
AutoML: A Survey of the State-of-the-Art

Xin He, Kaiyong Zhao, Xiaowen Chu∗

Department of Computer Science, Hong Kong Baptist University

Abstract

Deep learning (DL) techniques have obtained remarkable achievements on various tasks, such as image recognition,
object detection, and language modeling. However, building a high-quality DL system for a specific task highly relies
on human expertise, hindering its wide application. Meanwhile, automated machine learning (AutoML) is a promising
solution for building a DL system without human assistance and is being extensively studied. This paper presents a
comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML. According to the DL pipeline, we
introduce AutoML methods –– covering data preparation, feature engineering, hyperparameter optimization, and neural
architecture search (NAS) –– with a particular focus on NAS, as it is currently a hot sub-topic of AutoML. We summarize
the representative NAS algorithms’ performance on the CIFAR-10 and ImageNet datasets and further discuss the following
subjects of NAS methods: one/two-stage NAS, one-shot NAS, joint hyperparameter and architecture optimization, and
resource-aware NAS. Finally, we discuss some open problems related to the existing AutoML methods for future research.

Keywords: deep learning, automated machine learning (AutoML), neural architecture search (NAS), hyperparameter
optimization (HPO)

1. Introduction

In recent years, deep learning has been applied in vari-
ous fields and used to solve many challenging AI tasks, in
areas such as image classification [1, 2], object detection [3],
and language modeling [4, 5]. Specifically, since AlexNet [1]
outperformed all other traditional manual methods in the
2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6], increasingly complex and deep neural net-
works have been proposed. For example, VGG-16 [7] has
more than 130 million parameters, occupies nearly 500 MB
of memory space, and requires 15.3 billion floating-point
operations to process an image of size 224× 224. Notably,
however, these models were all manually designed by ex-
perts by a trial-and-error process, which means that even
experts require substantial resources and time to create
well-performing models.

To reduce these onerous development costs, a novel idea
of automating the entire pipeline of machine learning (ML)
has emerged, i.e., automated machine learning (AutoML).
There are various definitions of AutoML. For example, ac-
cording to [8], AutoML is designed to reduce the demand
for data scientists and enable domain experts to automati-
cally build ML applications without much requirement for
statistical and ML knowledge. In [9], AutoML is defined as
a combination of automation and ML. In a word, AutoML

∗Corresponding author
Email addresses: csxinhe@comp.hkbu.edu.hk (Xin He),

kyzhao@comp.hkbu.edu.hk (Kaiyong Zhao), chxw@comp.hkbu.edu.hk
(Xiaowen Chu)

can be understood to involve the automated construction
of an ML pipeline on the limited computational budget.
With the exponential growth of computing power, AutoML
has become a hot topic in both industry and academia. A
complete AutoML system can make a dynamic combination
of various techniques to form an easy-to-use end-to-end
ML pipeline system (as shown in Figure 1). Many AI com-
panies have created and publicly shared such systems (e.g.,
Cloud AutoML 1 by Google) to help people with little or
no ML knowledge to build high-quality custom models.

As Figure 1 shows, the AutoML pipeline consists of
several processes: data preparation, feature engineering,
model generation, and model evaluation. Model generation
can be further divided into search space and optimization
methods. The search space defines the design principles of
ML models, which can be divided into two categories: the
traditional ML models (e.g., SVM and KNN), and neural
architectures. The optimization methods are classified
into hyperparameter optimization (HPO) and architecture
optimization (AO), where the former indicates the training-
related parameters (e.g., the learning rate and batch size),
and the latter indicates the model-related parameters (e.g.,
the number of layer for neural architectures and the number
of neighbors for KNN). NAS consists of three important
components: the search space of neural architectures, AO
methods, and model evaluation methods. AO methods may
also refer to search strategy [10] or search policy [11]. Zoph
et al. [12] were one of the first to propose NAS, where a

1https://cloud.google.com/automl/

Preprint submitted to Knowledge-Based Systems April 19, 2021

ar
X

iv
:1

90
8.

00
70

9v
6 

 [
cs

.L
G

] 
 1

6 
A

pr
 2

02
1



Feature
Selection

Feature
Extraction

Feature
Construction

Feature

Feature	Engineering Model	Generation

Traditional
Models

(SVM,	KNN)

Search	Space Optimization	Methods

Hyperparameter
	Optimization

Model	Estimation

Data
Collection

Data	Cleaning

Data	Preparation

Data
Augmentation

Deep	Neural
Networks

(CNN,	RNN)

Architecture
Optimization

Low-fidelity

Early-stopping

Surrogate	Model

Weight-sharing

Neural	Architecture	Search	(NAS)

Figure 1: An overview of AutoML pipeline covering data preparation (Section 2), feature engineering (Section 3), model generation (Section 4)
and model evaluation (Section 5).

recurrent network is trained by reinforcement learning to
automatically search for the best-performing architecture.
Since [12] successfully discovered a neural network achieving
comparable results to human-designed models, there has
been an explosion of research interest in AutoML, with most
focusing on NAS. NAS aims to search for a robust and well-
performing neural architecture by selecting and combining
different basic operations from a predefined search space.
By reviewing NAS methods, we classify the commonly used
search space into entire-structured [12, 13, 14], cell-based
[13, 15, 16, 17, 18], hierarchical [19] and morphism-based
[20, 21, 22] search space. The commonly used AO methods
contain reinforcement learning (RL) [12, 15, 23, 16, 13],
evolution-based algorithm (EA) [24, 25, 26, 27, 28, 29, 30],
and gradient descent (GD) [17, 31, 32], Surrogate Model-
Based Optimization (SMBO) [33, 34, 35, 36, 37, 38, 39],
and hybrid AO methods [40, 41, 42, 43, 44].

