to a byte-wide output port that connects to the DB-25F connect
on the back of the computer’s case. A cable transmits this data to a the printer where an
input port (to the printer) receives the data. A processor inside the printer typically con-
verts this ASCII character to a sequence of dots it prints on the paper.

Generally, a given peripheral device will use more than a single 170 port. A typical
PC parallel printer interface, for example, uses three ports: a read/write port, an input
port, and an output port. The read/write port is the data port (it is read/write to allow the
CPU to read the last ASCII character it wrote to the printer port). The input port returns
control signals from the printer; these signals indicate whether the printer is ready to
accept another character, is off-line, is out of paper, etc. The output port transmits control
information to the printer such as whether data is available to print.

To the programmer, the difference between 1/0-mapped and memory-mapped
input/output operations is the instruction to use. For memory-mapped 170, any instruc-
tion that accesses memory can access a memory-mapped 1/0 port. On the x86, the mov,

Page 125

Chapter 03

add, sub, cmp, and, or, and not instructions can read memory; the mov and not instructions
can write data to memory. 1/0-mapped input/output uses special instructions to access
170 ports. For example, the x86 CPUs use the get and put instructions'®, the Intel 80x86
family uses the in and out instructions. The 80x86 in and out instructions work just like the
mov instruction except they place their address on the 1/0 address bus rather than the
memory address bus (See “The 1/0 Subsystem” on page 92.).

Memory-mapped 170 subsystems and I/0-mapped subsystems both require the
CPU to move data between the peripheral device and main memory. For example, to
input a sequence of ten bytes from an input port and store these bytes into memory the
CPU must read each value and store it into memory. For very high-speed 1/0 devices the
CPU may be too slow when processing this data a byte at a time. Such devices generally
contain an interface to the CPU’s bus so it directly read and write memory. This is known
as direct memory access since the peripheral device accesses memory directly, without using
the CPU as an intermediary. This often allows the 1/0 operation to proceed in parallel
with other CPU operations, thereby increasing the overall speed of the system. Note, how-
ever, that the CPU and DMA device cannot both use the address and data busses at the
same time. Therefore, concurrent processing only occurs if the CPU has a cache and is exe-
cuting code and accessing data found in the cache (so the bus is free). Nevertheless, even if
the CPU must halt and wait for the DMA operation to complete, the 170 is still much
faster since many of the bus operations during 1/0 or memory-mapped input/output
consist of instruction fetches or I/0 port accesses which are not present during DMA
operations.

3.5 Interrupts and Polled I/O

Many /0 devices cannot accept data at an arbitrary rate. For example, a Pentium
based PC is capable of sending several million characters a second to a printer, but that
printer is (probably) unable to print that many characters each second. Likewise, an input
device like a keyboard is unable to provide several million keystrokes per second (since it
operates at human speeds, not computer speeds). The CPU needs some mechanism to
coordinate data transfer between the computer system and its peripheral devices.

One common way to coordinate data transfer is to provide some status bits in a sec-
ondary input port. For example, a one in a single bit in an 1/0 port can tell the CPU that a
printer is ready to accept more data, a zero would indicate that the printer is busy and the
CPU should not send new data to the printer. Likewise, a one bit in a different port could
tell the CPU that a keystroke from the keyboard is available at the keyboard data port, a
zero in that same bit could indicate that no keystroke is available. The CPU can test these
bits prior to reading a key from the keyboard or writing a character to the printer.

Assume that the printer data port is memory-mapped to address OFFEOh and the
printer status port is bit zero of memory-mapped port OFFE2h. The following code waits
until the printer is ready to accept a byte of data and then it writes the byte in the L.O. byte
of ax to the printer port:

0000: nov bx, [FFE2]
0003: and bx, 1
0006: cnp bx, O
0009: je 0000

000C. nov [FFEO], ax

The first instruction fetches the data at the status input port. The second instruction
logically ands this value with one to clear bits one through fifteen and set bit zero to the
current status of the printer port. Note that this produces the value zero in bx if the printer

19. Get and put are a little fancier than true 1/0-mapped instructions, but we will ignore that difference here.

Page 126

System Organization

is busy, it produces the value one in bx if the printer is ready to accept additional data. The
third instruction checks bx to see if it contains zero (i.e., the printer is busy). If the printer is
busy, this program jumps back to location zero and repeats this process over and over
again until the printer status bit is one?.

The following code provides an example of reading a keyboard. It presumes that the
keyboard status bit is bit zero of address OFFE6h (zero means no key pressed) and the
ASCII code of the key appears at address OFFE4h when bit zero of location OFFE6h con-
tains a one:

0000: nov bx, [FFE6]
0003: and bx, 1
0006: cnp bx, 0
0009: je 0000

000C. nov ax, [FFE4]

This type of 1/0 operation, where the CPU constantly tests a port to see if data is
available, is polling, that is, the CPU polls (asks) the port if it has data available or if it is
capable of accepting data. Polled 170 is inherently inefficient. Consider what happens in
the previous code segment if the user takes ten seconds to press a key on the keyboard -
the CPU spins in a loop doing nothing (other than testing the keyboard status port) for
those ten seconds.

In early personal computer systems (e.g., the Apple 1), this is exactly how a program
would read data from the keyboard; when it wanted to read a key from the keyboard it
would poll the keyboard status port until a key was available. Such computers could not
do other operations while waiting for keystrokes. More importantly, if too much time
passes between checking the keyboard status port, the user could press a second key and
the first keystroke would be lost?!.

The solution to this problem is to provide an interrupt mechanism. An interrupt is an
external hardware event (like a keypress) that causes the CPU to interrupt the current
instruction sequence and call a special interrupt service routine. (ISR). An interrupt service
routine typically saves all the registers and flags (so that it doesn’t disturb the computa-
tion it interrupts), does whatever operation is necessary to handle the source of the inter-
rupt, it restores the registers and flags, and then it resumes execution of the code it
interrupted. In many computer systems (e.g., the PC), many 1/0 devices generate an
interrupt whenever they have data available or are able to accept data from the CPU. The
ISR quickly processes the request in the background, allowing some other computation to
proceed normally in the foreground.

CPUs that support interrupts must provide some mechanism that allows the pro-
grammer to specify the address of the ISR to execute when an interrupt occurs. Typically,
an interrupt vector is a special memory location that contains the address of the ISR to exe-
cute when an interrupt occurs. The x86 CPUs, for example, contain two interrupt vectors:
one for a general purpose interrupt and one for a reset interrupt (the reset interrupt corre-
sponds to pressing the reset button on most PCs). The Intel 80x86 family supports up to
256 different interrupt vectors.

After an ISR completes its operation, it generally returns control to the foreground
task with a special “return from interrupt” instruction. On the x86 the iret (interrupt
return) instruction handles this task. An ISR should always end with this instruction so
the ISR can return control to the program it interrupted.

A typical interrupt-driven input system uses the ISR to read data from an input port
and buffer it up whenever data becomes available. The foreground program can read that

20. Note that this is a hypothetical example. The PC’s parallel printer port is not mapped to memory addresses
OFFEOh and OFFE2h on the x86.

21. Akeyboard data port generally provides only the last character typed, it does not provide a “keyboard buffer”
for the system.

Page 127

Chapter 03

data from the buffer at its leisure without losing any data from the port. Likewise, a typi-
cal interrupt-driven output system (that gets an interrupt whenever the output device is
ready to accept more data) can remove data from a buffer whenever the peripheral device
is ready to accept new data.

3.6 Laboratory Exercises

In this laboratory you will use the “SIMX86.EXE” program found in the Chapter
Three subdirectory. This program contains a built-in assembler (compiler), debugger, and
interrupter for the x86 hypothetical CPUs. You will learn how to write basic x86 assembly
language programs, assemble (compile) them, modify the contents of memory, and exe-
cute your x86 programs. You will also experiment with memory-mapped 170,
1/0-mapped input/output, DMA, and polled as well as interrupt-driven I/0 systems.

In this set of laboratory exercises you will use the SIMx86.EXE program to enter, edit,
initialize, and emulate x86 programs. This program requires that you install two files in
your WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH3 subdi-
rectory for more details.

3.6.1

Page 128

The SIMx86 Program — Some Simple x86 Programs

To run the SIMx86 program double click on its icon or choose run from the Windows
file menu and enter the pathname for SIMx86. The SIMx86 program consists of three main
screen that you can select by clicking on the Editor, Memory, or Emulator notebook tabs in
the window. By default, SIMx86 opens the Editor screen. From the Editor screen you can
edit and assemble x86 programs; from Memory screen you can view and modify the con-
tents of memory; from the Emulator screen you execute x86 programs and view x86 pro-
grams in memory.

The SIMx86 program contains two menu items: File and Edit. These are standard Win-
dows menus so there is little need to describe their operation except for two points. First,
the New, Open, Save, and Save As items under the file menu manipulate the data in the
text editor box on the Editor screen, they do not affect anything on the other screens. Sec-
ond, the Print menu item in the File menu prints the source code appearing in the text edi-
tor if the Editor screen is active, it prints the entire form if the Memory or Emulator
screens are active.

To see how the SIMx86 program operates, switch to the Editor screen (if you are not
already there). Select “Open” from the File menu and choose “EX1.X86” from the Chapter
Three subdirectory. That file should look like the following:

nov ax, [1000]
nov bx, [1002]
add ax, bx

sub ax, 1

nov bx, ax

add bx, ax

add ax, bx

hal t

This short code sequence adds the two values at location 1000 and 1002, subtracts one
from their sum, and multiplies the result by three ((ax + ax) + ax) = ax*3), leaving the result
in ax and then it halts.

On the Editor screen you will see three objects: the editor window itself, a box that
holds the “Starting Address,” and an “Assemble” button. The “Starting Address” box
holds a hexadecimal number that specifies where the assembler will store the machine
code for the x86 program you write with the editor. By default, this address is zero. About
the only time you should change this is when writing interrupt service routines since the
default reset address is zero. The “Assemble” button directs the SIMx86 program to con-

System Organization

vert your assembly language source code into x86 machine code and store the result
beginning at the Starting Address in memory. Go ahead and press the “Assemble” button
at this time to assemble this program to memory.

Now press the “Memory” tab to select the memory screen. On this screen you will see
a set of 64 boxes arranged as eight rows of eight boxes. To the left of these eight rows you
will see a set of eight (hexadecimal) memory addresses (by default, these are 0000, 0008,
0010, 0018, 0020, 0028, 0030, and 0038). This tells you that the first eight boxes at the top of
the screen correspond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7; the second row of eight
boxes correspond to locations 8, 9, A, B, C, D, E, and F; and so on. At this point you should
be able to see the machine codes for the program you just assembled in memory locations
0000 through 000D. The rest of memory will contain zeros.

The memory screen lets you look at and possibly modify 64 bytes of the total 64K
memory provided for the x86 processors. If you want to look at some memory locations
other than 0000 through 003F, all you need do is edit the first address (the one that cur-
rently contains zero). At this time you should change the starting address of the memory
display to 1000 so you can modify the values at addresses 1000 and 1002 (remember, the
program adds these two values together). Type the following values into the correspond-
ing cells: at address 1000 enter the value 34, at location 1001 the value 12, at location 1002
the value 01, and at location 1003 the value 02. Note that if you type an illegal hexadecimal
value, the system will turn that cell red and beep at you.

By typing an address in the memory display starting address cell, you can look at or
modify locations almost anywhere in memory. Note that if you enter a hexadecimal
address that is not an even multiple of eight, the SIMx86 program disable up to seven cells
on the first row. For example, if you enter the starting address 1002, SIMx86 will disable
the first two cells since they correspond to addresses 1000 and 1001. The first active cell is
1002. Note the SIMx86 reserves memory locations FFFO through FFFF for mem-
ory-mapped 1/0. Therefore, it will not allow you to edit these locations. Addresses FFF0
through FFF7 correspond to read-only input ports (and you will be able to see the input
values even though SIMx86 disables these cells). Locations FFF8 through FFFF are
write-only output ports, SIMx86 displays garbage values if you look at these locations.

On the Memory page along with the memory value display/edit cells, there are two
other entry cells and a button. The “Clear Memory” button clears memory by writing
zeros throughout. Since your program’s object code and initial values are currently in
memory, you should not press this button. If you do, you will need to reassemble your
code and reenter the values for locations 1000 through 1003.

The other two items on the Memory screen let you set the interrupt vector address
and the reset vector address. By default, the reset vector address contains zero. This means
that the SIMx86 begins program execution at address zero whenever you reset the emula-
tor. Since your program is currently sitting at location zero in memory, you should not
change the default reset address.

The “Interrupt Vector” value is FFFF by default. FFFF is a special value that tells
SIMx86 “there is no interrupt service routine present in the system, so ignore all inter-
rupts.” Any other value must be the address of an ISR that SIMx86 will call whenever an
interrupt occurs. Since the program you assembled does not have an interrupt service rou-
tine, you should leave the interrupt vector cell containing the value FFFF.

Finally, press the “Emulator” tab to look at the emulator screen. This screen is much
busier than the other two. In the upper left hand corner of the screen is a data entry box
with the label IP. This box holds the current value of the x86 instruction pointer register.
Whenever SIMx86 runs a program, it begins execution with the instruction at this address.
Whenever you press the reset button (or enter SIMx86 for the first time), the IP register
contains the value found in the reset vector. If this register does not contain zero at this
point, press the reset button on the Emulator screen to reset the system.

Immediately below the ip value, the Emulator page disassembles the instruction found
at the address in the ip register. This is the very next instruction that SIMx86 will execute
when you press the “Run” or “Step” buttons. Note that SIMx86 does not obtain this

Page 129

Chapter 03

Page 130

instruction from the source code window on the Editor screen. Instead, it decodes the
opcode in memory (at the address found in ip) and generates this string itself. Therefore,
there may be minor differences between the instruction you wrote and the instruction
SIMx86 displays on this page. Note that a disassembled instruction contains several
numeric values in front of the actual instruction. The first (four-digit) value is the memory
address of that instruction. The next pair of digits (or the next three pairs of digits) are the
opcodes and possible instruction operand values. For example, the mov ax, [1000] instruc-
tion’s machine code is C6 00 10 since these are the three sets of digits appearing at this
point.

Below the current disassembled instruction, SIMx86 displays 15 instructions it disas-
sembles. The starting address for this disassemble is not the value in the ip register.
Instead, the value in the lower right hand corner of the screen specifies the starting disas-
sembly address. The two little arrows next to the disassembly starting address let you
quickly increment or decrement the disassembly starting address. Assuming the starting
address is zero (change it to zero if it is not), press the down arrow. Note that this incre-
ments the starting address by one. Now look back at the disassembled listing. As you can
see, pressing the down arrow has produced an interesting result. The first instruction (at
address 0001) is “****”_The four asterisks indicate that this particular opcode is an illegal
instruction opcode. The second instruction, at address 0002, is not ax. Since the program
you assembled did not contain an illegal opcode or a not ax instruction, you may be won-
dering where these instructions came from. However, note the starting address of the first
instruction: 0001. This is the second byte of the first instruction in your program. In fact,
the illegal instruction (opcode=00) and the not ax instruction (opcode=10) are actually a
disassembly of the mov ax, [1000] two-byte operand. This should clearly demonstrate a
problem with disassembly — it is possible to get “out of phase” by specify a starting
address that is in the middle of a multi-byte instruction. You will need to consider this
when disassembling code.

In the middle of the Emulator screen there are several buttons: Run, Step, Halt, Inter-
rupt, and Reset (the “Running” box is an annunciator, not a button). Pressing the Run but-
ton will cause the SIMx86 program to run the program (starting at the address in the ip
register) at “full” speed. Pressing the Step button instructs SIMx86 to execute only the
instruction that ip points at and then stop. The Halt button, which is only active while a
program is running, will stop execution. Pressing the Interrupt button generates an inter-
rupt and pressing the Reset button resets the system (and halts execution if a program is
currently running). Note that pressing the Reset button clears the x86 registers to zero and
loads the ip register with the value in the reset vector.

The “Running” annunciator is gray if SIMx86 is not currently running a program. It
turns red when a program is actually running. You can use this annunciator as an easy
way to tell if a program is running if the program is busy computing something (or is in
an infinite loop) and there is no 1/0 to indicate program execution.

The boxes with the ax, bx, cx, and dx labels let you modify the values of these registers
while a program is not running (the entry cells are not enabled while a program is actually
running). These cells also display the current values of the registers whenever a program
stops or between instructions when you are stepping through a program. Note that while
a program is running the values in these cells are static and do not reflect their current val-
ues.

The “Less” and “Equal” check boxes denote the values of the less than and equal
flags. The x86 cmp instruction sets these flags depending on the result of the comparison.
You can view these values while the program is not running. You can also initialize them
to true or false by clicking on the appropriate box with the mouse (while the program is
not running).

In the middle section of the Emulator screen there are four “LEDs” and four “toggle
switches.” Above each of these objects is a hexadecimal address denoting their mem-
ory-mapped 1/0 addresses. Writing a zero to a corresponding LED address turns that
LED “off” (turns it white). Writing a one to a corresponding LED address turns that LED

System Organization

“on” (turns it red). Note that the LEDs only respond to bit zero of their port addresses.
These output devices ignore all other bits in the value written to these addresses.

The toggle switches provide four memory-mapped input devices. If you read the
address above each switch SIMx86 will return a zero if the switch is off. SIMx86 will
return a one if the switch is in the on position. You can toggle a switch by clicking on it
with the mouse. Note that a little rectangle on the switch turns red if the switch is in the
“on” position.

The two columns on the right side of the Emulate screen (“Input” and “Output”) dis-
play input values read with the get instruction and output values the put instruction
prints.

For this first exercise, you will use the Step button to single step through each of the
instructions in the EX1.x86 program. First, begin by pressing the Reset button??. Next,
press the Step button once. Note that the values in the ip and ax registers change. The ip
register value changes to 0003 since that is the address of the next instruction in memory,
ax’s value changed to 1234 since that’s the value you placed at location 1000 when operat-
ing on the Memory screen. Single step through the remaining instructions (by repeatedly
pressing Step) until you get the “Halt Encountered” dialog box.

For your lab report: explain the results obtained after the execution of each instruc-
tion. Note that single-stepping through a program as you’ve done here is an excellent way
to ensure that you fully understand how the program operates. As a general rule, you
should always single-step through every program you write when testing it.

3.6.2 Simple I/O-Mapped Input/Output Operations

Go to the Editor screen and load the EX2.x86 file into the editor. This program intro-
duces some new concepts, so take a moment to study this code:

nov bx, 1000
a: get
nov [bx], ax
add bx, 2
cnp ax, 0
j ne a
nov cx, bx
nov bx, 1000
mov ax, 0
b: add ax, [bx]
add bx, 2
cnp bx, cx
ib b
put
hal t

The first thing to note are the two strings “a:” and “b:” appearing in column one of the
listing. The SIMx86 assembler lets you specify up to 26 statement labels by specifying a sin-
gle alphabetic character followed by a colon. Labels are generally the operand of a jump
instruction of some sort. Therefore, the “jne a” instruction above really says “jump if not
equal to the statement prefaced with the ‘a:’ label” rather than saying “jump if not equal to
location ten (OAh) in memory.”

Using labels is much more convenient than figuring out the address of a target
instruction manually, especially if the target instruction appears later in the code. The
SIMx86 assembler computes the address of these labels and substitutes the correct address

22. Itis a good idea to get in the habit of pressing the Reset button before running or stepping through any pro-
gram.

Page 131

Chapter 03

for the operands of the jump instructions. Note that you can specify a numeric address in
the operand field of a jump instruction. However, all numeric addresses must begin with
a decimal digit (even though they are hexadecimal values). If your target address would
normally begin with a value in the range A through F, simply prepend a zero to the num-
ber. For example, if “jne a” was supposed to mean “jump if not equal to location 0Ah” you
would write the instruction as “jne 0a”.

This program contains two loops. In the first loop, the program reads a sequence of
values from the user until the user enters the value zero. This loop stores each word into
successive memory locations starting at address 1000h. Remember, each word read by the
user requires two bytes; this is why the loop adds two to bx on each iteration.

The second loop in this program scans through the input values and computes their
sum. At the end of the loop, the code prints the sum to the output window using the put
instruction.

For your lab report: single-step through this program and describe how each instruc-
tion works. Reset the x86 and run this program at full speed. Enter several values and
describe the result. Discuss the get and put instruction. Describe why they do
1/0-mapped input/output operations rather than memory-mapped input/output opera-
tions.

3.6.3

Page 132

Memory Mapped I/O

From the Editor screen, load the EX3.x86 program file. That program takes the follow-
ing form (the comments were added here to make the operation of this program clearer):

a nov ax, [fffO]
nov bx, [fff2]
mov CX, ax ; Conputes SwO and Swl
and cx, bx
nov [fff8], cx
mov CX, ax ; Conputes Sa0 or Swl
or cx, bx
nov [fffa], cx
mov CcX, ax ; Conput es Sa0 xor Swl
nov dx, bx :Renenber, xor = AB + A B
not 4
not bx
and cx, bx
and dx, ax
or cx, dx
nov [fffc], cx
not CcX ; Conputes SWO = Swl
nov [fffe], cx ; Remenber, equal s = not xor
nov ax, [fff4] ;Read the third switch.
cnp ax, 0 ;See if it’s on.
je a ; Repeat this programwhile off.
hal t

Locations OFFFOh, OFFF2h, and OFFF4h correspond to the first three toggle switches
on the Execution page. These are memory-mapped 1/0 devices that put a zero or one into
the corresponding memory locations depending upon whether the toggle switch is in the
on or off state. Locations OFFF8h, OFFFAh, OFFFCh, and OFFFEh correspond to the four
LEDs. Writing a zero to these locations turns the corresponding LED off, writing a one
turns it on.

System Organization

This program computes the logical and, or, xor, and xnor (not xor) functions for the
values read from the first two toggle switches. This program displays the results of these
functions on the four output LEDs. This program reads the value of the third toggle
switch to determine when to quit. When the third toggle switch is in the on position, the
program will stop.

For your lab report: run this program and cycle through the four possible combina-
tions of on and off for the first two switches. Include the results in your lab report.

3.6.4 DMA Exercises

In this exercise you will start a program running (EX4.x86) that examines and oper-
ates on values found in memory. Then you will switch to the Memory screen and modify
values in memory (that is, you will directly access memory while the program continues
to run), thus simulating a peripheral device that uses DMA.

The EX4.x86 program begins by setting memory location 1000h to zero. Then it loops
until one of two conditions is met — either the user toggles the FFFO switch or the user
changes the value in memory location 1000h. Toggling the FFFO switch terminates the pro-
gram. Changing the value in memory location 1000h transfers control to a section of the
program that adds together n words, where n is the new value in memory location 1000h.
The program sums the words appearing in contiguous memory locations starting at
address 1002h. The actual program looks like the following:

d: nmv cx, 0 ; A ear |ocation 1000h before we
nmv [1000], cx ; begin testing it.

; The followi ng | oop checks to see if nenory |ocation 1000h changes or if
; the FFFO switch is in the on position.

a nmov cx, [1000] ;Check to see if |ocation 1000h
cnp cx, 0 ; changes. Junp to the section that
j ne c ; suns the values if it does.
nmov ax, [fffOQ] ;1f location 1000h still contains zero,
cnp ax, 0 ; read the FFFO switch and see if it is
je a ; off. If so, loop back. If the switch
hal t ; is on, quit the program

; The following code suns up the “cx” contiguous words of nenory starting at
; menory |ocation 1002. After it suns up these values, it prints their sum

c: nmov bx, 1002 ;Initialize BXto point at data array.
nmov ax, O ;lnitialize the sum

b: add ax, [bx] ;Sumin the next array val ue.
add bx, 2 ;Point BX at the next itemin the array.
sub cx, 1 ; Decrenent the el ement count.
cnp cx, 0 ; Test to see if we’'ve added up all the
j ne b ; values in the array.
put ;Print the sumand start over.
jnp d

Load this program into SIMx86 and assemble it. Switch to the Emulate screen, press
the Reset button, make sure the FFFO switch is in the off position, and then run the pro-
gram. Once the program is running switch to the memory screen by pressing the Memory
tab. Change the starting display address to 1000. Change the value at location 1000h to 5.
Switch back to the emulator screen. Assuming memory locations 1002 through 100B all
contain zero, the program should display a zero in the output column.

Switch back to the memory page. What does location 1000h now contain? Change the
L.O. bytes of the words at address 1002, 1004, and 1006 to 1, 2, and 3, respectively. Change

Page 133

Chapter 03

the value in location 1000h to three. Switch to the Emulator page. Describe the output in
your lab report. Try entering other values into memory. Toggle the FFFO switch when you
want to quit running this program.

For your lab report: explain how this program uses DMA to provide program input.
Run several tests with different values in location 1000h and different values in the data
array starting at location 1002. Include the results in your report.

For additional credit: Store the value 12 into memory location 1000. Explain why the
program prints two values instead of just one value.

3.6.5

Page 134

Interrupt Driven 1/O Exercises

In this exercise you will load two programs into memory: a main program and an
interrupt service routine. This exercise demonstrates the use of interrupts and an interrupt
service routine.

The main program (EX5a.x86) will constantly compare memory locations 1000h and
1002h. If they are not equal, the main program will print the value of location 1000h and
then copy this value to location 1002h and repeat this process. The main program repeats
this loop until the user toggles switch FFFO to the on position. The code for the main pro-
gram is the following:

a nmov ax, [1000] :Fetch the data at | ocati on 1000h and
cnp ax, [1002] ; see if it is the same as |ocation
je b ; 1002h. If so, check the FFFO switch.
put ;If the two values are different, print
nmov [1002], ax ; 1000h’ s val ue and nmake themthe sane.
b: nmov ax, [fffOQ] :Test the FFFO switch to see if we
cnp ax, 0 ; should quit this program
je a
hal t

The interrupt service routine (EX5b.x86) sits at location 100h in memory. Whenever an
interrupt occurs, this ISR simply increments the value at location 1000h by loading this
value into ax, adding one to the value in ax, and then storing this value back to location
1000h. After these instructions, the ISR returns to the main program. The interrupt service
routine contains the following code:

nmv ax, [1000] ;I ncrement | ocation 1000h by one and
add ax, 1 ; return to the interrupted code.
nmv [1000], ax

iret

You must load and assemble both files before attempting to run the main program.
Begin by loading the main program (EX5a.x86) into memory and assemble it at address
zero. Then load the ISR (EX5b.x86) into memory, set the Starting Address to 100, and then
assemble your code. Warning: if you forget to change the starting address you will wipe out
your main program when you assemble the ISR. If this happens, you will need to repeat this proce-
dure from the beginning.

After assembling the code, the next step is to set the interrupt vector so that it contains
the address of the ISR. To do this, switch to the Memory screen. The interrupt vector cell
should currently contain OFFFFh (this value indicates that interrupts are disabled).
Change this to 100 so that it contains the address of the interrupt service routine. This also
enables the interrupt system.

Finally, switch to the Emulator screen, make sure the FFFO toggle switch is in the off
position, reset the program, and start it running. Normally, nothing will happen. Now
press the interrupt button and observe the results.

System Organization

For your lab report: describe the output of the program whenever you press the inter-
rupt button. Explain all the steps you would need to follow to place the interrupt service
routine at address 2000h rather than 100h.

For additional credit: write your own interrupt service routine that does something
simple. Run the main program and press the interrupt button to test your code. Verify that
your ISR works properly.

3.6.6 Machine Language Programming & Instruction Encoding Exercises

To this point you have been creating machine language programs with SIMx86’s
built-in assembler. An assembler is a program that translates an ASCII source file contain-
ing textual representations of a program into the actual machine code. The assembler pro-
gram saves you a considerable amount of work by translating human readable
instructions into machine code. Although tedious, you can perform this translation your-
self. In this exercise you will create some very short machine language programs by encod-
ing the instructions and entering their hexadecimal opcodes into memory on the memory
screen.

Using the instruction encodings found in Figure 3.19, Figure 3.20, Figure 3.21, and
Figure 3.22, write the hexadecimal values for the opcodes beside each of the following
instructions:

Bi nary Qpcode Hex Qper and
mov cx, 0 HEEEEEEE I |

a: get LI T TPl
put HEEEEEEN
add ax, ax [| [[T 7]
put HEEEEEEN
add ax, ax [[[T [1]7]]
put HEEEEEEN
add ax, ax [| [[[[1]7]]

put LIT T T T T T]
add cx, 1 LIT T TP T Il | |
cnp cx, 4 HEEEEEEE || |
ib a LIT T T T T TT] I |
hal t HEEEEEEN

You can assume that the program starts at address zero and, therefore, label “a” will be at
address 0003 since the mov cx, 0 instruction is three bytes long.

Page 135

Chapter 03

For your lab report: enter the hexadecimal opcodes and operands into memory start-
ing at location zero using the Memory editor screen. Dump these values and include them
in your lab report. Switch to the Emulator screen and disassemble the code starting at
address zero. Verify that this code is the same as the assembly code above. Print a copy of
the disassembled code and include it in your lab report. Run the program and verify that
it works properly.

3.6.7

Page 136

Self Modifying Code Exercises

In the previous laboratory exercise, you discovered that the system doesn’t really dif-
ferentiate data and instructions in memory. You were able to enter hexadecimal data and
the x86 processor treats it as a sequence of executable instructions. It is also possible for a
program to store data into memory and then execute it. A program is self-modifying if it
creates or modifies some of the instructions it executes.

Consider the following x86 program (EX6.x86):

sub ax, ax
nmv [100], ax

a nmv ax, [100]
cnp ax, 0
je b
hal t

b: nmov ax, 00c6
nov [100], ax
nmov ax, 0710
nov [102], ax
nmov ax, a6al
nov [104], ax
nmov ax, 1000
nov [106], ax
nmov ax, 8007
nov [108], ax
nmov ax, 00e6
nov [10a], ax
nmov ax, 0el0
nov [10c], ax
nmv ax, 4
nov [10e], ax
jnp 100

This program writes the following code to location 100 and then executes it:

nmv ax, [1000]

put

add ax, ax

add ax, [1000]

put

sub ax, ax

nov [1000], ax

jnp 0004 ;0004 is the address of the A | abel

For your lab report: execute the EX7.x86 program and verify that it generates the
above code at location 100.

Although this program demonstrates the principle of self-modifying code, it hardly
does anything useful. As a general rule, one would not use self-modifying code in the
manner above, where one segment writes some sequence of instructions and then exe-
cutes them. Instead, most programs that use self-modifying code only modify existing
instructions and often only the operands of those instructions.

System Organization

Self-modifying code is rarely found in modern assembly language programs. Pro-
grams that are self-modifying are hard to read and understand, difficult to debug, and
often unstable. Programmers often resort to self-modifying code when the CPU’s architec-
ture lacks sufficient power to achieve a desired goal. The later Intel 80x86 processors do
not lack for instructions or addressing modes, so it is very rare to find 80x86 programs that
use self-modifying code?®. The x86 processors, however, have a very weak instruction set,
so there are actually a couple of instances where self-modifying code may prove useful.

A good example of an architectural deficiency where the x86 is lacking is with respect
to subroutines. The x86 instruction set does not provide any (direct) way to call and return
from a subroutine. However, you can easily simulate a call and return using the jmp
instruction and self-modifying code. Consider the following x86 “subroutine” that sits at
location 100h in memory:

; Integer to Binary converter.

; Expects an unsigned i nteger value in AX

; Converts this to a string of zeros and ones storing this string of
; values into nenory starting at |ocation 1000h.

nov bx, 1000 ;Starting address of string.
nov cx, 10 ;16 (10h) digits in a word.
a: nov dx, O ; Assune current bit is zero.
cnp ax, 8000 ;See if AXs HQ bit is zero or one.
ib b ;Branch if AXx HQ bit is zero.
nmov dx, 1 ;AX's HQ bit is one, set that here.
b: nmov [bx], dx ;Store zero or one to next string | oc.
add bx, 1 ; Bunp BX up to next string |ocation.
add ax, ax ; AX = AX *2 (shift left operation).
sub cx, 1 ; Count of f 16 bits.
cnp cx, 0 ; Repeat 16 tines.
ja a
jnp 0 ;Return to caller via self-nod code.

The only instruction that a program will modify in this subroutine is the very last jmp
instruction. This jump instruction must transfer control to the first instruction beyond the
jmp in the calling code that transfers control to this subroutine; that is, the caller must store
the return address into the operand of the jmp instruction in the code above. As it turns
out, the jmp instruction is at address 120h (assuming the code above starts at location
100h). Therefore, the caller must store the return address into location 121h (the operand
of the jmp instruction). The following sample “main” program makes three calls to the
“subroutine” above:

nov ax, 000c ; Address of the BRK instr bel ow
nov [121], ax ;Store into JMP as return address.
nmv ax, 1234 ; Convert 1234h to binary.

jp 100 ;"Cal 1™ the subroutine above.

br k ;Pause to | et the user exam ne 1000h.
nov ax, 0019 ; Address of the brk instr bel ow
nmov [121], ax

nmov ax, fdeb ; Convert OFDEBh to binary.

jmp 100

br k

nov ax, 26 ; Address of the halt instr bel ow
nmov [121], ax

nmov ax, 2345 ; Convert 2345h to binary.

jmp 100

hal t

23. Many viruses and copy protection programs use self modifying code to make it difficult to detect or bypass
them.

Page 137

Chapter 03

Load the subroutine (EX7s.x86) into SIMx86 and assemble it starting at location 100h.
Next, load the main program (EX7m.x86) into memory and assemble it starting at location
zero. Switch to the Emulator screen and verify that all the return addresses (Och, 19h, and
26h) are correct. Also verify that the return address needs to be written to location 121h.
Next, run the program. The program will execute a brk instruction after each of the first
two calls. The brk instruction pauses the program. At this point you can switch to the
memory screen at look at locations 1000-100F in memory. They should contain the
pseudo-binary conversion of the value passed to the subroutine. Once you verify that the
conversion is correct, switch back to the Emulator screen and press the Run button to con-
tinue program execution after the brk.

For your lab report: describe how self-modifying code works and explain in detail
how this code uses self-modifying code to simulate call and return instructions. Explain
the modifications you would need to make to move the main program to address 800h
and the subroutine to location 900h.

For additional credit: Actually change the program and subroutine so that they work
properly at the addresses above (800h and 900h).

3.7 Programming Projects

b

2)

3)

4)

5)

6)

7)

8)

9

Page 138

Note: You are to write these programs in x86 assembly language code using the
SIMx86 program. Include a specification document, a test plan, a program listing, and
sample output with your program submissions

The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

Create a callable subroutine that performs the multplication inproblem (1) above. Pass the
two values to multiple to the subroutine in the ax and bx registers. Return the product in
the cx register. Use the self-modifying code technique found in the section “Self Modifying
Code Exercises” on page 136.

Write a program that reads two two-bit numbers from switches (FFFO/FFF2) and
(FFF4/FFF6). Treating these bits as logical values, your code should compute the three-bit
sum of these two values (two-bit result plus a carry). Use the logic equations for the full
adder from the previous chapter. Do not simply add these values using the x86 add instruction.
Display the three-bit result on LEDs FFF8, FFFA, and FFFC.

Write a subroutine that expects an address in BX, a count in CX, and a value in AX. It
should write CX copies of AX to successive words in memory starting at address BX.
Write a main program that calls this subroutine several times with different addresses.
Use the self-modifying code subroutine call and return mechanism described in the labo-
ratory exercises.

Write the generic logic function for the x86 processor (see Chapter Two). Hint: add ax, ax
does a shift left on the value in ax. You can test to see if the high order bit is set by checking
to see if ax is greater than 8000h.

Write a program that reads the generic function number for a four-input function from the
user and then continually reads the switches and writes the result to an LED.

Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in cx, and locates the maximum value in that array. Dis-
play the value after scanning the array.

Write a program that computes the two’s complement of an array of values starting at
location 1000h. CX should contain the number of values in the array. Assume each array
element is a two-byte integer.

Write a “light show” program that displays a “light show” on the SIMx86’s LEDs. It
should accomplish this by writing a set of values to the LEDs, delaying for some time

System Organization

period (by executing an empty loop) and then repeating the process over and over again.
Store the values to write to the LEDs in an array in memory and fetch a new set of LED
values from this array on each loop iteration.

10) Write a simple program that sorts the words in memory locations 1000..10FF in ascending
order. You can use a simple insertion sort algorithm. The Pascal code for such a sort is
for i :=0ton-1do

for j :=i+l1 to n do

if (nermory[i] > nenmory[j]) then

begi n
tenp := menory[i];
nenmory[i] := nmemory[j];
menory[j] := tenp;

end;

3.8 Summary

Writing good assembly language programs requires a strong knowledge of the under-
lying hardware. Simply knowing the instruction set is insufficient. To produce the best
programs, you must understand how the hardware executes your programs and accesses
data.

Most modern computer systems store programs and data in the same memory space
(the Von Neumann architecture). Like most Von Neumann machines, a typical 80x86 system
has three major components: the central processing unit (CPU), input/output (1/0), and
memory. See:

= “The Basic System Components” on page 83

Data travels between the CPU, 1/0 devices, and memory on the system bus. There are
three major busses employed by the 80x86 family, the address bus, the data bus, and the con-
trol bus. The address bus carries a binary number which specifies which memory location
or I/0 port the CPU wishes to access; the data bus carries data between the CPU and
memory or 1/0; the control bus carries important signals which determine whether the
CPU is reading or writing memory data or accessing an 1/0 port. See:

= “The System Bus” on page 84

e “The Data Bus” on page 84

e “The Address Bus” on page 86
= “The Control Bus” on page 86

The number of data lines on the data bus determines the size of a processor. When we
say that a processor is an eight bit processor we mean that it has eight data lines on its data
bus. The size of the data which the processor can handle internally on the CPU does not
affect the size of that CPU. See:

e “The Data Bus” on page 84
= “The “Size” of a Processor” on page 85

The address bus transmits a binary number from the CPU to memory and 1/0 to
select a particular memory element or 1/0 port. The number of lines on the address bus
sets the maximum number of memory locations the CPU can access. Typical address bus
sizes on the 80x86 CPUs are 20, 24, and 32 bits. See:

= “The Address Bus” on page 86

The 80x86 CPUs also have a control bus which contains various signals necessary for
the proper operation of the system. The system clock, read/write control signals, and 1/0
or memory control signals are some samples of the many lines which appear on the con-
trol bus. See:

= “The Control Bus” on page 86

Page 139

Chapter 03

Page 140

The memory subsystem is where the CPU stores program instructions and data. On
80x86 based systems, memory appears as a linear array of bytes, each with its own unique
address. The address of the first byte in memory is zero, and the address of the last avail-
able byte in memory is 2"-1, where n is the number of lines on the address bus. The 80x86
stores words in two consecutive memory locations. The L.O. byte of the word is at the
lowest address of those two bytes; the H.O. byte immediately follows the first at the next
highest address. Although a word consumes two memory addresses, when dealing with
words we simply use the address of its L.O. byte as the address of that word. Double
words consume four consecutive bytes in memory. The L.O. byte appears at the lowest
address of the four, the H.O. byte appears at the highest address. The “address” of the
double word is the address of its L.O. byte. See:

= “The Memory Subsystem” on page 87

CPUs with 16, 32, or 64 bit data busses generally organize memory in banks. A 16 bit
memory subsystem uses two banks of eight bits each, a 32 bit memory subsystem uses
four banks of eight bits each, and a 64 bit system uses eight banks of eight bits each.
Accessing a word or double word at the same address within all the banks is faster than
accessing an object which is split across two addresses in the different banks. Therefore,
you should attempt to align word data so that it begins on an even address and double
word data so that it begins on an address which is evenly divisible by four. You may place
byte data at any address. See:

e “The Memory Subsystem” on page 87

The 80x86 CPUs provide a separate 16 bit 1/0 address space which lets the CPU
access any one of 65,536 different I/0 ports. A typical 1/0 device connected to the IBM PC
only uses 10 of these address lines, limiting the system to 1,024 different 1/0 ports. The
major benefit to using an 1/0 address space rather than mapping all 1/0 devices to mem-
ory space is that the 1/0 devices need not infringe upon the addressable memory space.
To differentiate 1/0 and memory accesses, there are special control lines on the system
bus. See:

< “The Control Bus” on page 86
e “The I/0 Subsystem” on page 92

The system clock controls the speed at which the processor performs basic operations.
Most CPU activities occur on the rising or falling edge of this clock. Examples include
instruction execution, memory access, and checking for wait states. The faster the system
clock runs, the faster your program will execute; however, your memory must be as fast as
the system clock or you will need to introduce wait states, which slow the system back
down. See:

“System Timing” on page 92

“The System Clock” on page 92

“Memory Access and the System Clock” on page 93
“Wait States” on page 95

Most programs exhibit a locality of reference. They either access the same memory loca-
tion repeatedly within a small period of time (temporal locality) or they access neighboring
memory locations during a short time period (spatial locality). A cache memory subsystem
exploits this phenomenon to reduce wait states in a system. A small cache memory system
can achieve an 80-95% hit ratio. Two-level caching systems use two different caches (typi-
cally one on the CPU chip and one off chip) to achieve even better system performance.
See:

= “Cache Memory” on page 96

CPUs, such as those in the 80x86 family, break the execution of a machine instruction
down into several distinct steps, each requiring one clock cycle. These steps include fetch-
ing an instruction opcode, decoding that opcode, fetching operands for the instruction,
computing memory addresses, accessing memory, performing the basic operation, and
storing the result away. On a very simplistic CPU, a simple instruction may take several
clock cycles. The best way to improve the performance of a CPU is to execute several

System Organization

internal operations in parallel with one another. A simple scheme is to put an instruction
prefetch queue on the CPU. This allows you to overlap opcode fetching and decoding
with instruction execution, often cutting the execution time in half. Another alternative is
to use an instruction pipeline so you can execute several instructions in parallel. Finally,
you can design a superscalar CPU which executes two or more instructions concurrently.
These techniques will all improve the running time of your programs. See:

= “The 886 Processor” on page 110

= “The 8286 Processor” on page 110
= “The 8486 Processor” on page 116
= “The 8686 Processor” on page 123

Although pipelined and superscalar CPUs improve overall system performance,
extracting the best performance from such complex CPUs requires careful planning by the
programmer. Pipeline stalls and hazards can cause a major loss of performance in poorly
organized programs. By carefully organizing the sequence of the instructions in your pro-
grams you can make your programs run as much as two to three times faster. See:

= “The 8486 Pipeline” on page 117

= “Stalls in a Pipeline” on page 118

= “Cache, the Prefetch Queue, and the 8486 on page 119
= “Hazards on the 8486 on page 122

= “The 8686 Processor” on page 123

The 1/0 subsystem is the third major component of a Von Neumann machine (mem-
ory and the CPU being the other two). There are three primary ways to move data
between the computer system and the outside world: 1/0-mapped input/output, mem-
ory-mapped input/output, and direct memory access (DMA). For more information, see:

= “1I/0 (Input/Output)” on page 124

To improve system performance, most modern computer systems use interrupts to
alert the CPU when an 1/0 operation is complete. This allows the CPU to continue with
other processing rather than waiting for an 1/0 operation to complete (polling the 170
port). For more information on interrupts and polled I/0 operatoins, see:

« “Interrupts and Polled I/0O” on page 126

Page 141

Chapter 03

3.9 Questions

o g M w

10.