Although there are already several excellent AutoML-
related surveys [10, 45, 46, 9, 8], to the best of our knowl-
edge, our survey covers a broader range of AutoML meth-
ods. As summarized in Table 1, [10, 45, 46] only focus
on NAS, while [9, 8] cover little of NAS technique. In
this paper, we summarize the AutoML-related methods
according to the complete AutoML pipeline (Figure 1),
providing beginners with a comprehensive introduction to
the field. Notably, many sub-topics of AutoML are large
enough to have their own surveys. However, our goal is
not to conduct a thorough investigation of all AutoML
sub-topics. Instead, we focus on the breadth of research
in the field of AutoML. Therefore, we will summarize and
discuss some representative methods of each process in the
pipeline.

The rest of this paper is organized as follows. The

Survey DP FE HPO NAS
NAS Survey [10] - - - X

A Survey on NAS [45] - - - X
NAS Challenges [46] - - - X

A Survey on AutoML [9] - X X †
AutoML Challenges [47] X - X †
AutoML Benchmark [8] X X X -

Ours X X X X

Table 1: Comparison between different AutoML surveys. The “Survey”
column gives each survey a label based on their title for increasing the
readability. DP, FE, HPO, NAS indicate data preparation, feature
engineering, hyperparameter optimization and neural architecture
search, respectively. “-”, “X”, and “†” indicate the content is 1)
not mentioned; 2) mentioned detailed; 3) mentioned briefly, in the
original paper, respectively.

processes of data preparation, feature engineering, model
generation, and model evaluation are presented in Sections
2, 3, 4, 5, respectively. In Section 6, we compare the
performance of NAS algorithms on the CIFAR-10 and
ImageNet dataset, and discuss several subtopics of great
concern in NAS community: one/two-stage NAS, one-shot
NAS, joint hyperparameter and architecture optimization,
and resource-aware NAS. In Section 7, we describe several
open problems in AutoML. We conclude our survey in
Section 8.

2. Data Preparation

The first step in the ML pipeline is data preparation.
Figure 2 presents the workflow of data preparation, which
can be introduced in three aspects: data collection, data
cleaning, and data augmentation. Data collection is a

2



necessary step to build a new dataset or extend the ex-
isting dataset. The process of data cleaning is used to
filter noisy data so that downstream model training is not
compromised. Data augmentation plays an important role
in enhancing model robustness and improving model per-
formance. The following subsections will cover the three
aspects in more detail.

Data Collection

Start

Enough data?

Data quality
improved?

Data
Searching

Data
Synthesis

Any exsiting
datasets?

Data
Augmentation

Model
Training

Yes

NoYes

No

No

Data Cleaning

Yes

Figure 2: The flow chart for data preparation.

2.1. Data Collection

ML’s deepening study has led to a consensus that high-
quality datasets are of critical importance for ML; as a
result, numerous open datasets have emerged. In the early
stages of ML study, a handwritten digital dataset, i.e.,
MNIST [48], was developed. After that, several larger
datasets like CIFAR-10 and CIFAR-100 [49] and ImageNet
[50] were developed. A variety of datasets can also be
retrieved by entering the keywords into these websites:
Kaggle 2, Google Dataset Search (GOODS) 3, and Elsevier
Data Search 4.

However, it is usually challenging to find a proper
dataset through the above approaches for some partic-
ular tasks, such as those related to medical care or other
privacy matters. Two types of methods are proposed to
solve this problem: data searching and data synthesis.

2.1.1. Data Searching

As the Internet is an inexhaustible data source, search-
ing for Web data is an intuitive way to collect a dataset
[51, 52, 53, 54]. However, there are some problems with
using Web data.

First, the search results may not exactly match the
keywords. Thus, unrelated data must be filtered. For

2https://www.kaggle.com
3https://datasetsearch.research.google.com/
4https://www.datasearch.elsevier.com/

example, Krause et al. [55] separate inaccurate results
as cross-domain or cross-category noise, and remove any
images that appear in search results for more than one
category. Vo et al. [56] re-rank relevant results and provide
search results linearly, according to keywords.

Second, Web data may be incorrectly labeled or even
unlabeled. A learning-based self-labeling method is often
used to solve this problem. For example, the active learn-
ing method [57] selects the most “uncertain” unlabeled
individual examples for labeling by a human, and then iter-
atively labels the remaining data. Roh et al. [58] provided
a review of semi-supervised learning self-labeling methods,
which can help take the human out of the loop of labeling
to improve efficiency, and can be divided into the following
categories: self-training [59, 60], co-training [61, 62], and
co-learning [63]. Moreover, due to the complexity of Web
images content, a single label cannot adequately describe
an image. Consequently, Yang et al. [51] assigned multiple
labels to a Web image, i.e., if the confidence scores of these
labels are very close or the label with the highest score is
the same as the original label of the image, then this image
will be set as a new training sample.

However, the distribution of Web data can be extremely
different from that of the target dataset, which will increase
the difficulty of training the model. A common solution is to
fine-tune these Web data [64, 65]. Yang et al. [51] proposed
an iterative algorithm for model training and Web data-
filtering. Dataset imbalance is another common problem, as
some special classes have a very limited number of Web data.
To solve this problem, the synthetic minority over-sampling
technique (SMOTE) [66] is used to synthesize new minority
samples between existing real minority samples, instead
of simply up-sampling minority samples or down-sampling
the majority samples. In another approach, Guo et al. [67]
combined the boosting method with data generation to
enhance the generalizability and robustness of the model
against imbalanced data sets.