11.

12.

13.

14.

Page 142

What three components make up Von Neumann Machines?
What is the purpose of

a) The system bus

b) The address bus
¢) The data bus

d) The control bus

Which bus defines the “size” of the processor?

Which bus controls how much memory you can have?

Does the size of the data bus control the maximum value the CPU can process? Explain.
What are the data bus sizes of:

a) 8088 b) 8086
e) 80386 f) 80486

c) 80286 d) 80386sx
g) 80586/Pentium

What are the address bus sizes of the above processors?
How many “banks” of memory do each of the above processors have?

Explain how to store a word in byte addressable memory (that is, at what addresses).
Explain how to store a double word.

How many memory operations will it take to read a word from the following addresses
on the following processors?

Table 21: Memory Cyclesfor Word Accesses

100 101 102 103 104 105

8088
80286
80386

Repeat the above for double words

Table 22: Memory Cyclesfor Doubleword Accesses

100 101 102 103 104 105

8088
80286
80386

Explain which addresses are best for byte, word, and doubleword variables on an 8088,
80286, and 80386 processor.

How many different 1/0 locations can you address on the 80x86 chip? How many are typ-
ically available on a PC?

What is the purpose of the system clock?

15.
16.
17.

18.
19.
20.

21.

22.
23.
24.
25.

26.

27.
28.

29.
30.

3L
32.

33.

System Organization

What is a clock cycle?
What is the relationship between clock frequency and the clock period?

How many clock cycles are required for each of the following to read a byte from mem-
ory?

a) 8088 b) 8086 ¢) 80486

What does the term “memory access time” mean?
What is a wait state?

If you are running an 80486 at the following clock speeds, how many wait states are
required if you are using 80ns RAM (assuming no other delays)?

a) 20 MHz b) 25 MHz c) 33 MHz d) 50 MHz e) 100 MHz

If your CPU runs at 50 MHz, 20ns RAM probably won’t be fast enough to operate at zero
wait states. Explain why.

Since sub-10ns RAM is available, why aren’t all system zero wait state systems?
Explain how the cache operates to save some wait states.
What is the difference between spatial and temporal locality of reference?

Explain where temporal and spatial locality of reference occur in the following Pascal
code:

while i < 10 do begin
X
i

I n
- X
*

end;

How does cache memory improve the performance of a section of code exhibiting spatial
locality of reference?

Under what circumstances is a cache not going to save you any wait states?

What is the effective (average) number of wait states the following systems will operate
under?

a) 80% cache hit ratio, 10 wait states (WS) for memory, 0 WS for cache.

b) 90% cache hit ratio; 7 WS for memory; 0 WS for cache.

c) 95% cache hit ratio; 10 WS memory; 1 WS cache.

d) 50% cache hit ratio; 2 WS memory; 0 WS cache.

What is the purpose of a two level caching system? What does it save?
What is the effective number of wait states for the following systems?

a) 80% primary cache hit ratio (HR) zero WS; 95% secondary cache HR with 2 WS; 10 WS
for main memory access.

b) 50% primary cache HR, zero WS; 98% secondary cache HR, one WS; five WS for main
Memory access.

¢) 95% primary cache HR, one WS; 98% secondary cache HR, 4 WS; 10 WS for main mem-
ory access.

Explain the purpose of the bus interface unit, the execution unit, and the control unit.

Why does it take more than one clock cycle to execute an instruction. Give some x86
examples.

How does a prefetch queue save you time? Give some examples.

Page 143

Chapter 03

34.

35.
36.
37.
38.

39.
40.

41.
42.
43.

44,
45.
46.
47.

Page 144

How does a pipeline allow you to (seemingly) execute one instruction per clock cycle?
Give an example.

What is a hazard?

What happens on the 8486 when a hazard occurs?
How can you eliminate the effects of a hazard?
How does a jump (JMP/Jcc) instruction affect

a) The prefetch queue.
b) The pipeline.

What is a pipeline stall?

Besides the obvious benefit of reducing wait states, how can a cache improve the perfor-
mance of a pipelined system?

What is a Harvard Architecture Machine?
What does a superscalar CPU do to speed up execution?

What are the two main techniques you should use on a superscalar CPU to ensure your
code runs as quickly as possible? (note: these are mechanical details, “Better Algorithms”
doesn’t count here).

What is an interrupt? How does it improved system performance?
What is polled 1/0?

What is the difference between memory-mapped and 1/0 mapped 1/0?
DMA is a special case of memory-mapped 1/0. Explain.

Memory Layout and Access Chapter Four

Chapter One discussed the basic format for data in memory. Chapter Three covered
how a computer system physically organizes that data. This chapter discusses how the
80x86 CPUs access data in memory.

4.0 Chapter Overview

This chapter forms an important bridge between sections one and two (Machine
Organization and Basic Assembly Language, respectively). From the point of view of
machine organization, this chapter discusses memory addressing, memory organization,
CPU addressing modes, and data representation in memory. From the assembly language
programming point of view, this chapter discusses the 80x86 register sets, the 80x86 mem-
ory addressing modes, and composite data types. This is a pivotal chapter. If you do not
understand the material in this chapter, you will have difficulty understanding the chap-
ters that follow. Therefore, you should study this chapter carefully before proceeding.

This chapter begins by discussing the registers on the 80x86 processors. These proces-
sors provide a set of general purpose registers, segment registers, and some special pur-
pose registers. Certain members of the family provide additional registers, although
typical application do not use them.

After presenting the registers, this chapter describes memory organization and seg-
mentation on the 80x86. Segmentation is a difficult concept to many beginning 80x86
assembly language programmers. Indeed, this text tends to avoid using segmented
addressing throughout the introductory chapters. Nevertheless, segmentation is a power-
ful concept that you must become comfortable with if you intend to write non-trivial
80x86 programs.

80x86 memory addressing modes are, perhaps, the most important topic in this chap-
ter. Unless you completely master the use of these addressing modes, you will not be able
to write reasonable assembly language programs. Do not progress beyond this section of
the text until you are comfortable with the 8086 addressing modes. This chapter also dis-
cusses the 80386 (and later) extended addressing modes. Knowing these addressing
modes is not that important for now, but if you do learn them you can use them to save
some time when writing code for 80386 and later processors.

This chapter also introduces a handful of 80x86 instructions. Although the five or so
instructions this chapter uses are insufficient for writing real assembly language pro-
grams, they do provide a sufficient set of instructions to let you manipulate variables and
data structures — the subject of the next chapter.

4.1 The 80x86 CPUs:A Programmer’s View

Now it’s time to discuss some real processors: the 8088/8086, 80188/80186, 80286, and
80386/80486/80586/Pentium. Chapter Three dealt with many hardware aspects of a com-
puter system. While these hardware components affect the way you should write soft-
ware, there is more to a CPU than bus cycles and pipelines. It’s time to look at those
components of the CPU which are most visible to you, the assembly language program-
mer.

The most visible component of the CPU is the register set. Like our hypothetical pro-
cessors, the 80x86 chips have a set of on-board registers. The register set for each processor
in the 80x86 family is a superset of those in the preceding CPUs. The best place to start is
with the register set for the 8088, 8086, 80188, and 80186 since these four processors have
the same registers. In the discussion which follows, the term “8086” will imply any of
these four CPUs.

Page 145

Chapter 04

Intel’s designers have classified the registers on the 8086 into three categories: general
purpose registers, segment registers, and miscellaneous registers. The general purpose
registers are those which may appear as operands of the arithmetic, logical, and related
instructions. Although these registers are “general purpose”, every one has its own special
purpose. Intel uses the term “general purpose” loosely. The 8086 uses the segment regis-
ters to access blocks of memory called, surprisingly enough, segments. See “Segments on
the 80x86” on page 151 for more details on the exact nature of the segment registers. The
final class of 8086 registers are the miscellaneous registers. There are two special registers
in this group which we’ll discuss shortly.

41.1

Page 146

8086 General Purpose Registers

There are eight 16 bit general purpose registers on the 8086: ax, bx, cx, dx, si, di, bp, and
sp. While you can use many of these registers interchangeably in a computation, many
instructions work more efficiently or absolutely require a specific register from this group.
So much for general purpose.

The ax register (Accumulator) is where most arithmetic and logical computations take
place. Although you can do most arithmetic and logical operations in other registers, it is
often more efficient to use the ax register for such computations. The bx register (Base) has
some special purposes as well. It is commonly used to hold indirect addresses, much like
the bx register on the x86 processors. The cx register (Count), as its name implies, counts
things. You often use it to count off the number of iterations in a loop or specify the num-
ber of characters in a string. The dx register (Data) has two special purposes: it holds the
overflow from certain arithmetic operations, and it holds 1/0 addresses when accessing
data on the 80x86 170 bus.

The si and di registers (Source Index and Destination Index) have some special purposes
as well. You may use these registers as pointers (much like the bx register) to indirectly
access memory. You’ll also use these registers with the 8086 string instructions when pro-
cessing character strings.

The bp register (Base Pointer) is similar to the bx register. You’ll generally use this regis-
ter to access parameters and local variables in a procedure.

The sp register (Stack Pointer) has a very special purpose — it maintains the program
stack. Normally, you would not use this register for arithmetic computations. The proper
operation of most programs depends upon the careful use of this register.

Besides the eight 16 bit registers, the 8086 CPUs also have eight 8 bit registers. Intel
calls these registers al, ah, bl, bh, cl, ch, dl, and dh. You’ve probably noticed a similarity
between these names and the names of some 16 bit registers (ax, bx, cx, and dx, to be exact).
The eight bit registers are not independent. al stands for “ax’s L.O. byte.” ah stands for
“ax’s H.O. byte.” The names of the other eight bit registers mean the same thing with
respect to bx, cx, and dx. Figure 4.1 shows the general purpose register set.

Note that the eight bit registers do not form an independent register set. Modifying al
will change the value of ax; so will modifying ah. The value of al exactly corresponds to
bits zero through seven of ax. The value of ah corresponds to bits eight through fifteen of
ax. Therefore any modification to al or ah will modify the value of ax. Likewise, modifying
ax will change both al and ah. Note, however, that changing al will not affect the value of
ah, and vice versa. This statement applies to bx/bl/bh, cx/cl/ch, and dx/dl/dh as well.

The si, di, bp, and sp registers are only 16 bits. There is no way to directly access the
individual bytes of these registers as you can the low and high order bytes of ax, bx, cx,
and dx.

Memory Layout and Access

AX Sl
—
BX DI
I
X BP
—
DX SP
]

Figure 4.1 8086 Register Set

4.1.2 8086 Segment Registers

The 8086 has four special segment registers: cs, ds, es, and ss. These stand for Code Seg-
ment, Data Segment, Extra Segment, and Stack Segment, respectively. These registers are all
16 bits wide. They deal with selecting blocks (segments) of main memory. A segment reg-
ister (e.g., cs) points at the beginning of a segment in memory.

Segments of memory on the 8086 can be no larger than 65,536 bytes long. This infa-
mous “64K segment limitation” has disturbed many a programmer. We’ll see some prob-
lems with this 64K limitation, and some solutions to those problems, later.

The cs register points at the segment containing the currently executing machine
instructions. Note that, despite the 64K segment limitation, 8086 programs can be longer
than 64K. You simply need multiple code segments in memory. Since you can change the
value of the cs register, you can switch to a new code segment when you want to execute
the code located there.

The data segment register, ds, generally points at global variables for the program.
Again, you’'re limited to 65,536 bytes of data in the data segment; but you can always
change the value of the ds register to access additional data in other segments.

The extra segment register, es, is exactly that — an extra segment register. 8086 pro-
grams often use this segment register to gain access to segments when it is difficult or
impossible to modify the other segment registers.

The ss register points at the segment containing the 8086 stack. The stack is where the
8086 stores important machine state information, subroutine return addresses, procedure
parameters, and local variables. In general, you do not modify the stack segment register
because too many things in the system depend upon it.

Although it is theoretically possible to store data in the segment registers, this is never
a good idea. The segment registers have a very special purpose — pointing at accessible
blocks of memory. Any attempt to use the registers for any other purpose may result in
considerable grief, especially if you intend to move up to a better CPU like the 80386.

Page 147

Chapter 04

L (e [l [l

Overflow
Direction
Interrupt - Unused
Trace D

Sign
Zero

Auxiliary Carry

Parity

Carry

Figure 4.2 8086 Flags Register

4.1.3

8086 Special Purpose Registers

There are two special purpose registers on the 8086 CPU: the instruction pointer (ip)
and the flags register. You do not access these registers the same way you access the other
8086 registers. Instead, the CPU generally manipulates these registers directly.

The ip register is the equivalent of the ip register on the x86 processors — it contains the
address of the currently executing instruction. This is a 16 bit register which provides a
pointer into the current code segment (16 bits lets you select any one of 65,536 different
memory locations). We’ll come back to this register when we discuss the control transfer
instructions later.

The flags register is unlike the other registers on the 8086. The other registers hold
eight or 16 bit values. The flags register is simply an eclectic collection of one bit values
which help determine the current state of the processor. Although the flags register is 16
bits wide, the 8086 uses only nine of those bits. Of these flags, four flags you use all the
time: zero, carry, sign, and overflow. These flags are the 8086 condition codes. The flags reg-
ister appears in Figure 4.2.

4.1.4

Page 148

80286 Registers

The 80286 microprocessor adds one major programmer-visible feature to the 8086 —
protected mode operation. This text will not cover the 80286 protected mode of operation
for a variety of reasons. First, the protected mode of the 80286 was poorly designed. Sec-
ond, it is of interest only to programmers who are writing their own operating system or
low-level systems programs for such operating systems. Even if you are writing software
for a protected mode operating system like UNIX or OS/2, you would not use the pro-
tected mode features of the 80286. Nonetheless, it’s worthwhile to point out the extra reg-
isters and status flags present on the 80286 just in case you come across them.

There are three additional bits present in the 80286 flags register. The 1/0 Privilege
Level is a two bit value (bits 12 and 13). It specifies one of four different privilege levels
necessary to perform 1/0 operations. These two bits generally contain 00b when operat-
ing in real mode on the 80286 (the 8086 emulation mode). The NT (nested task) flag controls
the operation of an interrupt return (IRET) instruction. NT is normally zero for real-mode
programs.

Besides the extra bits in the flags register, the 80286 also has five additional registers
used by an operating system to support memory management and multiple processes: the

Memory Layout and Access

machine status word (msw), the global descriptor table register (gdtr), the local descriptor
table register (Idtr), the interrupt descriptor table register (idtr) and the task register (tr).

About the only use a typical application program has for the protected mode on the
80286 is to access more than one megabyte of RAM. However, as the 80286 is now virtu-
ally obsolete, and there are better ways to access more memory on later processors, pro-
grammers rarely use this form of protected mode.

4.1.5 80386/80486 Registers

The 80386 processor dramatically extended the 8086 register set. In addition to all the
registers on the 80286 (and therefore, the 8086), the 80386 added several new registers and
extended the definition of the existing registers. The 80486 did not add any new registers
to the 80386’s basic register set, but it did define a few bits in some registers left undefined
by the 80386.

The most important change, from the programmer’s point of view, to the 80386 was
the introduction of a 32 bit register set. The ax, bx, cx, dx, si, di, bp, sp, flags, and ip registers
were all extended to 32 bits. The 80386 calls these new 32 bit versions eax, ebx, ecx, edx,
esi, edi, ebp, esp, eflags, and eip to differentiate them from their 16 bit versions (which are
still available on the 80386). Besides the 32 bit registers, the 80386 also provides two new
16 bit segment registers, fs and gs, which allow the programmer to concurrently access six
different segments in memory without reloading a segment register. Note that all the seg-
ment registers on the 80386 are 16 bits. The 80386 did not extend the segment registers to
32 bits as it did the other registers.

The 80386 did not make any changes to the bits in the flags register. Instead, it
extended the flags register to 32 bits (the “eflags” register) and defined bits 16 and 17. Bit
16 is the debug resume flag (RF) used with the set of 80386 debug registers. Bit 17 is the
Virtual 8086 mode flag (VM) which determines whether the processor is operating in vir-
tual-86 mode (which simulates an 8086) or standard protected mode. The 80486 adds a
third bit to the eflags register at position 18 — the alignment check flag. Along with control
register zero (CR0) on the 80486, this flag forces a trap (program abort) whenever the pro-
cessor accesses non-aligned data (e.g., a word on an odd address or a double word at an
address which is not an even multiple of four).

The 80386 added four control registers: CR0-CR3. These registers extend the msw reg-
ister of the 80286 (the 80386 emulates the 80286 msw register for compatibility, but the
information really appears in the CRx registers). On the 80386 and 80486 these registers
control functions such as paged memory management, cache enable/disable/operation
(80486 only), protected mode operation, and more.

The 80386/486 also adds eight debugging registers. A debugging program like
Microsoft Codeview or the Turbo Debugger can use these registers to set breakpoints
when you are trying to locate errors within a program. While you would not use these
registers in an application program, you’ll often find that using such a debugger reduces
the time it takes to eradicate bugs from your programs. Of course, a debugger which
accesses these registers will only function properly on an 80386 or later processor.

Finally, the 80386/486 processors add a set of test registers to the system which test
the proper operation of the processor when the system powers up. Most likely, Intel put
these registers on the chip to allow testing immediately after manufacture, but system
designers can take advantage of these registers to do a power-on test.

For the most part, assembly language programmers need not concern themselves
with the extra registers added to the 80386/486/Pentium processors. However, the 32 bit
extensions and the extra segment registers are quite useful. To the application program-
mer, the programming model for the 80386/486/Pentium looks like that shown in Figure 4.3

Page 149

Chapter 04

EAX Ax ESI
.) s
EBX Bx EDI
.] ol
ECX (x EBP
.] 8P
EDX px ESP
.] sP

EFLAGS
|] FLAGS |

Figure 4.3 80386 Registers (Application Programmer Visible)

4.2 80x86 Physical Memory Organization

Page 150

Chapter Three discussed the basic organization of a Von Neumann Architecture
(VNA) computer system. In a typical VNA machine, the CPU connects to memory via the
bus. The 80x86 selects some particular memory element using a binary number on the
address bus. Another way to view memory is as an array of bytes. A Pascal data structure
that roughly corresponds to memory would be:

Mermory @ array [O..MaxRAM of byte;

The value on the address bus corresponds to the index supplied to this array. E.g., writing
data to memory is equivalent to

Mermory [address] := Value_to_Wite;
Reading data from memory is equivalent to
Val ue_Read : = Menory [address];

Different 80x86 CPUs have different address busses that control the maximum num-
ber of elements in the memory array (see “The Address Bus” on page 86). However,
regardless of the number of address lines on the bus, most computer systems do not have
one byte of memory for each addressable location. For example, 80386 processors have 32
address lines allowing up to four gigabytes of memory. Very few 80386 systems actually
have four gigabytes. Usually, you’ll find one to 256 megabytes in an 80x86 based system.

The first megabyte of memory, from address zero to OFFFFFh is special on the 80x86.
This corresponds to the entire address space of the 8088, 8086, 80186, and 80188 micropro-
cessors. Most DOS programs limit their program and data addresses to locations in this
range. Addresses limited to this range are named real addresses after the 80x86 real mode.

Memory Layout and Access

4.3 Segments on the 80x86

You cannot discuss memory addressing on the 80x86 processor family without first
discussing segmentation. Among other things, segmentation provides a powerful mem-
ory management mechanism. It allows programmers to partition their programs into
modules that operate independently of one another. Segments provide a way to easily
implement object-oriented programs. Segments allow two processes to easily share data.
All in all, segmentation is a really neat feature. On the other hand, if you ask ten program-
mers what they think of segmentation, at least nine of the ten will claim it’s terrible. Why
such a response?

Well, it turns out that segmentation provides one other nifty feature: it allows you to
extend the addressability of a processor. In the case of the 8086, segmentation let Intel’s
designers extend the maximum addressable memory from 64K to one megabyte. Gee, that
sounds good. Why is everyone complaining? Well, a little history lesson is in order to
understand what went wrong.

In 1976, when Intel began designing the 8086 processor, memory was very expensive.
Personal computers, such that they were at the time, typically had four thousand bytes of
memory. Even when IBM introduced the PC five years later, 64K was still quite a bit of
memory, one megabyte was a tremendous amount. Intel’s designers felt that 64K memory
would remain a large amount throughout the lifetime of the 8086. The only mistake they
made was completely underestimating the lifetime of the 8086. They figured it would last
about five years, like their earlier 8080 processor. They had plans for lots of other proces-
sors at the time, and “86” was not a suffix on the names of any of those. Intel figured they
were set. Surely one megabyte would be more than enough to last until they came out
with something better?.

Unfortunately, Intel didn’t count on the IBM PC and the massive amount of software
to appear for it. By 1983, it was very clear that Intel could not abandon the 80x86 architec-
ture. They were stuck with it, but by then people were running up against the one mega-
byte limit of 8086. So Intel gave us the 80286. This processor could address up to 16
megabytes of memory. Surely more than enough. The only problem was that all that won-
derful software written for the IBM PC was written in such a way that it couldn’t take
advantage of any memory beyond one megabyte.

It turns out that the maximum amount of addressable memory is not everyone’s main
complaint. The real problem is that the 8086 was a 16 bit processor, with 16 bit registers
and 16 bit addresses. This limited the processor to addressing 64K chunks of memory.
Intel’s clever use of segmentation extended this to one megabyte, but addressing more
than 64K at one time takes some effort. Addressing more than 256K at one time takes a lot
of effort.

Despite what you might have heard, segmentation is not bad. In fact, it is a really
great memory management scheme. What is bad is Intel’s 1976 implementation of seg-
mentation still in use today. You can’t blame Intel for this — they fixed the problem in the
80’s with the release of the 80386. The real culprit is MS-DOS that forces programmers to
continue to use 1976 style segmentation. Fortunately, newer operating systems such as
Linux, UNIX, Windows 9x, Windows NT, and OS/2 don’t suffer from the same problems
as MS-DOS. Furthermore, users finally seem to be more willing to switch to these newer
operating systems so programmers can take advantage of the new features of the 80x86
family.

With the history lesson aside, it’s probably a good idea to figure out what segmenta-
tion is all about. Consider the current view of memory: it looks like a linear array of bytes.
Assingle index (address) selects some particular byte from that array. Let’s call this type of
addressing linear or flat addressing. Segmented addressing uses two components to spec-
ify a memory location: a segment value and an offset within that segment. Ideally, the seg-
ment and offset values are independent of one another. The best way to describe

1. At the time, the iapx432 processor was their next big product. It died a slow and horrible death.

Page 151

Chapter 04

Offset —Pp» X
Segment o
Access the memory
location specified
Y
by segment Y and) . g
offset X. T T

Figure 4.4 Segmented Addressing as a Two-Dimensional Process

segmented addressing is with a two-dimensional array. The segment provides one of the
indices into the array, the offset provides the other (see Figure 4.4).

Now you may be wondering, “Why make this process more complex?” Linear
addresses seem to work fine, why bother with this two dimensional addressing scheme?
Well, let’s consider the way you typically write a program. If you were to write, say, a
SIN(X) routine and you needed some temporary variables, you probably would not use
global variables. Instead, you would use local variables inside the SIN(X) function. In a
broad sense, this is one of the features that segmentation offers — the ability to attach
blocks of variables (a segment) to a particular piece of code. You could, for example, have
a segment containing local variables for SIN, a segment for SQRT, a segment for DRAW-
Windowy, etc. Since the variables for SIN appear in the segment for SIN, it’s less likely your
SIN routine will affect the variables belonging to the SQRT routine. Indeed, on the 80286
and later operating in protected mode, the CPU can prevent one routine from accidentally
modifying the variables in a different segment.

A full segmented address contains a segment component and an offset component.
This text will write segmented addresses as segment:offset. On the 8086 through the 80286,
these two values are 16 bit constants. On the 80386 and later, the offset can be a 16 bit con-
stant or a 32 bit constant.

The size of the offset limits the maximum size of a segment. On the 8086 with 16 bit
offsets, a segment may be no longer than 64K; it could be smaller (and most segments are),
but never larger. The 80386 and later processors allow 32 bit offsets with segments as large
as four gigabytes.

The segment portion is 16 bits on all 80x86 processors. This lets a single program have
up to 65,536 different segments in the program. Most programs have less than 16 seg-
ments (or thereabouts) so this isn’t a practical limitation.

Of course, despite the fact that the 80x86 family uses segmented addressing, the actual
(physical) memory connected to the CPU is still a linear array of bytes. There is a function
that converts the segment value to a physical memory address. The processor then adds
the offset to this physical address to obtain the actual address of the data in memory. This
text will refer to addresses in your programs as segmented addresses or logical addresses. The
actual linear address that appears on the address bus is the physical address (see Figure 4.4).

On the 8086, 8088, 80186, and 80188 (and other processors operating in real mode), the
function that maps a segment to a physical address is very simple. The CPU multiplies the
segment value by sixteen (10h) and adds the offset portion. For example, consider the seg-
mented address®: 1000:1F00. To convert this to a physical address you multiply the seg-

2. All segmented addresses in this text use the hexadecimal radix. Since this text will always use the hex radix for
addresses, there is no need to append an “h” to the end of such values.

Page 152

Memory Layout and Access

Plus the offset to Segment.offset

obtain the address
of the actual memory
location to access.

Segment points here >

Figure 4.5 Segmented Addressing in Physical Memory

1000:1F00

1000 First, multiply the segment value by 10h.

Then add in the offset portion.
+ 1F00 <«

11F0O0

Figure 4.6 Converting a Logical Address to a Physical Address

Their sum produces the physical address

ment value (1000h) by sixteen. Multiplying by the radix is very easy. Just append a zero to
the end of the number. Appending a zero to 1000h produces 10000h. Add 1F00h to this to
obtain 11F00h. So 11F00h is the physical address that corresponds to the segmented
address 1000:1F00 (see Figure 4.4).

Warning: A very common mistake people make when performing this computation is
to forget they are working in hexadecimal, not decimal. It is surprising to see how many
people add 9+1 and get 10h rather than the correct answer 0Ah.

Intel, when designing the 80286 and later processors, did not extend the addressing
by adding more bits to the segment registers. Instead, they changed the function the CPU
uses to convert a logical address to a physical address. If you write code that depends on
the “multiply by sixteen and add in the offset” function, your program will only work on
an 80x86 processor operating in real mode, and you will be limited to one megabyte of
memory?.

In the 80286 and later processors, Intel introduced protected mode segments. Among
other changes, Intel completely revamped the algorithm for mapping segments to the lin-
ear address space. Rather than using a function (such as multiplying the segment value by
10h), the protected mode processors use a look up table to compute the physical address. In
protected mode, the 80286 and later processors use the segment value as the index into an
array. The contents of the selected array element provide (among other things) the starting
address for the segment. The CPU adds this value to the offset to obtain the physical
address (see Figure 4.4).

Note that your applications cannot directly modify the segment descriptor table (the
lookup table). The protected mode operating system (UNIX, Linux, Windows, OS/2, etc.)
handles that operation.

3. Actually, you can also operate in V86 (virtual 86) mode on the 80386 and later, but you will still be limited to one
megabyte addressable memory.

Page 153

Chapter 04

1000:1F00

Use the segment as an index
into the segment descriptor array.
Fetch the value at this location
and add it to the offset to

obtain the physical address.

!’ !’

> XXXXXXXX
+ 1FO0 =

YYYYYYyy

Figure 4.7 Converting a Logical Address to a Physical Address in Protected Mode

The best programs never assume that a segment is located at a particular spot in
memory. You should leave it up to the operating system to place your programs into
memory and not generate any segment addresses on your own.

4.4 Normalized Addresses on the 80x86

Page 154

When operating in real mode, an interesting problem develops. You may refer to a
single object in memory using several different addresses. Consider the address from the
previous examples, 1000:1F00. There are several different memory addresses that refer to
the same physical address. For example, 11F0:0, 1100:F00, and even 1080:1700 all corre-
spond to physical address 11FO0h. When working with certain data types and especially
when comparing pointers, it’s convenient if segmented addresses point at different objects
in memory when their bit representations are different. Clearly this is not always the case
in real mode on an 80x86 processor.

Fortunately, there is an easy way to avoid this problem. If you need to compare two
addresses for (in)equality, you can use normalized addresses. Normalized addresses take a
special form so they are all unique. That is, unless two normalized segmented values are
exactly the same, they do not point at the same object in memory.

There are many different ways (16, in fact) to create normalized addresses. By conven-
tion, most programmers (and high level languages) define a normalized address as fol-
lows:

= The segment portion of the address may be any 16 bit value.
= The offset portion must be a value in the range 0..0Fh.

Normalized pointers that take this form are very easy to convert to a physical address. All
you need to do is append the single hexadecimal digit of the offset to the segment value.
The normalized form of 1000:1F00 is 11F0:0. You can obtain the physical address by
appending the offset (zero) to the end of 11F0 yielding 11F0O0.

It is very easy to convert an arbitrary segmented value to a normalized address. First,
convert your segmented address to a physical address using the “multiply by 16 and add
in the offset” function. Then slap a colon between the last two digits of the five-digit
result:

1000:1F00 O 11F00 O 11F0:0

Memory Layout and Access

Note that this discussion applies only to 80x86 processors operating in real mode. In

protected mode there is no direct correspondence between segmented addresses and

physical addresses so this technique does not work. However, this text deals mainly with
programs that run in real mode, so normalized pointers appear throughout this text.

45 Segment Registers on the 80x86

When Intel designed the 8086 in 1976, memory was a precious commodity. They
designed their instruction set so that each instruction would use as few bytes as possible.
This made their programs smaller so computer systems employing Intel processors would
use less memory. As such, those computer systems cost less to produce. Of course, the cost
of memory has plummeted to the point where this is no longer a concern but it was a con-
cern back then®. One thing Intel wanted to avoid was appending a 32 bit address (seg-
ment:offset) to the end of instructions that reference memory. They were able to reduce
this to 16 bits (offset only) by making certain assumptions about which segments in mem-
ory an instruction could access.

The 8086 through 80286 processors have four segment registers: cs, ds, ss and es. The
80386 and later processors have these segment registers plus fs and gs. The cs (code seg-
ment) register points at the segment containing the currently executing code. The CPU
always fetches instructions from the address given by cs:ip. By default, the CPU expects to
access most variables in the data segment. Certain variables and other operations occur in
the stack segment. When accessing data in these specific areas, no segment value is neces-
sary. To access data in one of the extra segments (es, fs, or gs), only a single byte is neces-
sary to choose the appropriate segment register. Only a few control transfer instructions
allow you to specify a full 32 bit segmented address.

Now, this might seem rather limiting. After all, with only four segment registers on
the 8086 you can address a maximum of 256 Kilobytes (64K per segment), not the full
megabyte promised. However, you can change the segment registers under program con-
trol, so it is possible to address any byte by changing the value in a segment register.

Of course, it takes a couple of instructions to change the value of one of the 80x86’s
segment registers. These instructions consume memory and take time to execute. So sav-
ing two bytes per memory access would not pay off if you are accessing data in different
segments all the time. Fortunately, most consecutive memory accesses occur in the same
segment. Hence, loading segment registers isn’t something you do very often.

4.6 The 80x86 Addressing Modes

Like the x86 processors described in the previous chapter, the 80x86 processors let you
access memory in many different ways. The 80x86 memory addressing modes provide
flexible access to memory, allowing you to easily access variables, arrays, records, point-
ers, and other complex data types. Mastery of the 80x86 addressing modes is the first step
towards mastering 80x86 assembly language.

When Intel designed the original 8086 processor, they provided it with a flexible,
though limited, set of memory addressing modes. Intel added several new addressing
modes when it introduced the 80386 microprocessor. Note that the 80386 retained all the
modes of the previous processors; the new modes are just an added bonus. If you need to
write code that works on 80286 and earlier processors, you will not be able to take advan-
tage of these new modes. However, if you intend to run your code on 80386sx or higher
processors, you can use these new modes. Since many programmers still need to write
programs that run on 80286 and earlier machines®, it’s important to separate the discus-
sion of these two sets of addressing modes to avoid confusing them.

4. Actually, small programs are still important. The smaller a program is the faster it will run because the CPU has
to fetch fewer bytes from memory and the instructions don’t take up as much of the cache.
5. Modern PCs rarely use processors earlier than the 80386, but embedded system still use the older processors.

Page 155

Chapter 04

46.1

8086 Register Addressing Modes

Most 8086 instructions can operate on the 8086’s general purpose register set. By spec-
ifying the name of the register as an operand to the instruction, you may access the con-
tents of that register. Consider the 8086 nDV (move) instruction:

nov destination, source

This instruction copies the data from the source operand to the destination operand.
The eight and 16 bit registers are certainly valid operands for this instruction. The only
restriction is that both operands must be the same size. Now let’s look at some actual 8086
MoV instructions:

nov ax, bx ; Copi es the value fromBX into AX
nov dl, al ; Copi es the value fromAL into DL
nov si, dx ; Copi es the value fromDX into Sl
nov sp, bp ; Copi es the value fromBP into SP
nov dh, cl ; Copi es the value fromQ. into DH
nov ax, ax ;Yes, this is legal!

Remember, the registers are the best place to keep often used variables. As you’ll see a lit-
tle later, instructions using the registers are shorter and faster than those that access mem-
ory. Throughout this chapter you’ll see the abbreviated operands reg and r/m
(register/memory) used wherever you may use one of the 8086’s general purpose regis-
ters.

In addition to the general purpose registers, many 8086 instructions (including the
mov instruction) allow you to specify one of the segment registers as an operand. There are
two restrictions on the use of the segment registers with the mov instruction. First of all,
you may not specify cs as the destination operand, second, only one of the operands can
be a segment register. You cannot move data from one segment register to another with a
single mov instruction. To copy the value of cs to ds, you’d have to use some sequence like:

nov ax, cs
nov ds, ax

You should never use the segment registers as data registers to hold arbitrary values.
They should only contain segment addresses. But more on that, later. Throughout this text
you’ll see the abbreviated operand sreg used wherever segment register operands are
allowed (or required).

4.6.2

8086 Memory Addressing Modes

The 8086 provides 17 different ways to access memory. This may seem like quite a bit
at first®, but fortunately most of the address modes are simple variants of one another so
they’re very easy to learn. And learn them you should! The key to good assembly lan-
guage programming is the proper use of memory addressing modes.

The addressing modes provided by the 8086 family include displacement-only, base,
displacement plus base, base plus indexed, and displacement plus base plus indexed.
Variations on these five forms provide the 17 different addressing modes on the 8086. See,
from 17 down to five. It’s not so bad after all!

46.2.1

The Displacement Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand, is the
displacement-only (or direct) addressing mode. The displacement-only addressing mode
consists of a 16 bit constant that specifies the address of the target location. The
instruction mov al,ds:[8088h] loads the al register with a copy of the byte at memory loca-

6. Just wait until you see the 80386!

Page 156

Memory Layout and Access

MASM Syntax for 8086 Memory Addressing Modes

Microsoft’s assembler uses several different variations to denote indexed, based/indexed, and dis-
placement plus based/indexed addressing modes. You will see all of these forms used interchange-
ably throughout this text. The following list some of the possible combinations that are legal for the
various 80x86 addressing modes:

disp[bx], [bx][disp], [bx+disp], [disp][bx], and [disp+bx]
[bx][si], [bx+si], [si][bx], and [si+bx]

disp[bx][si], disp[bx+si], [disp+bx+si], [disp+tbx][si], disp[si][bx], [disp+si][bx],
[di sp+si +bx], [si+disp+bx], [bx+disp+si], etc.

MASM treats the “[]” symbols just like the “+” operator. This operator is commultative, just like the
“+” operator. Of course, this discussion applies to all the 8086 addressing modes, not just those
involving BX and SI. You may substitute any legal registers in the addressing modes above.

AL —— 8088h
MOV AL, DS:[8088h]

A PA

DL —_— 1234h
MOV DS:[1234h], DL

Figure 4.8 Displacement Only (Direct) Addressing Mode

tion 8088h’. Likewise, the instruction mov ds:[1234h],dl stores the value in the dl register to
memory location 1234h (see Figure 4.8)

The displacement-only addressing mode is perfect for accessing simple variables. Of
course, you’d probably prefer using names like “I” or “J” rather than “DS:[1234h]” or
“DS:[8088h]”. Well, fear not, you’ll soon see it’s possible to do just that.

Intel named this the displacement-only addressing mode because a 16 bit constant
(displacement) follows the mov opcode in memory. In that respect it is quite similar to the
direct addressing mode on the x86 processors (see the previous chapter). There are some
minor differences, however. First of all, a displacement is exactly that— some distance from
some other point. On the x86, a direct address can be thought of as a displacement from
address zero. On the 80x86 processors, this displacement is an offset from the beginning of
a segment (the data segment in this example). Don’t worry if this doesn’t make a lot of
sense right now. You’ll get an opportunity to study segments to your heart’s content a lit-
tle later in this chapter. For now, you can think of the displacement-only addressing mode
as a direct addressing mode. The examples in this chapter will typically access bytes in
memory. Don’t forget, however, that you can also access words on the 8086 processors®
(see Figure 4.9).

By default, all displacement-only values provide offsets into the data segment. If you
want to provide an offset into a different segment, you must use a segment override prefix
before your address. For example, to access location 1234h in the extra segment (es) you
would use an instruction of the form mov ax,es:[1234h]. Likewise, to access this location in
the code segment you would use the instruction mov ax, cs:[1234h]. The ds: prefix in the
previous examples is not a segment override. The CPU uses the data segment register by
default. These specific examples require ds: because of MASM’s syntactical limitations.

7. The purpose of the “DS:” prefix on the instruction will become clear a little later.
8. And double words on the 80386 and later.

Page 157

Chapter 04

1235h
1234h

AX <

MOV AX, DS:[1234h]

Figure 4.9 Accessing a Word

MOV AL, [BX] —_—>

Figure 4.10 [BX] Addressing Mode

4.6.2.2

Page 158

The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using the register
indirect addressing modes. There are four forms of this addressing mode on the 8086, best
demonstrated by the following instructions:

nmov al, [bx]
nov al, [bp]
nmov al, [si]
nov al, [di]

As with the x86 [bx] addressing mode, these four addressing modes reference the byte
at the offset found in the bx, bp, si, or di register, respectively. The [bx], [si], and [di] modes
use the ds segment by default. The [bp] addressing mode uses the stack segment (ss) by
default.

You can use the segment override prefix symbols if you wish to access data in differ-
ent segments. The following instructions demonstrate the use of these overrides:

nmov al, cs:[bx]
nmov al, ds:[bp]
nmov al, ss:[si]
nmov al, es:[di]

Intel refers to [bx] and [bp] as base addressing modes and bx and bp as base registers (in
fact, bp stands for base pointer). Intel refers to the [si] and [di] addressing modes as indexed
addressing modes (si stands for source index, di stands for destination index). However, these
addressing modes are functionally equivalent. This text will call these forms register indi-
rect modes to be consistent.

Note: the [si] and [di] addressing modes work exactly the same way, just substitute si
and di for bx above.

Memory Layout and Access

MOV AL, [BP] —_ _—V

[ep -
[ss | >

Figure 4.11 [BP] Addressing Mode

4.6.2.3

Indexed Addressing Modes

The indexed addressing modes use the following syntax:

nov al, disp[bx]
nov al, disp[bp]
nov al, disp[si]
nov al, disp[di]

If bx contains 1000h, then the instruction mov cl,20h[bx] will load cl from memory loca-
tion ds:1020h. Likewise, if bp contains 2020h, mov dh,1000h[bp] will load dh from location
ss:3020.

The offsets generated by these addressing modes are the sum of the constant and the
specified register. The addressing modes involving bx, si, and di all use the data segment,
the disp[bp] addressing mode uses the stack segment by default. As with the register indi-
rect addressing modes, you can use the segment override prefixes to specify a different
segment:

nov al, ss:disp[bx]
nov al, es:disp[bp]
nov al, cs:disp[si]
nov al, ss:disp[di]

You may substitute si or di in Figure 4.12 to obtain the [si+disp] and [di+disp] addressing
modes.

Note that Intel still refers to these addressing modes as based addressing and indexed
addressing. Intel’s literature does not differentiate between these modes with or without
the constant. If you look at how the hardware works, this is a reasonable definition. From
the programmer’s point of view, however, these addressing modes are useful for entirely

Based vs. Indexed Addressing

There is actually a subtle difference between the based and indexed addressing modes. Both address-
ing modes consist of a displacement added together with a register. The major difference between the
two is the relative sizes of the displacement and register values. In the indexed addressing mode, the
constant typically provides the address of the specific data structure and the register provides an off-
set from that address. In the based addressing mode, the register contains the address of the data
structure and the constant displacement supplies the index from that point.

Since addition is commutative, the two views are essentially equivalent. However, since Intel sup-
ports one and two byte displacements (See “The 80x86 MOV Instruction” on page 166) it made more
sense for them to call it the based addressing mode. In actual use, however, you’ll wind up using it as
an indexed addressing mode more often than as a based addressing mode, hence the name change.

Page 159

Chapter 04

MOV AL, [BX+disp) r»_—»
BX

+
!
I

[os |

Figure 4.12 [BX+disp] Addressing Mode

MOV AL, [BP+disp] r»_—»

L+ —+

[ss |

Figure 4.13 [BP+disp] Addressing Mode

different things. Which is why this text uses different terms to describe them. Unfortu-
nately, there is very little consensus on the use of these terms in the 80x86 world.

46.2.4

Based Indexed Addressing Modes

The based indexed addressing modes are simply combinations of the register indirect
addressing modes. These addressing modes form the offset by adding together a base reg-
ister (bx or bp) and an index register (si or di). The allowable forms for these addressing
modes are

nmov al, [bx][si]
nov al, [bx][di]
nmov al, [bp][si]
nov al, [bp][di]

Suppose that bx contains 1000h and si contains 880h. Then the instruction
nmov al, [bx][si]

would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 1004,
mov ax,[bp+di] will load the 16 bits in ax from locations SS:259C and SS:259D.

The addressing modes that do not involve bp use the data segment by default. Those
that have bp as an operand use the stack segment by default.

You substitute di in Figure 4.12 to obtain the [bx+di] addressing mode. You substitute di
in Figure 4.12 for the [bp+di] addressing mode.

4.6.2.5

Page 160

Based Indexed Plus Displacement Addressing Mode

These addressing modes are a slight modification of the base/indexed addressing
modes with the addition of an eight bit or sixteen bit constant. The following are some
examples of these addressing modes (see Figure 4.12 and Figure 4.12).

Memory Layout and Access

Figure 4.15 [BP+SI] Addressing Mode

MOV AL, [BX+SI+disp]

Figure 4.16 [BX + Sl + disp] Addressing Mode

MOV AL, [BP+SI+disp]

| SS I -
Figure 4.17 [BP + Sl + disp] Addressing Mode
nov al, disp[bx][si]
nov al , disp[bx+di]
nov al , [bp+si +disp]
nov al, [bp][di][disp]

You may substitute di in Figure 4.12 to produce the [bx+di+disp] addressing mode. You may
substitute di in Figure 4.12 to produce the [bp+di+disp] addressing mode.

Page 161

Chapter 04

[BX] | [SI]

DISP BP] | [DI]

Figure 4.18 Table to Generate Valid 8086 Addressing Modes

Suppose bp contains 1000h, bx contains 2000h, si contains 120h, and di contains 5. Then
mov al,10h[bx+si] loads al from address DS:2130; mov ch,125h[bp+di] loads ch from location
SS:112A; and mov bx,cs:2[bx][di] loads bx from location CS:2007.

4.6.2.6

An Easy Way to Remember the 8086 Memory Addressing Modes

There are a total of 17 different legal memory addressing modes on the 8086: disp,
[bx], [bp], [si], [di], disp[bx], disp[bp], disp[si], disp[di], [bx][si], [bx][di], [bp][si], [bp][di],
disp[bx][si], disp [bx][di], disp[bp][si], and disp[bp][di]®. You could memorize all these
forms so that you know which are valid (and, by omission, which forms are invalid).
However, there is an easier way besides memorizing these 17 forms. Consider the chart in
Figure 4.12.

If you choose zero or one items from each of the columns and wind up with at least
one item, you’ve got a valid 8086 memory addressing mode. Some examples:

= Choose disp from column one, nothing from column two, [di] from column
3, you get disp[di].

= Choose disp, [bx], and [di]. You get disp[bx][di].

= Skip column one & two, choose [si]. You get [si]

= Skip column one, choose [bx], then choose [di]. You get [bx][di]

Likewise, if you have an addressing mode that you cannot construct from this table,
then it is not legal. For example, disp[dx][si] is illegal because you cannot obtain [dx] from
any of the columns above.

4.6.2.7

Some Final Comments About 8086 Addressing Modes

The effective address is the final offset produced by an addressing mode computation.
For example, if bx contains 10h, the effective address for 10h[bx] is 20h. You will see the
term effective address in almost any discussion of the 8086’s addressing mode. There is
even a special instruction load effective address (lea) that computes effective addresses.

Not all addressing modes are created equal! Different addressing modes may take dif-
fering amounts of time to compute the effective address. The exact difference varies from
processor to processor. Generally, though, the more complex an addressing mode is, the
longer it takes to compute the effective address. Complexity of an addressing mode is
directly related to the number of terms in the addressing mode. For example, disp[bx][si] is

9. That’s not even counting the syntactical variations!

Page 162

Memory Layout and Access

more complex than [bx]. See the instruction set reference in the appendices for information
regarding the cycle times of various addressing modes on the different 80x86 processors.

The displacement field in all addressing modes except displacement-only can be a
signed eight bit constant or a signed 16 bit constant. If your offset is in the range
-128...+127 the instruction will be shorter (and therefore faster) than an instruction with a
displacement outside that range. The size of the value in the register does not affect the
execution time or size. So if you can arrange to put a large number in the register(s) and
use a small displacement, that is preferable over a large constant and small values in the
register(s).

If the effective address calculation produces a value greater than OFFFFh, the CPU
ignores the overflow and the result wraps around back to zero. For example, if bx contains
10h, then the instruction mov al,0FFFFh[bx] will load the al register from location ds:0Fh,
not from location ds:1000Fh.

In this discussion you’ve seen how these addressing modes operate. The preceding
discussion didn’t explain what you use them for. That will come a little later. As long as you
know how each addressing mode performs its effective address calculation, you’ll be fine.

4.6.3 80386 Register Addressing Modes

The 80386 (and later) processors provide 32 bit registers. The eight general-purpose
registers all have 32 bit equivalents. They are eax, ebx, ecx, edx, esi, edi, ebp, and esp. If you
are using an 80386 or later processor you can use these registers as operands to several
80386 instructions.

4.6.4 80386 Memory Addressing Modes

The 80386 processor generalized the memory addressing modes. Whereas the 8086
only allowed you to use bx or bp as base registers and si or di as index registers, the 80386
lets you use almost any general purpose 32 bit register as a base or index register. Further-
more, the 80386 introduced new scaled indexed addressing modes that simplify accessing
elements of arrays. Beyond the increase to 32 bits, the new addressing modes on the 80386
are probably the biggest improvement to the chip over earlier processors.

4.6.4.1 Register Indirect Addressing Modes

On the 80386 you may specify any general purpose 32 bit register when using the reg-
ister indirect addressing mode. [eax], [ebx], [ecx], [edx], [esi], and [edi] all provide offsets,
by default, into the data segment. The [ebp] and [esp] addressing modes use the stack seg-
ment by default.

Note that while running in 16 bit real mode on the 80386, offsets in these 32 bit regis-
ters must still be in the range 0...0FFFFh. You cannot use values larger than this to access
more than 64K in a segmentlo. Also note that you must use the 32 bit names of the regis-
ters. You cannot use the 16 bit names. The following instructions demonstrate all the legal

forms:
nov al, [eax]
nov al, [ebx]
nov al, [ecx]
nov al, [edx]
nov al, [esi]
nov al, [edi]
nov al, [ebp] ;Uses SS by defaul t.

10. Unless, of course, you’re operating in protected mode, in which case this is perfectly legal.

Page 163

Chapter 04

nov al, [esp] ;Uses SS by defaul t.

4.6.4.2 80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing Modes

The indexed addressing modes (register indirect plus a displacement) allow you to
mix a 32 bit register with a constant. The base/indexed addressing modes let you pair up
two 32 bit registers. Finally, the base/indexed/displacement addressing modes let you
combine a constant and two registers to form the effective address. Keep in mind that the
offset produced by the effective address computation must still be 16 bits long when oper-
ating in real mode.

On the 80386 the terms base register and index register actually take on some meaning.
When combining two 32 bit registers in an addressing mode, the first register is the base
register and the second register is the index register. This is true regardless of the register
names. Note that the 80386 allows you to use the same register as both a base and index
register, which is actually useful on occasion. The following instructions provide represen-
tative samples of the various base and indexed address modes along with syntactical vari-

ations:
nov al, disp[eax] ; I ndexed addr essi ng
nov al , [ebx+disp] ; nodes.
nov al, [ecx][disp]
nov al , disp[edx]
nov al, disp[esi]
nov al, disp[edi]
nov al, disp[ebp] ; Uses SS by default.
nov al, disp[esp] ;Uses SS by default.

The following instructions all use the base+indexed addressing mode. The first regis-
ter in the second operand is the base register, the second is the index register. If the base
register is esp or ebp the effective address is relative to the stack segment. Otherwise the
effective address is relative to the data segment. Note that the choice of index register does
not affect the choice of the default segment.

nov al, [eax][ebx] ; Base+i ndexed addr essi ng
nov al, [ebx+ebx] . nodes.

nov al, [ecx][edx]

nov al, [edx][ebp] ; Uses DS by default.

nov al, [esi][edi]

nov al, [edi][esi]

nov al, [ebp+ebx] ; Uses SS by default.

nov al, [esp][ecx] ; Uses SS by default.

Naturally, you can add a displacement to the above addressing modes to produce the
base+indexed+displacement addressing mode. The following instructions provide a rep-
resentative sample of the possible addressing modes:

nov al, disp[eax][ebx] ; Base+i ndexed addr essi ng
nmov al, disp[ebx+ebx] ; modes.

nov al, [ecx+edx+di sp]

nov al , di sp[edx+ebp] ; Uses DS by defaul t.

nov al, [esi][edi][disp]

nov al, [edi][disp][esi]

nov al, disp[ebptebx] ; Uses SS by defaul t.

nov al, [esp+ecx][disp] ;Uses SS by defaul t.

There is one restriction the 80386 places on the index register. You cannot use the esp
register as an index register. It’s okay to use esp as the base register, but not as the index
register.

Page 164

Memory Layout and Access

4.6.4.3 80386 Scaled Indexed Addressing Modes

The indexed, base/indexed, and base/indexed/disp addressing modes described
above are really special instances of the 80386 scaled indexed addressing modes. These
addressing modes are particularly useful for accessing elements of arrays, though they are
not limited to such purposes. These modes let you multiply the index register in the
addressing mode by one, two, four, or eight. The general syntax for these addressing
modes is

di sp[i ndex*n]
[base] [i ndex*n]
or
di sp[base] [i ndex* n]

where “base” and “index” represent any 80386 32 bit general purpose registers and “n” is
the value one, two, four, or eight.

The 80386 computes the effective address by adding disp, base, and index*n together.
For example, if ebx contains 1000h and esi contains 4, then

nmov al , 8[ebx] [esi *4] ;Loads AL fromlocation 1018h
nmov al , 1000h[ebx] [ebx* 2] ;Loads AL froml ocati on 4000h
nmov al , 1000h[esi * 8] :Loads AL froml ocati on 1020h

Note that the 80386 extended indexed, base/indexed, and base/indexed/displacement
addressing modes really are special cases of this scaled indexed addressing mode with
“n” equal to one. That is, the following pairs of instructions are absolutely identical to the

80386:

nov al, 2[ebx][esi*1] nov al, 2[ebx][esi]
nov al, [ebx][esi*1] nov al, [ebx][esi]
nov al, 2[esi*1] nov al, 2[esi]

Of course, MASM allows lots of different variations on these addressing modes. The
following provide a small sampling of the possibilities:

di sp[bx][si*2], [bx+disp][si*2], [bx+si*2+disp], [si*2+bx][disp],
disp[si*2][bx], [si*2+disp][bx], [disp+bx][si*2]

4.6.4.4 Some Final Notes About the 80386 Memory Addressing Modes

Because the 80386’s addressing modes are more orthogonal, they are much easier to
memorize than the 8086’s addressing modes. For programmers working on the 80386 pro-
cessor, there is always the temptation to skip the 8086 addressing modes and use the 80386
set exclusively. However, as you’ll see in the next section, the 8086 addressing modes
really are more efficient than the comparable 80386 addressing modes. Therefore, it is
important that you know all the addressing modes and choose the mode appropriate to
the problem at hand.

When using base/indexed and base/indexed/disp addressing modes on the 80386,
without a scaling option (that is, letting the scaling default to “*1”), the first register
appearing in the addressing mode is the base register and the second is the index register.
This is an important point because the choice of the default segment is made by the choice
of the base register. If the base register is ebp or esp, the 80386 defaults to the stack seg-
ment. In all other cases the 80386 accesses the data segment by default, even if the index reg-
ister is ebp. If you use the scaled index operator (“*n”) on a register, that register is always
the index register regardless of where it appears in the addressing mode:

Page 165

Chapter 04

note: displacement may be zero, one, or two bytes long.

Figure 4.19 Generic MOV Instruction

[ebx] [ebp] ; Uses DS by defaul t.
[ebp] [ebx] ;Uses SS by defaul t.
[ebp*1] [ebx] ;Uses DS by default.
[ebx] [ebp*1] ;Uses DS by defaul t.
[ebp] [ebx* 1] ;Uses SS by defaul t.
[ebx*1] [ebp] ;Uses SS by defaul t.
es: [ebx] [ebp*1] ; Uses ES.

4.7 The 80x86 MOV Instruction

The examples throughout this chapter will make extensive use of the 80x86 mov
(move) instruction. Furthermore, the mov instruction is the most common 80x86 machine
instruction. Therefore, it’s worthwhile to spend a few moments discussing the operation
of this instruction.

Like it’s x86 counterpart, the mov instruction is very simple. It takes the form:
nov Dest, Sour ce

Mov makes a copy of Source and stores this value into Dest. This instruction does not
affect the original contents of Source. It overwrites the previous value in Dest. For the most
part, the operation of this instruction is completely described by the Pascal statement:

Dest := Source;

This instruction has many limitations. You’ll get ample opportunity to deal with them
throughout your study of 80x86 assembly language. To understand why these limitations
exist, you’re going to have to take a look at the machine code for the various forms of this
instruction. One word of warning, they don’t call the 80386 a CISC (Complex Instruction
Set Computer) for nothing. The encoding for the nov instruction is probably the most
complex in the instruction set. Nonetheless, without studying the machine code for this
instruction you will not be able to appreciate it, nor will you have a good understanding
of how to write optimal code using this instruction. You’ll see why you worked with the
x86 processors in the previous chapters rather than using actual 80x86 instructions.

There are several versions of the mov instruction. The mnemonic mov describes over

a dozen different instructions on the 80386. The most commonly used form of the mov
instruction has the following binary encoding shown in Figure 4.19.

The opcode is the first eight bits of the instruction. Bits zero and one define the width
of the instruction (8, 16, or 32 bits) and the direction of the transfer. When discussing spe-
cific instructions this text will always fill in the values of d and w for you. They appear
here only because almost every other text on this subject requires that you fill in these val-
ues.

Following the opcode is the addressing mode byte, affectionately called the
“mod-reg-r/m” byte by most programmers. This byte chooses which of 256 different pos-

11. Mnemonic means memory aid. This term describes the English names for instructions like MOV, ADD, SUB,
etc., which are much easier to remember than the hexadecimal encodings for the machine instructions.

Page 166

Memory Layout and Access

sible operand combinations the generic mov instruction allows. The generic mov instruc-
tion takes three different assembly language forms:

mov reg, nenory
mov menory, reg
mov reg, reg

Note that at least one of the operands is always a general purpose register. The reg field in
the mod/reg/rm byte specifies that register (or one of the registers if using the third form
above). The d (direction) bit in the opcode decides whether the instruction stores data into
the register (d=1) or into memory (d=0).

The bits in the reg field let you select one of eight different registers. The 8086 sup-
ports 8 eight bit registers and 8 sixteen bit general purpose registers. The 80386 also sup-
ports eight 32 bit general purpose registers. The CPU decodes the meaning of the reg field
as follows:

Table 23: REG Bit Encodings

reg W=0 16 bi t_mode 32 bi t_mode
w=1 w=1
000 AL AX EAX
001 CL CX ECX
010 DL DX EDX
011 BL BX EBX
100 AH SP ESP
101 CH BP EBP
110 DH Sl ESI
111 BH DI EDI

To differentiate 16 and 32 bit register, the 80386 and later processors use a special
opcode prefix byte before instructions using the 32 bit registers. Otherwise, the instruction
encodings are the same for both types of instructions.

The r/m field, in conjunction with the mod field, chooses the addressing mode. The mod
field encoding is the following:

Table 24: MOD Encoding

MOD Meaning

00 The r/m field denotes a register indirect memory addressing mode or a
base/indexed addressing mode (see the encodings for r/m) unless the r/m
field contains 110. If MOD=00 and r/m=110 the mod and r/m fields denote
displacement-only (direct) addressing.

01 The r/m field denotes an indexed or base/indexed/displacement addressing
mode. Thereis an eight bit signed displacement following the mod/reg/rm
byte.

10 Ther/m field denotes an indexed or base/indexed/displacement addressing

mode. Thereisa 16 bit signed displacement (in 16 bit mode) or a 32 bit
signed displacement (in 32 bit mode) following the mod/reg/rm byte .

11 The r/m field denotes a register and uses the same encoding as the reg field

The mod field chooses between a register-to-register move and a register-to/from-mem-
ory move. It also chooses the size of the displacement (zero, one, two, or four bytes) that
follows the instruction for memory addressing modes. If MOD=00, then you have one of
the addressing modes without a displacement (register indirect or base/indexed). Note
the special case where MOD=00 and r/m=110. This would normally correspond to the [bp]

Page 167

Chapter 04

Page 168

addressing mode. The 8086 uses this encoding for the displacement-only addressing
mode. This means that there isn’t a true [bp] addressing mode on the 8086.

To understand why you can use the [bp] addressing mode in your programs, look at
MOD=01 and MOD=10 in the above table. These bit patterns activate the disp[reg] and the
disp[reg][reg] addressing modes. “So what?” you say. “That’s not the same as the [bp]
addressing mode.” And you’re right. However, consider the following instructions:

nov al, 0[bx]
nov ah, 0O[bp]
nov O[si], al
nov O[di], ah

These statements, using the indexed addressing modes, perform the same operations as
their register indirect counterparts (obtained by removing the displacement from the
above instructions). The only real difference between the two forms is that the indexed
addressing mode is one byte longer (if MOD=01, two bytes longer if MOD=10) to hold the
displacement of zero. Because they are longer, these instructions may also run a little
slower.

This trait of the 8086 — providing two or more ways to accomplish the same thing —
appears throughout the instruction set. In fact, you’re going to see several more examples
before you’re through with the mov instruction. MASM generally picks the best form of
the instruction automatically. Were you to enter the code above and assemble it using
MASM, it would still generate the register indirect addressing mode for all the instruc-
tions except mov ah,0[bp]. It would, however, emit only a one-byte displacement that is
shorter and faster than the same instruction with a two-byte displacement of zero. Note
that MASM does not require that you enter O[bp], you can enter [bp] and MASM will auto-
matically supply the zero byte for you.

If MOD does not equal 11b, the r/m field encodes the memory addressing mode as
follows:

Table 25: R/M Field Encoding

R/M Addressing mode (Assuming MOD=00, 01, or 10)
000 [BX+Sl] or DISP[BX][SI] (depends on MOD)

001 [BX+DI] or DISP[BX+DI] (depends on MOD)

010 [BP+SI] or DISP[BP+Sl] (depends on MOD)

011 [BP+DlI] or DISP[BP+DI] (depends on MOD)

100 [SI] or DISP[SI] (depends on MOD)

101 [DI] or DISP[DI] (depends on MOD)

110 Displacement-only or DISP[BP] (depends on MOD)

1 [BX] or DISP[BX] (depends on MOD)

Don’t forget that addressing modes involving bp use the stack segment (ss) by default. All
others use the data segment (ds) by default.

If this discussion has got you totally lost, you haven’t even seen the worst of it yet.
Keep in mind, these are just some of the 8086 addressing modes. You’ve still got all the 80386
addressing modes to look at. You're probably beginning to understand what they mean when
they say complex instruction set computer. However, the important concept to note is that
you can construct 80x86 instructions the same way you constructed x86 instructions in
Chapter Three — by building up the instruction bit by bit. For full details on how the 80x86
encodes instructions, see the appendices.

Memory Layout and Access

4.8 Some Final Comments on the MOV Instructions

There are several important facts you should always remember about the mov instruc-
tion. First of all, there are no memory to memory moves. For some reason, newcomers to
assembly language have a hard time grasping this point. While there are a couple of
instructions that perform memory to memory moves, loading a register and then storing
that register is almost always more efficient. Another important fact to remember about
the mov instruction is that there are many different mov instructions that accomplish the
same thing. Likewise, there are several different addressing modes you can use to access
the same memory location. If you are interested in writing the shortest and fastest possible
programs in assembly language, you must be constantly aware of the trade-offs between
equivalent instructions.

The discussion in this chapter deals mainly with the generic mov instruction so you
can see how the 80x86 processors encode the memory and register addressing modes into
the mov instruction. Other forms of the mov instruction let you transfer data between
16-bit general purpose registers and the 80x86 segment registers. Others let you load a
register or memory location with a constant. These variants of the mov instruction use a
different opcode. For more details, see the instruction encodings in Appendix D.

There are several additional mov instructions on the 80386 that let you load the 80386
special purpose registers. This text will not consider them. There are also some string
instructions on the 80x86 that perform memory to memory operations. Such instructions
appear in the next chapter. They are not a good substitute for the mov instruction.

4.9 Laboratory Exercises

It is now time to begin working with actual 80x86 assembly language. To do so, you
will need to learn how to use several assembly-language related software development
tools. In this set of laboratory exercises you will learn how to use the basic tools to edit,
assemble, debug, and run 80x86 assembly language programs. These exercises assume
that you have already installed MASM (Microsoft’s Macro Assembler) on your system. If
you have not done so already, please install MASM (following Microsoft’s directions)
before attempting the exercises in this laboratory.

49.1 The UCR Standard Library for 80x86 Assembly Language Programmers

Most of the programs in this textbook use a set of standard library routines created at
the University of California, Riverside. These routines provide standardized 1/0, string
handling, arithmetic, and other useful functions. The library itself is very similar to the C
standard library commonly used by C/C++ programmers. Later chapters in this text will
describe many of the routines found in the library, there is no need to go into that here.
However, many of the example programs in this chapter and in later chapters will use cer-
tain library routines, so you must install and activate the library at this time.

The library appears on the companion CD-ROM. You will need to copy the library
from CD-ROM to the hard disk. A set of commands like the following (with appropriate
adjustments for the CD-ROM drive letter) will do the trick:

C:

cd \

md stdlib

cd stdlib

xcopy r:\stdlib*.* . /s

Once you’ve copied the library to your hard disk, there are two additional commands
you must execute before attempting to assemble any code that uses the standard library:

Page 169

Chapter 04

set include=c:\stdlib\include
set lib=c:\stdlib\lib

It would probably be a good idea to place these commands in your autoexec.bat file so
they execute automatically every time you start up your system. If you have not set the
include and lib variables, MASM will complain during assembly about missing files.

4.9.2

Editing Your Source Files

Before you can assemble (compile) and run your program, you must create an assem-
bly language source file with an editor. MASM will properly handle any ASCII text file, so
it doesn’t matter what editor you use to create that file as long as that editor processes
ASCII text files. Note that most word processors do not normally work with ASCII text
files, therefore, you should not use a word processor to maintain your assembly language
source files.

MS-DOS, Windows, and MASM all three come with simple text editors you can use to
create and modify assembly language source files. The EDIT.EXE program comes with
MS-DOS; The NOTEPAD.EXE application comes with Windows; and the PWB (Program-
mer’s Work Bench) comes with MASM. If you do not have a favorite text editor, feel free
to use one of these programs to edit your source code. If you have some language system
(e.g., Borland C++, Delphi, or MS Visual C++) you can use the editor they provide to pre-
pare your assembly language programs, if you prefer.

Given the wide variety of possible editors out there, this chapter will not attempt to
describe how to use any of them. If you’ve never used a text editor on the PC before, con-
sult the appropriate documentation for that text editor.

4.9.3

The SHELL.ASM File

Although you can write an assembly language program completely from scratch
within your text editor of choice, most assembly language programs contain a large num-
ber of statements common to every assembly language program. In the Chapter Four
directory on the companion CD-ROM there is a “SHELL.ASM” text file. The SHELL.ASM
file is a skeleton assembly language file’?. That is, it contains all the “overhead” instruc-
tions necessary to create a working assembly language program with the exception of the
instructions and variables that make up that specific program. In many respects, it is com-
parable to the following Pascal program:

program shel | (i nput, out put);

begi n

end.
Which is to say that SHELL.ASM is a valid program. You can assemble and run it but it
won’t do very much.

The main reason for the SHELL.ASM program is that there are lots of lines of code
that must appear in an empty assembly language program just to make the assembler
happy. Unfortunately, to understand what these instructions mean requires considerable
study. Rather than put off writing any programs until you understand everything neces-
sary to create your first program, you’re going to blindly use the SHELL.ASM file without
questioning what any of it means. Fear not. Within a couple chapters it will all make
sense. But for now, just type it in and use it exactly as it appears. The only thing you need
to know about SHELL.ASM right away is where to place your code in this file. That’s easy
to see, though; there are three comments in the file telling you where to put your variables
(if any), subroutine/procedures/functions (if any), and the statements for your main pro-

12. This file is available on the companion CD-ROM.

Page 170

Memory Layout and Access

gram. The following is the complete listing of the SHELL.ASM file for those who may not
have access to the electronic version:

.xlist
i ncl ude stdlib.a
includelib stdlib.lib
st
dseg segment para public ‘data’
; @ obal variables go here:
dseg ends
cseg segment para public ‘code’
assume cs: cseg, ds:dseg

; Variables that wind up being used by the standard library routines.
; The Meninit routine uses “PSP” and “zzzzzzseg” |abels. They nust be
; present if you intend to use getenv, Memnit, malloc, and free.

public PSP
PSP dw ?

; Main is the main program Program execution al ways begins here.

Mai n proc

nmov cs: PSP, es ; Save pgm seg prefix

nmov ax, seg dseg ; Set up the segnent
registers

nmov ds, ax

nov es, ax

nov dx, 0

mem ni t

jnc GoodMent ni t

print

db “Error initializing menory

manager”,cr,|f,0
jp Qui t
GoodMemi ni t:

IR RS S S S S S S S S S S SRS SRR EEE]
i

; Put your nain program here.

IR SRS SRS RS S S S SR SRR EE SRR EEE]
i

Qit: Exi t Pgm
Mai n endp
cseg ends

; Allocate a reasonabl e anmount of space for the stack (2k).

sseg segment para stack ‘stack’
stk db 256 dup (“stack “)
sseg ends

; Zzzzzzseg nust be the |ast segment that gets | oaded into menory!

zz77277S€g segment para public *zzzzzz’
Last Byt es db 16 dup (?)
272727S€egQ ends

end Mai n

Although you’re supposed to simply accept this code as-is and without question, a
few explanations are in order. The program itself begins with a pair of “include” and
“includelib” statements. These statements tell the assembler and linker that this code will
be using some of the library routines from the “UCR Standard Library for 80x86 Assembly
Language Programmers.” This library appears on the companion CD-ROM.

Page 171

Chapter 04

Note that text beginning with a semicolon (*;”) is a comment. The assembler ignores
all the text from the semicolon to the end of the line. As with high level languages, com-
ments are very important for explaining the operation of your program. In this example,
the comments point out some important parts of the SHELL.ASM program®3.

The next section of interest is the line that begins with dseg segment This is the
beginning of your global data area. This statement defines the beginning of a data seg-
ment (dseg stands for data segment) that ends with the dseg ends statement. You should
place all your global variables between these two statements.

Next comes the code segment (it’s called cseg) where the 80x86 instructions go. The
important thing to note here is the comment “Put your main program here.” For now, you
should ignore everything else in the code segment except this one comment. The
sequences of assembly language statements you create should go between the lines of
asterisks surrounding this comment. Have no fear; you’ll learn what all these statements
mean in the next two chapters. Attempting to explain them now would simply be too
much of a digression.

Finally come two additional segments in the program: sseg and zzzzzzseg. These seg-
ments are absolutely necessary (the system requires sseg, the UCR Standard Library
requires zzzzzzseg). You should not modify these segments.

When you begin writing a new assembly language program you should not modify
the SHELL.ASM file directly. You should first make a copy of SHELL.ASM using the DOS
copy command. For example, you might copy the file to PROJECT1.ASM and then make
all your modifications to this file. By doing this you will have an undisturbed copy of
SHELL.ASM available for your next project.

There is a special version of SHELL.ASM, X86.ASM, that contains some additional
code to support programming projects in this chapter. Please see the programming
projects section for more details.

49.4

Assembling Your Code with MASM

To run MASM you use the ML.EXE (MASM and Link) program. This file is typically
found in a directory with a name like C:\MASMG611\BIN. You should check to see if your
path includes this directory. If not, you should adjust the DOS shell path variable so that it
includes the directory containing ML.EXE, LINK.EXE, CV.EXE, and other MASM-related
programs.

MASM is a DOS-based program. The easiest way to run it is from DOS or from a DOS
box inside Windows. The basic MASM command takes the following form:

m {options} filenane.asm

Note that the ML program requires that you type the “.asm” suffix to the filename when
assembling an assembly language source file.

Most of the time, you will only use the “/Zi” option. This tells MASM to add sym-
bolic debugging information to the .EXE file for use by CodeView. This makes the execut-
able file somewhat larger, but it also makes tracing through a program with CodeView
(see “Debuggers and CodeView[” on page 173) considerably easier. Normally, you will
always use this option during development and skip using it when you want to produce
an EXE file you can distribute.

Another useful option, one you would normally use without a filename, is “/?”- the
help command. ML, if it encounters this option, will display a list of all the options
ML.EXE accepts. Most of these options you will rarely, if ever, use. Consult the MASM
documentation for more details on MASM command-line options.

13. By the way, when you create a program using SHELL.ASM it’s always a good idea to delete comments like
“Insert your global data here.” These comments are for the benefit of people reading the SHELL.ASM file, not for
people reading your programs. Such comments look really goofy in an actual program.

Page 172

Memory Layout and Access

Typing a command of the form “ML /Zi mypgm.asm” produces two new files
(assuming there were no errors): mypgm.obj and mypgm.exe. The OBJ (object code file) is
an intermediate file the assembler and linker use. Most of the time you can delete this if
you program consists of a single source file. The mypgm.exe file is the executable version
of the program. You can run this program directly from DOS or run it through the Code-
View debugger (often the best choice).

4.9.5 Debuggers and CodeView[]

The SIMx86 program is an example of a very simple debugging program. It should
come as no surprise that there are several debugger programs available for the 80x86 as
well. In this chapter you will learn the basic operation of the CodeView debugger. Code-
View is a professional product with many different options and features. This short chap-
ter cannot begin to describe all the possible ways to use the CodeView debugger.
However, you will learn how to use some of the more common CodeView commands and
debugging techniques.

One major drawback to describing a system like CodeView is that Microsoft con-
stantly updates the CodeView product. These updates create subtle changes in the
appearance of several screen images and the operation of various commands. It’s quite
possible that you’re using an older version of CodeView than the one described in this
chapter, or this chapter describes an older version of CodeView than the one you’re using
(This Chapter uses CodeView v4.0). Well, don’t let this concern you. The basic principles
are the same and you should have no problem adjusting for version differences.

Note: this chapter assumes you are running CodeView from MS-DOS. If you are using
a Windows version, the screens will look slightly different.

4951 A Quick Look at CodeView

To run CodeView, simply type the following command at the DOS command line
prompt:

c:> CV program exe

Program.exe represents the name of the program you wish to debug (the “.exe” suffix is
optional). CodeView requires that you specify a “.EXE” or “.COM” program name. If you
do not supply an executable filename, CodeView will ask you to pick a file when you run
it.

CodeView requires an executable program name as the command line parameter.
Since you probably haven’t written an executable assembly language program yet, you
haven’t got a program to supply to CodeView. To alleviate this problem, use the
SHELL.EXE program found in the Chapter Four subdirectory. To run CodeView using
SHELL.EXE just use the command “CV SHELL.EXE”. This will bring up a screen which
looks something like that in Figure 4.20.

There are four sections to the screen in Figure 4.20: the menu bar on the first line, the
sourcel window, the command window, and the help/ status line. Note that CodeView has
many windows other than the two above. CodeView remembers which windows were
open the last time it was run, so it might come up displaying different windows than
those above. At first, the Command window is the active window. However, you can eas-
ily switch between windows by pressing the F6 key on the keyboard.

The windows are totally configurable. The Windows menu lets you select which win-
dows appear on the screen. As with most Microsoft windowing products, you select items
on the menu bar by holding down the alt key and pressing the first letter of the menu you
wish to open. For example, pressing alt-W opens up the Windows menu as shown in
Figure 4.21.

Page 173

Chapter 04

Edit Search Ban Data Options Calls Windows Help
—I[31 sourcel C5:IF shell.asm
13:
14: cseg segrent para public ‘code”
15: assume Cc5icseq. dsidseg
16:
17: HMaim proc
1B: noU ax, dseq
19: nOU ds, ax
28 AoU BS, ax
21: meminit
22!
230
24:
251 Quit: ExitPgm :I03 macro to gquit program.
26 Hain endp
Pl
28 cseq ends

conmand

File Edit Search Ren Data Options Calls JEFRTTT]
—I[31 sourcel C5:IF shell

13: Restore CErl+FS
14: CEEq segrent para public “cod ue CErl+F7

15: assuRE CcHicseq. dsidseq ize rl+FB

16: Higlimize Cirl+F3
17: HMaim proc Ha!inizc Cirl+FiB
1B: noU ax, dseq lose Cirl+F4
19: nOU ds, ax ile Shil t+F5
28 AoU BS, ax irrange AlL+FS

meminit

1. Help Alt+8
. Locals Alt+1
. Watch Alt+2
. Source Alt+3
. Source 2 Ali+4
. Hemory AlE+S
. Hemory 2 AlE+b
. Register AlE+7

conmand = . Baay Alt+B

|, Command AlE+9

Figure 4.21 CodeView Window Menu (alt-W)

495.2 The Source Window

The Sourcel and Source?2 items let you open additional source windows. This lets you
view, simultaneously, several different sections of the current program you’re debugging.
Source windows are useful for source level debugging.

Page 174

Memory Layout and Access

Edit Search Ren Data Options Calls Windows Help
memoryl b DS:0

91 conmand
CU1B53 Warning: TOODLS.INI not [ownd
3

{FB=Trace» <FlB=3tep> <FS=Go> <F3=51 Fmi> {5h+F3=H1 Fnt>

Figure 4.22 A Memory Display

4953 The Memory Window

The Memory item lets you open a memory window. The memory windows lets you
display and modify values in memory. By default, this window displays the variables in
your data segment, though you can easily display any values in memory by typing their
address.

Figure 4.22 is an example of a memory display.

The values on the left side of the screen are the segmented memory addresses. The
columns of hexadecimal values in the middle of the screen represent the values for 16
bytes starting at the specified address. Finally, the characters on the right hand side of the
screen represent the ASCII characters for each of the 16 bytes at the specified addresses.
Note that CodeView displays a period for those byte values that are not printable ASCII
characters.

When you first bring up the memory window, it typically begins displaying data at
offset zero in your data segment. There are a coup.le of ways to display different memory
locations. First, you can use the PgUp and PgDn keys to scroll through memory!*.
Another option is to move the cursor over a segment or offset portion of an address and
type in a new value. As you type each digit, CodeView automatically displays the data at
the new address.

If you want to modify values in memory, simply move the cursor over the top of the
desired byte’s value and type a new hexadecimal value. CodeView automatically updates
the corresponding byte in memory.

CodeView lets you open multiple Memory windows at one time. Each time you select
Memory from the View memory, CodeView will open up another Memory window. With
multiple memory windows open you can compare the values at several non-contiguous
memory locations on the screen at one time. Remember, if you want to switch between the
memory windows, press the F6 key.

Pressing Shift-F3 toggles the data display mode between displaying hexadecimal
bytes, ASCII characters, words, double words, integers (signed), floating point values, and

14. Mouse users can also move the thumb control on the scroll bar to achieve this same result.

Page 175

Chapter 04

| File Edit Scargdh Ren Data Options Calls Windows Help
—[3]————— sourcel [5:IF shell.asn
13:
14: cseg segrent para public ‘code”
15: assume Cc5icseq. dsidseg
16:
17: HMaim proc
1B: noU ax, dseq
19: nOU ds, ax
28 now BS, ax
21: meminit
22!
230
24:
25 Quit: ExitPgm D05 macro to guit
26 Hain endp
Pl
28 cseq ends
—I[31 conmand
CU1B53 Warning: TOODLS.INI not [ownd
3

tFB=Trace» <FlB=5tep» {FS=Go» <F3=51 Fmt>

Figure 4.23 The Register Window

other data types. This is useful when you need to view memory using different data types.
You only have the option of displaying the contents of the entire window as a single data
type; however, you can open multiple memory windows and display a different data type
in each one.

4954

The Register Window

The Register item in the Windows menu displays or hides the 80x86 registers window.
This windows displays the current 80x86 register values (see Figure 4.23).

To change the value of a register, activate the register window (using F6, if it is not
already selected) and move the cursor over the value you wish to change. Type a new
value over the desired register’s existing value. Note that FL stands for flags. You can
change the values of the flags in the flags register by entering a new value after the FL=
entry. Another way to change the flags is to move the cursor over one of the flag entries at
the bottom of the register window and press an alphabetic key (e.g., “A”) on the key-
board. This will toggle the specified flag. The flag values are (0/1): overflow=(OV/NV),
direction=(DN/UP), interrupt=(DIZEI), sign=(PL/NG), zero=(NZ/ZR), auxiliary
carry=(NA/ZAC), parity=(PO/PE), carry=(NC/CY).

Note that pressing the F2 key toggles the display of the registers window. This feature
is quite useful when debugging programs. The registers window eats up about 20% of the
display and tends to obscure other windows. However, you can quickly recall the regis-
ters window, or make it disappear, by simply pressing F2.

4955

Page 176

The Command Window

The Command window lets you type textual commands into CodeView. Although
almost every command available in the command window is available elsewhere, many
operations are easier done in the command window. Furthermore, you can generally exe-
cute a sequence of completely different commands in the command window faster than
switching between the various other windows in CodeView. The operation of the com-
mand window will be the subject of the next section in this chapter.

Memory Layout and Access

49.5.6 The Output Menu Item
Selecting View Output from the Windows menu (or pressing the F4 key) toggles the
display between the CodeView display and the current program output. While your pro-
gram is actually running, CodeView normally displays the program’s output. Once the
program turns control over to CodeView, however, the debugging windows appear
obscuring your output. If you need to take a quick peek at the program’s output while in
CodeView, the F4 key will do the job.
49.5.7 The CodeView Command Window
CodeView is actually two debuggers in one. On the one hand, it is a modern win-
dow-based debugging system with a nice mouse-based user interface. On the other hand,
it can behave like a traditional command-line based debugger. The command window
provides the key to this split personality. If you activate the command window, you can
enter debugger commands from the keyboard. The following are some of the more com-
mon CodeView commands you will use:
A address Assenbl e
BC bp_nunber Br eakpoi nt d ear
BD bp_nunber Br eakpoi nt D sabl e
BE bp_nunber Br eakpoi nt Enabl e
BL Br eakpoi nt Li st
BP address Br eakpoi nt Set
D range Dunp Menory
E Ani mat e execution
Ex Address Enter Conmands (x=*“ “, b, w, d, etc.)
G { addr ess} Go (address is optional)
H command Hel p
| port Input data fromI/O port
L Restart program from begi nni ng
MC range address Conpare two bl ocks of menory
M- range data_val ue(s) Fill Menory with specified val ue(s)
MV range address Copy a bl ock of nenory
MB range data_val ue(s) Search nmenory range for set of val ues
N Val ue;o Set the default radix
O port val ue Qut put val ue to an output port
P Program Step
Q Qui t
R Regi st er
Rxx val ue Set register xx to value
T Trace
U address Unassenbl e statenents at address
In this chapter we will mainly consider those commands that manipulate memory.
Execution commands like the breakpoint, trace, and go commands appear in a later chap-
ter. Of course, it wouldn’t hurt for you to learn some of the other commands, you may
find some of them to be useful.
495.7.1 The Radix Command (N)

The first command window command you must learn is the RADIX (base selection)
command. By default, CodeView works in decimal (base 10). This is very inconvenient for
assembly language programmers so you should always execute the radix command upon
entering CodeView and set the base to hexadecimal. To do this, use the command

N 16

Page 177

Chapter 04

File Edit Search Ren Data Options Calls Windows Help

—I[7Ireg —
= B088
= BEBE
= Qa0
= Be8e
= H
= BEBE

conmand = BEBa
= B888
mov ax, 98088 = B
nov ds, ax =
mov bx, B =
mov ax, bx =
mov ds:lbx], ax = BEBA
add bx, 2 =
cap bx, 1088
jb & ur 3 FL
nop HA FO HC
int 3
HE?

Figure 4.24 The Assemble Command

49.5.7.2

The Assemble Command

The CodeView command window Assemble command works in a fashion not unlike
the SIM886 assemble command. The command uses the syntax:

A address

Address is the starting address of the machine instructions. This is either a full segmented
address (sss5:0000, ssss is the segment, 0000 is the offset) or a simple offset value of the form
oooo. If you supply only an offset, CodeView uses CS’ current value as the segment
address.

After you press Enter, CodeView will prompt you to enter a sequence of machine
instructions. Pressing Enter by itself terminates the entry of assembly language instruc-
tions. Figure 4.24 is an example of this command in action.

The Assemble command is one of the few commands available only in the command
window. Apparently, Microsoft does not expect programmers to enter assembly language
code into memory using CodeView. This is not an unreasonable assumption since Code-
View is a a high level language source level debugger.

In general, the CodeView Assemble command is useful for quick patches to a program,
but it is no substitute for MASM 6.x. Any changes you make to your program with the
assemble command will not appear in your source file. It’s very easy to correct a bug in
CodeView and forget to make the change to your original source file and then wonder
why the bug is still in your code.

4.9.5.7.3

Page 178

The Compare Memory Command

The Memory Compare command will compare the bytes in one block of memory
against the bytes in a second block of memory. It will report any differences between the
two ranges of bytes. This is useful, for example, to see if a program has initialized two
arrays in an identical fashion or to compare two long strings. The compare command
takes the following forms:

MC start_address end_address second_bl ock_addr ess

Memory Layout and Access

Edit Search HRen Data Options Calls Windows Help

—[3]———— sourcel [5:IF shell.asn —I[7Ireg —
16: AX¥ = BOBE
17: Hain proc BY = BOB8
18: oY ax, dseq C¥ = Beoe
19: now ds. ax ¥ = Bo08
FiH noU BS, &x SF

21: meminit BF

conmand
EAE : BAAG
SEE6 : 062 En
qE0E :Baa3
JE0E : BO6E F F FL
EAE BABS A FD HC

9008 : D086
90080887

tFB=Trace» «

Figure 4.25 The Memory Compare Command

MC start_address L | ength_of_bl ock second_bl ock_address

The first form compares the bytes from memory locations start address through
end_address with the data starting at location second_block_address. The second form lets
you specify the size of the blocks rather than specify the ending address of the first block.
If CodeView detects any differences in the two ranges of bytes, it displays those differ-
ences and their addresses. The following are all legal compare commands:

MC 8000: 0 8000: 100 9000: 80
MC 8000: 100 L 20 9000: 0
MC 0 100 200

The first command above compares the block of bytes from locations 8000:0 through
8000:100 against a similarly sized block starting at address 9000:80 (i.e., 9000:80..180).