2.1.2. Data Synthesis

Data simulator is one of the most commonly used meth-
ods to generate data. For some particular tasks, such as
autonomous driving, it is not possible to test and adjust a
model in the real world during the research phase, due to
safety hazards. Therefore, a practical approach to generat-
ing data is to use a data simulator that matches the real
world as closely as possible. OpenAI Gym [68] is a popular
toolkit that provides various simulation environments, in
which developers can concentrate on designing their al-
gorithms, instead of struggling to generate data. Wang
et al. [69] used a popular game engine, Unreal Engine
4, to build a large synthetic indoor robotics stereo (IRS)
dataset, which provides the information for disparity and
surface normal estimation. Furthermore, a reinforcement
learning-based method is applied in [70] for optimizing the
parameters of a data simulator to control the distribution
of the synthesized data.

3



Another novel technique for deriving synthetic data
is Generative Adversarial Networks (GANs) [71], which
can be used to generate images [71, 72, 73, 74], tabular
[75, 76] and text [77] data. Karras et al. [78] applied GAN
technique to generate realistic human face images. Oh and
Jaroensri et al. [72] built a synthetic dataset, which cap-
tures small motion for video-motion magnification. Bowles
et al. [74] demonstrated the feasibility of using GAN to
generate medical images for brain segmentation tasks. In
the case of textual data, applying GAN to text has proved
difficult because the commonly used method is to use rein-
forcement learning to update the gradient of the generator,
but the text is discrete, and thus the gradient cannot propa-
gate from discriminator to generator. To solve this problem,
Donahue et al. [77] used an autoencoder to encode sen-
tences into a smooth sentence representation to remove the
barrier of reinforcement learning. Park et al. [75] applied
GAN to synthesize fake tables that are statistically similar
to the original table but do not cause information leakage.
Similarly, in [76], GAN is applied to generate tabular data
like medical or educational records.

2.2. Data Cleaning

The collected data inevitably have noise, but the noise
can negatively affect the training of the model. Therefore,
the process of data cleaning [79, 80] must be carried out if
necessary. Across the literature, the effort of data cleaning
is shifting from crowdsourcing to automation. Tradition-
ally, data cleaning requires specialist knowledge, but access
to specialists is limited and generally expensive. Hence,
Chu et al. [81] proposed Katara, a knowledge-based and
crowd-powered data cleaning system. To improve efficiency,
some studies [82, 83] proposed only to clean a small subset
of the data and maintain comparable results to the case of
cleaning the full dataset. However, these methods require
a data scientist to design what data cleaning operations
are applied to the dataset. BoostClean [84] attempts to
automate this process by treating it as a boosting prob-
lem. Each data cleaning operation effectively adds a new
cleaning operation to the input of the downstream ML
model, and through a combination of Boosting and feature
selection, a good series of cleaning operations, which can
well improve the performance of the ML model, can be
generated. AlphaClean [85] transforms data cleaning into
a hyperparameter optimization problem, which further in-
creases automation. Specifically, the final data cleaning
combinatorial operation in AlphaClean is composed of sev-
eral pipelined cleaning operations that need to be searched
from a predefined search space. Gemp et al. [86] attempted
to use meta-learning technique to automate the process of
data cleaning.

The data cleaning methods mentioned above are applied
to a fixed dataset. However, the real world generates
vast amounts of data every day. In other words, how
to clean data in a continuous process becomes a worth
studying problem, especially for enterprises. Ilyas et al.
[87] proposed an effective way of evaluating the algorithms

Figure 3: A classification of data augmentation techniques.

of continuously cleaning data. Mahdavi et al. [88] built
a cleaning workflow orchestrator, which can learn from
previous cleaning tasks, and proposed promising cleaning
workflows for new datasets.

2.3. Data Augmentation

To some degree, data augmentation (DA) can also be
regarded as a tool for data collection, as it can generate new
data based on the existing data. However, DA also serves as
a regularizer to avoid over-fitting of model training and has
received more and more attention. Therefore, we introduce
DA as a separate part of data preparation in detail. Figure
3 classifies DA techniques from the perspective of data type
(image, audio, and text), and incorporates automatic DA
techniques that have recently received much attention.

For image data, the affine transformations include rota-
tion, scaling, random cropping, and reflection; the elastic
transformations contain the operations like contrast shift,
brightness shift, blurring, and channel shuffle; the advanced
transformations involve random erasing, image blending,
cutout [89], and mixup [90], etc. These three types of
common transformations are available in some open source
libraries, like torchvision 5, ImageAug [91], and Albumen-
tations [92]. In terms of neural-based transformations, it

5https://pytorch.org/docs/stable/torchvision/transforms.html

4



can be divided into three categories: adversarial noise [93],
neural style transfer [94], and GAN technique [95]. For
textual data, Wong et al. [96] proposed two approaches for
creating additional training examples: data warping and
synthetic over-sampling. The former generates additional
samples by applying transformations to data-space, and
the latter creates additional samples in feature-space. Tex-
tual data can be augmented by synonym insertion or by
first translating the text into a foreign language and then
translating it back to the original language. In a recent
study, Xie et al. [97] proposed a non-domain-specific DA
policy that uses noising in RNNs, and this approach works
well for the tasks of language modeling and machine trans-
lation. Yu et al. [98] proposed a back-translation method
for DA to improve reading comprehension. NLPAug [99]
is an open-source library that integrates many types of
augmentation operations for both textual and audio data.