The second command above demonstrates the use of the “L” option which specifies a
length rather than an ending address. In this example, CodeView will compare the values
in the range 8000:0..8000:1F (20h/32 bytes) against the data starting at address 9000:0.

The third example above shows that you needn’t supply a full segmented address for
the starting_address and second_block_address values. By default, CodeView uses the data
segment (DS:) if you do not supply a segment portion of the address. Note, however, that
if you supply a starting and ending address, they must both have the same segment value;
you must supply the same segment address to both or you must let both addresses default
to DS’ value.

If the two blocks are equal, CodeView immediately prompts you for another com-
mand without printing anything to the command window. If there are differences
between the two blocks of bytes, however, CodeView lists those differences (and their
addresses) in the command window.

In the example in Figure 4.25, memory locations 8000:0 through 8000:200 were first
initialized to zero. Then locations 8000:10 through 8000:1E were set to 1, 2, 3, ..., OFh.
Finally, the Memory Compare command compared the bytes in the range 8000:0...8000:FF
with the block of bytes starting at address 8000:100. Since locations 8000:10...8000:1E were
different from the bytes at locations 8000:110...8000:11E, CodeView printed their
addresses and differences.

Page 179

Chapter 04

i Edit Search Ban Data Options Calls Windows Help
—I[31 sourcel C5:IF shell.asm —I[7Ireg —
15: assume cs5icseq. dsidseg AKX = BOBE
16: B = Boag
17: HMain proc C¥ = BB
1B: now ax, dseq ¥ = Bo08
19: AOU ds, ax SF = BN
28 noU 5, ax BF = Beas
21: meminit 31 = Besd
221 Il = Baed
23: s = &
ES =
command 53 =
: [
: B8 8@ 96 BE @ BP 88 b& BB C3 3E B9 ; IF = BBap
BB:08a8C ©B7 3E B3 C3 02 3E B1 FB 88 18 2 F2 .»...>....r. FL =
poae:eele 98 CC B3 C4 82 3D b1 B8 75 26 BB 5E =, .u8."
poae: 0024 06 B0 3IF 2E 75 1E B 81 6@ 58 53 FF T.a....P3. HU UF Cf] FL
B06:8030 76 68 9 ZC 37 26 21 B3 C4 06 BF SE wv..,.78%....7 HZ MA PO MHC
poae:8e3C 08 CH 47 81 88 CY 46 FC 81 @8 EB 2C ..6...F.....
fo0g:0648 BF SE 06 B0 3F 5C 75 1E BB &1 @@ S8 .7, . Twsa....F
| 53 FF 76 0@ 9A a7 26 21 B3]

Figure 4.26 The Memory Dump Command

49574

Page 180

The Dump Memory Command

The Dump command lets you display the values of selected memory cells. The Mem-
ory window in CodeView also lets you view (and modify) memory. However, the Dump
command is sometimes more convenient, especially when looking at small blocks of
memory.

The Dump command takes several forms, depending on the type of data you want to
display on the screen. This command typically takes one of the forms:

D starting_address endi ng_address
D starting address L |ength

By default, the dump command displays 16 hexadecimal and ASCII byte values per
line (just like the Memory window).

There are several additional forms of the Dump command that let you specify the dis-
play format for the data. However, the exact format seems to change with every version of
CodeView. For example, in CodeView 4.10, you would use commands like the following:

ASCl | characters
hex bytes/ ASA |

i nteger words
unsi gned i nt eger words

DA address_range
DB address_range
D address_range
D U address_range

(defaul t)

D X address_range Dunp 16-bit val ues in hex

DL address_range Dunp 32-bit integers

DLU address_range Dunp 32-bit unsigned integers
DLX address_range Dunp 32-bit values in hex

DR address_range Dunp 32-bit real val ues

DRL address_range Dunp 64-bit real values

DRT address_range Dunp 80-bit real values

You should probably check the help associated with your version of CodeView to ver-
ify the exact format of the memory dump commands. Note that some versions of Code-
View allow you to use MDxx for the memory dump command.

Once you execute one of the above commands, the “D” command name displays the data
in the new format. The “DB” command reverts back to byte/ASCII display. Figure 4.26
provides an example of these commands.

Memory Layout and Access

If you enter a dump command without an address, CodeView will display the data
immediately following the last dump command. This is sometimes useful when viewing
memory.

4.9.5.7.5

The Enter Command

The CodeView Memory windows lets you easily display and modify the contents of
memory. From the command window it takes two different commands to accomplish
these tasks: Dump to display memory data and Enter to modify memory data. For most
memory modification tasks, you’ll find the memory windows easier to use. However, the
CodeView Enter command handles a few tasks easier than the Memory window.

Like the Dump command, the Enter command lets you enter data in several different
formats. The commands to accomplish this are

EA- Enter data in ASA | fornat

EB- Enter byte data in hexadeci nal format

ED Enter double word data in hexadeci nal fornat

El - Enter 16-bit integer data in (signed) decinal fornmat

Bl U Enter 16-bit integer data in (unsigned) decinmal format.
El X- Enter 16-bit integer data in hexadeci mal format.

EL- Enter 32-bit integer data in (signed) decinal fornmat
ELU Enter 32-bit integer data in (unsigned) decinmal format.
ELX- Enter 32-bit integer data in hexadeci mal format.

ER- Enter 32-bit floating point data

ER.- Enter 64-bit floating pont data

ERT- Enter 80-bit floating point data

Like the Dump command, the syntax for this command changes regularly with different
versions of CodeView. Be sure to use CodeView’s help facility if these commands don’t
seem to work. MExx is a synonym for Exx in CodeView.

Enter commands take two possible forms:

Ex starting_address
Ex starting_address |ist_of_val ues

The first form above is the interactive Enter command. Upon pressing the key, Code-
view will display the starting address and the data at that address, then prompt you to
enter a new value for that location. Type the new value followed by a space and Code-
View will prompt you for the value for the next location; typing a space by itself skips
over the current location; typing the enter key or a value terminated with the enter key
terminates the interactive Enter mode. Note that the EA command does not let you enter
ASCII values in the interactive mode. It behaves exactly like the EB command during data
entry.

The second form of the Enter command lets you enter a sequence of values into mem-
ory a single entry. With this form of the Enter command, you simply follow the starting
address with the list of values you want to store at that address. CodeView will automati-
cally store each value into successive memory locations beginning at the starting address.
You can enter ASCII data using this form of Enter by enclosing the characters in quotes.
Figure 4.27 demonstrates the use of the Enter command.

There are a couple of points concerning the Enter command of which you should be
aware. First of all, you cannot use “E” as a command by itself . Unlike the Dump com-
mand, this does not mean “begin entering data after the last address.” Instead, this is a
totally separate command (Animate). The other thing to note is that the current display
mode (ASCII, byte, word, double word, etc.) and the current entry mode are not indepen-
dent. Changing the default display mode to word also changes the entry mode to word,
and vice versa.

Page 181

Chapter 04

Edit Search HRen Data Options Calls Windows Help

—[3]————— sourcel [5:IF shell.asn —I[7Ireg —
15: assume cs5icseq. dsidseg AKX = BOBE
16: B = Boag
17: HMain proc C¥ = BB
1B: now ax, dseq ¥ = Bo08
19: AOU ds, ax SF = BN
28 noU 5, ax BF = Beas
21: meminit 31 = Besd
P Il = Baed
23: s = &

ES =

38 =

Cs =

IF = BBap
(OO0 :g0ae BB .1 B@ ., 2 90 . 3 BE L | FL =
poge:gee4 D@ .5 BB .. 6 BB ., 7 B8O B
poa0:0ee8 BB .9 C3 ..a 3E » b B3 C HU UF Cf] FL
poae:geac ey d 3 > e 83 .. C3 1B HZ MA PO MHC

»db BO60:0 BOO:[
FO0:0080 ©1 BZ B3 B4 05 06 67 B8 B9 BA BB BC

Bl BE BF 18

Figure 4.27 The Enter Command

49.5.7.6

The Fill Memory Command

The Enter command and the Memory window let you easily change the value of indi-
vidual memory locations, or set a range of memory locations to several different values. If
you want to clear an array or otherwise initialize a block of memory locations so that they
all contain the same values, the Memory Fill command provides a better alternative.

The Memory Fill command uses the following syntax:

M- starting_address endi ng_address val ues
M- starting_address L bl ock | ength val ues

The Memory Fill command fills memory locations starting_address through ending_address
with the byte values specified in the values list. The second form above lets you specify the
block length rather than the ending address.

The values list can be a single value or a list of values. If values is a single byte value,
then the Memory Fill command initializes all the bytes of the memory block with that
value. If values is a list of bytes, the Fill command repeats that sequence of bytes over and
over again in memory. For example, the following command stores 1234512345123
4 5... to the 256 bytes starting at location 8000:0

F 8000:0 L 100 1 23 45

Unfortunately, the Fill command works only with byte (or ASCII string) data. However,
you can simulate word, doubleword, etc., memory fills breaking up those other values
into their component bytes. Don’t forget, though, that the L.O. byte always comes first.

4.9.5.7.7

Page 182

The Move Memory Command

This Command window operation copies data from one block of memory to another.
This lets you copy the data from one array to another, move code around in memory, rein-
itialize a group of variables from a saved memory block, and so on. The syntax for the
Memory Move command is as follows:

Memory Layout and Access

MV starting_address endi ng_address destination_address
MV starting_address L bl ock_| ength desti nation_address

If the source and destination blocks overlap, CodeView detects this and handles the mem-
ory move operation correctly.

4.9.5.7.8

The Input Command

The Input command lets you read data from one of the 80x86’s 65,536 different input
ports. The syntax for this command is

| port_address

where port_address is a 16-bit value denoting the I/0 port address to read. The input com-
mand reads the byte at that port and displays its value.

Note that it is not a wise idea to use this command with an arbitrary address. Certain
devices activate some functions whenever you read one of their 1/0 ports. By reading a
port you may cause the device to lose data or otherwise disturb that device.

Note that this command only reads a single byte from the specified port. If you want
to read a word or double-word from a given input port you will need to execute two suc-
cessive Input operations at the desired port address and the next port address.

This command appears to be broken in certain versions of CodeView (e.g., 4.01).

4.9.5.7.9

The Output Command

The Output command is complementary to the Input command. This command lets
you output a data value to a port. It uses the syntax:

O port_address out put_val ue

Output_value is a single byte value that CodeView will write to the output port given by
port_address.

Note that CodeView also uses the “O” command to set options. If it does not recog-
nize a valid port address as the first operand it will think this is an Option command. If
the Output command doesn’t seem to be working properly, you’ve probably switched out
of the assembly language mode (CodeView supports BASIC, Pascal, C, and FORTRAN in
addition to assembly language) and the port address you’re entering isn’t a valid numeric
value in the new mode. Be sure to use the N 16 command to set the default radix to hexa-
decimal before using this command!

4.9.5.7.10

The Quit Command

Pressing Q (for Quit) terminates the current debugging session and returns control to
MS-DOS. You can also quit CodeView by selecting the Exit item from the File menu.

49.5.7.11

The Register Command
The CodeView Register command lets you view and change the values of the regis-

ters. To view the current values of the 80x86 registers you would use the following com-
mand:

Page 183

Chapter 04

conmand —I[7Ireg —
AX¥ = fEEE]
AX-0088 DBY-DboBE CH-0000 DW-0080 SP-Z006 BP-00688 SI-0088 DIE| BY = Fs)
5=27FE E3=2Z7FE 3535=284F C(35=2ZB4E IF-Dobd C¥ = oo
UF EI FL HZ MA FD HC ¥ = Bess
HOU AiX.2B4E SF = BN
BF = Bbag
31 = Besd
A¥=1234 D¥-DbB@ C¥-0B00 DW-B080 SP-Zoee Br-00ee SI-B088 DIE| DI = EEIEIE
5=27FE ES=2Z7FE 535=2B4F C[35=ZB4E IF-0D@08 IS =
U UF ET PL HZ MA FOD HC ES =
ZB4E: 0000 BO4EZE HOU AX.2B4E 83 =
Cs =
IF = EE!EIEI
B¥=-4321 Cx-B088 D¥-DB08 5P-Z0B0 DBF-D0808 SI-0088 DIf| FL =
" =27FE E3S=27FE 353=ZB4F C(5=2B4E IP-0080
UF EI FL HZ MA FD HC HU UF Cf] FL
: HZ MA PO MHC
HE?

Edit Search Ren Data Options Calls Windows Help

Figure 4.28 The Register Command

This command displays the registers and disassembles the instruction at address CS:IP.
You can also change the value of a specific register using a command of the form:

Rxx
- Or -
Rxx = val ue
where xx represents one of the 80x86’s register names: AX, BX, CX, DX, SI, DI, BP, SP, CS,
DS, ES, SS, IP, or FL. The first version (“Rxx”) displays the specified register and then
prompts you to enter a new value. The second form of this command above immediately
sets the specified register to the given value (see Figure 4.28).

49.5.7.12 The Unassemble Command

The Command window Unassemble command will disassemble a sequence of
instructions at an address you specify, converting the binary machine codes into (barely)
readable machine instructions. The basic command uses the following syntax:

U address
Note that you must have a source window open for this instruction to operate properly!

In general, the Unassemble command is of little use because the Source window lets
you view your program at the source level (rather than at the disassembled machine lan-
guage level). However, the Unassemble command is great for disassembling BIOS, DOS,
TSRs, and other code in memory.

4.9.5.8 CodeView Function Keys

Page 184

CodeView uses the function keys on the PC’s keyboard for often-executed operations.
The following table gives a brief description of the use of each function key.

Memory Layout and Access

Table 26: Function Key Usage in CodeView

Function | Ajone Shift ctr Alt
Key
F1 Help Help contents | Next Help Prev Help
F2 Register Win-
dow
F3 Source Window | Memory Win-
Mode dow Mode
F4 Output Screen Close Window
F5 Run
F6 Switch Window | Prev Window
F7 Execute to cur-
sor
F8 Trace Prev History Size window
Fo Breakpoint
F10 Step instrs, run | Next History Maximize Win-
calls. dow

The F3 function key deserves special mention. Pressing this key toggles the source
mode between machine language (actually, disassembled machine language), mixed, and
source. In source mode (assuming you’ve assembled your code with the proper options)
the source window displays your actual source code. In mixed mode, CodeView displays
a line of source code followed by the machine code generated for that line of source code.
This mode is primarily for high level language users, but it does have some utility for
assembly language users as you’ll see when you study macros. In machine mode, Code-
View ignores your source code and simply disassembles the binary opcodes in memory.
This mode is useful if you suspect a bug in MASM (they do exist) and you’re not sure than
MASM is assembling your code properly.

4959 Some Comments on CodeView Addresses

The examples given for addresses in the previous sections are a little misleading. You
could easily get the impression that you have to enter an address in hexadecimal form,
i.e., $ss5:0000 or 0000. Actually, you can specify memory addresses in many different ways.
For example, if you have a variable in your assembly language program named MyVar,
you could use a command like

D Myvar
to display the value of this variable'®. You do not need to know the address, nor even the
segment of that variable. Another way to specify an address is via the 80x86 register set.
For example, if ES:BX points at the block of memory you want to display, you could use
the following command to display your data:

D ES: BX
CodeView will use the current values in the es and bx registers as the address of the block
of memory to display. There is nothing magical about the use of the registers. You can use
them just like any other address component. In the example above, es held the segment
value and bx held the offset— very typical for an 80x86 assembly language program.

15. This requires that you assemble your program in a very special way, but we’re getting to that.

Page 185

Chapter 04

However, CodeView does not require you to use legal 80x86 combinations. For example,
you could dump the bytes at address cx:ax using the dump command
D CX AX
The use of 80x86 registers is not limited to specifying source addresses. You can spec-
ify destination addresses and even lengths using the registers:

DCXAXL BX ESD
Of course, you can mix and match the use of registers and numeric addresses in the same
command with no problem:

D CX AX L 100 8000: 0

You can also use complex arithmetic expressions to specify an address in memory. In
particular, you can use the addition operator to compute the sum of various components
of an address. This works out really neat when you need to simulate 80x86 addressing
modes. For example, if you want to see which byte is at address 1000[bx], you could use
the command:

D BX+1000 L 1

To simulate the [BX][SI] addressing mode and look at the word at that address you could
use the command:

DX BX+Sl L 1

The examples presented in this section all use the Dump command, but you can use
this technique with any of the CodeView commands. For more information concerning
what constitutes valid CodeView address, as well as a full explanation of allowable
expression forms, please consult the CodeView on-line help system.

4.9.5.10 A Wrap on CodeView

We’re not through discussing CodeView by any means. In particular, we’'ve not dis-
cussed the execution, single stepping, and breakpoint commands which are crucial for
debugging programs. We will return to these subjects in later chapters. Nonetheless,
we’ve covered a considerable amount of material, certainly enough to deal with most of
the experiments in this laboratory exercise. As we need those other commands, this man-
ual will introduce them.

Of course, there are two additional sources of information on CodeView available to
you— the section on CodeView in the “Microsoft Macro Assembler Programmer’s Guide”
and the on-line help available inside CodeView. In particular, the on-line help is quite use-
ful for figuring out how a specific command works inside CodeView.

4.9.6

Page 186

Laboratory Tasks

The Chapter Four subdirectory on the companion CD-ROM contains a sample file
named EX4_1.ASM. Assemble this program using MASM (do not use the /Zi option for
the time being). For your lab report: include a print-out of the program. Describe what the
program does. Run the program and include a print-out of the program’s output with
your lab report.

Whenever you assemble a program MASM, by default, writes one byte of data to the
file for every instruction byte and data variable in the program, even if that data is unini-
tialized. If you declare large arrays in your program the EXE file ML produces will be
quite large as well. Note the size of the EX4_1.EXE program you created above. Now reas-
semble the program using the following command:

mM EX4_1.asm/link /exepack

ML passes the “/Zlink Zexepack” option on to the linker. The exepack option tells the
linker to pack the EXE file by removing redundant information (in particular, the unini-

Memory Layout and Access

tialized data). This often makes the EXE file much smaller. For your lab report: after
assembling the file using the command above, note the size of the resulting EXE file. Com-
pare the two sizes and comment on their difference in your lab report.

Note that the EXEPACK option only saves disk space. It does not make the program
use any less memory while it is running. Furthermore, you cannot load programs you’ve
packed with the EXEPACK option into the CodeView debugger. Therefore, you should
not use the EXEPACK option during program development and testing. You should only
use this option once you’ve eliminated all the bugs from the program and further devel-
opment ceases.

Using your editor of choice, edit the x86.asm file. Read the comments at the beginning
of the program that explain how to write x86 programs that assemble and run on the
80x86 CPU. For your lab report: describe the restrictions on the x86 programs you can
write.

The EX4_2.ASM source file is a copy of the x86.ASM file with a few additional com-
ments in the main program describing a set of procedures you should follow. Load this
file into your text editor of choice and read the instructions in the main program. Follow
them to produce a program. Assemble this program using ML and execute the resulting
EX4_2.EXE program file. For your lab report: include a print-out of your resulting pro-
gram. Include a print-out of the program’s output when you run it.

Trying loading EX4_2.EXE into CodeView using the following DOS Window com-
mand:

cv EX4_2

When CodeView runs you will notice that it prints a message in the command window
complaining that there is “no CodeView information for EX4_2.EXE.” Look at the code in
the source window. Try and find the instructions you place in the main program. For your
lab report: contrast the program listing appearing in the CodeView source window with
that produced on the Emulator screen of the SIMx86 program.

Now reassemble the EX4_2.asm file and load it into CodeView using the following
DOS commands:

M /Zi EX4_2.asm
cv EX4_2

For your lab report: describe the difference in the CodeView source window when using
the /Zi ML option compared to the CodeView source window without this option.

4.10 Programming Projects

1))

la.

1b.

Note: You are to write these programs in 80x86 assembly language code using a copy of
the X86.ASM file as the starting point for your programs. The 80x86 instruction set is
almost a superset of the x86 instruction set. Therefore, you can use most of the instructions
you learned in the last chapter. Read the comments at the beginning of the x86.ASM file
for more details. Note in particular that you cannot use the label “C” in your program
because “C” is a reserved word in MASM. Include a specification document, a test plan,
a program listing, and sample output with your program submissions.

The following projects are modifications of the programming assignments in the previous
chapter. Convert those x86 programs to their 80x86 counterparts.

The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

Write a program that reads three values from the user: an address it puts into BX, a count
it puts into CX, and a value it puts in AX. It should write CX copies of AX to successive
words in memory starting at address BX (in the data segment).

Page 187

Chapter 04

lc.

1d.

le.

1f.

2)

Write the generic logic function for the x86 processor (see Chapter Two). Hint: add ax, ax
does a shift left on the value in ax. You can test to see if the high order bit is set by checking
to see if ax is greater than 8000h.

Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in cx, and locates the maximum value in that array. Dis-
play the value after scanning the array.

Write a program that computes the two’s complement of an array of values starting at
location 1000h. CX should contain the number of values in the array. Assume each array
element is a two-byte integer.

Write a simple program that sorts the words in memory locations 1000..10FF in ascending
order. You can use a simple insertion sort algorithm. The Pascal code for such a sort is

for i :=0ton-1do
for j :=i+l1 to n do

if (nermory[i] > nenmory[j]) then

begi n
tenp := menory[i];
menory[i] := menory[j];
menory[j] := tenp;

end;

For the following projects, feel free to use any additional 80x86 addressing modes that
might make the project easier to write.

Write a program that stores the values 0, 1, 2, 3, ..., into successive words in the data seg-
ment starting at offset 3000h and ending at offset 3FFEh (the last value written will be
7FFh). Then store the value 3000h to location 1000h. Next, write a code segment that sums
the 512 words starting at the address found in location 1000h. This portion of the program
cannot assume that 1000h contains 3000h. Print the sum and then quit.

4.11 Summary

Page 188

This chapter presents an 80x86-centric view of memory organization and data struc-
tures. This certainly isn’t a complete course on data structures, indeed this topic appears
again later in Volume Two. This chapter discussed the primitive and simple composite
data types and how to declare and use them in your program. Lots of additional informa-
tion on the declaration and use of simple data types appears in “MASM: Directives &
Pseudo-Opcodes” on page 355.

The 8088, 8086, 80188, 80186, and 80286 all share a common set of registers which typ-
ical programs use. This register set includes the general purpose registers: ax, bx, cx, dx, si,
di, bp, and sp; the segment registers: cs, ds, es, and ss; and the special purpose registers ip
and flags. These registers are 16 bits wide. These processors also have eight 8 bit registers:
al, ah, bl, bh, cl, ch, dI, and dh which overlap the ax, bx, cx, and dx registers. See:

= “8086 General Purpose Registers” on page 146
= “8086 Segment Registers” on page 147
= “8086 Special Purpose Registers” on page 148

In addition, the 80286 supports several special purpose memory management regis-
ters which are useful in operating systems and other system level programs. See:

= “80286 Registers” on page 148

The 80386 and later processors extend the general purpose and special purpose regis-
ter sets to 32 bits. These processors also add two additional segment registers you can use
in your application programs. In addition to these improvements, which any program can
take advantage of, the 80386/486 processors also have several additional system level reg-
isters for memory management, debugging, and processor testing. See:

- “80386/80486 Registers” on page 149

Memory Layout and Access

The Intel 80x86 family uses a powerful memory addressing scheme known as seg-
mented addressing that provides simulated two dimensional addressing. This lets you
group logically related blocks of data into segments. The exact format of these segments
depends on whether the CPU is operating in real mode or protected mode. Most DOS pro-
grams operate in real mode. When working in real mode, it is very easy to convert a logical
(segmented) address to a linear physical address. However, in protected mode this conver-
sion is considerably more difficult. See:

= “Segments on the 80x86” on page 151

Because of the way segmented addresses map to physical addresses in real mode, it is
quite possible to have two different segmented addresses that refer to the same memory
location. One solution to this problem is to use normalized addresses. If two normalized
addresses do not have the same bit patterns, they point at different addresses. Normalized
pointers are useful when comparing pointers in real mode. See:

< “Normalized Addresses on the 80x86” on page 154

With the exception of two instructions, the 80x86 doesn’t actually work with full 32 bit
segmented addresses. Instead, it uses segment registers to hold default segment values.
This allowed Intel’s designers to build a much smaller instruction set since addresses are
only 16 bits long (offset portion only) rather than 32 bits long. The 80286 and prior proces-
sors provide four segment registers: ¢S, ds, es, and sS; the 80386 and later provide six
segment registers: cs, ds, es, f s, gs, and ss. See:

= “Segment Registers on the 80x86” on page 155

The 80x86 family provides many different ways to access variables, constants, and
other data items. The name for a mechanism by which you access a memory location is
addressing mode. The 8088, 8086, and 80286 processors provide a large set of memory
addressing modes. See:

= “The 80x86 Addressing Modes” on page 155
= “B086 Register Addressing Modes” on page 156
- “8086 Memory Addressing Modes” on page 156

The 80386 and later processors provide an expanded set of register and memory
addressing modes. See:

= “B0386 Register Addressing Modes” on page 163
- “80386 Memory Addressing Modes” on page 163

The most common 80x86 instruction is the MOV instruction. This instruction supports
most of the addressing modes available on the 80x86 processor family. Therefore, the nov
instruction is a good instruction to look at when studying the encoding and operation of
80x86 instructions. See:

e “The 80x86 MOV Instruction” on page 166

The noV instruction takes several generic forms, allowing you to move data between
a register and some other location. The possible source/destination locations include: (1)
other registers, (2) memory locations (using a general memory addressing mode), (3) con-
stants (using the immediate addressing mode), and (4) segment registers.

The noV instruction lets you transfer data between two locations (although you can-
not move data between two memory locations see the discussion of the mod-reg-r/m
byte).

Page 189

Chapter 04

4.12 Questions

b

2)
3)

4)
5)
6)

7)

8)

9)

10)

11)

12)
13)

14)
15)
16)
17)
18)
19)
20)

21)
22)

Page 190

Although the 80x86 processors always use segmented addresses, the instruction encod-
ings for instructions like “mov AX, | ” only have a 16 bit offset encoded into the opcode.
Explain.

Segmented addressing is best described as a two dimensional addressing scheme. Explain.

Convert the following logical addresses to physical addresses. Assume all values are hexa-
decimal and real mode operation on the 80x86:

a) 1000:1000 b) 1234:5678) 0:1000 d) 100:9000 e) FF00:1000
f) 800:8000 g) 8000:800 h) 234:9843 i) 1111:FFFF j) FFFF:10
Provide normalized forms of the logical addresses above.

List all the 8086 memory addressing modes.

List all the 80386 (and later) addressing mode that are not available on the 8086 (use
generic forms like disp[reg], do no enumerate all possible combinations).

Besides memory addressing modes, what are the other two major addressing modes on
the 80867

Describe a common use for each of the following addressing modes:

a) Register b) Displacement only ¢) Immediate
d) Register Indirect e) Indexed f) Based indexed
g) Based indexed plus displacement h) Scaled indexed

Given the bit pattern for the generic MOV instruction (see “The 80x86 MOV Instruction”
on page 166) explain why the 80x86 does not support a memory to memory move opera-
tion.

Which of the following MOV instructions are not handled by the generic MOV instruction
opcode? Explain.

a) mov ax, bx b) mov ax, 1234 ¢) mov ax, |
d) mov ax, [bx] e) mov ax, ds f) mov [bx], 2

Assume the variable “I” is at offset 20h in the data segment. Provide the binary encodings
for the above instructions.

What determines if the R/M field specifies a register or a memory operand?

What field in the REG-MOD-R/M byte determines the size of the displacement following
an instruction? What displacement sizes does the 8086 support?

Why doesn’t the displacement only addressing mode support multiple displacement
sizes?

Why would you not want to interchange the two instructions “mov ax, [bx]” and
“mov ax,[ebx]”?

Certain 80x86 instructions take several forms. For example, there are two different ver-
sions of the MOV instruction that load a register with an immediate value. Explain why
the designers incorporated this redundancy into the instruction set.

Why isn’t there a true [bp] addressing mode?

List all of the 80x86 eight bit registers.

List all the 80x86 general purpose 16 bit registers.

List all the 80x86 segment registers (those available on all processors).
Describe the “special purposes” of each of the general purpose registers.
List all the 80386/486/586 32 bit general purpose registers.

Memory Layout and Access

23) What is the relationship between the 8, 16, and 32 bit general purpose registers on the
803867

24) What values appear in the 8086 flags register? The 80286 flags register?

25) Which flags are the condition codes?

26) Which extra segment registers appear on the 80386 but not on earlier processors?

Page 191

Chapter 04

Page 192

Variables and Data Structures Chapter Five

Chapter One discussed the basic format for data in memory. Chapter Three covered
how a computer system physically organizes that data. This chapter finishes this discus-
sion by connecting the concept of data representation to its actual physical representation.
As the title implies, this chapter concerns itself with two main topics: variables and data
structures. This chapter does not assume that you’ve had a formal course in data struc-
tures, though such experience would be useful.

5.0 Chapter Overview

This chapter discusses how to declare and access scalar variables, integers, reals, data
types, pointers, arrays, and structures. You must master these subjects before going on to
the next chapter. Declaring and accessing arrays, in particular, seems to present a multi-
tude of problems to beginning assembly language programmers. However, the rest of this
text depends on your understanding of these data structures and their memory represen-
tation. Do not try to skim over this material with the expectation that you will pick it up as
you need it later. You will need it right away and trying to learn this material along with
later material will only confuse you more.

51 Some Additional Instructions: LEA, LES, ADD, and MUL

The purpose of this chapter is not to present the 80x86 instruction set. However, there
are four additional instructions (above and beyond mov) that will prove handy in the dis-
cussion throughout the rest of this chapter. These are the load effective address (lea), load es
and general purpose register (les), addition (add), and multiply (mul). These instructions,
along with the noV instruction, provide all the necessary power to access the different
data types this chapter discusses.

The lea instruction takes the form:

| ea reg,g, menory

regg is a 16 bit general purpose register. Memory is a memory location represented by a
mod/reg/rm byte! (except it must be a memory location, it cannot be a register).

This instruction loads the 16 bit register with the offset of the location specified by the
memory operand. lea ax,1000h[bx][si], for example, would load ax with the address of the
memory location pointed at by 1000h[bx][si]. This, of course, is the value 1000h+bx+si. Lea
is also quite useful for obtaining the address of a variable. If you have a variable | some-
where in memory, lea bx,l will load the bx register with the address (offset) of I.

The les instruction takes the form

I es reg.g, MmMenorys,

This instruction loads the es register and one of the 16 bit general purpose registers
from the specified memory address. Note that any memory address you can specify with
amod/reg/rm byte is legal but like the lea instruction it must be a memory location, not a
register.

The les instruction loads the specified general purpose register from the word at the
given address, it loads the es register from the following word in memory. This instruc-
tion, and it’'s companion Ids (which loads ds) are the only instructions on pre-80386
machines that manipulate 32 bits at a time.

1. Or by the mod/reg/rm -- sib addressing mode bytes on the 80386.

Page 195

Chapter 05

The add instruction, like it’s x86 counterpart, adds two values on the 80x86. This
instruction takes several forms. There are five forms that concern us here. They are

add reg, reg

add reg, nenory
add nenory, reg
add reg, constant
add nmenory, constant

All these instructions add the second operand to the first leaving the sum in the first oper-
and. For example, add bx,5 computes bx := bx + 5.

The last instruction to look at is the mul (multiply) instruction. This instruction has
only a single operand and takes the form:

mul reg/ menory

There are many important details concerning mul that this chapter ignores. For the
sake of the discussion that follows, assume that the register or memory location is a 16 bit
register or memory location. In such a case this instruction computes dx:ax :=ax*reg/mem?.

Note that there is no immediate mode for this instruction.

5.2 Declaring Variables in an Assembly Language Program

Although you’ve probably surmised that memory locations and variables are some-
what related, this chapter hasn’t gone out of its way to draw strong parallels between the
two. Well, it’s time to rectify that situation. Consider the following short (and useless) Pas-
cal program:

progr am usel ess(i nput, out put);
var i,j:integer;

begi n
i = 10;
wite('Enter a value for j:");
readl n(j);
=i+t
witeln(‘The result is ‘,i);
end.

When the computer executes the statement i:=10;° it makes a copy of the value 10 and
somehow remembers this value for use later on. To accomplish this, the compiler sets
aside a memory location specifically for the exclusive use of the variable i. Assuming the
compiler arbitrarily assigned location DS:10h for this purpose it could use the instruction
mov ds:[10h],10 to accomplish this* If i is a 16 bit word, the compiler would probably
assign the variable j to the word starting at location 12h or OEh. Assuming it’s location 12h,
the second assignment statement in the program might wind up looking like the follow-

ing:

nov ax, ds:[10h] ; Fetch val ue of |

mul ds: [12h] ;Miltiply by J

nov ds: [10h], ax ;Save in | (ignore overflow
nov ax, ds:[12h] ; Fetch J

mul ds: [12h] ; Conpute J*J

add ds: [10h], ax ;Add 1*J + J*J, store into |

2. Any time you multiply two 16 bit values you could get a 32 bit result. The 80x86 places this 32 bit result in dx:ax
with the H.O. word in dx and the L.O. word in ax.

3. Actually, the computer executes the machine code emitted by the Pascal compiler for this statement; but you need
not worry about such details here.

4. But don’t try this at home, folks! There is one minor syntactical detail missing from this instruction. MASM will
complain bitterly if you attempt to assemble this particular instruction.

Page 196

Variables and Data Structures

Although there are a few details missing from this code, it is fairly straightforward
and you can easily see what is going on in this program.

Now imagine a 5,000 line program like this one using variables like ds:[10h], ds:[12h],
ds:[14h], etc. Would you want to locate the statement where you accidentally stored the
result of a computation into j rather than i? Indeed, why should you even care that the
variable i is at location 10h and j is at location 12h? Why shouldn’t you be able to use
names like i and j rather than worrying about these numerical addresses? It seems reason-
able to rewrite the code above as:

nov ax, i
mul j
nov i, ax
nov ax, j
mul j
add i, ax

Of course you can do this in assembly language! Indeed, one of the primary jobs of an
assembler like MASM is to let you use symbolic names for memory locations. Further-
more, the assembler will even assign locations to the names automatically for you. You
needn’t concern yourself with the fact that variable i is really the word at memory location
DS:10h unless you’re curious.

It should come as no surprise that ds will point to the dseg segment in the
SHELL.ASM file. Indeed, setting up ds so that it points at dseg is one of the first things
that happens in the SHELL.ASM main program. Therefore, all you’ve got to do is tell the
assembler to reserve some storage for your variables in dseg and attach the offset of said
variables with the names of those variables. This is a very simple process and is the sub-
ject of the next several sections.

5.3 Declaring and Accessing Scalar Variables

Scalar variables hold single values. The variables i and j in the preceding section are
examples of scalar variables. Examples of data structures that are not scalars include
arrays, records, sets, and lists. These latter data types are made up from scalar values.
They are the composite types. You’ll see the composite types a little later; first you need to
learn to deal with the scalar types.

To declare a variable in dseg, you would use a statement something like the following:
Byt eVar byte ?

ByteVar is a label. It should begin at column one on the line somewhere in the dseg segment
(that is, between the dseg segment and dseg ends statements). You’ll find out all about
labels in a few chapters, for now you can assume that most legal Pascal/C/Ada identifiers
are also valid assembly language labels.

If you need more than one variable in your program, just place additional lines in the
dseg segment declaring those variables. MASM will automatically allocate a unique stor-
age location for the variable (it wouldn’t be too good to have i and j located at the same
address now, would it?). After declaring said variable, MASM will allow you to refer to
that variable by name rather than by location in your program. For example, after inserting
the above statement into the data segment (dseg), you could use instructions like
mov ByteVar,al in your program.

The first variable you place in the data segment gets allocated storage at location DS:0.
The next variable in memory gets allocated storage just beyond the previous variable. For
example, if the variable at location zero was a byte variable, the next variable gets allo-
cated storage at DS:1. However, if the first variable was a word, the second variable gets
allocated storage at location DS:2. MASM is always careful to allocate variables in such a
manner that they do not overlap. Consider the following dseg definition:

Page 197

Chapter 05

dseg segment para public ‘data’

byt evar byt e ? ;byte all ocates bytes
wor dvar word ? ;word al | ocat es words
dwor dvar dword ? ;dword all ocs dbl words
byt e2 byt e ?

wor d2 wor d ?

dseg ends

MASM allocates storage for bytevar at location DS:0. Because bytevar is one byte long,
the next available memory location is going to be DS:1. MASM, therefore, allocates storage
for wordvar at location DS:1. Since words require two bytes, the next available memory
location after wordvar is DS:3 which is where MASM allocates storage for dwordvar. Dword-
var is four bytes long, so MASM allocates storage for byte2 starting at location DS:7. Like-
wise, MASM allocates storage for word2 at location DS:8. Were you to stick another
variable after word2, MASM would allocate storage for it at location DS:0A.

Whenever you refer to one of the names above, MASM automatically substitutes the
appropriate offset. For example, MASM would translate the mov ax,wordvar instruction
into mov ax,ds:[1]. So now you can use symbolic names for your variables and completely
ignore the fact that these variables are really memory locations with corresponding offsets
into the data segment.

5.3.1

Page 198

Declaring and using BYTE Variables

So what are byte variables good for, anyway? Well you can certainly represent any
data type that has less than 256 different values with a single byte. This includes some
very important and often-used data types including the character data type, boolean data
type, most enumerated data types, and small integer data types (signed and unsigned),
just to name a few.

Characters on a typical IBM compatible system use the eight bit ASCII/IBM character
set (see “A: ASCII/IBM Character Set” on page 1345). The 80x86 provides a rich set of
instructions for manipulating character data. It’s not surprising to find that most byte
variables in a typical program hold character data.

The boolean data type represents only two values: true or false. Therefore, it only
takes a single bit to represent a boolean value. However, the 80x86 really wants to work
with data at least eight bits wide. It actually takes extra code to manipulate a single bit
rather than a whole byte. Therefore, you should use a whole byte to represent a boolean
value. Most programmers use the value zero to represent false and anything else (typi-
cally one) to represent true. The 80x86’s zero flag makes testing for zero/not zero very
easy. Note that this choice of zero or non-zero is mainly for convenience. You could use
any two different values (or two different sets of values) to represent true and false.

Most high level languages that support enumerated data types convert them (inter-
nally) to unsigned integers. The first item in the list is generally item zero, the second item
in the list is item one, the third is item two, etc. For example, consider the following Pascal
enumerated data type:

colors = (red, blue, green, purple, orange, yellow white, black);
Most Pascal compilers will assign the value zero to red, one to blue, two to green, etc.

Later, you will see how to actually create your own enumerated data types in assem-
bly language. All you need to learn now is how to allocate storage for a variable that holds
an enumerated value. Since it’s unlikely there will be more than 256 items enumerated by
the data type, you can use a simple byte variable to hold the value. If you have a variable,
say color of type colors, using the instruction mov color,2 is the same thing as saying
color:=green in Pascal. (Later, you’ll even learn how to use more meaningful statements
like mov color,green to assign the color green to the color variable).

Of course, if you have a small unsigned integer value (0...255) or small signed integer
(-128...127) a single byte variable is the best way to go in most cases. Note that most pro-

Variables and Data Structures

grammers treat all data types except small signed integers as unsigned values. That is,
characters, booleans, enumerated types, and unsigned integers are all usually unsigned
values. In some very special cases you might want to treat a character as a signed value,
but most of the time even characters are unsigned values.

There are three main statements for declaring byte variables in a program. They are

identifier db ?
identifier byt e ?
and

identifier shyte ?

identifier represents the name of your byte variable. “db” is an older term that predates
MASM 6.x. You will see this directive used quite a bit by other programmers (especially
those who are not using MASM 6.x or later) but Microsoft considers it to be an obsolete
term; you should always use the byte and sbyte declarations instead.

The byte declaration declares unsigned byte variables. You should use this declaration
for all byte variables except small signed integers. For signed integer values, use the shyte
(signed byte) directive.

Once you declare some byte variables with these statements, you may reference those
variables within your program by their names:

i db ?

j byt e ?

k shyte ?
nov i, O
nmov j, 245
nov k, -5
nmov al, i
nmov j, al
etc.

Although MASM 6.x performs a small amount of type checking, you should not get
the idea that assembly language is a strongly typed language. In fact, MASM 6.x will only
check the values you’re moving around to verify that they will fit in the target location. All
of the following are legal in MASM 6.x:

nov k, 255
nov j.» -5
nmov i, -127

Since all of these variables are byte-sized variables, and all the associated constants will fit
into eight bits, MASM happily allows each of these statements. Yet if you look at them,
they are logically incorrect. What does it mean to move -5 into an unsigned byte variable?
Since signed byte values must be in the range -128...127, what happens when you store
the value 255 into a signed byte variable? Well, MASM simply converts these values to
their eight bit equivalents (-5 becomes 0FBh, 255 becomes OFFh [-1], etc.).

Perhaps a later version of MASM will perform stronger type checking on the values
you shove into these variables, perhaps not. However, you should always keep in mind
that it will always be possible to circumvent this checking. It’s up to you to write your pro-
grams correctly. The assembler won’t help you as much as Pascal or Ada will. Of course,
even if the assembler disallowed these statements, it would still be easy to get around the
type checking. Consider the following sequence:

nov al, -5
; Any nunber of statements which do not affect AL

nmov j, al

Page 199

Chapter 05

There is, unfortunately, no way the assembler is going to be able to tell you that you’'re
storing an illegal value into j°. The registers, by their very nature, are neither signed nor
unsigned. Therefore the assembler will let you store a register into a variable regardless of
the value that may be in that register.

Although the assembler does not check to see if both operands to an instruction are
signed or unsigned, it most certainly checks their size. If the sizes do not agree the assem-
bler will complain with an appropriate error message. The following examples are all ille-

gal:

nov i, ax ; Cannot nove 16 bits into eight
nov i, 300 ;300 won't fit in eight bits.
nov k, -130 ;-130 won't fit into eight bits.

You might ask “if the assembler doesn’t really differentiate signed and unsigned val-
ues, why bother with them? Why not simply use db all the time?” Well, there are two rea-
sons. First, it makes your programs easier to read and understand if you explicitly state
(by using byte and shyte) which variables are signed and which are unsigned. Second, who
said anything about the assembler ignoring whether the variables are signed or unsigned?
The mov instruction ignores the difference, but there are other instructions that do not.

One final point is worth mentioning concerning the declaration of byte variables. In
all of the declarations you’ve seen thus far the operand field of the instruction has always
contained a question mark. This question mark tells the assembler that the variable
should be left uninitialized when DOS loads the program into memory®. You may specify
an initial value for the variable, that will be loaded into memory before the program starts
executing, by replacing the question mark with your initial value. Consider the following
byte variable declarations:

i db 0
j byt e 255
k shyte -1

In this example, the assembler will initialize i, j, and k to zero, 255, and -1, respectively,
when the program loads into memory. This fact will prove quite useful later on, especially
when discussing tables and arrays. Once again, the assembler only checks the sizes of the
operands. It does not check to make sure that the operand for the byte directive is posi-
tive or that the value in the operand field of sbyt e is in the range -128...127. MASM will
allow any value in the range -128...255 in the operand field of any of these statements.

In case you get the impression that there isn’t a real reason to use byte vs. sbyte in a
program, you should note that while MASM sometimes ignores the differences in these
definitions, Microsoft’s CodeView debugger does not. If you’ve declared a variable as a
signed value, CodeView will display it as such (including a minus sign, if necessary). On
the other hand, CodeView will always display db and byte variables as positive values.

5.3.2

Declaring and using WORD Variables

Most 80x86 programs use word values for three things: 16 bit signed integers, 16 bit
unsigned integers, and offsets (pointers). Oh sure, you can use word values for lots of
other things as well, but these three represent most applications of the word data type.
Since the word is the largest data type the 8086, 8088, 80186, 80188, and 80286 can handle,
you’ll find that for most programs, the word is the basis for most computations. Of course,
the 80386 and later allow 32 bit computations, but many programs do not use these 32 bit
instructions since that would limit them to running on 80386 or later CPUSs.

You use the dw, word, and sword statements to declare word variables. The following
examples demonstrate their use:

5. Actually, for this simple example you could modify the assembler to detect this problem. But it’s easy enough to
come up with a slightly more complex example where the assembler could not detect the problem on.
6. DOS actually initializes such variables to zero, but you shouldn’t count on this.

Page 200

Variables and Data Structures

NoSi gnedWr d dw ?

Unsi gnedWrd wor d ?

Si gnedverd swor d ?
Initializedo wor d 0
InitializedM swor d -1
InitializedBig word 65535
InitializedOs dw NoSi gnedWr d

Most of these declarations are slight modifications of the byte declarations you saw in
the last section. Of course you may initialize any word variable to a value in the range
-32768...65535 (the union of the range for signed and unsigned 16 bit constants). The last
declaration above, however, is new. In this case a label appears in the operand field (spe-
cifically, the name of the NoSignedWord variable). When a label appears in the operand
field the assembler will substitute the offset of that label (within the variable’s segment). If
these were the only declarations in dseg and they appeared in this order, the last declara-
tion above would initialize InitializedOfs with the value zero since NoSignedWord’s offset is
zero within the data segment. This form of initialization is quite useful for initializing
pointers. But more on that subject later.

The CodeView debugger differentiates dw/word variables and sword variables. It
always displays the unsigned values as positive integers. On the other hand, it will dis-
play sword variables as signed values (complete with minus sign, if the value is negative).
Debugging support is one of the main reasons you’ll want to use word or sword as appro-
priate.

5.3.3 Declaring and using DWORD Variables

You may use the dd, dword, and sdword instructions to declare four-byte integers,
pointers, and other variables types. Such variables will allow values in the range
-2,147,483,648...4,294,967,295 (the union of the range of signed and unsigned four-byte
integers). You use these declarations like the wor d declarations:

NoSi gnedDvr d dd ?

Unsi gnedDvr d dwor d ?

Si gnedDWrd sdwor d ?

InitBig dwor d 4000000000
I ni t Negative sdwor d -1

InitPtr dd InitBig

The last example initializes a double word pointer with the segment:offset address of the
InitBig variable.

Once again, it’s worth pointing out that the assembler doesn’t check the types of these
variables when looking at the initialization values. If the value fits into 32 bits, the assem-
bler will accept it. Size checking, however, is strictly enforced. Since the only 32 bit nov
instructions on processors earlier than the 80386 are les and Ids, you will get an error if you
attempt to access dword variables on these earlier processors using a mov instruction. Of
course, even on the 80386 you cannot move a 32 bit variable into a 16 bit register, you must
use the 32 bit registers. Later, you’ll learn how to manipulate 32 bit variables, even on a 16
bit processor. Until then, just pretend that you can’t.

Keep in mind, of course, that CodeView differentiates between dd/dword and sdword.
This will help you see the actual values your variables have when you’re debugging your
programs. CodeView only does this, though, if you use the proper declarations for your
variables. Always use sdword for signed values and dd or dword (dword is best) for unsigned
values.

Page 201

Chapter 05

5.34 Declaring and using FWORD, QWORD, and TBYTE Variables

MASM 6.x also lets you declare six-byte, eight-byte, and ten-byte variables using the
dfffword, dg/qword, and dt/tbyte statements. Declarations using these statements were origi-
nally intended for floating point and BCD values. There are better directives for the float-
ing point variables and you don’t need to concern yourself with the other data types
you’d use these directives for. The following discussion is for completeness’ sake.

The dfffword statement’s main utility is declaring 48 bit pointers for use in 32 bit pro-
tected mode on the 80386 and later. Although you could use this directive to create an
arbitrary six byte variable, there are better directives for doing that. You should only use
this directive for 48 bit far pointers on the 80386.

dg/gqword lets you declare quadword (eight byte) variables. The original purpose of this
directive was to let you create 64 bit double precision floating point variables and 64 bit
integer variables. There are better directives for creating floating point variables. As for 64
bit integers, you won’t need them very often on the 80x86 CPU (at least, not until Intel
releases a member of the 80x86 family with 64 bit general purpose registers).

The dt/tbyte directives allocate ten bytes of storage. There are two data types indige-
nous to the 80x87 (math coprocessor) family that use a ten byte data type: ten byte BCD
values and extended precision (80 bit) floating point values. This text will pretty much
ignore the BCD data type. As for the floating point type, once again there is a better way to
doiit.

5.3.5 Declaring Floating Point Variables with REAL4, REALS8, and REAL10

These are the directives you should use when declaring floating point variables. Like
dd, dg, and dt these statements reserve four, eight, and ten bytes. The operand fields for
these statements may contain a question mark (if you don’t want to initialize the variable)
or it may contain an initial value in floating point form. The following examples demon-
strate their use:

X real 4 1.5
y real 8 1. 0e-25
z real 10 - 1. 2594e+10

Note that the operand field must contain a valid floating point constant using either
decimal or scientific notation. In particular, pure integer constants are not allowed. The
assembler will complain if you use an operand like the following:

X real 4 1
To correct this, change the operand field to “1.0”.

Please note that it takes special hardware to perform floating point operations (e.g., an
80x87 chip or an 80x86 with built-in math coprocessor). If such hardware is not available,
you must write software to perform operations like floating point addition, subtraction,
multiplication, etc. In particular, you cannot use the 80x86 add instruction to add two
floating point values. This text will cover floating point arithmetic in a later chapter (see
“Floating Point Arithmetic” on page 771). Nonetheless, it’s appropriate to discuss how to
declare floating point variables in the chapter on data structures.

MASM also lets you use dd, dg, and dt to declare floating point variables (since these
directives reserve the necessary four, eight, or ten bytes of space). You can even initialize
such variables with floating point constants in the operand field. But there are two major
drawbacks to declaring variables this way. First, as with bytes, words, and double words,
the CodeView debugger will only display your floating point variables properly if you
use the real4, real8, or real10 directives. If you use dd, dqg, or dt, CodeView will display your
values as four, eight, or ten byte unsigned integers. Another, potentially bigger, problem
with using dd, dg, and dt is that they allow both integer and floating point constant initial-
izers (remember, real4, real8, and real10 do not). Now this might seem like a good feature

Page 202

Variables and Data Structures

at first glance. However, the integer representation for the value one is not the same as the
floating point representation for the value 1.0. So if you accidentally enter the value “1” in
the operand field when you really meant “1.0”, the assembler would happily digest this
and then give you incorrect results. Hence, you should always use the real4, real8, and
real10 statements to declare floating point variables.

5.4 Creating Your Own Type Names with TYPEDEF

Let’s say that you simply do not like the names that Microsoft decided to use for
declaring byte, word, dword, real, and other variables. Let’s say that you prefer Pascal’s
naming convention or, perhaps, C’s naming convention. You want to use terms like inte-
ger, float, double, char, boolean, or whatever. If this were Pascal you could redefine the names
in the type section of the program. With C you could use a “#define” or a typedef state-
ment to accomplish the task. Well, MASM 6.x has it’s own typedef statement that also lets
you create aliases of these names. The following example demonstrates how to set up
some Pascal compatible names in your assembly language programs:

i nt eger t ypedef swor d
char t ypedef byt e
bool ean t ypedef byte
f1 oat t ypedef real 4
colors t ypedef byt e

Now you can declare your variables with more meaningful statements like:

i i nt eger ?
ch char ?
Foundl t bool ean ?
X fl oat ?
HouseCol or colors ?

If you are an Ada, C, or FORTRAN programmer (or any other language, for that mat-
ter), you can pick type names you’re more comfortable with. Of course, this doesn’t
change how the 80x86 or MASM reacts to these variables one iota, but it does let you cre-
ate programs that are easier to read and understand since the type names are more indica-
tive of the actual underlying types.

Note that CodeView still respects the underlying data type. If you define integer to be
an sword type, CodeView will display variables of type integer as signed values. Likewise,
if you define float to mean real4, CodeView will still properly display float variables as
four-byte floating point values.

5.5 Pointer Data Types

Some people refer to pointers as scalar data types, others refer to them as composite
data types. This text will treat them as scalar data types even though they exhibit some
tendencies of both scalar and composite data types (for a complete description of compos-
ite data types, see “Composite Data Types” on page 206).

Of course, the place to start is with the question “What is a pointer?” Now you’ve
probably experienced pointers first hand in the Pascal, C, or Ada programming languages
and you're probably getting worried right now. Almost everyone has a real bad experi-
ence when they first encounter pointers in a high level language. Well, fear not! Pointers
are actually easier to deal with in assembly language. Besides, most of the problems you
had with pointers probably had nothing to do with pointers, but rather with the linked list
and tree data structures you were trying to implement with them. Pointers, on the other
hand, have lots of uses in assembly language that have nothing to do with linked lists,
trees, and other scary data structures. Indeed, simple data structures like arrays and
records often involve the use of pointers. So if you’ve got some deep-rooted fear about

Page 203

Chapter 05

Page 204

pointers, well forget everything you know about them. You’re going to learn how great
pointers really are.

Probably the best place to start is with the definition of a pointer. Just exactly what is a
pointer, anyway? Unfortunately, high level languages like Pascal tend to hide the simplic-
ity of pointers behind a wall of abstraction. This added complexity (which exists for good
reason, by the way) tends to frighten programmers because they don’t understand what’s
going on.

Now if you're afraid of pointers, well, let’s just ignore them for the time being and
work with an array. Consider the following array declaration in Pascal:

M array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to understand. M is an
array with 1024 integers in it, indexed from M[0] to M[1023]. Each one of these array ele-
ments can hold an integer value that is independent of all the others. In other words, this
array gives you 1024 different integer variables each of which you refer to by number (the
array index) rather than by name.

If you encountered a program that had the statement M[0]:=100 you probably
wouldn’t have to think at all about what is happening with this statement. It is storing the
value 100 into the first element of the array M. Now consider the following two state-
ments:

i :=0; (* Assune “i” is an integer variable *)
MT[i] := 100;

You should agree, without too much hesitation, that these two statements perform the
same exact operation as M[0]:=100;. Indeed, you’re probably willing to agree that you can
use any integer expression in the range 0...1023 as an index into this array. The following
statements still perform the same operation as our single assignment to index zero:

i 5; (* assune all variables are integers*)
i 10;
k := 50;
m[i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that produces an inte-
ger in the range 0...1023 is legal. So what?”” Okay, how about the following:

M[1] :=0;

M[M[1]] := 100;
Whoa! Now that takes a few moments to digest. However, if you take it slowly, it makes
sense and you’ll discover that these two instructions perform the exact same operation
you’ve been doing all along. The first statement stores zero into array element M[1]. The
second statement fetches the value of M[1], which is an integer so you can use it as an array
index into M, and uses that value (zero) to control where it stores the value 100.

If you’re willing to accept the above as reasonable, perhaps bizarre, but usable none-
theless, then you’ll have no problems with pointers. Because 1] 1] is a pointer! Well, not
really, but if you were to change “M” to “memory” and treat this array as all of memory,
this is the exact definition of a pointer.

A pointer is simply a memory location whose value is the address (or index, if you
prefer) of some other memory location. Pointers are very easy to declare and use in an
assembly language program. You don’t even have to worry about array indices or any-
thing like that. In fact, the only complication you’re going to run into is that the 80x86 sup-
ports two kinds of pointers: near pointers and far pointers.

A near pointer is a 16 bit value that provides an offset into a segment. It could be any
segment but you will generally use the data segment (dseg in SHELL.ASM). If you have a
word variable p that contains 1000h, then p “points” at memory location 1000h in dseg. To
access the word that p points at, you could use code like the following:

nov bx, p ; Load BX with pointer.
nov ax, [bx] ;Fetch data that p points at.

Variables and Data Structures

By loading the value of p into bx this code loads the value 1000h into bx (assuming p
contains 1000h and, therefore, points at memory location 1000h in dseg). The second
instruction above loads the ax register with the word starting at the location whose offset
appears in bx. Since bx now contains 1000h, this will load ax from locations DS:1000 and
DsS:1001.

Why not just load ax directly from location 1000h using an instruction like
mov ax,ds:[1000h]? Well, there are lots of reasons. But the primary reason is that this single
instruction always loads ax from location 1000h. Unless you are willing to mess around
with self-modifying code, you cannot change the location from which it loads ax. The pre-
vious two instructions, however, always load ax from the location that p points at. This is
very easy to change under program control, without using self-modifying code. In fact,
the simple instruction mov p,2000h will cause those two instructions above to load ax from
memory location DS:2000 the next time they execute. Consider the following instructions:

| ea bx, i ; This can actually be done with
nov p, bx ; asingle instruction as you'll
; see in Chapter Eight.

< Sone code that skips over the next two instructions >

| ea bx, j ; Assume t he above code skips these

nmov p, bx ; two instructions, that you get
here by junping to this point from

. ; sonewhere el se.

nmov bx, p ; Assume bot h code pat hs above wi nd

nmov ax, [bx] ; up down here.

This short example demonstrates two execution paths through the program. The first
path loads the variable p with the address of the variable i (remember, lea loads bx with the
offset of the second operand). The second path through the code loads p with the address
of the variable j. Both execution paths converge on the last two mov instructions that load
ax with i or j depending upon which execution path was taken. In many respects, this is
like a parameter to a procedure in a high level language like Pascal. Executing the same
instructions accesses different variables depending on whose address (i or j) winds up in
p.

Sixteen bit near pointers are small, fast, and the 80x86 provides efficient access using
them. Unfortunately, they have one very serious drawback — you can only access 64K of
data (one segment) when using near pointers’. Far pointers overcome this limitation at
the expense of being 32 bits long. However, far pointers let you access any piece of data
anywhere in the memory space. For this reason, and the fact that the UCR Standard
Library uses far pointers exclusively, this text will use far pointers most of the time. But
keep in mind that this is a decision based on trying to keep things simple. Code that uses
near pointers rather than far pointers will be shorter and faster.

To access data referenced by a 32 bit pointer, you will need to load the offset portion
(L.O. word) of the pointer into bx, bp, si, or di and the segment portion into a segment reg-
ister (typically es). Then you could access the object using the register indirect addressing
mode. Since the les instruction is so convenient for this operation, it is the perfect choice
for loading es and one of the above four registers with a pointer value. The following sam-
ple code stores the value in al into the byte pointed at by the far pointer p:

| es bx, p ;Load p into ES: BX
nmov es:[bx], al ;Store away AL

Since near pointers are 16 bits long and far pointers are 32 bits long, you could simply
use the dw/word and dd/dword directives to allocate storage for your pointers (pointers are
inherently unsigned, so you wouldn’t normally use sword or sdword to declare a pointer).

7. Technically, this isn’t true. A single pointer is limited to accessing data in one particular segment at a time, but
you could have several near pointers each pointing at data in different segments. Unfortunately, you need to keep
track of all this yourself and it gets out of hand very quickly as the number of pointers in your program increases.

Page 205

Chapter 05

However, there is a much better way to do this by using the typedef statement. Consider
the following general forms:

t ypenane typedef near ptr basetype
t ypenane typedef far ptr basetype

In these two examples typename represents the name of the new type you’re creating while
basetype is the name of the type you want to create a pointer for. Let’s look at some specific
examples:

nbyt ptr typedef near ptr byte
fbytptr typedef far ptr byte
col orsptr typedef far ptr colors
wpt r typedef near ptr word
intptr typedef near ptr integer
i nt Handl e typedef near ptr intptr

(these declarations assume that you’ve previously defined the types colors and integer with
the typedef statement). The typedef statements with the near ptr operands produce 16 bit
near pointers. Those with the far ptr operands produce 32 bit far pointers. MASM 6.x
ignores the base type supplied after the near ptr or far ptr. However, CodeView uses the
base type to display the object a pointer refers to in its correct format.

Note that you can use any type as the base type for a pointer. As the last example
above demonstrates, you can even define a pointer to another pointer (a handle). Code-
View would properly display the object a variable of type intHandle points at as an
address.

With the above types, you can now generate pointer variables as follows:

byt estr nbyt ptr ?
byt estr2 fbytptr ?
Qurrent Col or colorsptr ?
Qurrentltem wpt r ?
Last I nt intptr ?

Of course, you can initialize these pointers at assembly time if you know where they
are going to point when the program first starts running. For example, you could initialize
the bytestr variable above with the offset of MyString using the following declaration:

byt estr nbytptr M/String

5.6 Composite Data Types

Composite data types are those that are built up from other (generally scalar) data
types. An array is a good example of a composite data type — it is an aggregate of elements
all the same type. Note that a composite data type need not be composed of scalar data
types, there are arrays of arrays for example, but ultimately you can decompose a com-
posite data type into some primitive, scalar, types.

This section will cover two of the more common composite data types: arrays and
records. It’s a little premature to discuss some of the more advanced composite data types.

5.6.1

Page 206

Arrays

Arrays are probably the most commonly used composite data type. Yet most begin-
ning programmers have a very weak understanding of how arrays operate and their asso-
ciated efficiency trade-offs. It’s surprising how many novice (and even advanced!)
programmers view arrays from a completely different perspective once they learn how to
deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements) are all the
same type. Selection of a member from the array is by an integer index®. Different indices
select unique elements of the array. This text assumes that the integer indices are contigu-

Variables and Data Structures

A: array [0..4] of sometype;
A0] A[1] A[2] A3] A[4]

Low memory High memory
addresses \ Base address of A addresses

Figure 5.1 Single Dimension Array Implementation

ous (though it is by no means required). That is, if the number x is a valid index into the
array and y is also a valid index, with x <y, then all i such that x < i <y are valid indices
into the array.

Whenever you apply the indexing operator to an array, the result is the specific array
element chosen by that index. For example, A[i] chooses the it element from array A. Note
that there is no formal requirement that elementi be anywhere near element i+1 in mem-
ory. As long as AJi] always refers to the same memory location and A[i+1] always refers to
its corresponding location (and the two are different), the definition of an array is satis-
fied.

In this text, arrays occupy contiguous locations in memory. An array with five ele-
ments will appear in memory as shown in Figure 5.1.

The base address of an array is the address of the first element on the array and always
appears in the lowest memory location. The second array element directly follows the first
in memory, the third element follows the second, etc. Note that there is no requirement
that the indices start at zero. They may start with any number as long as they are contigu-
ous. However, for the purposes of discussion, it’s easier to discuss accessing array ele-
ments if the first index is zero. This text generally begins most arrays at index zero unless
there is a good reason to do otherwise. However, this is for consistency only. There is no
efficiency benefit one way or another to starting the array index at some value other than
Zero.

To access an element of an array, you need a function that converts an array index into
the address of the indexed element. For a single dimension array, this function is very sim-
ple. Itis

El enent _Address = Base_Address + ((Index - Initial_Index) * H enent_Size)

where Initial_Index is the value of the first index in the array (which you can ignore if zero)
and the value Element_Size is the size, in bytes, of an individual element of the array.

5.6.1.1 Declaring Arrays in Your Data Segment

Before you access elements of an array, you need to set aside storage for that array.
Fortunately, array declarations build on the declarations you’ve seen so far. To allocate n
elements in an array, you would use a declaration like the following:

arraynane baset ype n dup (?)

Arrayname is the name of the array variable and basetype is the type of an element of that
array. This sets aside storage for the array. To obtain the base address of the array, just use
arrayname.

The n dup (?) operand tells the assembler to duplicate the object inside the parenthe-
ses n times. Since a question mark appears inside the parentheses, the definition above

8. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

Page 207

Chapter 05

Page 208

would create n occurrences of an uninitialized value. Now let’s look at some specific
examples:

Char Array char 128 dup (?) ;array[0..127] of char
I nt Array integer 8 dup (?) ;array[0..7] of integer
Byt Array byt e 10 dup (?) ;array[0..9] of byte
PtrArray dword 4 dup (?) ;array[0..3] of dword

The first two examples, of course, assume that you’ve used the typedef statement to define
the char and integer data types.

These examples all allocate storage for uninitialized arrays. You may also specify that
the elements of the arrays be initialized to a single value using declarations like the fol-
lowing:

Real Array real 4 8 dup (1.0)
I nteger Ary integer 8 dup (1)

These definitions both create arrays with eight elements. The first definition initializes
each four-byte real value to 1.0, the second declaration initializes each integer element to
one.

This initialization mechanism is fine if you want each element of the array to have the
same value. What if you want to initialize each element of the array with a (possibly) dif-
ferent value? Well, that is easily handled as well. The variable declaration statements
you’ve seen thus far offer yet another initialization form:

narme type val ue;, val ue,, val ues, .. value,

This form allocates n variables of type type. It initializes the first item to value,, the sec-
ond item to value,, etc. So by simply enumerating each value in the operand field, you can
create an array with the desired initial values. In the following integer array, for example,
each element contains the square of its index:

Squar es integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

If your array has more elements than will fit on one line, there are several ways to con-
tinue the array onto the next line. The most straight-forward method is to use another
integer statement but without a label:

Squar es integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
integer 121, 144, 169, 196, 225, 256, 289, 324
integer 361, 400

Another option, that is better in some circumstances, is to use a backslash at the end of
each line to tell MASM 6.x to continue reading data on the next line:

Squar es integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \
121, 144, 169, 196, 225, 256, 289, 324, \
361, 400

Of course, if your array has several thousand elements in it, typing them all in will not
be very much fun. Most arrays initialized this way have no more than a couple hundred
entries, and generally far less than 100.

You need to learn about one final technique for initializing single dimension arrays
before moving on. Consider the following declaration:

Bi gArray wor d 256 dup (0,1, 2,3)

This array has 1024 elements, not 256. The n dup (xxxx) operand tells MASM to dupli-
cate xxxx n times, not create an array with n elements. If xxxx consists of a single item, then
the dup operator will create an n element array. However, if xxxx contains two items sepa-
rated by a comma, the dup operator will create an array with 2*n elements. If xxxx contains
three items separated by commas, the dup operator creates an array with 3*n items, and so
on. Since there are four items in the parentheses above, the dup operator creates 256*4 or
1024 items in the array. The values in the array will initially be 0123012301230123

Variables and Data Structures

You will see some more possibilities with the dup operator when looking at multidi-
mensional arrays a little later.

5.6.1.2

Accessing Elements of a Single Dimension Array

To access an element of a zero-based array, you can use the simplified formula:
Element_Address = Base_Address + index * Element_Size

For the Base_Address entry you can use the name of the array (since MASM associates
the address of the first operand with the label). The Element_Size entry is the number of
bytes for each array element. If the object is an array of bytes, the Element_Size field is one
(resulting in a very simple computation). If each element of the array is a word (or integer,
or other two-byte type) then Element_Size is two. And so on. To access an element of the
Squar es array in the previous section, you’d use the formula:

Element_Address = Squares + index*2
The 80x86 code equivalent to the statement AX:=Squares[index] is

nov bx, i ndex
add bx, bx ; Sneaky way to conpute 2*bx
nov ax, Squares [bx]

There are two important things to notice here. First of all, this code uses the add
instruction rather than the mul instruction to compute 2*index. The main reason for choos-
ing add is that it was more convenient (remember, mul doesn’t work with constants and it
only operates on the ax register). It turns out that add is a lot faster than mul on many pro-
cessors, but since you probably didn’t know that, it wasn’t an overriding consideration in
the choice of this instruction.

The second thing to note about this instruction sequence is that it does not explicitly
compute the sum of the base address plus the index times two. Instead, it relies on the
indexed addressing mode to implicitly compute this sum. The instruction
mov ax, Squares[bx] loads ax from location Squares+bx which is the base address plus
index*2 (since bx contains index*2). Sure, you could have used

| ea ax, Squares
add bx, ax
nov ax, [bx]

in place of the last instruction, but why use three instructions where one will do the same
job? This is a good example of why you should know your addressing modes inside and
out. Choosing the proper addressing mode can reduce the size of your program, thereby
speeding it up.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a sin-
gle dimension array. Indeed, it’s syntax even suggests an array access. The only thing to
keep in mind is that you must remember to multiply the index by the size of an element.
Failure to do so will produce incorrect results.

If you are using an 80386 or later, you can take advantage of the scaled indexed
addressing mode to speed up accessing an array element even more. Consider the follow-
ing statements:

nov ebx, index ;Assune a 32 bit val ue.
nov ax, Squares [ebx*2]

This brings the instruction count down to two instructions. You’ll soon see that two
instructions aren’t necessarily faster than three instructions, but hopefully you get the
idea. Knowing your addressing modes can surely help.

Before moving on to multidimensional arrays, a couple of additional points about
addressing modes and arrays are in order. The above sequences work great if you only
access a single element from the Squares array. However, if you access several different
elements from the array within a short section of code, and you can afford to dedicate

Page 209

Chapter 05

another register to the operation, you can certainly shorten your code and, perhaps, speed
it up as well. The mov ax,Squares[BX] instruction is four bytes long (assuming you need a
two-byte displacement to hold the offset to Squares in the data segment). You can reduce
this to a two byte instruction by using the base/indexed addressing mode as follows:

| ea bx, Squares
nov si, index
add si, si

nov ax, [bx][si]

Now bx contains the base address and si contains the index*2 value. Of course, this
just replaced a single four-byte instruction with a three-byte and a two-byte instruction,
hardly a good trade-off. However, you do not have to reload bx with the base address of
Squares for the next access. The following sequence is one byte shorter than the compara-
ble sequence that doesn’t load the base address into bx:

| ea bx, Squares
nov si, index
add si, si
nov ax, [bx][si]
;Assunption: BXis left alone
. ; through this code.
nmov si, index2
add si, si
nov cX, [bx][si]

Of course the more accesses to Squares you make without reloading bx, the greater
your savings will be. Tricky little code sequences such as this one sometimes pay off hand-
somely. However, the savings depend entirely on which processor you’re using. Code
sequences that run faster on an 8086 might actually run slower on an 80486 (and vice
versa). Unfortunately, if speed is what you’re after there are no hard and fast rules. In fact,
it is very difficult to predict the speed of most instructions on the simple 8086, even more
so on processors like the 80486 and Pentium/80586 that offer pipelining, on-chip caches,
and even superscalar operation.

5.6.2

Page 210

Multidimensional Arrays

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is
no magic addressing mode that lets you easily access elements of multidimensional
arrays. That’s going to take some work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a
good idea to figure out how to implement them in memory. The first problem is to figure
out how to store a multi-dimensional object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of char. This array
contains 16 bytes organized as four rows of four characters. Somehow you’ve got to draw
a correspondence with each of the 16 bytes in this array and 16 contiguous bytes in main
memory. Figure 5.2 shows one way to do this.

The actual mapping is not important as long as two things occur: (1) each element
maps to a unique memory location (that is, no two entries in the array occupy the same
memory locations) and (2) the mapping is consistent. That is, a given element in the array
always maps to the same memory location. So what you really need is a function with two
input parameters (row and column) that produces an offset into a linear array of sixteen
bytes.

Now any function that satisfies the above constraints will work fine. Indeed, you
could randomly choose a mapping as long as it was unique. However, what you really
want is a mapping that is efficient to compute at run time and works for any size array
(not just 4x4 or even limited to two dimensions). While there are a large number of possi-

Variables and Data Structures

Memory
Figure 5.2 Mapping a 4 x 4 Array to Memory
Memory

A:array [0..3,0..3] of char;
15 A[3,3]
14 A[3,2]
0123 13 A[3,1]
12 A[3,0]
O |of1|2]|3 11 A[2,3]
10 A[2,2]
1 |4|5|6]|7 9 A[2,1]
8 A[2,0]
2 |8]9 0|11 7 AlL3]
6 All,2]
3 |12]13 14 |15 5 AL
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

Figure 5.3 Row Major Element Ordering

ble functions that fit this bill, there are two functions in particular that most programmers
and most high level languages use: row major ordering and column major ordering.

5.6.2.1 Row Major Ordering

Row major ordering assigns successive elements, moving across the rows and then
down the columns, to successive memory locations. The mapping is best described in

Figure 5.3.

Row major ordering is the method employed by most high level programming lan-
guages including Pascal, C, Ada, Modula-2, etc. It is very easy to implement and easy to
use in machine language (especially within a debugger such as CodeView). The conver-
sion from a two-dimensional structure to a linear array is very intuitive. You start with the

Page 211

Chapter 05

Low

Addresses High Addresses

0

1 (2|13 (4 |5(6]7|8]9|10]|11(12(13|14 |15

f A A A

0O|11(2]3
4 15]|16|7
8 |9 (10 |11
12113 (14 |15

Figure 5.4 Another View of Row Major Ordering for a 4x4 Array

first row (row number zero) and then concatenate the second row to its end. You then con-
catenate the third row to the end of the list, then the fourth row, etc. (see Figure 5.4).

For those who like to think in terms of program code, the following nested Pascal loop
also demonstrates how row major ordering works:

index := 0;
for colindex :=0to 3 do
for ronindex := 0 to 3 do
begi n
menory [index] := rowrajor [colindex][row ndex];
index := index + 1;
end;

The important thing to note from this code, that applies across the board to row major
order no matter how many dimensions it has, is that the rightmost index increases the
fastest. That is, as you allocate successive memory locations you increment the rightmost
index until you reach the end of the current row. Upon reaching the end, you reset the
index back to the beginning of the row and increment the next successive index by one
(that is, move down to the next row.). This works equally well for any number of dimen-
sions®. The following Pascal segment demonstrates row major organization for a 4x4x4
array:

index := 0;
for depthindex := 0 to 3 do
for colindex :=0to 3 do
for rowindex := 0 to 3 do begin
nmermory [index] := rowrajor [depthindex][colindex][row ndex];
index := index + 1;
end;

The actual function that converts a list of index values into an offset doesn’t involve
loops or much in the way of fancy computations. Indeed, it’s a slight modification of the
formula for computing the address of an element of a single dimension array. The formula
to compute the offset for a two-dimension row major ordered array declared as
A:array [0..3,0..3] of integer is

B enment _Address = Base_Address + (colindex * row size + row ndex) * H enent_Si ze

As usual, Base_Address is the address of the first element of the array (A[0][0] in this
case) and Element_Size is the size of an individual element of the array, in bytes. Colindex is
the leftmost index, rowindex is the rightmost index into the array. Row_size is the number of

9. By the way, the number of dimensions of an array is its arity.

Page 212

Variables and Data Structures

elements in one row of the array (four, in this case, since each row has four elements).
Assuming Element_Size is one, This formula computes the following offsets from the base
address:

Column Index Row Index Offset into Array

o
o

O©oOoO~NOOOThA,WNPE

WWWNNNNRPRPRPRPPRPOOO
WNPFPOWMNRPFPOWNREFPOWNE,O

w

For a three-dimensional array, the formula to compute the offset into memory is the
following:

Address = Base + ((depthi ndex*col _si ze+col i ndex) * row size + row ndex) *
Bl enent _Si ze

Col_size is the number of items in a column, row_size is the number of items in a row. In
Pascal, if you’ve declared the array as “A:array [i..j] [k..I] [m..n] of type;” then row_size is equal
to n-m+1 and col_size is equal to I-k+1.

For a four dimensional array, declared as “A:array [g..h] [i..]] [k..]] [m..n] of type;” the for-
mula for computing the address of an array element is

Address =
Base + (((Leftlndex * depth_size + depthi ndex)*col _si ze+col i ndex) * row size +
row ndex) * H enent_Size

Depth_size is equal to i-j+1, col_size and row_size are the same as before. Leftindex repre-
sents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic formula that
will compute the offset into memory for an array with any number of dimensions, how-
ever, you’ll rarely use more than four.

Another convenient way to think of row major arrays is as arrays of arrays. Consider
the following single dimension array definition:

A array [0..3] of sonetype;
Assume that sometype is the type “sometype = array [0..3] of char;”.

Ais asingle dimension array. Its individual elements happen to be arrays, but you can
safely ignore that for the time being. The formula to compute the address of an element of
a single dimension array is

El enent _Address = Base + Index * H ement_Si ze

In this case Element_Size happens to be four since each element of A is an array of four
characters. So what does this formula compute? It computes the base address of each row
in this 4x4 array of characters (see Figure 5.5).

Of course, once you compute the base address of a row, you can reapply the single
dimension formula to get the address of a particular element. While this doesn’t affect the
computation at all, conceptually it’s probably a little easier to deal with several single
dimension computations rather than a complex multidimensional array element address
computation.

Page 213

Chapter 05

(A[0]) [0]
(A[0]) [1]

(A[0]) [2]
4 (A[0]) [3]
y—

Ao |0 | 1] 2|3

Alll |4 | 5] 6|7

Each element

of A is four
Al | 8 9 |10 11 bytes long.

A[3] | 12 13|14 |15

Figure 5.5 Viewing a 4x4 Array as an Array of Arrays

Page 214

Consider a Pascal array defined as “A:array [0..3] [0..3] [0..3] [0..3] [0..3] of char;”” You can
view this five-dimension array as a single dimension array of arrays:
type
eD = array [0..3] of char;
TwoD = array [0..3] of CneD
ThreeD = array [0..3] of TwoD
FourD = array [0..3] of ThreeD,
var
A: array [0..3] of FourD,

The size of OneD is four bytes. Since TwoD contains four OneD arrays, its size is 16
bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four ThreeDs,
so it is 256 bytes long. To compute the address of “A [b] [c] [d] [e] [f]” you could use the fol-
lowing steps:

= Compute the address of A [b] as “Base + b * size”. Here size is 256 bytes.
Use this result as the new base address in the next computation.

< Compute the address of A [b] [c] by the formula “Base + c*size”, where
Base is the value obtained immediately above and size is 64. Use the
result as the new base in the next computation.

= Compute the address of A [b] [c] [d] by “Base + d*size” with Base coming
from the above computation and size being 16.

< Compute the address of A [b] [c] [d] [e] with the formula “Base + e*size”
with Base from above and size being four. Use this value as the base for
the next computation.

= Finally, compute the address of A [b] [c] [d] [€] [f] using the formula “Base
+ f*size” where base comes from the above computation and size is one
(obviously you can simply ignore this final multiplication). The result you
obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae from above, but it
is easier to compute (using a single loop) as well. Suppose you have two arrays initialized
as follows

Al={256, 64, 16,4,1} and A2={b,c,d,e,f}
then the Pascal code to perform the element address computation becomes:

for i :=0to 4 do
base : = base + Al[i] * A2[i];

Presumably base contains the base address of the array before executing this loop. Note
that you can easily extend this code to any number of dimensions by simply initializing
Al and A2 appropriately and changing the ending value of the for loop.

Variables and Data Structures

Memory

A:array [0..3,0..3] of char;

0123

0O11[2]3
4 15]|16(|7
8 |9 (10 |11
12|13 (14 |15

=
(&)

A[3,3]
A[2,3]
A[1,3]
A[0,3]
A[3,2]
A[2,2]
Al1,2]
A[0,2]
Al3,1]
Al2,1]
Al1,1]
A[0,1]
A[3,0]
A[2,0]
A[1,0]
A[0,0]

Y
N

=
w

=
N

[
[

=
o

WNFO

OFRPNWPAMUION©OO

Figure 5.6 Column Major Element Ordering

As it turns out, the computational overhead for a loop like this is too great to consider
in practice. You would only use an algorithm like this if you needed to be able to specify
the number of dimensions at run time. Indeed, one of the main reasons you won’t find
higher dimension arrays in assembly language is that assembly language displays the
inefficiencies associated with such access. It’s easy to enter something like “A [b,c,d,e,f]”
into a Pascal program, not realizing what the compiler is doing with the code. Assembly
language programmers are not so cavalier — they see the mess you wind up with when
you use higher dimension arrays. Indeed, good assembly language programmers try to
avoid two dimension arrays and often resort to tricks in order to access data in such an
array when its use becomes absolutely mandatory. But more on that a little later.

5.6.2.2 Column Major Ordering

Column major ordering is the other function frequently used to compute the address
of an array element. FORTRAN and various dialects of BASIC (e.g., Microsoft) use this
method to index arrays.

In row major ordering the rightmost index increased the fastest as you moved
through consecutive memory locations. In column major ordering the leftmost index
increases the fastest. Pictorially, a column major ordered array is organized as shown in
Figure 5.6.

The formulae for computing the address of an array element when using column
major ordering is very similar to that for row major ordering. You simply reverse the
indexes and sizes in the computation:

For a two-dimension column major array:
E enment _Address = Base _Address + (row ndex * col _size + colindex) * Henent_Size
For a three-dimension column major array:

Address = Base + ((row ndex*col _size+colindex) * depth_size + depthi ndex) *
H erment _Si ze

For a four-dimension column major array:

Address = Base + (((row ndex * col _size + colindex)*dept h_si ze+dept hi ndex) *
Left_size + Leftindex) * H enment_Size

Page 215

Chapter 05

The single Pascal loop provided for row major access remains unchanged (to access
A [b] [c] [d] [e] [f]):

for i :=0to 4 do
base := base + Al[i] * A2[i];

Likewise, the initial values of the Al array remain unchanged:
Al = {256, 64, 16, 4, 1}

The only thing that needs to change is the initial values for the A2 array, and all you have
to do here is reverse the order of the indices:

A2 = {f, e, d, c, b}

5.6.2.3

Page 216

Allocating Storage for Multidimensional Arrays

If you have an m x n array, it will have m * n elements and require m*n*Element_Size
bytes of storage. To allocate storage for an array you must reserve this amount of memory.
As usual, there are several different ways of accomplishing this task. This text will try to
take the approach that is easiest to read and understand in your programs.

Reconsider the dup operator for reserving storage. n dup (xxxx) replicates xxxx n times.
As you saw earlier, this dup operator allows not just one, but several items within the
parentheses and it duplicates everything inside the specified number of times. In fact, the
dup operator allows anything that you might normally expect to find in the operand field
of a byte statement including additional occurrences of the DUP operator. Consider the follow-
ing statement:

A byt e 4 dup (4 dup (?))

The first dup operator repeats everything inside the parentheses four times. Inside
the parentheses the 4 DUP (?) operation tells MASM to set aside storage for four bytes.
Four copies of four bytes yields 16 bytes, the number necessary for a 4 x 4 array. Of course,
to reserve storage for this array you could have just as easily used the statement:

A byt e 16 dup (?)

Either way the assembler is going to set aside 16 contiguous bytes in memory. As far as the
80x86 is concerned, there is no difference between these two forms. On the other hand, the
former version provides a better indication that Aiis a 4 x 4 array than the latter version.
The latter version looks like a single dimension array with 16 elements.

You can very easily extend this concept to arrays of higher arity as well. The declara-
tion for a three dimension array, A:array [0..2, 0..3, 0..4] of integer might be

A integer 3 dup (4 dup (5 dup (?)))

(of course, you will need the integer typedef word statement in your program for this to
work.)

As was the case with single dimension arrays, you may initialize every element of the
array to a specific value by replacing the question mark (?) with some particular value. For
example, to initialize the above array so that each element contains one you’d use the
code:

A integer 3 dup (4 dup (5 dup (1)))

If you want to initialize each element of the array to a different value, you’ll have to
enter each value individually. If the size of a row is small enough, the best way to
approach this task is to place the data for each row of an array on its own line. Consider
the following 4x4 array declaration:

A integer 0,1,
i nt eger 1,

i nt eger 5,
0,

2,
0,
7,
i nt eger 0,

NN W
oON R

Variables and Data Structures

Once again, the assembler doesn’t care where you split the lines, but the above is much
easier to identify as a 4x4 array than the following that emits the exact same data:

A integer 0,1,2,3,1,0,1,1,5,7,2,2,0,0,7,6

Of course, if you have a large array, an array with really large rows, or an array with
many dimensions, there is little hope for winding up with something reasonable. That’s
when comments that carefully explain everything come in handy.

5.6.2.4 Accessing Multidimensional Array Elements in Assembly Language

Well, you’ve seen the formulae for computing the address of an array element. You’ve
even looked at some Pascal code you could use to access elements of a multidimensional
array. Now it’s time to see how to access elements of those arrays using assembly lan-
guage.

The mov, add, and mul instructions make short work of the various equations that com-
pute offsets into multidimensional arrays. Let’s consider a two dimension array first:

; Note: TwoD s row size is 16 bytes.

TwoD integer 4 dup (8 dup (?))

i integer ?

j integer ?

; To peformthe operation TwoOi,j] :=5; you' d use the code:
nmov ax, 8 ;8 elenents per row
mul i
add ax, j
add ax, ax ;Mil tiply by el ement size (2)
nov bx, ax ;Put in a register we can use
nov TwoD [bx], 5

Of course, if you have an 80386 chip (or better), you could use the following code'®:
nov eax, 8 ;Zeros HQ 16 bits of EAX
mul i
add ax, j
nov TwoD eax*2], 5

Note that this code does not require the use of a two register addressing mode on the
80x86. Although an addressing mode like TwoD [bx][si] looks like it should be a natural for
accessing two dimensional arrays, that isn’t the purpose of this addressing mode.