The above augmentation techniques still require hu-
man to select augmentation operations and then form a
specific DA policy for specific tasks, which requires much
expertise and time. Recently, there are many methods
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110] pro-
posed to search for augmentation policy for different tasks.
AutoAugment [100] is a pioneering work to automate the
search for optimal DA policies using reinforcement learn-
ing. However, AutoAugment is not efficient as it takes
almost 500 GPU hours for one augmentation search. In
order to improve search efficiency, a number of improved
algorithms have subsequently been proposed using different
search strategies, such as gradient descent-based [101, 102],
Bayesian-based optimization [103], online hyperparameter
learning [109], greedy-based search [104] and random search
[107]. Besides, LingChen et al. [110] proposed a search-
free DA method, namely UniformAugment, by assuming
that the augmentation space is approximately distribution
invariant.

3. Feature Engineering

It is generally accepted that data and features deter-
mine the upper bound of ML, and that models and algo-
rithms can only approximate this limit. In this context,
feature engineering aims to maximize the extraction of
features from raw data for use by algorithms and models.
Feature engineering consists of three sub-topics: feature
selection, feature extraction, and feature construction. Fea-
ture extraction and construction are variants of feature
transformation, by which a new set of features is created
[111]. In most cases, feature extraction aims to reduce the
dimensionality of features by applying specific mapping
functions, while feature construction is used to expand
original feature spaces, and the purpose of feature selection
is to reduce feature redundancy by selecting important fea-
tures. Thus, the essence of automatic feature engineering
is, to some degree, a dynamic combination of these three
processes.

3.1. Feature Selection

Feature selection builds a feature subset based on the
original feature set by reducing irrelevant or redundant
features. This tends to simplify the model, hence avoiding
overfitting and improving model performance. The selected
features are usually divergent and highly correlated with
object values. According to [112], there are four basic steps
in a typical process of feature selection (see Figure 4), as
follows:

Original	feature	set

Generation
(Search	Strategy)

Subset	Evaluation validation

Yes

No

Stopping
criterion?

Figure 4: The iterative process of feature selection. A subset of
features is selected, based on a search strategy, and then evaluated.
Then, a validation procedure is implemented to determine whether
the subset is valid. The above steps are repeated until the stop
criterion is satisfied.

The search strategy for feature selection involves three
types of algorithms: complete search, heuristic search, and
random search. Complete search comprises exhaustive and
non-exhaustive searching; the latter can be further split
into four methods: breadth-first search, branch and bound
search, beam search, and best-first search. Heuristic search
comprises sequential forward selection (SFS), sequential
backward selection (SBS), and bidirectional search (BS).
In SFS and SBS, the features are added from an empty set
or removed from a full set, respectively, whereas BS uses
both SFS and SBS to search until these two algorithms
obtain the same subset. The most commonly used random
search methods are simulated annealing (SA) and genetic
algorithms (GAs).

Methods of subset evaluation can be divided into three
different categories. The first is the filter method, which
scores each feature according to its divergence or corre-
lation and then selects features according to a threshold.
Commonly used scoring criteria for each feature are vari-
ance, the correlation coefficient, the chi-square test, and
mutual information. The second is the wrapper method,
which classifies the sample set with the selected feature
subset, after which the classification accuracy is used as the
criterion to measure the quality of the feature subset. The
third method is the embedded method, in which variable
selection is performed as part of the learning procedure.

5



Regularization, decision tree, and deep learning are all
embedded methods.

3.2. Feature Construction

Feature construction is a process that constructs new
features from the basic feature space or raw data to enhance
the robustness and generalizability of the model. Essen-
tially, this is done to increase the representative ability of
the original features. This process is traditionally highly
dependent on human expertise, and one of the most com-
monly used methods is preprocessing transformation, such
as standardization, normalization, or feature discretization.
In addition, the transformation operations for different
types of features may vary. For example, operations such
as conjunctions, disjunctions and negation are typically
used for Boolean features; operations such as minimum,
maximum, addition, subtraction, mean are typically used
for numerical features, and operations such as Cartesian
product [113] and M-of-N [114] are commonly used for
nominal features.

It is impossible to manually explore all possibilities.
Hence, to further improve efficiency, some automatic fea-
ture construction methods [115, 114, 116, 117] have been
proposed to automate the process of searching and evaluat-
ing the operation combination, and shown to achieve results
as good as or superior to those achieved by human exper-
tise. Besides, some feature construction methods, such as
decision tree-based methods [115, 114] and genetic algo-
rithms [116], require a predefined operation space, while
the annotation-based approaches [117] do not, as they can
use domain knowledge (in the form of annotation) and
the training examples, and hence, can be traced back to
the interactive feature-space construction protocol intro-
duced by [118]. Using this protocol, the learner identifies
inadequate regions of feature space and, in coordination
with a domain expert, adds descriptiveness using existing
semantic resources. After selecting possible operations and
constructing a new feature, feature-selection techniques are
applied to evaluate the new feature.