Now consider a second example that uses a three dimension array:

Thr eeD integer 4 dup (4 dup (4 dup (?)))

i integer ?

i integer ?

k integer ?

; To peformthe operation ThreeOi,j,k] := 1; you d use the code:
nov bx, 4 ;4 el ements per col um
nmov ax, i
mul bx
add ax, |j

10. Actually, there is an even better 80386 instruction sequence than this, but it uses instructions yet to be dis-

cussed.

Page 217

Chapter 05

mul bx ;4 el ements per row

add ax, k

add ax, ax ;Miltiply by elenment size (2)
nov bx, ax ;Put in a register we can use
nov ThreeD [bx], 1

Of course, if you have an 80386 or better processor, this can be improved somewhat by
using the following code:

nov ebx, 4

nov eax, ebx

mul i

add ax, |j

mul bx

add k

nov ThreeD eax*2], 1

5.6.3 Structures

The second major composite data structure is the Pascal record or C structure’!. The
Pascal terminology is probably better, since it tends to avoid confusion with the more gen-
eral term data structure. However, MASM uses “structure” so it doesn’t make sense to
deviate from this. Furthermore, MASM uses the term record to denote something slightly
different, furthering the reason to stick with the term structure.

Whereas an array is homogeneous, whose elements are all the same, the elements in a
structure can be of any type. Arrays let you select a particular element via an integer
index. With structures, you must select an element (known as a field) by name.

The whole purpose of a structure is to let you encapsulate different, but logically
related, data into a single package. The Pascal record declaration for a student is probably
the most typical example:

student = record
Nane: string [64];
Maj or: integer;
SSN string[11];
Mdterml: integer;
M dtern®: integer;
Final : integer;
Honmewor k: i nt eger;
Proj ects: integer;
end;

Most Pascal compilers allocate each field in a record to contiguous memory locations.
This means that Pascal will reserve the first 65 bytes for the name!?, the next two bytes
hold the major code, the next 12 the Social Security Number, etc.

In assembly language, you can also create structure types using the MASM struct
statement. You would encode the above record in assembly language as follows:

st udent struct

Nane char 65 dup (?)
Maj or integer ?

SSN char 12 dup (?)
M dt er niL integer ?

M dt er n integer ?

Fi nal integer ?

Honmewor k integer ?

Projects integer ?

st udent ends

11. It also goes by some other names in other languages, but most people recognize at least one of these names.
12. Strings require an extra byte, in addition to all the characters in the string, to encode the length.

Page 218

Variables and Data Structures

Name SSN Mid 2 Homework
(65 bytes) (12 bytes) (2 bytes) (2 bytes)
7 7/
John
~ Major ~ Mid 1 Final Projects
(2 bytes) (2 bytes) (2 bytes) (2 bytes)

Figure 5.7 Student Data Structure Storage in Memory

Note that the structure ends with the ends (for end structure) statement. The label on the
ends statement must be the same as on the struct statement.

The field names within the structure must be unique. That is, the same name may not
appear two or more times in the same structure. However, all field names are local to that
structure. Therefore, you may reuse those field names elsewhere in the program®2.

The struct directive only defines a structure type. It does not reserve storage for a struc-
ture variable. To actually reserve storage you need to declare a variable using the structure
name as a MASM statement, e.g.,

John st udent {}

The braces must appear in the operand field. Any initial values must appear between the
braces. The above declaration allocates memory as shown in Figure 5.7. :

If the label John corresponds to the base address of this structure, then the Name field is at
offset John+0, the Major field is at offset John+65, the SSN field is at offset John+67, etc.

To access an element of a structure you need to know the offset from the beginning of
the structure to the desired field. For example, the Major field in the variable John is at off-
set 65 from the base address of John. Therefore, you could store the value in ax into this
field using the instruction mov John[65], ax. Unfortunately, memorizing all the offsets to
fields in a structure defeats the whole purpose of using them in the first place. After all, if
you’ve got to deal with these numeric offsets why not just use an array of bytes instead of
a structure?

Well, as it turns out, MASM lets you refer to field names in a structure using the same
mechanism C and Pascal use: the dot operator. To store ax into the Major field, you could
use mov John.Major,ax instead of the previous instruction. This is much more readable and
certainly easier to use.

Note that the use of the dot operator does not introduce a new addressing mode. The
instruction mov John.Major,ax still uses the displacement only addressing mode. MASM
simply adds the base address of John with the offset to the Major field (65) to get the actual
displacement to encode into the instruction.

You may also specify default initial values when creating a structure. In the previous
example, the fields of the student structure were given indeterminate values by specifying
“?” in the operand field of each field’s declaration. As it turns out, there are two different
ways to specify an initial value for structure fields. Consider the following definition of a
“point” data structure:

Poi nt struct

X wor d 0
y wor d 0
z wor d 0
Poi nt ends

Whenever you declare a variable of type point using a statement similar to
Qur Poi nt Poi nt {}

13. You cannot redefine a fieldname as an equate or macro label. You may, however, reuse a field name as a state-
ment label. Also, note that versions of MASM prior to 6.0 do not support the ability to reuse structure field names.

Page 219

Chapter 05

MASM automatically initializes the CurPoint.x, CurPoint.y, and CurPoint.z variables to zero.
This works out great in those cases where your objects usually start off with the same ini-
tial values*. Of course, it might turn out that you would like to initialize the X, Y, and Z
fields of the points you declare, but you want to give each point a different value. That is
easily accomplished by specifying initial values inside the braces:

Poi nt 1 poi nt {0,1, 2}
Poi nt 2 poi nt {1,1, 1}
Poi nt 3 poi nt {0, 1, 1}

MASM fills in the values for the fields in the order that they appear in the operand field.
For Pointl above, MASM initializes the X field with zero, the Y field with one, and the z
field with two.

The type of the initial value in the operand field must match the type of the corre-
sponding field in the structure definition. You cannot, for example, specify an integer con-
stant for a real4 field, nor could you specify a value greater than 255 for a byte field.

MASM does not require that you initialize all fields in a structure. If you leave a field
blank, MASM will use the specified default value (undefined if you specify “?” rather
than a default value).

5.6.4

Arrays of Structures and Arrays/Structures as Structure Fields

Structs may contain other structures or arrays as fields. Consider the following defini-

tion:

Pi xel struct

Pt poi nt {}
Col or dword ?
Pi xel ends

The definition above defines a single point with a 32 bit color component. When initializ-
ing an object of type Pixel, the first initializer corresponds to the Pt field, not the x-coordi-
nate field. The following definition is incorrect:

Thi sPt Pi xel {5, 10}

The value of the first field (“5”) is not an object of type point. Therefore, the assembler gen-
erates an error when encountering this statement. MASM will allow you to initialize the
fields of ThisPt using declarations like the following:

Thi sPt Pi xel {, 10}

Thi sPt Pi xel {{}, 10}

Thi sPt Pi xel {{1,2,3}, 10}
Thi sPt Pi xel {{1,,1}, 12}

The first and second examples above use the default values for the Pt field (x=0, y=0, z=0)
and set the Color field to 10. Note the use of braces to surround the initial values for the
point type in the second, third, and fourth examples. The third example above initializes
the X, y, and z fields of the Pt field to one, two, and three, respectively. The last example
initializes the X and z fields to one and lets the y field take on the initial value specified by
the Point structure (zero).

Accessing Pixel fields is very easy. Like a high level language you use a single period
to reference the Pt field and a second period to access the X, Y, and z fields of point:

14. Note, of course, that the initial values for the x, y , and z fields need not all be zero. You could have initialized
the fields to 1, 2, and 3 just as easily.

Page 220

Variables and Data Structures

nov ax, ThisPt.Pt.X
nﬁv ThisPt.Pt.Y, O
I’T.UV ThisPt.Pt.Z, di
rrﬁv Thi sPt. Col or, EAX

You can also declare arrays as structure fields. The following structure creates a data
type capable of representing an object with eight points (e.g., a cube):

(hj ect 8 struct

Pts poi nt 8 dup (?)
Col or dwor d 0

(hj ect 8 ends

This structure allocates storage for eight different points. Accessing an element of the Pts
array requires that you know the size of an object of type point (remember, you must mul-
tiply the index into the array by the size of one element, six in this particular case). Sup-
pose, for example, that you have a variable CUBE of type Object8. You could access
elements of the Pts array as follows:

; CUBE Pts[i].X:=0;

nmov ax, 6

mul i ;6 bytes per elenent.
nmov si, ax

nov OBE. Pts[si].X O

The one unfortunate aspect of all this is that you must know the size of each element
of the Pts array. Fortunately, MASM provides an operator that will compute the size of an
array element (in bytes) for you, more on that later.

5.6.5 Pointers to Structures

During execution, your program may refer to structure objects directly or indirectly
using a pointer. When you use a pointer to access fields of a structure, you must load one
of the 80x86’s pointer registers (si, di, bx, or bp on processors less than the 80386) with the
offset and es, ds, ss, or cs'® with the segment of the desired structure. Suppose you have
the following variable declarations (assuming the Object8 structure from the previous sec-

tion):
Qube hject8 {}
QubePt r dword CQube

CubePtr contains the address of (i.e., it is a pointer to) the Cube object. To access the Color
field of the Cube object, you could use an instruction like mov eax,Cube.Color. When access-
ing a field via a pointer you need to load the address of the object into a segment:pointer
register pair, such as es:bx. The instruction les bx,CubePtr will do the trick. After doing so,
you can access fields of the Cube object using the disp+bx addressing mode. The only
problem is “How do you specify which field to access?”” Consider briefly, the following
incorrect code:

I es bx, QubePtr
nmov eax, es:[bx].Col or

15. Add FS or GS to this list for the 80386 and later.

Page 221

Chapter 05

There is one major problem with the code above. Since field names are local to a structure
and it’s possible to reuse a field name in two or more structures, how does MASM deter-
mine which offset Color represents? When accessing structure members directly (.e.g.,
mov eax,Cube.Color) there is no ambiguity since Cube has a specific type that the assembler
can check. es:bx, on the other hand, can point at anything. In particular, it can point at any
structure that contains a Color field. So the assembler cannot, on its own, decide which off-
set to use for the Color symbol.

MASM resolves this ambiguity by requiring that you explicitly supply a type in this
case. Probably the easiest way to do this is to specify the structure name as a pseudo-field:

I es bx, QubePtr
nov eax, es:[bx].hject8. Col or

By specifying the structure name, MASM knows which offset value to use for the Color
symbol 6.

5.7 Sample Programs

The following short sample programs demonstrate many of the concepts appearing in
this chapter.

5.7.1 Simple Variable Declarations
; Sanpl e vari abl e decl arati ons
; This sanmple file denonstrates how to declare and access sone sinple
; variables in an assenbly | anguage program

; Randal | Hyde

; Note: global variable declarations should go in the "dseg" segrent:
dseg segment para public 'data'

; Sone sinple variabl e decl arati ons:

charact er byt e ? ;"?" means uninitialized.

Unsi gnedl nt Var wor d ?

Dol Unsi gnedVar dwor d ?

;You can use the typedef statenent to declare nore neani ngful type nanes:

i nt eger typedef sword
char typedef byte
Far Pt r typedef dword

; Sanpl e variabl e decl arations using the above types:

J integer ?
cl char ?
Pt r Var FarPtr ?

; You can tell MASM & DOS to initialize a variable when DCS | oads the
; programinto nemory by specifying the initial value in the operand

16. Users of MASM 5.1 and other assemblers should keep in mind that field names are not local to the structure.
Instead, they must all be unique within a source file. As a result, such programs do not require the structure name
in the “dot path” for a particular field. Keep this in mind when converting older code to MASM 6.x.

Page 222

Variables and Data Structures

; field of the variable's declaration:

K integer 4
c2 char "A
Pt rVar 2 FarPtr L ;lnitializes PtrVar2 with the

; address of L.

; You can al so set aside nmore than one byte, word, or double word of

; storage using these directives. If you place several values in the

; operand field, separated by commas, the assenbler will emt one byte,
; word, or dword for each operand:

L integer 0, 1, 2, 3
c3 char "A, 0dh, Oah, 0
Pt r Thl FarPtr J, K L

; The BYTE directive lets you specify a string of characters byte encl osi ng
; the string in quotes or apostrophes. The directive emts one byte of data
; for every character in the string (not including the quotes or apostrophes
; that delimt the string):

string byt e "Hel | o world", 0dh, Oah, O

dseg ends

; The fol | owi ng program dermonstrates how to access each of the above
; variabl es.

cseg segment para public 'code'
assune cs: cseg, ds:dseg

Mai n proc
nov ax, dseg; These statenents are provided by
nov ds, ax ; shell.asmto initialize the
nmov es, ax ; segnment register.

; Some sinple instructions that denonstrate how to access nenory:

| ea bx, L ;Point bx at first word in L.
nov ax, [bx];Fetch word at L.

add ax, 2[bx];Add in word at L+2 (the "1").
add ax, 4[bx];Add in word at L+4 (the "2").
add ax, 6[bx];Add in word at L+6 (the "3").
mul K ; Conput e (0+1+2+3)*123.

nov J, ax ; Save away result in J.

I es bx, PtrVar2;Loads es:di with address of L.
nov di, K ;Loads 4 into di

nov ax, es:[bx][di]; Fetch value of L+4.

; Exanpl es of some byte accesses:

nov cl, ' ;Put a space into the cl var.
nov al, c2 ;€3 :=c¢c2
nov c3, al

Page 223

Chapter 05

Qit: nov ah, 4ch ; Magi ¢ nunber for DOB
int 21h ; totell this programto quit.

Mai n endp

cseg ends

sseg segment para stack 'stack'

stk byt e 1024 dup ("stack ")

sseg ends

zzz77277S€g segnent para public 'zzzzzz'

Last Byt es byt e 16 dup (?)

z777727s€eg ends
end Mai n

5.7.2 Using Pointer Variables
; Wsing Pointer Variables in an Assenbly Language Program

; This short sanpl e program denonstrates the use of pointers in
; an assenbly | anguage program

; Randal | Hyde

dseg segnent para public 'data'

; Some variables we will access indirectly (using pointers):

J wor d 0, 0, 0,0
K wor d 1, 2, 3, 4
L wor d 5 6, 7, 8

’ ’

; Near pointers are 16-bits wide and hold an offset into the current data
; segment (dseg in this progran). Far pointers are 32-bits wide and hol d
; a conplete segnent: offset address. The follow ng type definitions |et

; us easily create near and far pointers

nWdPt r typedef near ptr word
fWdPtr typedef far ptr word

; Now for the actual pointer variabl es:

Ptrl nwdpPtr ?

Ptr2 nwdpPtr K lnitialize with K s address.

Ptr3 fwdPtr L ;Initialize with L's segnented adrs.
dseg ends

cseg segnent para public 'code'

assune cs: cseqg, ds:dseg

Mai n proc
nmov ax, dseg ; These staterments are provi ded by
nov ds, ax ; shell.asmto initialize the
nov es, ax ; segnent register.

Page 224

Variables and Data Structures

; Initialize Ptrl (a near pointer) with the address of the J variable.

; Add the four words

| ea
nov

; these vari abl es:

Qit:
Mai n

cseg

sseg

stk

sseg
zz77277s€eg

Last Byt es
z777277s€eg

nov
add

add
add
add

nov
add

add
add
add

nov
add

add
add
add

nov
add

nov
i nt
endp

ends

segnent
byt e
ends

segnent
byt e
ends
end

in variables J,

ax, J
Ptr1, ax

bx, Ptri
si, Ptr2
di, Ptr3
ax, ds:[si]
ax, es:[di]
ds:[bx], ax
bx, 2

si, 2

di, 2

ax, ds:[si]
ax, es:[di]
ds:[bx], ax
bx, 2

si, 2

di, 2

ax, ds:[si]
ax, es:[di]
ds:[bx], ax
bx, 2

si, 2

di, 2

ax, ds:[si]
ax, es:[di]
ds:[bx], ax
ah, 4ch

21h

K, and L together using pointers to

;Get near ptr to J's 1st word.
;Get near ptr to K's 1st word
;Get far ptr to L's 1st word.

; Get data at K+0.
;Add in data at L+0.
;Store result to J+0.

; Move to J+2.
; Move to K+2.
; Move to L+2.

;Get data at K+2.
;Add in data at L+2.
;Store result to J+2.

; Move to J+4.
; Move to K+4.
; Move to L+4.

;Get data at K+4.
;Add in data at L+4.
;Store result to J+4.

; Move to J+6
; Move to K+6.
; Move to L+6

;Get data at K+6.
;Add in data at L+6.
;Store result to J+6.

; Magi ¢ nunber for DOB
; totell this programto quit.

para stack 'stack
1024 dup ("stack ")

para public
16 dup (?)

Mai n

‘222227’

Page 225

Chapter 05

5.7.3 Single Dimension Array Access

; Sanpl e vari abl e decl arati ons
; This sanple file denonstrates how to decl are and access some single
; dinension array variables in an assenbly | anguage program

; Randal | Hyde
. 386 :Need to use sone 80386
option segnent : usel6 ; addressi ng nodes.

dseg segnent para public 'data'

J wor d ?

K wor d ?

L wor d ?

M wor d ?

JD dwor d 0

KD dwor d 1

LD dwor d 2

MD dwor d 3

; Some sinple uninitialized array decl arations:

Byt eAry byte 4 dup (?)

VWr dAry wor d 4 dup (?)

Dwor dAry dwor d 4 dup (?)

Real Ary real 8 4 dup (?)

; Some arrays with initialized val ues:

BArray byte 0, 1, 2, 3

WAr r ay wor d 0, 1, 2, 3

DWAr r ay dword 0, 1, 2, 3

RArr ay real 8 0.0, 1.0, 2.0, 3.0

; An array of pointers:

PtrArray dwor d ByteAry, WrdAry, DwordAry, Real Ary

dseg ends

; The fol |l owi ng program denonstrates how to access each of the above

; vari abl es.

cseg segnent para public 'code'
assune cs: cseqg, ds:dseg

Mai n proc
nov ax, dseg ; These statements are provi ded by
nov ds, ax ; shell.asmto initialize the
nov es, ax ; segnent register.

; Initialize the index variables. Note that these variables provide

; logical indices into the arrays. Don't forget that we've got to

; multiply these val ues by the el enent size when accessing el ements of
; an array.

Page 226

Variables and Data Structures

nmov J, O
nov K 1
mv L, 2
nmov M 3

; The followi ng code shows how to access el ements of the arrays using
; sinple 80x86 addressi ng nodes:

nov bx, J ;AL D= ByteAry[J]

nov al, ByteAry[bx]

nov bx, K ; AX = Wr dAry[K]

add bx, bx ;I ndex*2 since this is a word array.
nov ax, WordAry[bx]

nov bx, L ; EAX : = Dwor dAry[L]

add bx, bx ;I ndex*4 since this is a doubl e
add bx, bx ; word array.

nov eax, DwordAry[bx]

nov bx, M ; BX : = address(Real Ary[M)

add bx, bx ;I ndex*8 since this is a quad
add bx, bx ; word array.

add bx, bx

| ea bx, Real Ary[bx];Base address + index*8.

; If you have an 80386 or |ater CPU, you can use the 386's scal ed i ndexed
; addressing nmodes to sinplify array access.

nov ebx, JD
nov al, ByteAry[ebx]
nov ebx, KD
nov ax, \WrdAry[ebx*2]
nov ebx, LD
nov eax, Dwor dAry[ebx*4]
nov ebx, MD
| ea bx, Real Ary[ebx*8]
Qit: nmov ah, 4ch ; Magi ¢ nunber for DOS
i nt 21h ; totell this programto quit.
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk byt e 1024 dup ("stack ")
sseg ends
z777277s€eg segnent para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
z777277s€eg ends
end Mai n

5.7.4 Multidimensional Array Access

; Mil tidimensional Array declaration and access

’

Page 227

Chapter 05

; Randal | Hyde
. 386 ; Need these two statenents to
option segnent : usel6 ; use the 80386 register set.
dseg segment para public 'data'

; Indices we will use for the arrays.

J wor d 1
K wor d 2
L wor d 3

; Sone two-di mensional arrays.
; Note how this code uses the "dup" operator to suggest the size
; of each dinension.

B2Ary byt e 3 dup (4 dup (?))
VRAry wor d 4 dup (3 dup (?))
DRAry dwor d 2 dup (6 dup (?))

; 2D arrays with initialization.
; Note the use of data | ayout to suggest the sizes of each array.

B2Ary2 byt e 0, 1, 2, 3
byt e 4, 5, 6, 7
byte 8, 9, 10, 11
RAry2 wor d o, 1, 2
wor d 3, 4, 5
wor d 6, 7, 8
wor d 9, 10, 11
DRAry2 dwor d o, 1, 2, 3, 4, 5
dwor d 6, 7, 8, 9, 10, 11
; A sanpl e three dinensional array.
BAry wor d 2 dup (3 dup (4 dup (?)))
dseg ends
cseg segment para public 'code'

assune cs: cseg, ds:dseg

Mai n proc
nov ax, dseg ; These statenents are provided by
nov ds, ax ; shell.asmto initialize the
nov es, ax ; segnent register.

;AL 1= B2Ary2[j, K]

nov bx, J yindex = (j*4+k)
add bx, bx pj*2

add bx, bx i *4

add bx, K ;j *4+k

nov al, B2Ary2[bx]

Page 228

Variables and Data Structures

i AX = WAry2[j, K]

nov ax, J ;index 1= (j*3 + k)*2

nov bx, 3

mul bx ;(J*3)-- This destroys DX
add ax, k i () *3+k)

add ax, ax ; () *3+k)*2

nov bx, ax

nov ax, VRAry2[bx]

» EAXi= DRArY[L]

nov ax, J ;index 1= (j*6 + k)*4

nov bx, 6

nul bx ;DX AX 1= j*6, ignore overflowin DX
add ax, k ;]*6 + K

add ax, ax i (j*6 + k)*2

add ax, ax i (j*6 + k)*4

nov bx, ax

nov eax, DR2Ary[bx]

; Sanpl e access of a three dinensional array.

i AX = WBAry[J, K L]

nov ax, J pindex 1= ((j*3 + k)*4 +1)*2
nov bx, 3
mul bx 1J*3
add ax, K ;]*3 + kK
add ax, ax i (j*3 + k)*2
add ax, ax i (j*3 + k)*4
add ax, | i (J*3 + k)*4 + |
add ax, ax i ((j*3 + K)*4 +1)*2
nov bx, ax
nov ax, VBAry[bx]
Qit: nmov ah, 4ch ; Magi ¢ nunber for DOB
i nt 21h ; totell this programto quit.
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk byt e 1024 dup ("stack ")
sseg ends
zzz7777S€g segnment para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
272727S€egQ ends
end Mai n

5.7.5 Simple Structure Access
; Sanple Structure Definitions and Accesses.

’

; Randal | Hyde

Page 229

Chapter 05

dseg segment para public 'data'

; The following structure holds the bit values for an 80x86 nod-reg-r/ mbyte.

node struct

nodbi ts byt e ?

reg byt e ?

rm byt e ?

node ends

I nstrlAdrs node {};Al fields uninitialized.
I nstr2Adrs node {}

; Some structures with initialized fields.

axbx node {11b, 000b, 000b} ;"ax, ax" adrs node.
axdi sp node {00b, 000b, 110b} ;"ax, disp" adrs node.
cxdi spbxsi node {01b, 001b, 000b} ;"cx, disp8[bx][si]" node.

; Near pointers to some structures:

shPtri word axdi sp

sPtr2 wor d I nstr2Adrs

dseg ends

cseg segment para public 'code'

assune cs: cseqg, ds:dseg

Mai n proc
nov ax, dseg ; These statenments are provided by
nov ds, ax ; shell.asmto initialize the
nmov es, ax ; segnent register.

; To access fields of a structure variable directly, just use the "."
; operator like you would in Pascal or C

nov al, axbx. nodbits

nov InstrlAdrs. nodbits, al
nov al, axbx.reg

nov InstrlAdrs.reg, al

mv al, axbx.rm

mv InstrlAdrs.rm al

; Wien accessing elenents of a structure indirectly (that is, using a
; pointer) you nust specify the structure type nane as the first
; "field" so MASM doesn't get confused:

nov si, sPtrl
nov di, sPtr2
nov al, ds:[si].nmode. nodbits
nov ds:[di]. nmode. nodbits, al

Page 230

Variables and Data Structures

nov al, ds:[si].node.reg
nov ds:[di].node.reg, al
nov al, ds:[si].node.rm
nov ds:[di].nmode.rm al
Qit: nov ah, 4ch ; Magi ¢ nunber for DOB
i nt 21h ; totell this programto quit.
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends
zz77277S€g segnent para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
z277727seg ends
end Mai n

Arrays of Structures

; Arrays of Structures

; Randal | Hyde

dseg segment para public 'data'

; Astructure that defines an (x,y) coordi nate.
; Note that the Point data type requires four bytes.

Poi nt struct

X wor d ?
Y wor d ?
Poi nt ends

; Anuninitialized point:
Pt 1 Poi nt {}
; Aninitialized point:

Pt 2 Poi nt {12, 45}

; A one-dinensional array of uninitialized points:

Pt Aryl Poi nt 16 dup ({}) ;MNote the "{}" inside the parens.
; A one-dinensional array of points, all initialized to the origin.
Pt Aryli Poi nt 16 dup ({0, 0})

Page 231

Chapter 05

Page 232

; A two-di nensional array of points:

Pt Ary2 Poi nt 4 dup (4 dup ({}))

; Athree-dinensional array of points, all initialized to the origin.

Pt Ary3 Poi nt 2 dup (3 dup (4 dup ({0,0})))

; A one-dinensional array of points, all initialized to different val ues:

i PtAry Poi nt {0,0}, {1,2}, {3,4}, {5,6}

; Sone indices for the arrays:

J wor d 1
K wor d 2
L wor d 3
dseg ends

; The fol | owi ng program dermonstrates how to access each of the above
; variabl es.

cseg segment para public 'code'
assune cs: cseg, ds:dseg

Mai n proc
nov ax, dseg ; These statenments are provided by
nov ds, ax ; shell.asmto initialize the
nov es, ax ; segnent register.

; PtAryl1[J] = iPtAry[J]
nov bx, J ;Index := J*4 since there are four
add bx, bx ; bytes per array el ement (each
add bx, bx ; element contains two words).
nov ax, iPtAry[bx].X
nov Pt Aryl[bx]. X, ax
nov ax, iPtAry[bx].Y
nov Pt Aryl[bx] .Y, ax

; X = PtAY2[KL]. X, DX :=PtAYy2[KL].Y

nmov bx, K ;lndex 1= (K4 + J)*4
add bx, bx ; K2

add bx, bx K4

add bx, J K4+]

add bx, bx (K4 + 0)*2

add bx, bx (K4 + J0)*4

nov cx, PtAry2[bx].X

nmov dx, PtAry2[bx].Y

; PLAry3[j,k,I].X:=0

Variables and Data Structures

nov ax, j ;lndex 1= ((j*3 +k)*4 + 1)*4
nov bx, 3
mul bx 1j*3
add ax, k ;]*3 + k
add ax, ax i (j*3 + k)*2
add ax, ax i (j*3 + k)*4
add ax, | i (j*3 + k)*4 + |
add ax, ax T((J*3 + K)*4 +1)*2
add ax, ax s ((J*3 + k)*4 +1)*4
nov bx, ax
nov PtAry3[bx].X O
Qiit: nmov ah, 4ch ; Magi ¢ nunber for DOB
i nt 21h ; totell this programto quit.
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk byt e 1024 dup ("stack ")
sseg ends
zzz777S€g segnent para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
2772727seg ends
end Mai n

5.7.7 Structures and Arrays as Fields of Another Structure

; Structures Containing Structures as fields
; Structures Containing Arrays as fields

; Randal | Hyde

dseg segment para public 'data'
Poi nt struct

X wor d ?

Y wor d ?

Poi nt ends

; W can define a rectangle with only two points.
; The color field contains an eight-bit color val ue.
; Note: the size of a Rect is 9 bytes.

Rect struct

Upper Lef t Poi nt {}
Lower R ght Poi nt {}
Col or byt e ?
Rect ends

; Pentagons have five points, so use an array of points to
; define the pentagon. O course, we al so need the col or
; field.

; Note: the size of a pentagon is 21 bytes.

Pent struct

Col or byt e ?

Pts Poi nt 5 dup ({})
Pent ends

Page 233

Chapter 05

; kay, here are sone variabl e decl arati ons:

Rect 1 Rect {}

Rect 2 Rect {{o,0}, {1,1}, 1}
Pent agonl Pent {}

Pent agons Pent 3. 3. 3, (3

I ndex wor d 2

dseg ends

cseg segment para public 'code'

assune cs: cseqg, ds:dseg

Mai n proc
nov ax, dseg ; These statenments are provided by
nov ds, ax ; shell.asmto initialize the
nmov es, ax ; segment register.

; Rect 1. UpperLeft. X := Rect2. UpperLeft. X

nov ax, Rect2. Upperleft.X
nov Rect 1. Upperl eft. X, ax

; Pentagonl : = Pentagons[| ndex]

mv ax, |ndex; Need | ndex*21
mv bx, 21

mul bx

mv bx, ax

; Copy the first point:

nov ax, Pentagons[bx].Pts[0].X
nov Pent agonl. Pts[0]. X ax
nov ax, Pentagons[bx].Pts[0].Y
nov Pentagonl. Pts[0].Y, ax

nov ax, Pentagons[bx].Pts[2].X
nov Pentagonl. Pts[4]. X ax
nov ax, Pentagons[bx].Pts[2].Y
nov Pentagonl. Pts[4].Y, ax

nov ax, Pentagons[bx].Pts[4].X
nov Pent agonl. Pts[8]. X ax
nov ax, Pentagons[bx].Pts[4].Y
nov Pent agonl. Pts[8].Y, ax

nov ax, Pentagons[bx].Pts[6].X
nov Pent agonl. Pt s[12] . X, ax

Page 234

; Copy the fifth point:

nov

nov

nov

nov
; Copy the Color:

nov

nov
Qit: mv

int
Mai n endp
cseg ends
sseg segnent
stk byt e
sseg ends
27272777S€eQ segnment
Last Byt es byt e
2772727Seg ends

end

Variables and Data Structures

ax, Pentagons[bx].Pts[6].Y
Pent agonl. Pts[12] .Y, ax

ax, Pentagons[bx].Pts[8].X
Pent agonl. Pt s[16] . X, ax

ax, Pentagons[bx].Pts[8].Y
Pent agonl. Pts[16] .Y, ax

al , Pentagons| bx] . Col or
Pent agonl. Col or, al

ah, 4ch ; Magi ¢ nunber for DOB
21h ; totell this programto quit.

para stack 'stack'
1024 dup ("stack ")

para public 'zzzzzz'
16 dup (?)

Mai n

5.7.8

; Pointers to structures

Pointers to Structures and Arrays of Structures

; Pointers to arrays of structures

; Randal | Hyde
. 386
option
dseg segnent

; Sanple structure.

: Need t hese two statenments so
segnent : usel6 ; We can use 80386 registers

para public 'data'

; Note: size is seven bytes.
Sanpl e struct

b byt e ?
w wor d ?
d dwor d ?
Sanpl e ends

; Sone variabl e decl arati ons:

CnheSanpl e
Sanpl eAry

Sanpl e
Sanpl e

; Pointers to the above

{}
16 dup ({})

Page 235

Chapter 05

OnePtr wor d MeSanpl e ; A near pointer.
AryPtr dwor d Sanpl eAry

; Index into the array:
I ndex wor d 8

dseg ends

; The follow ng program denonstrates how to access each of the above

; variabl es.

cseg segment para public 'code'
assune cs: cseg, ds:dseg

Mai n proc
nov ax, dseg ; These statenents are provided by
nov ds, ax ; shell.asmto initialize the
nmov es, ax ; segnent register.

; AryPtrA[Index] := CnePtr”

nov si, OePtr ; Get pointer to neSanpl e
I es bx, AryPtr ;Get pointer to array of sanples
nov ax, |ndex ; Need i ndex*7
nov di, 7
nul di
nov di, ax
nov al, ds:[si].Sanple.b
nov es:[bx][di].Sanple.b, al
nov ax, ds:[si].Sanple.w
nov es:[bx][di].Sanple.w, ax
nov eax, ds:[si].Sample.d
nov es:[bx][di]. Sanple.d, eax
Qit: nmov ah, 4ch ; Magi ¢ nunber for DOB
i nt 21h ; totell this programto quit.
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk byt e 1024 dup ("stack ")
sseg ends
zzz77277S€g segnment para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
272727S€egQ ends
end Mai n

Page 236

Variables and Data Structures

5.8 Laboratory Exercises

In these laboratory exercises you will learn how to step through a program using
CodeView and observe the results. Knowing how to trace through a program is an impor-
tant skill to posses. There is no better way to learn assembly language than to single step
through a program and observe the actions of each instruction. Even if you already know
assembly language, tracing through a program with a debugger like CodeView is one of
the best ways to verify that your program is working properly.

In these lab exercises you will assemble the sample program provided in the previous
section. Then you will run the assembled program under CodeView and step through
each instruction in the program. For your lab report: you will include a listing of each pro-
gram and describe the operation of each statement including data loaded into any affected
registers or values stored away into memory.

The following paragraphs describe one experimental run — stepping through the
pgm5_1.asm program. Your lab report should contain similar information for all eight
sample programs.

To assemble your programs, use the ML command with the /Zi option. For example,
to assemble the first sample program you would use the following DOS command:

m /Zi pgnb_l1.asm

This command produces the pgm5_1.exe file that contains CodeView debugging informa-
tion. You can load this program into the CodeView debugger using the following com-
mand:

cv pgnb_1

Once you are inside CodeView, you can single step through the program by repeatedly
pressing the F8 key. Each time you press the F8 key, CodeView executes a single instruc-
tion in the program.

To better observe the results while stepping through your program, you should open
the register window. If it is not open already, you can open it by pressing the F2 key. As the
instructions you execute modify the registers, you can observe the changes.

All the sample programs begin with a three-instruction sequence that initializes the
DS and ES registers; pressing the F8 key three times steps over these instructions and (on
one system) loads the AX, ES, and DS registers with the value 1927h (this value will
change on different systems).

Single stepping over the lea bx, L instruction loads the value 0015h into bx. Single step-
ping over the group of instructions following the lea produces the following results:

nov ax, [bx] AX =0

add ax, 2[bx] TAX =1

add ax, 4[bx] AX = 3

add ax, 6[bx] AX =6

mul K ; AX = 18 (hex)

nov J, ax ;J is now equal to 18h.

Comments on the above instructions: this code loads bx with the base address of array L
and then proceeds to compute the sum of L[i], i=0..3 (0+1+2+3). It then multiples this sum
by K (4) and stores the result into J. Note that you can use the “dw J” command in the
command window to display J's current value (the “J” must be upper case because Code-
View is case sensitive).

I es bx, PtrVar2 ; BX = 0015, ES = 1927
nov di, K ‘D =4
nov ax, es:[bx][di] AX = 2

Page 237

Chapter 05

Comments on the above code: The les instruction loads es:bx with the pointer variable
Ptrvar2. This variable contains the address of the L variable. Then this code loads di with
the value of K and completes by loading the second element of L into ax.

nov cl, '
nov al, c2
nov c3, al

These three instructions simply store a space into byte variable c1 (verify with a “da c1”
command in the command window) and they copy the value in c2 (“A”) into the AL reg-
ister and the c3 variable (verified with “da ¢3” command).

For your lab report: assemble and step through pgm5 2.asm, pgm5_3.asm,
pgm5_4.asm, pgm5_5.asm, pgm5_6.asm, pgm5_7.asm, and pgm5_8.asm. Describe the
results in a fashion similar to the above.

5.9 Programming Projects

1))

2)

Page 238

The PC’s video display is a memory mapped 1/O device. That is, the display adapter maps
each character on the text display to a word in memory. The display is an 80x25 array of
words declared as follows:

display:array[0..24,0..79] of word;

Display[0,0] corresponds to the upper left hand corner of the screen, display[0,79] is the
upper right hand corner, display[24,0] is the lower left hand corner, and display[24,79] is
the lower right hand corner of the display.

The L.O. byte of each word holds the ASCII code of the character to appear on the screen.
The H.O. byte of each word contains the attribute byte (see “The PC Video Display” on
page 1247 for more details on the attribute byte). The base address of this array is B000:0
for monochrome displays and B800:0 for color displays.

The Chapter Five subdirectory contains a file named PGM5_1.ASM. This file is a skeletal
program that manipulates the PC’s video display. This program, when complete, writes a
series of period to the screen and then it writes a series of blues spaces to the screen. It con-
tains a main program that uses several instructions you probably haven’t seen yet. These
instructions essentially execute a for loop as follows:
for i:=0to 79 do
for j :=0to 24 do
put screen(i,j, val ue);

Inside this program you will find some comments that instruct you to supply the code
that stores the value in AX to location display[i,j]. Modify this program as described in its
comments and test the result.

For this project, you need to declare two word variables, | and J, in the data segment. Then
you will need to modify the “PutScreen” procedure. Inside this procedure, as directed by
the comments in the file, you will need to compute the index into the screen array and
then store the value in the ax register to location es:[bx+0] (assuming you’ve computed the
index into bx). Note that es:[0] is the base address of the video display in this procedure.
Check your code carefully before attempting to run it. If your code malfunctions, it may
crash the system and you will have to reboot. This program, if operating properly, will fill
the screen with periods and wait until you press a key. Then it will fill the screen with blue
spaces. You should probably execute the DOS “CLS” (clear screen) command after this
program executes properly. Note that there is a working version of this program named
p5_1l.exe in the Chapter Five directory. You can run this program to check out it’s opera-
tion if you are having problems.

The Chapter Five subdirectory contains a file named PGM5_2.ASM. This file is a program
(except for two short subroutines) that generates mazes and solves them on the screen.
This program requires that you complete two subroutines: MazeAdrs and ScrnAdrs.
These two procedures appear at the beginning of the file; you should ignore the remainder

Variables and Data Structures

of this program. When the program calls the MazeAdrs function, it passes an X coordinate
in the dx register and a Y-coordinate in the cx register. You need to compute the index into
an 27x82 array defined as follows:

nmaze: array[0..26, 0..81] of word;

Return the index in the ax register. Do not access the maze array; the calling code will do that for
you.

The ScrnAdrs function is almost identical to the MazeAdrs function except it computes an
index into a 25x80 array rather than a 27x82 array. As with MazeAdrs, the X-coordinate
will be in the dx register and the Y-coordinate will be in the cx register.

Complete these two functions, assemble the program, and run it. Be sure to check your
work over carefully. If you make any mistakes you will probably crash the system.

3) Create a program with a single dimension array of structures. Place at least four fields
(your choice) in the structure. Write a code segment to access element “i” (“i”” being a
word variable) in the array.

4) Write a program which copies the data from a 3x3 array and stores the data into a second
3x3 array. For the first 3x3 array, store the data in row major order. For the second 3x3
array, store the data in column major order. Use nine sequences of instructions which fetch
the word at location (i,j) (i=0..2, j=0..2).

5) Rewrite the code sequence above just using MOV instructions. Read and write the array
locations directly, do not perform the array address computations.

5.10 Summary

This chapter presents an 80x86-centric view of memory organization and data struc-
tures. This certainly isn’t a complete course on data structures. This chapter discussed the
primitive and simple composite data types and how to declare and use them in your pro-
gram. Lots of additional information on the declaration and use of simple data types
appears later in this text.

One of the main goals of this chapter is to describe how to declare and use variables in
an assembly language program. In an assembly language program you can easily create
byte, word, double word, and other types of variables. Such scalar data types support
boolean, character, integer, real, and other single data types found in typical high level
languages. See:

“Declaring Variables in an Assembly Language Program” on page 196

= “Declaring and using BYTE Variables” on page 198

= “Declaring and using WORD Variables” on page 200

= “Declaring and using DWORD Variables” on page 201

e “Declaring and using FWORD, QWORD, and TBYTE Variables” on
page 202

= “Declaring Floating Point Variables with REAL4, REALS, and REAL10”

on page 202

For those who don’t like using variable type names like byt e, wor d, etc., MASM lets
you create your own type names. You want to call them Integers rather than Words? No
problem, you can define your own type names use the t ypedef statement. See:

= “Creating Your Own Type Names with TYPEDEF” on page 203

Another important data type is the pointer. Pointers are nothing more than memory
addresses stored in variables (word or double word variables). The 80x86 CPUs support
two types of pointers — near and far pointers. In real mode, near pointers are 16 bits long
and contain the offset into a known segment (typically the data segment). Far pointers are
32 bits long and contain a full segment:offset logical address. Remember that you must
use one of the register indirect or indexed addressing modes to access the data referenced
by a pointer. For those who want to create their own pointer types (rather than simply

Page 239

Chapter 05

Page 240

using wor d and dwor d to declare near and far pointers), the t ypedef instruction lets
you create named pointer types. See:

= “Pointer Data Types” on page 203

A composite data type is one made up from other data types. Examples of composite
data types abound, but two of the more popular composite data types are arrays and
structures (records). An array is a group of variables, all the same type. A program selects
an element of an array using an integer index into that array. Structures, on the other
hand, may contain fields whose types are different. In a program, you select the desired
field by supplying a field name with the dot operator. See:

= “Arrays” on page 206

e “Multidimensional Arrays” on page 210

= “Structures” on page 218

= “Arrays of Structures and Arrays/Structures as Structure Fields” on
page 220

« “Pointers to Structures” on page 221

Variables and Data Structures

5.11 Questions

b
2)

3)

4)

5)
6)
7)
8)
9

10)
11)

12)

13)

14)
15)

In what segment (8086) would you normally place your variables?

Which segment in the SHELL.ASM file normally corresponds to the segment containing
your variables?

Describe how to declare byte variables. Give several examples. What would you normally
use byte variables for in a program?

Describe how to declare word variables. Give several examples. Describe what you would
use them for in a program.

Repeat question 21 for double word variables.

Explain the purpose of the TYPEDEF statement. Give several examples of its use.
What is a pointer variable?

What is the difference between a near and a far pointer?

How do you access the object pointed at by a far pointer. Give an example using 8086
instructions.

What is a composite data type?

How do you declare arrays in assembly language? Give the code for the following arrays:
a) A two dimensional 4x4 array of bytes b) An array containing 128 double words

¢) An array containing 16 words d) A 4x5x6 three dimensional array of words

Describe how you would access a single element of each of the above arrays. Provide the
necessary formulae and 8086 code to access said element (assume variable | is the index
into single dimension arrays, | & J provide the index into two dimension arrays, and I, J, &
K provide the index into the three dimensional array). Assume row major ordering, where
appropriate.

Provide the 80386 code, using the scaled indexing modes, to access the elements of the
above arrays.

Explain the difference between row major and column major array ordering.

Suppose you have a two-dimensional array whose values you want to initialize as fol-
lows:

012
345
678

Provide the variable declaration to accomplish this. Note: Do not use 8086 machine
instructions to initialize the array. Initialize the array in your data segment.

Dat e= Record
Mont h: i nt eger;
Day: i nt eger;
Year: i nt eger;

end;
Ti me= Record
Hour s: i nt eger;
M nut es: i nt eger;
Seconds: i nt eger ;
end;
Vi deoTape = record

Title:string[25];
Rel easeDat e: Dat €;
Price:Real; (* Assune four byte reals *)

Page 241

Chapter 05
Length: Tine;
Rati ng: char;
end;

TapelLi brary : array [0..127] of VideoTape; (*This is a variable!*)

17) Suppose ES:BX points at an object of type VideoTape. What is the instruction that properly
loads the Rat i ng field into AL?

Page 242

The 80x86 Instruction Set Chapter Six

Until now, there has been little discussion of the instructions available on the 80x86
microprocessor. This chapter rectifies this situation. Note that this chapter is mainly for
reference. It explains what each instruction does, it does not explain how to combine these
instructions to form complete assembly language programs. The rest of this book will
explain how to do that.

6.0 Chapter Overview

This chapter discusses the 80x86 real mode instruction set. Like any programming
language, there are going to be several instructions you use all the time, some you use
occasionally, and some you will rarely, if ever, use. This chapter organizes its presentation
by instruction class rather than importance. Since beginning assembly language program-
mers do not have to learn the entire instruction set in order to write meaningful assembly
language programs, you will probably not have to learn how every instruction operates.
The following list describes the instructions this chapter discusses. A “=” symbol marks
the important instructions in each group. If you learn only these instructions, you will
probably be able to write any assembly language program you want. There are many
additional instructions, especially on the 80386 and later processors. These additional
instructions make assembly language programming easier, but you do not need to know
them to begin writing programs.

80x86 instructions can be (roughly) divided into eight different classes:

1) Data movement instructions
® mov, lea, les , push, pop, pushf, popf
2) Conversions
® cbw, cwd, xlat
3) Arithmetic instructions
® add, inc sub, dec, cmp, neg, mul, imul, div, idiv
4) Logical, shift, rotate, and bit instructions
® and, or, xor, not, shl, shr, rcl, rcr
5) /0 instructions
®in, out
6) String instructions
® movs, stos, lods
7) Program flow control instructions
* jmp, call, ret, conditional jumps
8) Miscellaneous instructions.

® clc, stc, cmc
The following sections describe all the instructions in these groups and how they operate.

At one time a text such as this one would recommend against using the extended
80386 instruction set. After all, programs that use such instructions will not run properly
on 80286 and earlier processors. Using these additional instructions could limit the num-
ber of machines your code would run on. However, the 80386 processor is on the verge of
disappearing as this text is being written. You can safely assume that most systems will
contain an 80386sx or later processor. This text often uses the 80386 instruction set in vari-
ous example programs. Keep in mind, though, that this is only for convenience. There is
no program that appears in this text that could not be recoded using only 8088 assembly
language instructions.

A word of advice, particularly to those who learn only the instructions noted above:
as you read about the 80x86 instruction set you will discover that the individual 80x86
instructions are not very complex and have simple semantics. However, as you approach

Page 243

Chapter 06

L (e [l [l

Overflow ——
Direction

Interrupt = Unused
Trace D

Sign
Zero

Auxiliary Carry

Parity

Carry

Figure 6.1 80x86 Flags Register

the end of this chapter, you may discover that you haven’t got a clue how to put these sim-
ple instructions together to form a complex program. Fear not, this is a common problem.
Later chapters will describe how to form complex programs from these simple instruc-
tions.

One quick note: this chapter lists many instructions as “available only on the 80286
and later processors.” In fact, many of these instructions were available on the 80186
microprocessor as well. Since few PC systems employ the 80186 microprocessor, this text
ignores that CPU. However, to keep the record straight...

6.1 The Processor Status Register (Flags)

Page 244

The flags register maintains the current operating mode of the CPU and some instruc-
tion state information. Figure 6.1 shows the layout of the flags register.

The carry, parity, zero, sign, and overflow flags are special because you can test their
status (zero or one) with the setcc and conditional jump instructions (see “The “Set on
Condition” Instructions” on page 281 and “The Conditional Jump Instructions” on
page 296). The 80x86 uses these bits, the condition codes, to make decisions during program
execution.

Various arithmetic, logical, and miscellaneous instructions affect the overflow flag.
After an arithmetic operation, this flag contains a one if the result does not fit in the signed
destination operand. For example, if you attempt to add the 16 bit signed numbers 7FFFh
and 0001h the result is too large so the CPU sets the overflow flag. If the result of the arith-
metic operation does not produce a signed overflow, then the CPU clears this flag.

Since the logical operations generally apply to unsigned values, the 80x86 logical
instructions simply clear the overflow flag. Other 80x86 instructions leave the overflow
flag containing an arbitrary value.

The 80x86 string instructions use the direction flag. When the direction flag is clear, the
80x86 processes string elements from low addresses to high addresses; when set, the CPU
processes strings in the opposite direction. See “String Instructions” on page 284 for addi-
tional details.

The interrupt enable/disable flag controls the 80x86’s ability to respond to external
events known as interrupt requests. Some programs contain certain instruction sequences
that the CPU must not interrupt. The interrupt enable/disable flag turns interrupts on or
off to guarantee that the CPU does not interrupt those critical sections of code.

The 80x86 Instruction Set

The trace flag enables or disables the 80x86 trace mode. Debuggers (such as CodeView)
use this bit to enable or disable the single step/trace operation. When set, the CPU inter-
rupts each instruction and passes control to the debugger software, allowing the debugger
to single step through the application. If the trace bit is clear, then the 80x86 executes
instructions without the interruption. The 80x86 CPUs do not provide any instructions
that directly manipulate this flag. To set or clear the trace flag, you must:

= Push the flags onto the 80x86 stack,

= Pop the value into another register,

= Tweak the trace flag value,

= Push the result onto the stack, and then
= Pop the flags off the stack.

If the result of some computation is negative, the 80x86 sets the sign flag. You can test
this flag after an arithmetic operation to check for a negative result. Remember, a value is
negative if its H.O. bit is one. Therefore, operations on unsigned values will set the sign
flag if the result has a one in the H.O. position.

Various instructions set the zero flag when they generate a zero result. You'll often use
this flag to see if two values are equal (e.g., after subtracting two numbers, they are equal
if the result is zero). This flag is also useful after various logical operations to see if a spe-
cific bit in a register or memory location contains zero or one.

The auxiliary carry flag supports special binary coded decimal (BCD) operations. Since
most programs don’t deal with BCD numbers, you’ll rarely use this flag and even then
you’ll not access it directly. The 80x86 CPUs do not provide any instructions that let you
directly test, set, or clear this flag. Only the add, adc, sub, sbb, mul, imul, div, idiv, and BCD
instructions manipulate this flag.

The parity flag is set according to the parity of the L.O. eight bits of any data operation.
If an operation produces an even number of one bits, the CPU sets this flag. It clears this
flag if the operation yields an odd number of one bits. This flag is useful in certain data
communications programs, however, Intel provided it mainly to provide some compati-
bility with the older 8080 pP.

The carry flag has several purposes. First, it denotes an unsigned overflow (much like
the overflow flag detects a signed overflow). You will also use it during multiprecision
arithmetic and logical operations. Certain bit test, set, clear, and invert instructions on the
80386 directly affect this flag. Finally, since you can easily clear, set, invert, and test it, it is
useful for various boolean operations. The carry flag has many purposes and knowing
when to use it, and for what purpose, can confuse beginning assembly language program-
mers. Fortunately, for any given instruction, the meaning of the carry flag is clear.

The use of these flags will become readily apparent in the coming sections and chap-
ters. This section is mainly a formal introduction to the individual flags in the register
rather than an attempt to explain the exact function of each flag. For more details on the
operation of each flag, keep reading...

6.2 Instruction Encodings

The 80x86 uses a binary encoding for each machine operation. While it is important to
have a general understanding of how the 80x86 encodes instructions, it is not important
that you memorize the encodings for all the instructions in the instruction set. If you were
to write an assembler or disassembler (debugger), you would definitely need to know the
exact encodings. For general assembly language programming, however, you won’t need
to know the exact encodings.

However, as you become more experienced with assembly language you will proba-
bly want to study the encodings of the 80x86 instruction set. Certainly you should be
aware of such terms as opcode, mod-reg-r/m byte, displacement value, and so on. Although
you do not need to memorize the parameters for each instruction, it is always a good idea
to know the lengths and cycle times for instructions you use regularly since this will help

Page 245

Chapter 06

you write better programs. Chapter Three and Chapter Four provided a detailed look at
instruction encodings for various instructions (80x86 and x86); such a discussion was
important because you do need to understand how the CPU encodes and executes
instructions. This chapter does not deal with such details. This chapter presents a higher
level view of each instruction and assumes that you don’t care how the machine treats bits
in memory. For those few times that you will need to know the binary encoding for a par-
ticular instruction, a complete listing of the instruction encodings appears in Appendix D.

6.3 Data Movement Instructions

The data movement instructions copy values from one location to another. These
instructions include mov, xchg, Ids, lea, les, Ifs, Igs, Iss, push, pusha, pushad, pushf, pushfd, pop,
popa, popad, popf, popfd, lahf, and sahf.

6.3.1

The MOV Instruction

The mov instruction takes several different forms:

nov reg, regl

nov nem reg

nov reg, nem

nov mem i mredi ate data
nov reg, imredi ate data
nov ax/al, nmem

nov mem ax/ al

nov segreg, nMemg

nov segreg, regig

nov nmemeg, Segreg

nov regs, Segreg

The last chapter discussed the mov instruction in detail, only a few minor comments
are worthwhile here. First, there are variations of the mov instruction that are faster and
shorter than other mov instructions that do the same job. For example, both the
mov ax, mem and mov reg, mem instructions can load the ax register from a memory loca-
tion. On all processors the first version is shorter. On the earlier members of the 80x86
family, it is faster as well.

There are two very important details to note about the mov instruction. First, there is
no memory to memory move operation. The mod-reg-r/m addressing mode byte (see
Chapter Four) allows two register operands or a single register and a single memory oper-
and. There is no form of the mov instruction that allows you to encode two memory
addresses into the same instruction. Second, you cannot move immediate data into a seg-
ment register. The only instructions that move data into or out of a segment register have
mod-reg-r/m bytes associated with them; there is no format that moves an immediate
value into a segment register. Two common errors beginning programmers make are
attempting a memory to memory move and trying to load a segment register with a con-
stant.

The operands to the mov instruction may be bytes, words, or double words?. Both
operands must be the same size or MASM will generate an error while assembling your
program. This applies to memory operands and register operands. If you declare a vari-
able, B, using byte and attempt to load this variable into the ax register, MASM will com-
plain about a type conflict.

The CPU extends immediate data to the size of the destination operand (unless it is
too big to fit in the destination operand, which is an error). Note that you can move an

1. This chapter uses “reg”, by itself, to denote any eight bit, sixteen bit, or (on the 80386 and later) 32 bit general
purpose CPU register (AL/AX/EAX, BL/BX/EBX, SIZESI, etc.)
2. Double word operands are valid only on 80386 and later processors.

Page 246

The 80x86 Instruction Set

immediate value into a memory location. The same rules concerning size apply. However,
MASM cannot determine the size of certain memory operands. For example, does the
instruction mov [bx], 0 store an eight bit, sixteen bit, or thirty-two bit value? MASM can-
not tell, so it reports an error. This problem does not exist when you move an immediate
value into a variable you’ve declared in your program. For example, if you’ve declared B
as a byte variable, MASM knows to store an eight bit zero into B for the instruction
mov B, 0. Only those memory operands involving pointers with no variable operands suf-
fer from this problem. The solution is to explicitly tell MASM whether the operand is a
byte, word, or double word. You can accomplish this with the following instruction forms:

mov byte ptr [bx], O
mov word ptr [bx], O
mov dword ptr [bx], 0 3)

(3) Available only on 80386 and later processors
For more details on the type ptr operator, see Chapter Eight.

Moves to and from segment registers are always 16 bits; the mod-reg-r/m operand
must be 16 bits or MASM will generate an error. Since you cannot load a constant directly
into a segment register, a common solution is to load the constant into an 80x86 general
purpose register and then copy it to the segment register. For example, the following two
instruction sequence loads the es register with the value 40h:

nov ax, 40h
nov es, ax

Note that almost any general purpose register would suffice. Here, ax was chosen arbi-
trarily.

The mov instructions do not affect any flags. In particular, the 80x86 preserves the flag
values across the execution of a mov instruction.

6.3.2 The XCHG Instruction

The xchg (exchange) instruction swaps two values. The general form is
xchg oper and;, operand,

There are four specific forms of this instruction on the 80x86:

xchg reg, nem

xchg reg, reg

xchg ax, regg

xchg eax, regszp (3)

(3) Available only on 80386 and | ater processors

The first two general forms require two or more bytes for the opcode and
mod-reg-r/m bytes (a displacement, if necessary, requires additional bytes). The third and
fourth forms are special forms of the second that exchange data in the (e)ax register with
another 16 or 32 bit register. The 16 bit form uses a single byte opcode that is shorter than
the other two forms that use a one byte opcode and a mod-reg-r/m byte.

Already you should note a pattern developing: the 80x86 family often provides
shorter and faster versions of instructions that use the ax register. Therefore, you should
try to arrange your computations so that they use the (e)ax register as much as possible.
The xchg instruction is a perfect example, the form that exchanges 16 bit registers is only
one byte long.

Note that the order of the xchg’s operands does not matter. That is, you could enter
xchg mem, reg and get the same result as xchg reg, mem. Most modern assemblers will
automatically emit the opcode for the shorter xchg ax, reg instruction if you specify
xchg reg, ax.

Page 247

Chapter 06

Both operands must be the same size. On pre-80386 processors the operands may be
eight or sixteen bits. On 80386 and later processors the operands may be 32 bits long as
well.

The xchg instruction does not modify any flags.

6.3.3 The LDS, LES, LFS, LGS, and LSS Instructions

The Ids, les, Ifs, Igs, and Iss instructions let you load a 16 bit general purpose register
and segment register pair with a single instruction. On the 80286 and earlier, the Ids and
les instructions are the only instructions that directly process values larger than 32 bits.
The general form is

LxS dest, source
These instructions take the specific forms:

| ds regg, Mmemy,
I es regg, Mmemy,
Ifs regig, Mem (3)
l'gs rege, M (3)
I'ss regg, Mmem; (3

(3) Available only on 80386 and | ater processors

Regq¢ iS any general purpose 16 bit register and memg, is a double word memory location
(declared with the dword statement).

These instructions will load the 32 bit double word at the address specified by mems,
into reg,5 and the ds, es, fs, gs, or ss registers. They load the general purpose register from
the L.O. word of the memory operand and the segment register from the H.O. word. The
following algorithms describe the exact operation:

I ds reg;g, nemo.
regip = [nmemy]
ds :=[memy, + 2]
les reg;g, nem,.

regip = [nmemy]

es (= [memy, + 2]
Ifs reg;g, nemo.

regip = [nmemy]

fs = [nmemy, + 2]
l'gs regys nems.

regig 1= [nMemy]

gs 1= [nmemy + 2]
I'ss reg;g, nemo.

regig 1= [nmemy]

Ss 1= [memy, + 2]

Since the LxS instructions load the 80x86’s segment registers, you must not use these
instructions for arbitrary purposes. Use them to set up (far) pointers to certain data objects
as discussed in Chapter Four. Any other use may cause problems with your code if you
attempt to port it to Windows, OS/2 or UNIX.

Keep in mind that these instructions load the four bytes at a given memory location
into the register pair; they do not load the address of a variable into the register pair (i.e.,
this instruction does not have an immediate mode). To learn how to load the address of a
variable into a register pair, see Chapter Eight.

The LxS instructions do not affect any of the 80x86’s flag bits.

6.3.4 The LEA Instruction

The lea (Load Effective Address) instruction is another instruction used to prepare
pointer values. The lea instruction takes the form:

Page 248

The 80x86 Instruction Set

| ea dest, source
The specific forms on the 80x86 are

| ea reg,g, mem
| ea regsp, mem (3)

(3) Available only on 80386 and | ater processors.

It loads the specified 16 or 32 bit general purpose register with the effective address of
the specified memory location. The effective address is the final memory address obtained
after all addressing mode computations. For example, lea ax, ds:[1234h] loads the ax reg-
ister with the address of memory location 1234h; here it just loads the ax register with the
value 1234h. If you think about it for a moment, this isn’t a very exciting operation. After
all, the mov ax, immediate_data instruction can do this. So why bother with the lea instruc-
tion at all? Well, there are many other forms of a memory operand besides displace-
ment-only operands. Consider the following lea instructions:

| ea ax, [bx]

| ea bx, 3[bx]

| ea ax, 3[bx]

| ea bx, 4[bp+si]
| ea ax, -123[di]

The lea ax, [bx] instruction copies the address of the expression [bx] into the ax regis-
ter. Since the effective address is the value in the bx register, this instruction copies bx’s
value into the ax register. Again, this instruction isn’t very interesting because mov can do
the same thing, even faster.

The lea bx,3[bx] instruction copies the effective address of 3[bx] into the bx register.
Since this effective address is equal to the current value of bx plus three, this lea instruction
effectively adds three to the bx register. There is an add instruction that will let you add
three to the bx register, so again, the lea instruction is superfluous for this purpose.

The third lea instruction above shows where lea really begins to shine. lea ax, 3[bx]
copies the address of the memory location 3[bx] into the ax register; i.e., it adds three with
the value in the bx register and moves the sum into ax. This is an excellent example of how
you can use the lea instruction to do a mov operation and an addition with a single instruc-
tion.

The final two instructions above, lea bx,4[bp+si] and lea ax,-123[di] provide additional
examples of lea instructions that are more efficient than their mov/add counterparts.

On the 80386 and later processors, you can use the scaled indexed addressing modes
to multiply by two, four, or eight as well as add registers and displacements together. Intel
strongly suggests the use of the lea instruction since it is much faster than a sequence of
instructions computing the same result.

The (real) purpose of lea is to load a register with a memory address. For example,
lea bx, 128[bp+di] sets up bx with the address of the byte referenced by 128[BP+DlI]. As it
turns out, an instruction of the form mov al,[bx] runs faster than an instruction of the
form mov al,128[bp+di]. If this instruction executes several times, it is probably more effi-
cient to load the effective address of 128[bp+di] into the bx register and use the [bx] address-
ing mode. This is a common optimization in high performance programs.

The lea instruction does not affect any of the 80x86’s flag bits.

6.3.5 The PUSH and POP Instructions

The 80x86 push and pop instructions manipulate data on the 80x86’s hardware stack.
There are 19 varieties of the push and pop instructions®, they are

3. Plus some synonyms on top of these 19.

Page 249

Chapter 06

push redsg

pop redie

push regsy (3)
pop regsy (3)
push segreg

pop segreg (except CS)
push nenory

pop nmenory

push i medi at e_dat a (2)
pusha (2)
popa (2)
pushad (3)
popad (3)
pushf

popf

pushfd (3)
popf d (3)
ent er imm imm (2)
| eave (2)

(2)- Available only on 80286 and | ater processors.
(3)- Available only on 80386 and | ater processors.

The first two instructions push and pop a 16 bit general purpose register. This is a
compact (one byte) version designed specifically for registers. Note that there is a second
form that provides a mod-reg-r/m byte that could push registers as well; most assemblers
only use that form for pushing the value of a memory location.

The second pair of instructions push or pop an 80386 32 bit general purpose register.
This is really nothing more than the push register instruction described in the previous
paragraph with a size prefix byte.

The third pair of push/pop instructions let you push or pop an 80x86 segment register.
Note that the instructions that push fs and gs are longer than those that push cs, ds, es, and
ss, see Appendix D for the exact details. You can only push the cs register (popping the cs
register would create some interesting program flow control problems).

The fourth pair of push/pop instructions allow you to push or pop the contents of a
memory location. On the 80286 and earlier, this must be a 16 bit value. For memory opera-
tions without an explicit type (e.g., [bx]) you must either use the pushw mnemonic or
explicitly state the size using an instruction like push word ptr [ox]. On the 80386 and later
you can push and pop 16 or 32 bit values®. You can use dword memory operands, you can
use the pushd mnemonic, or you can use the dword ptr operator to force 32 bit operation.
Examples:

push Dol Wor dVar

push dword ptr [bx]

pushd dwor d

The pusha and popa instructions (available on the 80286 and later) push and pop all the

80x86 16 bit general purpose registers. Pusha pushes the registers in the following order:
ax, cx, dx, bx, sp, bp, si, and then di. Popa pops these registers in the reverse order. Pushad
and Popad (available on the 80386 and later) do the same thing on the 80386’s 32 bit regis-
ter set. Note that these “push all” and “pop all”” instructions do not push or pop the flags
or segment registers.

The pushf and popf instructions allow you to push/pop the processor status register
(the flags). Note that these two instructions provide a mechanism to modify the 80x86’s
trace flag. See the description of this process earlier in this chapter. Of course, you can set
and clear the other flags in this fashion as well. However, most of the other flags you’ll
want to modify (specifically, the condition codes) provide specific instructions or other
simple sequences for this purpose.

Enter and leave push/pop the bp register and allocate storage for local variables on the
stack. You will see more on these instructions in a later chapter. This chapter does not con-

4. You can use the PUSHW and PUSHD mnemonics to denote 16 or 32 bit constant sizes.

Page 250

The 80x86 Instruction Set

sider them since they are not particularly useful outside the context of procedure entry
and exit.

“So what do these instructions do?” you’re probably asking by now. The push instruc-
tions move data onto the 80x86 hardware stack and the pop instructions move data from
the stack to memory or to a register. The following is an algorithmic description of each
instruction:

push instructions (16 bits):
SP:=SP- 2
[SS:SP] := 16 bit operand (store result at |ocation SS:SP.)

pop instructions (16 bits):
16-bit operand := [SS: SF]

SP:=SP + 2
push instructions (32 bits):
SP:=SP- 4

[SS:SP] := 32 bit operand
pop instructions (32 bits):

32 bit operand := [SS: SP|

SP:=SP + 4
You can treat the pusha/pushad and popa/popad instructions as equivalent to the corre-
sponding sequence of 16 or 32 bit push/pop operations (e.g., push ax, push cx, push dx,
push bx, etc.).

Notice three things about the 80x86 hardware stack. First, it is always in the stack seg-
ment (wherever ss points). Second, the stack grows down in memory. That is, as you push
values onto the stack the CPU stores them into successively lower memory locations.
Finally, the 80x86 hardware stack pointer (ss:sp) always contains the address of the value
on the top of the stack (the last value pushed on the stack).

You can use the 80x86 hardware stack for temporarily saving registers and variables,
passing parameters to a procedure, allocating storage for local variables, and other uses.
The push and pop instructions are extremely valuable for manipulating these items on the
stack. You’ll get a chance to see how to use them later in this text.

Most of the push and pop instructions do not affect any of the flags in the 80x86 proces-
sor status register. The popf/popfd instructions, by their very nature, can modify all the flag
bits in the 80x86 processor status register (flags register). Pushf and pushfd push the flags
onto the stack, but they do not change any flags while doing so.

All pushes and pops are 16 or 32 bit operations. There is no (easy) way to push a sin-
gle eight bit value onto the stack. To push an eight bit value you would need to load it into
the H.O. byte of a 16 bit register, push that register, and then add one to the stack pointer.
On all processors except the 8088, this would slow future stack access since sp now con-
tains an odd address, misaligning any further pushes and pops. Therefore, most programs
push or pop 16 bits, even when dealing with eight bit values.

Although it is relatively safe to push an eight bit memory variable, be careful when
popping the stack to an eight bit memory location. Pushing an eight bit variable with
push word ptr ByteVar pushes two bytes, the byte in the variable Bytevar and the byte
immediately following it. Your code can simply ignore the extra byte this instruction
pushes onto the stack. Popping such values is not quite so straight forward. Generally, it
doesn’t hurt if you push these two bytes. However, it can be a disaster if you pop a value
and wipe out the following byte in memory. There are only two solutions to this problem.
First, you could pop the 16 bit value into a register like ax and then store the L.O. byte of
that register into the byte variable. The second solution is to reserve an extra byte of pad-
ding after the byte variable to hold the whole word you will pop. Most programs use the
former approach.

Page 251

Chapter 06

6.3.6 The LAHF and SAHF Instructions

The lahf (load ah from flags) and sahf (store ah into flags) instructions are archaic
instructions included in the 80x86’s instruction set to help improve compatibility with
Intel’s older 8080 uP chip. As such, these instructions have very little use in modern day
80x86 programs. The lahf instruction does not affect any of the flag bits. The sahf instruc-
tion, by its very nature, modifies the S, Z, A, P, and C bits in the processor status register.
These instructions do not require any operands and you use them in the following man-
ner:

sahf
| ahf
Sahf only affects the L.O. eight bits of the flags register. Likewise, lahf only loads the
L.O. eight bits of the flags register into the AH register. These instructions do not deal with
the overflow, direction, interrupt disable, or trace flags. The fact that these instructions do
not deal with the overflow flag is an important limitation.

Sahf has one major use. When using a floating point processor (8087, 80287, 80387,
80486, Pentium, etc.) you can use the sahf instruction to copy the floating point status reg-
ister flags into the 80x86’s flag register. You’ll see this use in the chapter on floating point
arithmetic (see “Floating Point Arithmetic” on page 771).

6.4 Conversions

The 80x86 instruction set provides several conversion instructions. They include
movzx, movsx, cbw, cwd, cwde, cdg, bswap, and xlat. Most of these instructions sign or zero
extend values, the last two convert between storage formats and translate values via a
lookup table. These instructions take the general form:

novzx dest, src ;Dest nust be twice the size of src.
noVSX dest, src ;Dest nmust be twice the size of src.
chw

cwd

cwde

cdq

bswap regs,

x| at ; Special formallows an operand.

6.4.1 The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions

These instructions zero and sign extend values. The cbw and cwd instructions are
available on all 80x86 processors. The movzx, movsx, cwde, and cdq instructions are avail-
able only on 80386 and later processors.

The cbw (convert byte to word) instruction sign extends the eight bit value in al to ax.
That is, it copies bit seven of AL throughout bits 8-15 of ax. This instruction is especially
important before executing an eight bit division (as you’ll see in the section “Arithmetic
Instructions” on page 255). This instruction requires no operands and you use it as fol-
lows:

cbw

The cwd (convert word to double word) instruction sign extends the 16 bit value in ax
to 32 bits and places the result in dx:ax. It copies bit 15 of ax throughout the bits in dx. It is
available on all 80x86 processors which explains why it doesn’t sign extend the value into
eax. Like the cbw instruction, this instruction is very important for division operations.
Cwd requires no operands and you use it as follows

cwd

Page 252

The 80x86 Instruction Set

The cwde instruction sign extends the 16 bit value in ax to 32 bits and places the result
in eax by copying bit 15 of ax throughout bits 16..31 of eax. This instruction is available
only on the 80386 and later processors. As with cbw and cwd the instruction has no oper-
ands and you use it as follows:

cwde

The cdg instruction sign extends the 32 bit value in eax to 64 bits and places the result
in edx:eax by copying bit 31 of eax throughout bits 0..31 of edx. This instruction is available
only on the 80386 and later. You would normally use this instruction before a long divi-
sion operation. As with cbw, cwd, and cwde the instruction has no operands and you use it
as follows:

cdq

If you want to sign extend an eight bit value to 32 or 64 bits using these instructions,
you could use sequences like the following:

; Sign extend al to dx:ax

chw
cwd

; Sign extend al to eax

chw
cwde

; Sign extend al to edx: eax

cbhw
cwde
cdq

You can also use the movsx for sign extensions from eight to sixteen or thirty-two bits.

The movsx instruction is a generalized form of the cbw, cwd, and cwde instructions. It
will sign extend an eight bit value to a sixteen or thirty-two bits, or sign extend a sixteen
bit value to a thirty-two bits. This instruction uses a mod-reg-r/m byte to specify the two
operands. The allowable forms for this instruction are

novsX regig, neny
novsX regis, reds
novsX regszp, neny
novsX regss, reds
novsX regsy, NMemg
MoVSX redss, redip

Note that anything you can do with the cbw and cwde instructions, you can do with a
movsx instruction:

NMoVSX ax, al ; CBW
movsXx eax, ax ;. ONDE
NMoVSX eax, al ; CBBWfoll owed by CWNDE

However, the cbw and cwde instructions are shorter and sometimes faster. This instruction
is available only on the 80386 and later processors. Note that there are not direct movsx
equivalents for the cwd and cdq instructions.

The movzx instruction works just like the movsx instruction, except it extends unsigned
values via zero extension rather than signed values through sign extension. The syntax is
the same as for the movsx instructions except, of course, you use the movzx mnemonic
rather than movsx.

Note that if you want to zero extend an eight bit register to 16 bits (e.g., al to ax) a sim-
ple mov instruction is faster and shorter than movzx. For example,

nov bh, 0
is faster and shorter than
novzx bx, bl

Of course, if you move the data to a different 16 bit register (e.g., movzx bx, al) the movzx
instruction is better.

Page 253

Chapter 06

Like the movsx instruction, the movzx instruction is available only on 80386 and later
processors. The sign and zero extension instructions do not affect any flags.

6.4.2 The BSWAP Instruction

The bswap instruction, available only on 80486 (yes, 486) and later processors, con-
verts between 32 bit little endian and big endian values. This instruction accepts only a sin-
gle 32 bit register operand. It swaps the first byte with the fourth and the second byte with
the third. The syntax for the instruction is

bswap regs,
where regs, is an 80486 32 bit general purpose register.

The Intel processor families use a memory organization known as little endian byte
organization. In little endian byte organization, the L.O. byte of a multi-byte sequence
appears at the lowest address in memory. For example, bits zero through seven of a 32 bit
value appear at the lowest address; bits eight through fifteen appear at the second address
in memory; bits 16 through 23 appear in the third byte, and bits 24 through 31 appear in
the fourth byte.

Another popular memory organization is big endian. In the big endian scheme, bits
twenty-four through thirty-one appear in the first (lowest) address, bits sixteen through
twenty-three appear in the second byte, bits eight through fifteen appear in the third byte,
and bits zero through seven appear in the fourth byte. CPUs such as the Motorola 68000
family used by Apple in their Macintosh computer and many RISC chips employ the big
endian scheme.

Normally, you wouldn’t care about byte organization in memory since programs
written for an Intel processor in assembly language do not run on a 68000 processor. How-
ever, it is very common to exchange data between machines with different byte organiza-
tions. Unfortunately, 16 and 32 bit values on big endian machines do not produce correct
results when you use them on little endian machines. This is where the bswap instruction
comes in. It lets you easily convert 32 bit big endian values to 32 bit little endian values.

One interesting use of the bswap instruction is to provide access to a second set of 16
bit general purpose registers. If you are using only 16 bit registers in your code, you can
double the number of available registers by using the bswap instruction to exchange the
data in a 16 bit register with the H.O. word of a thirty-two bit register. For example, you
can keep two 16 bit values in eax and move the appropriate value into ax as follows:

< Sone conputations that |leave a result in AX >
bswap eax

< Sone additional conputations involving AX >
bswap eax

< Sone conputations involving the original value in AX >
bswap eax

< Conputations involving the 2ond copy of AX from above >

You can use this technique on the 80486 to obtain two copies of ax, bx, cx, dx, si, di, and
bp. You must exercise extreme caution if you use this technique with the sp register.

Note: to convert 16 bit big endian values to 16 bit little endian values just use the
80x86 xchg instruction. For example, if ax contains a 16 bit big endian value, you can con-
vert it to a 16 bit little endian value (or vice versa) using:

xchg al, ah
The bswap instruction does not affect any flags in the 80x86 flags register.

Page 254

The 80x86 Instruction Set

6.4.3 The XLAT Instruction

The xlat instruction translates the value in the al register based on a lookup table in
memory. It does the following:
tenp : = al +bx
al :=ds:[tenp]
that is, bx points at a table in the current data segment. Xlat replaces the value in al with the
byte at the offset originally in al. If al contains four, xlat replaces the value in al with the

fifth item (offset four) within the table pointed at by ds:bx. The xlat instruction takes the
form:

x|l at

Typically it has no operand. You can specify one but the assembler virtually ignores it.
The only purpose for specifying an operand is so you can provide a segment override pre-
fix:

x| at es: Tabl e
This tells the assembler to emit an es: segment prefix byte before the instruction. You must

still load bx with the address of Table; the form above does not provide the address of
Table to the instruction. Only the segment override prefix in the operand is significant.

The xlat instruction does not affect the 80x86’s flags register.

6.5 Arithmetic Instructions

The 80x86 provides many arithmetic operations: addition, subtraction, negation, mul-
tiplication, division/modulo (remainder), and comparing two values. The instructions
that handle these operations are add, adc, sub, sbb, mul, imul, div, idiv, cmp, neg, inc, dec, xadd,
cmpxchg, and some miscellaneous conversion instructions: aaa, aad, aam, aas, daa, and das.
The following sections describe these instructions in detail.

The generic forms for these instructions are

add dest, src dest := dest + src

adc dest, src dest := dest + src + C
SUB dest, src dest := dest - src
sbb dest, src dest := dest - src - C
mul src acc := acc * src

i mul src acc := acc * src

i mul dest, srcq, inmsrc dest :=srcy * immsrc
i mul dest, immsrc dest := dest * inmsrc
i mul dest, src dest := dest * src

div src acc := xacc /-mod src
idiv src acc := xacc /-mod src
cnp dest, src dest - src (and set flags)
neg dest dest := - dest

inc dest dest := dest + 1

dec dest dest :=dest - 1

xadd dest, src (see text)

cnpxchg operand;, operand, (see text)

cnpxchg8ax, operand (see text)

aaa (see text)

aad (see text)

aam (see text)

aas (see text)

daa (see text)

das (see text)

Page 255

Chapter 06

6.5.1 The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA
These instructions take the forms:
add reg, reg
add reg, nmem
add mem reg
add reg, imredi ate data
add mem i medi ate data
add eax/ax/al, inmedi ate data
adc forns are identical to ADD
i nc reg
inc mem
i nc regig
xadd mem reg
xadd reg, reg
aaa
daa
Note that the aaa and daa instructions use the implied addressing mode and allow no
operands.
6.5.1.1 The ADD and ADC Instructions

Page 256

The syntax of add and adc (add with carry) is similar to mov. Like mov, there are special
forms for the ax/eax register that are more efficient. Unlike mov, you cannot add a value to

a segment register with these instructions.

The add instruction adds the contents of the source operand to the destination oper-
and. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add com-
putes dest :=dest+source Wwhile adc computes dest :=dest+source+C where C represents
the value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves

exactly like the add instruction.

Both instructions affect the flags identically. They set the flags as follows:

The overflow flag denotes a signed arithmetic overflow.

The carry flag denotes an unsigned arithmetic overflow.

The sign flag denotes a negative result (i.e., the H.O. bit of the result is
one).

The zero flag is set if the result of the addition is zero.

The auxiliary carry flag contains one if a BCD overflow out of the L.O.
nibble occurs.

The parity flag is set or cleared depending on the parity of the L.O. eight
bits of the result. If there are an even number of one bits in the result, the
ADD instructions will set the parity flag to one (to denote even parity). If
there are an odd number of one bits in the result, the ADD instructions
clear the parity flag (to denote odd parity).

The add and adc instructions do not affect any other flags.

The add and adc instructions allow eight, sixteen, and (on the 80386 and later)
thirty-two bit operands. Both source and destination operands must be the same size. See

Chapter Nine if you want to add operands whose size is different.

Since there are no memory to memory additions, you must load memory operands
into registers if you want to add two variables together. The following code examples

demonstrate possible forms for the add instruction:
; Ji= K+ M

nmov ax, K
add ax, M
mv J, ax

The 80x86 Instruction Set

If you want to add several values together, you can easily compute the sum in a single
register:

y J =K+ M+ N+ P

mov ax, K
add ax, M
add ax, N
add ax, P
nov J, ax

If you want to reduce the number of hazards on an 80486 or Pentium processor, you can
use code like the following:

mv bx, K
nmov ax, M
add bx, N
add ax, P
add ax, bx
nmov J, ax

One thing that beginning assembly language programmers often forget is that you
can add a register to a memory location. Sometimes beginning programmers even believe
that both operands have to be in registers, completely forgetting the lessons from Chapter
Four. The 80x86 is a CISC processor that allows you to use memory addressing modes
with various instructions like add. It is often more efficient to take advantages of the
80x86’s memory addressing capabilities

=K+]

nov ax, K ; This works because addition is
add J, ax ; conmut at i ve!

; Often, beginners will code the above as one of the follow ng two sequences.
; This is unnecessary!

nov ax, J ;Really BAD way to conpute

mv bx, K) :=J + K

add ax, bx

mov J, ax

nov ax, J ;Better, but still not a good way to
add ax, K ; conpute J :=J + K

mov J, ax

Of course, if you want to add a constant to a memory location, you only need a single
instruction. The 80x86 lets you directly add a constant to memory:

J:=J+2

add J, 2
There are special forms of the add and adc instructions that add an immediate constant
to the al, ax, or eax register. These forms are shorter than the standard add reg, immediate
instruction. Other instructions also provide shorter forms when using these registers;
therefore, you should try to keep computations in the accumulator registers (al, ax, and
eax) as much as possible.

add bl, 2 ; Three bytes |ong
add al, 2 ; Two bytes |ong
add bx, 2 ; Four bytes |ong
add ax, 2 ; Three bytes |ong
etc.

Another optimization concerns the use of small signed constants with the add and adc
instructions. If a value is in the range -128,,+127, the add and adc instructions will sign
extend an eight bit immediate constant to the necessary destination size (eight, sixteen, or
thirty-two bits). Therefore, you should try to use small constants, if possible, with the add
and adc instructions.

Page 257

Chapter 06

6.5.1.2

The INC Instruction

The inc (increment) instruction adds one to its operand. Except for the carry flag, inc
sets the flags the same way as add operand, 1 would.

Note that there are two forms of inc for 16 or 32 bit registers. They are the increg and
increg,g instructions. The increg and incmem instructions are the same. This
instruction consists of an opcode byte followed by a mod-reg-r/m byte (see Appendix D
for details). The increg,g instruction has a single byte opcode. Therefore, it is shorter and
usually faster.

The inc operand may be an eight bit, sixteen bit, or (on the 80386 and later) thirty-two
bit register or memory location.

The inc instruction is more compact and often faster than the comparable add reg, 1 or
add mem, 1 instruction. Indeed, the inc reg;g instruction is one byte long, so it turns out that
two such instructions are shorter than the comparable add reg, 1 instruction; however, the
two increment instructions will run slower on most modern members of the 80x86 family.

The inc instruction is very important because adding one to a register is a very com-
mon operation. Incrementing loop control variables or indices into an array is a very com-
mon operation, perfect for the inc instruction. The fact that inc does not affect the carry
flag is very important. This allows you to increment array indices without affecting the
result of a multiprecision arithmetic operation (see “Arithmetic and Logical Operations”
on page 459 for more details about multiprecision arithmetic).

6.5.1.3

The XADD Instruction

Xadd (Exchange and Add) is another 80486 (and later) instruction. It does not appear
on the 80386 and earlier processors. This instruction adds the source operand to the desti-
nation operand and stores the sum in the destination operand. However, just before stor-
ing the sum, it copies the original value of the destination operand into the source
operand. The following algorithm describes this operation:

xadd dest, source

tenp : = dest
dest := dest + source
source : = tenp

The xadd sets the flags just as the add instruction would. The xadd instruction allows
eight, sixteen, and thirty-two bit operands. Both source and destination operands must be
the same size.

6.5.1.4

Page 258

The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instruc-
tions support BCD arithmetic. Beyond this chapter, this text will not cover BCD or ASCII
arithmetic since it is mainly for controller applications, not general purpose programming
applications. BCD values are decimal integer coded in binary form with one decimal digit
(0..9) per nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O.
nibble of the byte should contain zero.

The aaa and daa instructions modify the result of a binary addition to correct it for
ASCII or decimal arithmetic. For example, to add two BCD values, you would add them
as though they were binary numbers and then execute the daa instruction afterwards to
correct the results. Likewise, you can use the aaa instruction to adjust the result of an
ASCII addition after executing an add instruction. Please note that these two instructions
assume that the add operands were proper decimal or ASCII values. If you add binary

The 80x86 Instruction Set

(non-decimal or non-ASCII) values together and try to adjust them with these instruc-
tions, you will not produce correct results.

The choice of the name “ASCII arithmetic” is unfortunate, since these values are not
true ASCII characters. A name like “unpacked BCD” would be more appropriate. How-
ever, Intel uses the name ASCII, so this text will do so as well to avoid confusion. How-
ever, you will often hear the term “unpacked BCD” to describe this data type.

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the
value in al for BCD overflow. It works according to the following basic algorithm:

if ((al and OFh) > 9 or (AuxC® =1)) then
if (8088 or 8086)° then

al :=al +6
el se
ax = ax + 6
endi f
ah :=ah + 1
AuxC :=1 ;Set auxilliary carry
Carry :=1 ; and carry flags.
el se
AuxC := 0 ;Aear auxilliary carry
Carry :=0 ; and carry flags.
endi f
al :=al and OFh

The aaa instruction is mainly useful for adding strings of digits where there is exactly
one decimal digit per byte in a string of humbers. This text will not deal with BCD or
ASCII numeric strings, so you can safely ignore this instruction for now. Of course, you
can use the aaa instruction any time you need to use the algorithm above, but that would
probably be a rare situation.