3.3. Feature Extraction

Feature extraction is a dimensionality-reduction process
performed via some mapping functions. It extracts infor-
mative and non-redundant features according to certain
metrics. Unlike feature selection, feature extraction alters
the original features. The kernel of feature extraction is a
mapping function, which can be implemented in many ways.
The most prominent approaches are principal component
analysis (PCA), independent component analysis, isomap,
nonlinear dimensionality reduction, and linear discriminant
analysis (LDA). Recently, the feed-forward neural network
approach has become popular; this uses the hidden units
of a pretrained model as extracted features. Furthermore,
many autoencoder-based algorithms are proposed; for ex-
ample, Zeng et al. [119] proposed a relation autoencoder
model that considers data features and their relationships,

Model	Generation

Entire-structured

Search	Space Architecture	Optimization

Random	search

Reinforcement
Learning

Evolutionary
Algorithm

Gradient	Descent

Bayesian
Optimization

Model	Estimation

Low-fidelity

Early-stopping

Surrogate	Model

Weight-sharing

Cell-based

Hierarchical

Morphism-based Hybrid

Figure 5: An overview of neural architecture search pipeline.

while an unsupervised feature-extraction method using
autoencoder trees is proposed by [120].

4. Model Generation

Model generation is divided into two parts––search
space and optimization methods––as shown in Figure 1.
The search space defines the model structures that can be
designed and optimized in principle. The types of models
can be broadly divided into two categories: traditional
ML models, such as support vector machine (SVM) [121]
and k-nearest neighbors algorithm (KNN) [122], and deep
neural network (DNN). There are two types of parameters
for the optimization methods: hyperparameters used for
training, such as the learning rate, and those used for model
design, such as the filter size and the number of layers
for DNN. Neural architecture search (NAS) has recently
attracted considerable attention; therefore, in this section,
we introduce the search space and optimization methods of
NAS technique. Readers who are interested in traditional
models (e.g., SVM) can refer to other reviews [9, 8].

Figure 5 presents an overview of the NAS pipeline,
which is categorized into the following three dimensions
[10, 123]: search space, architecture optimization (AO)
method6, and model evaluation method.

• Search Space. The search space defines the design
principles of neural architectures. Different scenarios
require different search spaces. Here, we summarize
four types of commonly used search spaces: entire-
structured, cell-based, hierarchical, and morphism-
based.

6It can also be referred to as the “search strategy [10, 123]”,
“search policy [11]”, or “optimization method [45, 9]”.

6



• Architecture Optimization Method. The architecture
optimization (AO) method defines how to guide the
search to efficiently find the model architecture with
high performance after the search space is defined.

• Model Evaluation Method. Once a model is gener-
ated, its performance needs to be evaluated. The
simplest approach of doing this is to train the model
to converge on the training set, and then estimate
model performance on the validation set; however,
this method is time-consuming and resource-intensive.
Some advanced methods can accelerate the evalua-
tion process but lose fidelity in the process. Thus,
how to balance the efficiency and effectiveness of an
evaluation is a problem worth studying.

The search space and AO methods are presented in
this section, while the methods of model evaluation are
presented in the next section.

4.1. Search Space

A neural architecture can be represented as a direct
acyclic graph (DAG) comprising B ordered nodes. In DAG,
each node and directed edge indicate a feature tensor and
an operation, respectively. Eq. 1 presents a formula for
computation at any node Zk, k ∈ {1, 2, ..., B}.

input

output

max	pool

conv	3x3

conv	5x5

input

output

max	pool

conv	3x3

conv	5x5

conv	3x3 conv	3x3

L1

L2

L3

L4

Figure 6: Two simplified examples of entire-structured neural archi-
tectures. Each layer is specified with a different operation, such as
convolution and max-pooling operations. The edge indicates the infor-
mation flow. The skip-connection operation used in the right example
can help explore deeper and more complex neural architectures.

Zk =

Nk∑
i=1

oi(Ii), oi ∈ O (1)

where Nk indicates the indegree of node Zk, Ii and oi
represent i-th input tensor and its associated operation,
respectively, and O is a set of candidate operations, such
as convolution, pooling, activation functions, skip connec-
tion, concatenation, and addition. To further enhance the
model performance, many NAS methods use certain ad-
vanced human-designed modules as primitive operations,
such as depth-wise separable convolution [124], dilated
convolution[125], and squeeze-and-excitation (SE) blocks
[126]. The selection and combination of these operations
vary with the design of search space. In other words, the
search space defines the structural paradigm that AO meth-
ods can explore; thus, designing a good search space is a
vital but challenging problem. In general, a good search
space is expected to exclude human bias and be flexible
enough to cover a wider variety of model architectures.
Based on the existing NAS studies, we detail the com-
monly used search spaces as follows.

4.1.1. Entire-structured Search Space

The space of entire-structured neural networks [12, 13]
is one of the most intuitive and straightforward search
spaces. Figure 6 presents two simplified examples of entire-
structured models, which are built by stacking a predefined
number of nodes, where each node represents a layer and
performs a specified operation. The left model shown in
Figure 6 indicates the simplest structure, while the right
model is relatively complex, as it permits arbitrary skip
connections [2] to exist between the ordered nodes; these
connections have been proven effective in practice [12]. Al-
though an entire structure is easy to implement, it has
several disadvantages. For example, it is widely accepted
that the deeper is the model, the better is its generaliza-
tion ability; however, searching for such a deep network
is onerous and computationally expensive. Furthermore,
the generated architecture lacks transferability; that is, a
model generated on a small dataset may not fit a larger
dataset, which necessitates the generation of a new model
for a larger dataset.

4.1.2. Cell-based Search Space

Motivation. To enable the transferability of the gener-
ated model, the cell-based search space has been proposed
[15, 16, 13], in which the neural architecture is composed
of a fixed number of repeating cell structures. This de-
sign approach is based on the observation that many well-
performing human-designed models [2, 127] are also built
by stacking a fixed number of modules. For example, the
ResNet family builds many variants, such as ResNet50,
ResNet101, and ResNet152, by stacking several BottleNeck
modules [2]. Throughout the literature, this repeated mod-
ule is referred to as a motif, cell, or block, while in this
paper, we call it a cell.

Design. Figure 7 (left) presents an example of a final
cell-based neural network, which comprises two types of
cells: normal and reduction cells. Thus, the problem of
searching for a full neural architecture is simplified into

7



×	n

input

output

normal	cell

reduction	cell

normal	cell

reduction	cell

normal	cell

reduction	cell
Cell	k

Cell	k-2

Cell	k-1

...

Block	0

conv
5x5 skip

add

Block	1

conv
3x3

max-
pool

add

concat

Cell	k+1

×	n

×	n

Figure 7: (Left) Example of a cell-based model comprising three
motifs, each with n normal cells and one reduction cell. (Right)
Example of a normal cell, which contains two blocks, each having two
nodes. Each node is specified with a different operation and input.

searching for an optimal cell structure in the context of
cell-based search space. Besides, the output of the normal
cell retains the same spatial dimension as the input, and
the number of normal cell repeats is usually set manually
based on the actual demand. The reduction cell follows
behind a normal cell and has a similar structure to that of
the normal cell, with the differences being that the width
and height of the output feature maps of the reduction
cell are half the input, and the number of channels is
twice the input. This design approach follows the common
practice of manually designing neural networks. Unlike
the entire-structured search space, the model built on cell-
based search space can be expanded to form a larger model
by simply adding more cells without re-searching for the
cell structure. Meanwhile, many approaches [17, 13, 15]
have experimentally demonstrated the transferability of
the model generated in cell-based search space, such as the
model built on CIFAR-10, which can also achieve compa-
rable results to those achieved by SOTA human-designed
models on ImageNet.

The design paradigm of the internal cell structure of
most NAS studies refers to Zoph et al. [15], who were
among the first to propose the exploration of cell-based
search space. Figure 7 (right) shows an example of a normal
cell structure. Each cell contains B blocks (here B = 2),
and each block has two nodes. Each node in a block can be
assigned different operations and receive different inputs.
The output of two nodes in the block can be combined
through addition or concatenation operation. Therefore,

each block can be represented by a five-element tuple,
(I1, I2, O1, O2, C), where I1, I2 ∈ Ib indicate the inputs to
the block, while O1, O2 ∈ O indicate the operations applied
to inputs, and C ∈ C describes how to combine O1 and
O2. As the blocks are ordered, the set of candidate inputs
Ib for the nodes in block bk, which contains the output of
the previous two cells and the output set of all previous
blocks {bi, i < k} of the same cell. The first two inputs of
the first cell of the whole model are set to the image data
by default.

In the actual implementation, certain essential details
need to be noted. First, the number of channels may differ
for different inputs. A commonly used solution is to apply a
calibration operation on each node’s input tensor to ensure
that all inputs have the same number of channels. The
calibration operation generally uses 1×1 convolution filters,
such that it will not change the width and height of the
input tensor, but keep the channel number of all input
tensors consistent. Second, as mentioned above, the input
of a node in a block can be obtained from the previous two
cells or the previous blocks within the same cell; hence,
the cell’s output must have the same spatial resolution. To
this end, if the input/output resolutions are different, the
calibration operation has stride 2; otherwise, it has stride
1. Besides, all blocks have stride 1.

Complexity. Searching for a cell structure is more
efficient than searching for an entire structure. To illustrate
this, let us assume that there are M predefined candidate
operations, the number of layers for both entire and the
cell-based structures is L, and the number of blocks in a
cell is B. Then, the number of possible entire structures
can be expressed as:

Nentire = ML × 2
L×(L−1)

2 (2)

The number of possible cells is (MB × (B+ 2)!)2. However,
as there are two types of cells (i.e., normal and reduc-
tion cells), the final size of the cell-based search space is
calculated as

Ncell = (MB × (B + 2)!)4 (3)

Evidently, the complexity of searching for the entire struc-
ture grows exponentially with the number of layers. For
an intuitive comparison, we assign the variables in the
Eqs. 2 and 3 the typical value in the literature, i.e.,
M = 5, L = 10, B = 3; then Nentire = 3.44 × 1020 is
much larger than Ncell = 5.06× 1016.

Two-stage Gap. The NAS methods of cell-based
search space usually comprise two phases: search and eval-
uation. First, in the search phase, the best-performing
model is selected, and then, in the evaluation phase, it is
trained from scratch or fine-tuned. However, there exists a
large gap in the model depth between the two phases. As
Figure 8 (left) shows, for DARTS [17], the generated model
in the search phase only comprises eight cells for reducing
the GPU memory consumption, while in the evaluation
phase, the number of cells is extended to 20. Although the

8



8
Cells

20
Cells

Search
phase

Estimation
phase

5
Cells

Search
phase

Estimation
phase

11
Cells

17
Cells

20
Cells

5	ops
3	ops

2	ops

DARTS P-DARTS

Figure 8: Difference between DARTS [17] and P-DARTS [128]. Both
methods search and evaluate networks on the CIFAR-10 dataset. As
the number of cell structures increases from 5 to 11 and then 17, the
number of candidate operations is gradually reduced accordingly.

search phase finds the best cell structure for the shallow
model, this does not mean that it is still suitable for the
deeper model in the evaluation phase. In other words,
simply adding more cells may deteriorate the model perfor-
mance. To bridge this gap, Chen et al. [128] proposed an
improved method based on DARTS, namely progressive-
DARTS (P-DARTS), which divides the search phase into
multiple stages and gradually increases the depth of the
searched networks at the end of each stage, hence bridging
the gap between search and evaluation. However, increas-
ing the number of cells in the search phase may result in
heavier computational overhead. Thus, for reducing the
computational consumption, P-DARTS gradually reduces
the number of candidate operations from 5 to 3, and then
2, through search space approximation methods, as shown
in Figure 8. Experimentally, P-DARTS obtains a 2.50%
error rate on the CIFAR-10 test dataset, outperforming
the 2.83% error rate achieved by DARTS.

4.1.3. Hierarchical Search Space

d=2 d=4 d=8 d=16 ...

L1

L2

L3

...

...

LN-1

LN

Figure 9: Network-level search space proposed by [129]. The blue
point (top-left) indicates the fixed “stem” structure, the remain-
ing gray and orange points are cell structure, as described above.
The black arrows along the orange points indicate the final selected
network-level structure. “d” and “L” indicate the down sampling
rate and layer, respectively.

The cell-based search space enables the transferability
of the generated model, and most of the cell-based methods

[13, 15, 23, 16, 25, 26] follow a two-level hierarchy: the inner
is the cell level, which selects the operation and connection
for each node in the cell, and the outer is the network level,
which controls the spatial-resolution changes. However,
these approaches focus on the cell level and ignore the
network level. As shown in Figure 7, whenever a fixed
number of normal cells are stacked, the spatial dimension
of the feature maps is halved by adding a reduction cell.
To jointly learn a suitable combination of repeatable cell
and network structures, Liu et al. [129] defined a general
formulation for a network-level structure, depicted in Figure
9, from which many existing good network designs can be
reproduced. In this way, we can fully explore the different
number of channels and sizes of feature maps of each layer
in the network.

level-one

1×1	conv
3×3	conv

max-pooling

level-two level-three

Figure 10: Example of a three-level hierarchical architecture rep-
resentation. The level-one primitive operations are assembled into
level-two cells. The level-two cells are viewed as primitive operations
and assembled into level-three cell.

In terms of the cell level, the number of blocks (B) in a
cell is still manually predefined and fixed in the search stage.
In other words, B is a new hyperparameter that requires
tuning by human input. To address this problem, Liu et al.
[19] proposed a novel hierarchical genetic representation
scheme, namely HierNAS, in which a higher-level cell is
generated by iteratively incorporating lower-level cells. As
shown in Figure 10, level-one cells can be some primitive
operations, such as 1× 1 and 3× 3 convolution and 3× 3
max-pooling, and are the basic components of level-two
cells. Then, level-two cells are used as primitive operations
to generate level-three cells. The highest-level cell is a single
motif corresponding to the full architecture. Besides, a
higher-level cell is defined by a learnable adjacency upper-
triangular matrix G, where Gij = k indicates that the
k-th operation 0k is implemented between nodes i and j.
For example, the level-two cell shown in Figure 10(a) is
defined by a matrix G, where G01 = 2, G02 = 1, G12 = 0
(the index starts from 0). This method can identify more
types of cell structures with more complex and flexible
topologies. Similarly, Liu et al. [18] proposed progressive
NAS (PNAS) to search for the cell progressively, starting
from the simplest cell structure, which is composed of only
one block, and then expanding to a higher-level cell by
adding more possible block structures. Moreover, PNAS
improves the search efficiency by using a surrogate model
to predict the top-k promising blocks from the search space
at each stage of cell construction.

For both HierNAS and PNAS, once a cell structure is
searched, it is used in all network layers, which limits the
layer diversity. Besides, for achieving both high accuracy

9



and low latency, some studies [130, 131] proposed to search
for complex and fragmented cell structures. For example,
Tan et al. [130] proposed MnasNet, which uses a novel
factorized hierarchical search space to generate different
cell structures, namely MBConv, for different layers of the
final network. Figure 11 presents the factorized hierarchical
search space of MnasNet, which comprises a predefined
number of cell structures. Each cell has a different struc-
ture and contains a variable number of blocks––whereas all
blocks in the same cell exhibit the same structure, those
in other cells exhibit different structures. As this design
method can achieve a suitable balance between model per-
formance and latency, many subsequent studies [131, 132]
have referred to it. Owing to the large computational
consumption, most of the differentiable NAS (DNAS) tech-
niques (e.g., DARTS) first search for a suitable cell struc-
ture on a proxy dataset (e.g., CIFAR10), and then transfer
it to a larger target dataset (e.g., ImageNet). Han et al.
[132] proposed ProxylessNAS, which can directly search
for neural networks on the targeted dataset and hardware
platforms by using BinaryConnect [133], which addresses
the high memory consumption issue.

input

output

Cell	1

Cell	2

Cell	3

Cell	n

Block	3-1

conv
1x1

Block	3-B3

...
...

Block	1-1

Block	1-B1

...

conv
3x3

conv
1x1

+

conv
1x1

Figure 11: Factorized hierarchical search space in MnasNet [130].
The final network comprises different cells. Each cell is composed of
a variable number of repeated blocks, where the block in the same
cell shares the same structure but differs from that in the other cells.

4.1.4. Morphism-based Search Space

Isaac Newton is reported to have said that “If I have
seen further, it is by standing on the shoulders of giants.”
Similarly, several training tricks have been proposed, such
as knowledge distillation [134] and transfer learning [135].
However, these methods do not directly modify the model
structure. To this end, Chen et al. [20] proposed the
Net2Net technique for designing new neural networks based
on an existing network by inserting identity morphism

(IdMorph) transformations between the neural network
layers. An IdMorph transformation is function-preserving
and can be classified into two types – depth and width
IdMorph (shown in Figure 12) – which makes it possible to
replace the original model with an equivalent model that
is deeper or wider.

However, IdMorph is limited to width and depth changes,
and can only modify them separately; moreover, the spar-
sity of its identity layer can create problems [2]. There-
fore, an improved method is proposed, namely network
morphism [21], which allows a child network to inherit
all knowledge from its well-trained parent network and
continue to grow into a more robust network within a
shortened training time. Compared with Net2Net, net-
work morphism exhibits the following advantages: 1) it can
embed nonidentity layers and handle arbitrary nonlinear
activation functions, and 2) it can simultaneously perform
depth, width, and kernel size-morphing in a single oper-
ation, whereas Net2Net has to separately consider depth
and width changes. The experimental results in [21] show
that network morphism can substantially accelerate the
training process, as it uses one-fifteenth of the training
time and achieves better results than the original VGG16.

a

Deeper	Net

Initial	Net

Wider	Net

d

fe

b c

d

f/2e

a b c
d

c

f/2

Depth	IdMorph

Width	IdMorph

Figure 12: Net2DeeperNet and Net2WiderNet transformations in
[20]. “IdMorph” refers to identity morphism operation. The value on
each edge indicates the weight.

Several subsequent studies [27, 22, 136, 137, 138, 139,
140, 141] are based on network morphism. For instance,
Jin et al. [22] proposed a framework that enables Bayesian
optimization to guide the network morphism for an effi-
cient neural architecture search. Wei et al. [136] further
improved network morphism at a higher level, i.e., by mor-
phing a convolutional layer into the arbitrary module of a
neural network. Additionally, Tan and Le [142] proposed
EfficientNet, which re-examines the effect of model scaling
on convolutional neural networks, and proved that carefully
balancing the network depth, width, and resolution can
lead to better performance.

10



4.2. Architecture Optimization

After defining the search space, we need to search for
the best-performing architecture, a process we call architec-
ture optimization (AO). Traditionally, the architecture of a
neural network is regarded as a set of static hyperparame-
ters that are tuned based on the performance observed on
the validation set. However, this process highly depends
on human experts and requires considerable time and re-
sources for trial and error. Therefore, many AO methods
have been proposed to free humans from this tedious pro-
cedure and to search for novel architectures automatically.
Below, we detail the commonly used AO methods.

4.2.1. Evolutionary Algorithm

The evolutionary algorithm (EA) is a generic population-
based metaheuristic optimization algorithm that takes in-
spiration from biological evolution. Compared with tradi-
tional optimization algorithms such as exhaustive methods,
EA is a mature global optimization method with high
robustness and broad applicability. It can effectively ad-
dress the complex problems that traditional optimization
algorithms struggle to solve, without being limited by the
problem’s nature.

Encoding Scheme. Different EAs may use differ-
ent types of encoding schemes for network representation.
There are two types of encoding schemes: direct and indi-
rect.

Direct encoding is a widely used method that explicitly
specifies the phenotype. For example, genetic CNN [30]
encodes the network structure into a fixed-length binary
string, e.g., 1 indicates that two nodes are connected, and
vice versa. Although binary encoding can be performed
easily, its computational space is the square of the number
of nodes, which is fixed-length, i.e., predefined manually.
For representing variable-length neural networks, DAG en-
coding is a promising solution [28, 25, 19]. For example,
Suganuma et al. [28] used the Cartesian genetic program-
ming (CGP) [143, 144] encoding scheme to represent a
neural network built by a list of sub-modules that are de-
fined as DAG. Similarly, in [25], the neural architecture
is also encoded as a graph, whose vertices indicate rank-3
tensors or activations (with batch normalization performed
with rectified linear units (ReLUs) or plain linear units)
and edges indicate identity connections or convolutions.
Neuro evolution of augmenting topologies (NEAT) [24, 25]
also uses a direct encoding scheme, where each node and
connection is stored.

Indirect encoding specifies a generation rule to build
the network and allows for a more compact representation.
Cellular encoding (CE) [145] is an example of a system
that utilizes indirect encoding of network structures. It
encodes a family of neural networks into a set of labeled
trees and is based on a simple graph grammar. Some recent
studies [146, 147, 148, 27] have described the use of indirect
encoding schemes to represent a network. For example,
the network in [27] can be encoded by a function, and

Initialization

Stopping?

Termination

Yes

Selection

Crossover

Mutation

Update

Evolution

No

Figure 13: Overview of the evolutionary algorithm.

each network can be modified using function-preserving
network morphism operators. Hence, the child network has
increased capacity and is guaranteed to perform at least
as well as the parent networks.

Four Steps. A typical EA comprises the following
steps: selection, crossover, mutation, and update (Figure
13):

• Selection This step involves selecting a portion of
the networks from all generated networks for the
crossover, which aims to maintain well-performing
neural architectures while eliminating the weak ones.
The following three strategies are adopted for network
selection. The first is fitness selection, in which the
probability of a network being selected is proportional

to its fitness value, i.e., P (hi) = Fitness(hi)∑N
j=1 Fitness(hj)

,

where hi indicates the i-th network. The second is
rank selection, which is similar to fitness selection,
but with the network’s selection probability being
proportional to its relative fitness rather than its
absolute fitness. The third method is