The daa instruction functions like aaa except it handles packed BCD (binary code dec-
imal) values rather than the one digit per byte unpacked values aaa handles. As for aaa,
daa’s main purpose is to add strings of BCD digits (with two digits per byte). The algo-
rithm for daa is

if ((AL and OFh) > 9 or (AuxC = 1)) then

al :=a +6

AuxC := 1 ;Set Auxilliary carry.
endi f
if ((al >9Fh) or (Carry = 1)) then

al :=al + 60h

Carry := 1; ;Set carry flag.
endi f

6.5.2 The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS

The sub (subtract), sbb (subtract with borrow), dec (decrement), aas (ASCII adjust for
subtraction), and das (decimal adjust for subtraction) instructions work as you expect.
Their syntax is very similar to that of the add instructions:

sub reg, reg

sub reg, nmem

sub mem reg

sub reg, imredi ate data

sub mem inmredi ate data

sub eax/ax/al, imedi ate data

5. AuxC denotes the auxiliary carry flag in the flags register.
6. The 8086/8088 work differently from the later processors, but for all valid operands all 80x86 processors pro-
duce correct results.

Page 259

Chapter 06

sbb forns are identical to sub.

dec reg
dec nem
dec redse
aas

das

The sub instruction computes the value dest := dest - src. The sbb instruction computes
dest := dest - src - C. Note that subtraction is not commutative. If you want to compute the
result for dest := src - dest you will need to use several instructions, assuming you need to
preserve the source operand).

One last subject worth discussing is how the sub instruction affects the 80x86 flags reg-
ister’. The sub, sbb, and dec instructions affect the flags as follows:

= They set the zero flag if the result is zero. This occurs only if the operands
are equal for sub and sbb. The dec instruction sets the zero flag only when
it decrements the value one.

= These instructions set the sign flag if the result is negative.

= These instructions set the overflow flag if signed overflow/underflow
occurs.

= They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.

= They set the parity flag according to the number of one bits appearing in
the result value.

< The sub and sbb instructions set the carry flag if an unsigned overflow
occurs. Note that the dec instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII num-
bers with one decimal digit (in the range 0..9) per byte. You would use this instruction
after a sub or sbb instruction on the ASCII value. This instruction uses the following algo-
rithm:

if ((al and OFh) > 9 or AuxC = 1) then

al :=al -6
ah :=ah - 1
AuxC :=1 ;Set auxilliary carry
Carry :=1 ; and carry flags.
el se
AuxC := 0 ;Aear Auxilliary carry
Carry :=0 ; and carry flags.
endi f
al :=al and OFh

The das instruction handles the same operation for BCD values, it uses the following
algorithm:

if ((al and OFh) > 9 or (AuxC = 1)) then
al :=al -6
AuxC =1
endi f
if (al >9Fh or Carry = 1) then
al :=al - 60h
Carry :=1 ;Set the Carry fl ag.
endi f

Since subtraction is not commutative, you cannot use the sub instruction as freely as
the add instruction. The following examples demonstrate some of the problems you may
encounter.

0 Ji=K-J

nov ax, K ;This is a nice try, but it conputes
sub J, ax ;7 J:=J - K subtraction isn't
; commutative!

7. The SBB instruction affects the flags in a similar fashion, just don’t forget that SBB computes dest-source-C.

Page 260

The 80x86 Instruction Set

nov ax, K ; Correct sol ution.
sub ax, J
nov J, ax
;7 J:=J- (K+M -- Don't forget this is equivalent toJ :=J - K- M
nmov ax, K ; Conputes AX := K+ M
add ax, M
sub J, ax ;Conputes J :=J - (K+ N
nov ax, J ; Anot her sol ution, though |ess
sub ax, K ; Efficient
sub ax, M
nmov J, ax

Note that the sub and sbb instructions, like add and adc, provide short forms to sub-
tract a constant from an accumulator register (al, ax, or eax). For this reason, you should
try to keep arithmetic operations in the accumulator registers as much as possible. The sub
and sbb instructions also provide a shorter form when subtracting constants in the range
-128..+127 from a memory location or register. The instruction will automatically sign
extend an eight bit signed value to the necessary size before the subtraction occurs. See
Appendix D for the details.

In practice, there really isn’t a need for an instruction that subtracts a constant from a
register or memory location — adding a negative value achieves the same result. Neverthe-
less, Intel provides a subtract immediate instruction.

After the execution of a sub instruction, the condition code bits (carry, sign, overflow,
and zero) in the flags register contain values you can test to see if one of sub’s operands is
equal, not equal, less than, less than or equal, greater than, or greater than or equal to the
other operand. See the cmp instruction for more details.

6.5.3 The CMP Instruction

The cmp (compare) instruction is identical to the sub instruction with one crucial dif-
ference - it does not store the difference back into the destination operand. The syntax for
the cmp instruction is very similar to sub, the generic form is

cnp dest, src
The specific forms are

cnp reg, reg

cnp reg, nmem

cnp nem reg

cnp reg, imredi ate data

cnp mem i mredi ate data

cnp eax/ax/al, imedi ate data

The cmp instruction updates the 80x86’s flags according to the result of the subtraction
operation (dest - src). You can test the result of the comparison by checking the appropri-
ate flags in the flags register. For details on how this is done, see “The “Set on Condition”
Instructions” on page 281 and “The Conditional Jump Instructions” on page 296.

Usually you’ll want to execute a conditional jump instruction after a cmp instruction.
This two step process, comparing two values and setting the flag bits then testing the flag
bits with the conditional jump instructions, is a very efficient mechanism for making deci-
sions in a program.

Probably the first place to start when exploring the cmp instruction is to take a look at
exactly how the cmp instruction affects the flags. Consider the following cmp instruction:

cnp ax, bx

This instruction performs the computation ax-bx and sets the flags depending upon
the result of the computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero
result. Hence, you can use the zero flag to test for equality or inequality.

Page 261

Chapter 06

Page 262

S: The sign flag is set to one if the result is negative. At first glance, you might think
that this flag would be set if ax is less than bx but this isn’t always the case. If
ax=7FFFh and bx=-1 (OFFFFh) subtracting ax from bx produces 8000h, which is
negative (and so the sign flag will be set). So, for signed comparisons anyway, the
sign flag doesn’t contain the proper status. For unsigned operands, consider
ax=0FFFFh and bx=1. Ax is greater than bx but their difference is OFFFEh which is
still negative. As it turns out, the sign flag and the overflow flag, taken together,
can be used for comparing two signed values.

O: The overflow flag is set after a cmp operation if the difference of ax and bx pro-
duced an overflow or underflow. As mentioned above, the sign flag and the over-
flow flag are both used when performing signed comparisons.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a bor-
row. This occurs only when ax is less than bx where ax and bx are both unsigned
values.

The cmp instruction also affects the parity and auxiliary carry flags, but you’ll rarely
test these two flags after a compare operation. Given that the cmp instruction sets the flags
in this fashion, you can test the comparison of the two operands with the following flags:

cmp Qorndy, Qornd,

Table 27: Condition Code SettingsAfter CMP

Unsigned operands: Signed operands:
Z: equality/inequality Z: equality/inequality
C: Oprndl < Oprnd2 (C=1) C: no meaning
Oprnd1 >= Oprnd2 (C=0)
S: no meaning S: see below
0: no meaning 0: see below

For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:
If ((S=0) and (0=1)) or ((S=1) and (0O=0)) then Oprnd1 < Oprnd2 when using a signed comparison.
If ((S=0) and (0=0)) or ((S=1) and (O=1)) then Oprnd1 >= Oprnd2 when using a signed comparison.

To understand why these flags are set in this manner, consider the following exam-
ples:

Cprndl m nus Cpr nd2 S (0]
OFFFF (-1) - OFFFE (-2) 0 0
08000 - 00001 0 1
OFFFE (-2) - OFFFF (-1) 1 0
O07FFF (32767) - OFFFF (-1) 1 1

Remember, the cmp operation is really a subtraction, therefore, the first example above
computes (-1)-(-2) which is (+1). The result is positive and an overflow did not occur so
both the S and O flags are zero. Since (S xor O) is zero, Oprndl is greater than or equal to
Oprnd2.

In the second example, the cmp instruction would compute (-32768)-(+1) which is
(-32769). Since a 16-bit signed integer cannot represent this value, the value wraps around
to 7FFFh (+32767) and sets the overflow flag. Since the result is positive (at least within the
confines of 16 bits) the sign flag is cleared. Since (S xor O) is one here, Oprnd1 is less than
Oprnd2.

In the third example above, cmp computes (-2)-(-1) which produces (-1). No overflow
occurred so the O flag is zero, the result is negative so the sign flag is one. Since (S xor O)
is one, Oprnd1 is less than Oprnd2.

The 80x86 Instruction Set

In the fourth (and final) example, cmp computes (+32767)-(-1). This produces (+32768),
setting the overflow flag. Furthermore, the value wraps around to 8000h (-32768) so the
sign flag is set as well. Since (S xor O) is zero, Oprndl is greater than or equal to Oprnd2.

6.5.4 The CMPXCHG, and CMPXCHGS8B Instructions

The cmpxchg (compare and exchange) instruction is available only on the 80486 and
later processors. It supports the following syntax:
cnpxchg reg, reg
cnpxchg nmem reg
The operands must be the same size (eight, sixteen, or thirty-two bits). This instruction
also uses the accumulator register; it automatically chooses al, ax, or eax to match the size
of the operands.

This instruction compares al, ax, or eax with the first operand and sets the zero flag if
they are equal. If so, then cmpxchg copies the second operand into the first. If they are not
equal, cmpxchg copies the first operand into the accumulator. The following algorithm
describes this operation:

cnpxchg oper and;, operand,
if ({al/ax/eax} = operand;) then®

zero :=1 ;Set the zero flag
operand; := operand,
el se
zero :=0 ;A ear the zero flag
{al / ax/ eax} := operand;
endi f
Cmpxchg supports certain operating system data structures requiring atomic opera-
tions® and semaphores. Of course, if you can fit the above algorithm into your code, you

can use the cmpxchg instruction as appropriate.

Note: unlike the cmp instruction, the cmpxchg instruction only affects the 80x86 zero
flag. You cannot test other flags after cmpxchg as you could with the cmp instruction.

The Pentium processor supports a 64 bit compare and exchange instruction —
cmpxchg8b. It uses the syntax:

cnpxchg8b ax, memy,

This instruction compares the 64 bit value in edx:eax with the memory value. If they are
equal, the Pentium stores ecx:ebx into the memory location, otherwise it loads edx:eax
with the memory location. This instruction sets the zero flag according to the result. It
does not affect any other flags.

6.5.5 The NEG Instruction

The neg (negate) instruction takes the two’s complement of a byte or word. It takes a
single (destination) operation and negates it. The syntax for this instruction is

neg dest

It computes the following:

dest := 0 - dest
This effectively reverses the sign of the destination operand.

8. The choice of al, ax, or eax is made by the size of the operands. Both operands to cmpxchg must be the same
size.
9. An atomic operation is one that the system cannot interrupt.

Page 263

Chapter 06

If the operand is zero, its sign does not change, although this clears the carry flag.
Negating any other value sets the carry flag. Negating a byte containing -128, a word con-
taining -32,768, or a double word containing -2,147,483,648 does not change the operand,
but will set the overflow flag. Neg always updates the A, S, P, and Z flags as though you
were using the sub instruction.

The allowable forms are:

neg reg
neg mem

The operands may be eight, sixteen, or (on the 80386 and later) thirty-two bit values.

Some examples:

;==
neg J

0 J = -K
nmov ax, K
neg ax
nmov J, ax

6.5.6

The Multiplication Instructions: MUL, IMUL, and AAM

The multiplication instructions provide you with your first taste of irregularity in the
8086’s instruction set. Instructions like add, adc, sub, sbb, and many others in the 8086
instruction set use a mod-reg-r/m byte to support two operands. Unfortunately, there
aren’t enough bits in the 8086’s opcode byte to support all instructions, so the 8086 uses
the reg bits in the mod-reg-r/m byte as an opcode extension. For example, inc, dec, and
neg do not require two operands, so the 80x86 CPUs use the reg bits as an extension to the
eight bit opcode. This works great for single operand instructions, allowing Intel’s design-
ers to encode several instructions (eight, in fact) with a single opcode.

Unfortunately, the multiply instructions require special treatment and Intel’s design-
ers were still short on opcodes, so they designed the multiply instructions to use a single
operand. The reg field contains an opcode extension rather than a register value. Of
course, multiplication is a two operand function. The 8086 always assumes the accumula-
tor (al, ax, or eax) is the destination operand. This irregularity makes using multiplication
on the 8086 a little more difficult than other instructions because one operand has to be in
the accumulator. Intel adopted this unorthogonal approach because they felt that pro-
grammers would use multiplication far less often than instructions like add and sub.

One problem with providing only a mod-reg-r/m form of the instruction is that you
cannot multiply the accumulator by a constant; the mod-reg-r/m byte does not support
the immediate addressing mode. Intel quickly discovered the need to support multiplica-
tion by a constant and provide some support for this in the 80286 processor'®. This was
especially important for multidimensional array access. By the time the 80386 rolled
around, Intel generalized one form of the multiplication operation allowing standard
mod-reg-r/m operands.

There are two forms of the multiply instruction: an unsigned multiplication (mul) and
a signed multiplication (imul). Unlike addition and subtraction, you need separate instruc-
tions for these two operations.

The multiply instructions take the following forms:

10. On the original 8086 chip multiplication by a constant was always faster using shifts, additions, and subtrac-
tions. Perhaps Intel’s designers didn’t bother with multiplication by a constant for this reason. However, the
80286 multiply instruction was faster than the 8086 multiply instruction, so it was no longer true that multiplica-
tion was slower and the corresponding shift, add, and subtract instructions.

Page 264

The 80x86 Instruction Set

Unsigned Multiplication:

mul reg
mul nmem

Signed (Integer) Multiplication:

i mul reg

i mul nem

i mul reg, reg, imediate (2)
i mul reg, nem imediate (2)
i mul reg, imrediate (2)
i mul reg, reg (3)
i mul reg, mem (3)

BCD Multiplication Operations:

aam

2- Available on the 80286 and | ater, only.
3- Available on the 80386 and | ater, only.

As you can see, the multiply instructions are a real mess. Worse yet, you have to use
an 80386 or later processor to get near full functionality. Finally, there are some restrictions
on these instructions not obvious above. Alas, the only way to deal with these instructions
is to memorize their operation.

Mul, available on all processors, multiplies unsigned eight, sixteen, or thirty-two bit
operands. Note that when multiplying two n-bit values, the result may require as many as
2*n bits. Therefore, if the operand is an eight bit quantity, the result will require sixteen
bits. Likewise, a 16 bit operand produces a 32 bit result and a 32 bit operand requires 64
bits for the result.

The mul instruction, with an eight bit operand, multiplies the al register by the oper-
and and stores the 16 bit result in ax. So

mul oper andg
or i mul oper andg

computes:
ax := al * operandg
“*” represents an unsigned multiplication for mul and a signed multiplication for imul.
If you specify a 16 bit operand, then mul and imul compute:
dx:ax := ax * operand;g

“*” has the same meanings as above and dx:ax means that dx contains the H.O. word of the
32 bit result and ax contains the L.O. word of the 32 bit result.

If you specify a 32 bit operand, then mul and imul compute the following:
edx: eax := eax * operands,

“*” has the same meanings as above and edx:eax means that edx contains the H.O. double
word of the 64 bit result and eax contains the L.O. double word of the 64 bit result.

If an 8x8, 16x16, or 32x32 bit product requires more than eight, sixteen, or thirty-two
bits (respectively), the mul and imul instructions set the carry and overflow flags.

Mul and imul scramble the A, P, S, and Z flags. Especially note that the sign and zero
flags do not contain meaningful values after the execution of these two instructions.

Imul (integer multiplication) operates on signed operands. There are many different
forms of this instruction as Intel attempted to generalize this instruction with successive
processors. The previous paragraphs describe the first form of the imul instruction, with a
single operand. The next three forms of the imul instruction are available only on the 80286
and later processors. They provide the ability to multiply a register by an immediate
value. The last two forms, available only on 80386 and later processors, provide the ability
to multiply an arbitrary register by another register or memory location. Expanded to
show allowable operand sizes, they are

Page 265

Chapter 06

i mul operand,, operand,, imediate ; General form
i mul regdig. redpe | mrediateg

i mul regig, redps | mediateq

i mul reg,g. meme, inmmediateg

i mul reg,g, memeg, inmediate;q

i mul reg,g, i mrediateg

i mul reg,g, i mrediateg

i mul regsp, regsp, inmmediateg (3)
i mul regsp, regsp, inmmediates, (3)
i mul regsp, mem,, inmmediateg (3)
i mul regsp, mem,, inmrediates, (3)
i mul regsp, imrediateg (3)
i mul regsp, imrediates, (3)

3- Available on the 80386 and | ater, only.

The imul reg, immediate instructions are a special syntax the assembler provides. The
encodings for these instructions are the same as imul reg, reg, immediate. The assembler
simply supplies the same register value for both operands.

These instructions compute:

operand; := operand, * inmmedi ate

operand; := operand; * inmedi ate
Besides the number of operands, there are several differences between these forms

and the single operand mul/imul instructions:

= There isn’t an 8x8 bit multiplication available (the immediateg operands
simply provide a shorter form of the instruction. Internally, the CPU sign
extends the operand to 16 or 32 bits as necessary).

= These instructions do not produce a 2*n bit result. That is, a 16x16 multi-
ply produces a 16 bit result. Likewise, a 32x32 bit multiply produces a 32
bit result. These instructions set the carry and overflow flags if the result
does not fit into the destination register.

< The 80286 version of imul allows an immediate operand, the standard
mul/imul instructions do not.

The last two forms of the imul instruction are available only on 80386 and later proces-
sors. With the addition of these formats, the imul instruction is almost as general as the add
instruction'®:

i mul reg, reg
i mul reg, nem

These instructions compute

reg :

and reg :

Both operands must be the same size. Therefore, like the 80286 form of the imul

instruction, you must test the carry or overflow flag to detect overflow. If overflow does
occur, the CPU loses the H.O. bits of the result.

reg * reg
reg * mem

Important Note: Keep in mind that the zero flag contains an indeterminate result after
executing a multiply instruction. You cannot test the zero flag to see if the result is zero
after a multiplication. Likewise, these instructions scramble the sign flag. If you need to
check these flags, compare the result to zero after testing the carry or overflow flags.

The aam (ASCII Adjust after Multiplication) instruction, like aaa and aas, lets you
adjust an unpacked decimal value after multiplication. This instruction operates directly
on the ax register. It assumes that you’ve multiplied two eight bit values in the range 0..9
together and the result is sitting in ax (actually, the result will be sitting in al since 9*9 is 81,
the largest possible value; ah must contain zero). This instruction divides ax by 10 and
leaves the quotient in ah and the remainder in al:

11. There are still some restrictions on the size of the operands, e.g., no eight bit registers, you have to consider.

Page 266

The 80x86 Instruction Set

ah :
al

ax div 10
ax nod 10

Unlike the other decimal/ASCII adjust instructions, assembly language programs regu-
larly use aam since conversion between number bases uses this algorithm.

Note: the aam instruction consists of a two byte opcode, the second byte of which is
the immediate constant 10. Assembly language programmers have discovered that if you
substitute another immediate value for this constant, you can change the divisor in the
above algorithm. This, however, is an undocumented feature. It works in all varieties of
the processor Intel has produced to date, but there is no guarantee that Intel will support
this in future processors. Of course, the 80286 and later processors let you multiply by a
constant, so this trick is hardly necessary on modern systems.

There is no dam (decimal adjust for multiplication) instruction on the 80x86 processor.

Perhaps the most common use of the imul instruction is to compute offsets into multi-
dimensional arrays. Indeed, this is probably the main reason Intel added the ability to
multiply a register by a constant on the 80286 processor. In Chapter Four, this text used
the standard 8086 mul instruction for array index computations. However, the extended
syntax of the imul instruction makes it a much better choice as the following examples

demonstrate:

M/Ar r ay word 8 dup (7 dup (6 dup (?))) ; 8X7x6 array.
J wor d ?

K wor d ?

M wor d ?

MArray [J, K I\/]. =J+K- M

nov ax, J

add ax, K

sub ax, M

nov bx, J ;Array index :=

i mul bx, 7 ; ((J*7 + Ky *6+M * 2
add bx, K

i mul bx, 6

add bx, M

add bx, bx BX :=BX* 2

nov M/Array[bx], ax

Don’t forget that the multiplication instructions are very slow; often an order of mag-
nitude slower than an addition instruction. There are faster ways to multiply a value by a
constant. See “Multiplying Without MUL and IMUL” on page 487 for all the details.

6.5.7 The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16
division or a 16/8 division. These instructions take the form:

div reg For unsi gned di vi si on

div mem

idiv reg For signed division

idiv nem

aad ASC | adjust for division

The div instruction computes an unsigned division. If the operand is an eight bit oper-
and, div divides the ax register by the operand leaving the quotient in al and the remainder
(modulo) in ah. If the operand is a 16 bit quantity, then the div instruction divides the 32 bit
quantity in dx:ax by the operand leaving the quotient in ax and the remainder in . With 32
bit operands (on the 80386 and later) div divides the 64 bit value in edx:eax by the operand
leaving the quotient in eax and the remainder in edx.

Page 267

Chapter 06

You cannot, on the 80x86, simply divide one eight bit value by another. If the denomi-
nator is an eight bit value, the numerator must be a sixteen bit value. If you need to divide
one unsigned eight bit value by another, you must zero extend the numerator to sixteen
bits. You can accomplish this by loading the numerator into the al register and then mov-
ing zero into the ah register. Then you can divide ax by the denominator operand to pro-
duce the correct result. Failing to zero extend al before executing div may cause the 80x86 to
produce incorrect results!

When you need to divide two 16 bit unsigned values, you must zero extend the ax
register (which contains the numerator) into the dx register. Just load the immediate value
zero into the dx register'?. If you need to divide one 32 bit value by another, you must zero
extend the eax register into edx (by loading a zero into edx) before the division.

When dealing with signed integer values, you will need to sign extend al to ax, ax to dx
or eax into edx before executing idiv. To do so, use the cbw, cwd, cdg, or movsx instructions. If
the H.O. byte or word does not already contain significant bits, then you must sign extend
the value in the accumulator (al/ax/eax) before doing the idiv operation. Failure to do so
may produce incorrect results.

There is one other catch to the 80x86’s divide instructions: you can get a fatal error
when using this instruction. First, of course, you can attempt to divide a value by zero.
Furthermore, the quotient may be too large to fit into the eax, ax, or al register. For exam-
ple, the 16/8 division “8000h / 2” produces the quotient 4000h with a remainder of zero.
4000h will not fit into eight bits. If this happens, or you attempt to divide by zero, the
80x86 will generate an int 0 trap. This usually means BIOS will print “division by zero” or
“divide error” and abort your program. If this happens to you, chances are you didn’t sign
or zero extend your numerator before executing the division operation. Since this error
will cause your program to crash, you should be very careful about the values you select
when using division.

The auxiliary carry, carry, overflow, parity, sign, and zero flags are undefined after a
division operation. If an overflow occurs (or you attempt a division by zero) then the
80x86 executes an INT O (interrupt zero).

Note that the 80286 and later processors do not provide special forms for idiv as they
do for imul. Most programs use division far less often than they use multiplication, so
Intel’s designers did not bother creating special instructions for the divide operation. Note
that there is no way to divide by an immediate value. You must load the immediate value
into a register or a memory location and do the division through that register or memory
location.

The aad (ASCII Adjust before Division) instruction is another unpacked decimal oper-
ation. It splits apart unpacked binary coded decimal values before an ASCII division oper-
ation. Although this text will not cover BCD arithmetic, the aad instruction is useful for
other operations. The algorithm that describes this instruction is

al := ah*10 + al
ah :=0

This instruction is quite useful for converting strings of digits into integer values (see the
questions at the end of this chapter).

The following examples show how to divide one sixteen bit value by another.
; J := K/ M(unsigned)

nov ax, K ; Get di vi dend
nov dx, 0 ; Zero extend unsigned value in AX to DX

< In practice, we should verify that Mdoes not contain zero here >

div M
mov J, ax

i J := K/ M(signed)

12. Or use the MOVZX instruction on the 80386 and later processors.

Page 268

The 80x86 Instruction Set

nov ax, K ; Get di vi dend
cwd ;Sign extend signed value in AX to DX
< In practice, we should verify that Mdoes not contain zero here >

idiv M
nmov J, ax

;= (KM/P
nov ax, K ;Note that the imul instruction produces
i mul M ; a32bit result in DX AX, so we don't
idiv P ; need to sign extend AX here.
nov J, ax ; Hope and pray result fits in 16 bits!

6.6 Logical, Shift, Rotate and Bit Instructions

The 80x86 family provides five logical instructions, four rotate instructions, and three
shift instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror,
rol, rcr, and rcl; the shift instructions are shi/sal, shr, and sar. The 80386 and later processors
provide an even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shid, shrd, and the
conditional set instructions (setcc).

These instructions can manipulate bits, convert values, do logical operations, pack
and unpack data, and do arithmetic operations. The following sections describe each of
these instructions in detail.

6.6.1 The Logical Instructions: AND, OR, XOR, and NOT

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and
thirty-two bit versions of each instruction exist. The and, not, or, and xor instructions do the

following:
and dest, source ;dest := dest and source
or dest, source ;dest := dest or source
xor dest, source ;dest := dest xor source
not dest ;dest := not dest

The specific variations are

and reg, reg

and mem reg

and reg, nmem

and reg, imredi ate data

and mem imredi ate data

and eax/ax/al, imedi ate data

or uses the sane formats as AND
xor uses the sane fornats as AND

not register
not mem

Except not, these instructions affect the flags as follows:

= They clear the carry flag.

= They clear the overflow flag.

= They set the zero flag if the result is zero, they clear it otherwise.

= They copy the H.O. bit of the result into the sign flag.

= They set the parity flag according to the parity (number of one bits) in the
result.

= They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

Testing the zero flag after these instructions is particularly useful. The and instruction
sets the zero flag if the two operands do not have any ones in corresponding bit positions
(since this would produce a zero result); for example, if the source operand contained a

Page 269

Chapter 06

single one bit, then the zero flag will be set if the corresponding destination bit is zero, it
will be one otherwise. The or instruction will only set the zero flag if both operands con-
tain zero. The xor instruction will set the zero flag only if both operands are equal. Notice
that the xor operation will produce a zero result if and only if the two operands are equal.
Many programmers commonly use this fact to clear a sixteen bit register to zero since an
instruction of the form

xor regig, re€dig
is shorter than the comparable nov r eg, O instruction.

Like the addition and subtraction instructions, the and, or, and xor instructions provide
special forms involving the accumulator register and immediate data. These forms are
shorter and sometimes faster than the general “register, immediate” forms. Although one
does not normally think of operating on signed data with these instructions, the 80x86
does provide a special form of the “reg/mem, immediate” instructions that sign extend a
value in the range -128..+127 to sixteen or thirty-two bits, as necessary.

The instruction’s operands must all be the same size. On pre-80386 processors they
can be eight or sixteen bits. On 80386 and later processors, they may be 32 bits long as
well. These instructions compute the obvious bitwise logical operation on their operands,
see Chapter One for details on these operations.

You can use the and instruction to set selected bits to zero in the destination operand.
This is known as masking out data; see for more details. Likewise, you can use the or
instruction to force certain bits to one in the destination operand; see “Masking Opera-
tions with the OR Instruction” on page 491 for the details. You can use these instructions,
along with the shift and rotate instructions described next, to pack and unpack data. See
“Packing and Unpacking Data Types” on page 491 for more details.

6.6.2

Page 270

The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD

The 80x86 supports three different shift instructions (shl and sal are the same instruc-
tion): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic
right). The 80386 and later processors provide two additional shifts: shid and shrd.

The shift instructions move bits around in a register or memory location. The general
format for a shift instruction is

shl dest, count
sal dest, count
shr dest, count
sar dest, count

Dest is the value to shift and count specifies the number of bit positions to shift. For exam-
ple, the shl instruction shifts the bits in the destination operand to the left the number of
bit positions specified by the count operand. The shid and shrd instructions use the format:

shl d dest, source, count
shrd dest, source, count

The specific forms for these instructions are

shl reg, 1
shl mem 1
shl reg, imm (2)
shl mem inmm (2)
shl reg, cl
shl mem cl

sal is a synonymfor shl and uses the sane fornats.
shr uses the sane fornats as shl.
sar uses the sane fornats as shl.

The 80x86 Instruction Set

4
\ | I | I 1
clefi + + e R O

Figure 6.2 Shift Left Operation

shld reg, reg, imm (3)
shld mem reg, inmm (3)
shld reg, reg, cl (3)
shld mem reg, cl (3)

shrd uses the sane fornats as shld.

2- This formis available on 80286 and | ater processors only.

3- This formis available on 80386 and | ater processors only.

For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On
80286 and later processors you can use an eight bit immediate constant. Of course, the
value in cl or the immediate constant should be less than or equal to the number of bits in
the destination operand. It would be a waste of time to shift left al by nine bits (eight
would produce the same result, as you will soon see). Algorithmically, you can think of
the shift operations with a count other than one as follows:

for tenp := 1 to count do
shift dest, 1

There are minor differences in the way the shift instructions treat the overflow flag when
the count is not one, but you can ignore this most of the time.

The shl, sal, shr, and sar instructions work on eight, sixteen, and thirty-two bit oper-
ands. The shid and shrd instructions work on 16 and 32 bit destination operands only.

6.6.2.1 SHL/SAL

The shl and sal mnemonics are synonyms. They represent the same instruction and
use identical binary encodings. These instructions move each bit in the destination oper-
and one bit position to the left the number of times specified by the count operand. Zeros
fill vacated positions at the L.O. bit; the H.O. bit shifts into the carry flag (see Figure 6.2).

The shl/sal instruction sets the condition code bits as follows:

= If the shift count is zero, the shl instruction doesn’t affect any flags.

= The carry flag contains the last bit shifted out of the H.O. bit of the oper-
and.

= The overflow flag will contain one if the two H.O. bits were different
prior to a single bit shift. The overflow flag is undefined if the shift count
is not one.

= The zero flag will be one if the shift produces a zero result.

= The sign flag will contain the H.O. bit of the result.

= The parity flag will contain one if there are an even number of one bits in
the L.O. byte of the result.

= The Aflag is always undefined after the shli/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose
you have two nibbles in al and ah that you want to combine. You could use the following
code to do this:

shl ah, 4 ; This formrequires an 80286 or |ater
or al, ah ;Merge in HQ four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the shift
left operation automatically clears the L.O. four bits of ah before the or instruction). If the

Page 271

Chapter 06

H.O Bit 5 4 3 2 1 O
[. (el Tl
g™ i i i (6

Figure 6.3 Arithmetic Shift Right Operation

H.O. four bits of al are not zero before this operation, you can easily clear them with an and
instruction:

shl ah, 4 ;Mve L.Q bits to HQ position.
and al, OFh ;Cdear HQ four bits.
or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that
value by two, you can also use the shift left instruction for multiplication by powers of
two:

shl ax, 1 ; Equi val ent to AX*2
shl ax, 2 ; Equi val ent to AX*4
shl ax, 3 ; Equi val ent to AX*8
shl ax, 4 ; Equi val ent to AX*16
shl ax, 5 ; Equi vl aent to AX*32
shl ax, 6 ; Equi val ent to AX*64
shl ax, 7 ; Equi val ent to AX*128
shi ax, 8 ; Equi val ent to AX*256
etc.

Note that shl ax, 8 is equivalent to the following two instructions:

nov ah, al
nov al, 0
The shl/sal instruction multiplies both signed and unsigned values by two for each
shift. This instruction sets the carry flag if the result does not fit in the destination operand
(i.e., unsigned overflow occurs). Likewise, this instruction sets the overflow flag if the
signed result does not fit in the destination operation. This occurs when you shift a zero
into the H.O. bit of a negative number or you shift a one into the H.O. bit of a non-nega-
tive number.

6.6.2.2

Page 272

SAR

The sar instruction shifts all the bits in the destination operand to the right one bit,
replicating the H.O. bit (see Figure 6.3).

The sar instruction sets the flag bits as follows:

= If the shift count is zero, the sar instruction doesn’t affect any flags.

= The carry flag contains the last bit shifted out of the L.O. bit of the oper-
and.

= The overflow flag will contain zero if the shift count is one. Overflow can
never occur with this instruction. However, if the count is not one, the
value of the overflow flag is undefined.

= The zero flag will be one if the shift produces a zero result.

= The sign flag will contain the H.O. bit of the result.

= The parity flag will contain one if there are an even number of one bits in
the L.O. byte of the result.

= The auxiliary carry flag is always undefined after the sar instruction.

The sar instruction’s main purpose is to perform a signed division by some power of
two. Each shift to the right divides the value by two. Multiple right shifts divide the previ-
ous shifted result by two, so multiple shifts produce the following results:

The 80x86 Instruction Set

sar ax, 1 ; Signed division by 2
sar ax, 2 ; Signed division by 4
sar ax, 3 ; Signed division by 8
sar ax, 4 ; Signed division by 16
sar ax, 5 ; Signed division by 32
sar ax, 6 ; Signed division by 64
sar ax, 7 ; Signed division by 128
sar ax, 8 ; Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv
instruction always truncates towards zero while sar truncates results toward the smaller
result. For positive results, an arithmetic shift right by one position produces the same
result as an integer division by two. However, if the quotient is negative, idiv truncates
towards zero while sar truncates towards negative infinity. The following examples dem-
onstrate the difference:

nov ax, -15

cwd

nov bx, 2

idiv ; Produces -7
nmov ax, -15

sar ax, 1 ; Produces -8

Keep this in mind if you use sar for integer division operations.

The sar ax, 8 instruction effectively copies ah into al and then sign extends al into ax.
This is because sar ax, 8 will shift ah down into al but leave a copy of ah’s H.O. bit in all the
bit positions of ah. Indeed, you can use the sar instruction on 80286 and later processors to
sign extend one register into another. The following code sequences provide examples of

this usage:
; Equivalent to CBW
mov ah, al
sar ah, 7
; Equivalent to QWD
nmv dx, ax
sar dx, 15
; Equivalent to CDQ
nov edx, eax
sar edx, 31

Of course it may seem silly to use two instructions where a single instruction might suf-
fice; however, the cbw, cwd, and cdq instructions only sign extend al into ax, ax into dx:ax,
and eax into edx:eax. Likewise, the movsx instruction copies its sign extended operand
into a destination operand twice the size of the source operand. The sar instruction lets
you sign extend one register into another register of the same size, with the second regis-
ter containing the sign extension bits:

; Sign extend bx into cx: bx

nov cx, bx
sar cx, 15

6.6.2.3 SHR

The shr instruction shifts all the bits in the destination operand to the right one bit
shifting a zero into the H.O. bit (see Figure 6.4).

The shr instruction sets the flag bits as follows:

= If the shift count is zero, the shr instruction doesn’t affect any flags.

= The carry flag contains the last bit shifted out of the L.O. bit of the oper-
and.

= If the shift count is one, the overflow flag will contain the value of the
H.O. bit of the operand prior to the shift (i.e., this instruction sets the

Page 273

Chapter 06

H.O Bit 5 4 3 2 1 O
[e (wrl T
O e e e e

Figure 6.4 Shift Right Operation

overflow flag if the sign changes). However, if the count is not one, the
value of the overflow flag is undefined.

= The zero flag will be one if the shift produces a zero result.

= The sign flag will contain the H.O. bit of the result, which is always zero.

= The parity flag will contain one if there are an even number of one bits in
the L.O. byte of the result.

= The auxiliary carry flag is always undefined after the shr instruction.

The shift right instruction is especially useful for unpacking data. For example, sup-
pose you want to extract the two nibbles in the al register, leaving the H.O. nibble in ah
and the L.O. nibble in al. You could use the following code to do this:

nov ah, al ;Get a copy of the HQ nibble
shr ah, 4 ;Mve HQ to L.QO and clear HQ nibble
and al, OFh ; Remove HQ nibble fromal

Since shifting an unsigned integer value to the right one position is equivalent to
dividing that value by two, you can also use the shift right instruction for division by
powers of two;

shr ax, 1 ; EQui valent to AX/ 2
shr ax, 2 ; Equival ent to AX/ 4
shr ax, 3 ; Equival ent to AX/ 8
shr ax, 4 ; Equival ent to AX/ 16
shr ax, 5 ; Equi vl aent to AX/ 32
shr ax, 6 ; Equi val ent to AX/ 64
shr ax, 7 ; Equi val ent to AX/ 128
shr ax, 8 ; Equi val ent to AX/ 256
etc.

Note that shr ax, 8 is equivalent to the following two instructions:

nov al, ah
nov ah, 0
Remember that division by two using shr only works for unsigned operands. If ax con-
tains -1 and you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as
you would expect. Use the sar instruction if you need to divide a signed integer by some
power of two.

6.6.2.4

Page 274

The SHLD and SHRD Instructions

The shid and shrd instructions provide double precision shift left and right operations,
respectively. These instructions are available only on 80386 and later processors. Their
generic forms are

shi d operand;, operand,, imrediate
shi d operand,, operand,, cl
shrd operand;, operand,, imrediate
shrd oper and,, operand,, cl

Operand, must be a sixteen or thirty-two bit register. Operand; can be a register or a mem-
ory location. Both operands must be the same size. The immediate operand can be a value
in the range zero through n-1, where n is the number of bits in the two operands; it speci-
fies the number of bits to shift.

The shid instruction shifts bits in operand, to the left. The H.O. bit shifts into the carry
flag and the H.O. bit of operand, shifts into the L.O. bit of operand;. Note that this instruc-

The 80x86 Instruction Set

Operandq
H.O Bit

Temporary copy of Operands

g =

Figure 6.5 Double Precision Shift Left Operation

Temporary Copy of Operandso

H.OBL' 5 4 3 2 1
L. At (gt gt
Operandq
H.O Bit
e

Figure 6.6 Double Precision Shift Right Operation

tion does not modify the value of operand,, it uses a temporary copy of operand, during
the shift. The immediate operand specifies the number of bits to shift. If the count is n,
then shid shifts bit n-1 into the carry flag. It also shifts the H.O. n bits of operand, into the
L.O. n bits of operand;. Pictorially, the shid instruction appears in Figure 6.5.

The shid instruction sets the flag bits as follows:

If the shift count is zero, the shid instruction doesn’t affect any flags.
The carry flag contains the last bit shifted out of the H.O. bit of the

operand;.

= If the shift count is one, the overflow flag will contain one if the sign bit of
operand, changes during the shift. If the count is not one, the overflow

flag is undefined.

The zero flag will be one if the shift produces a zero result.
The sign flag will contain the H.O. bit of the result.

The shid instruction is useful for packing data from many different sources. For exam-
ple, suppose you want to create a word by merging the H.O. nibbles of four other words.
You could do this with the following code:

nov ax,
shid bx,
nov ax,
shid bx,
nov ax,
shid bx,
nov ax,
shid bx,

Val ue4
ax, 4
Val ue3
ax, 4
Val ue2
ax, 4
Val uel
ax, 4

Gt HQ nibble

;Copy HQO bits of AXto BX

; Get ni bbl e #2.

;Merge into bx.

; Get nibble #1.

;Merge into bx.

;CGet L.Q nibble

;BX now contains all four nibbles.

The shrd instruction is similar to shid except, of course, it shifts its bits right rather than
left. To get a clear picture of the shrd instruction, consider Figure 6.6.

Page 275

Chapter 06

15

14 13 12 11 10 9 8 7

Y

6 5 4 3 2 10
¥ v | I

15

After SHRD DX, AX, 7 Instruction

14 13 12 11 10 9 8 7 6 5 4

15

D DD D [DRAMEE\EANE | | | |

After SHRD DX, BX, 5 Instruction

14 13 12 11 10 9 5 4 3 2 1 0

M

MMM‘YYYYYYY

After SHRD DX, CX, 4 Instruction

Figure 6.7 Packing Data with an SHRD Instruction

The shrd instruction sets the flag bits as follows:

= If the shift count is zero, the shrd instruction doesn’t affect any flags.

= The carry flag contains the last bit shifted out of the L.O. bit of the
operand;.

< If the shift count is one, the overflow flag will contain one if the H.O. bit
of operand; changes. If the count is not one, the overflow flag is unde-
fined.

= The zero flag will be one if the shift produces a zero result.

= The sign flag will contain the H.O. bit of the result.

Quite frankly, these two instructions would probably be slightly more useful if
Operand, could be a memory location. Intel designed these instructions to allow fast mul-
tiprecision (64 bits, or more) shifts. For more information on such usage, see “Extended
Precision Shift Operations” on page 482.

The shrd instruction is marginally more useful than shid for packing data. For exam-
ple, suppose that ax contains a value in the range 0..99 representing a year (1900..1999), bx
contains a value in the range 1..31 representing a day, and cx contains a value in the range
1..12 representing a month (see “Bit Fields and Packed Data” on page 28). You can easily
use the shrd instruction to pack this data into dx as follows:

shrd dx, ax, 7
shrd dx, bx, 5
shrd dx, cx, 4

See Figure 6.7 for a blow-by-blow example.

6.6.3 The Rotate Instructions: RCL, RCR, ROL, and ROR

Page 276

The rotate instructions shift the bits around, just like the shift instructions, except the
bits shifted out of the operand by the rotate instructions recirculate through the operand.
They include rcl (rotate through carry left), rcr (rotate through carry right), rol (rotate left),
and ror (rotate right). These instructions all take the forms:

The 80x86 Instruction Set

H.O Bit 5 4 3 2 1 O
f o (> 1> |
ST e Tt e
—
—VIL
Figure 6.8 Rotate Through Carry Left Operation
rcl dest, count
rol dest, count
rcr dest, count
ror dest, count

The specific forms are

rcl reg, 1
rcl mem 1
rcl reg, imm (2)
rcl mem imm (2)
rcl reg, cl
rcl mem cl

rol uses the sane fornats as rcl.
rcr uses the sane fornmats as rcl.
ror uses the sane fornmats as rcl.

2- This formis avialable on 80286 and | ater processors only.

6.6.3.1 RCL

The rcl (rotate through carry left), as its name implies, rotates bits to the left, through
the carry flag, and back into bit zero on the right (see Figure 6.8).

Note that if you rotate through carry an object n+1 times, where n is the number of
bits in the object, you wind up with your original value. Keep in mind, however, that
some flags may contain different values after n+1 rcl operations.

The rcl instruction sets the flag bits as follows: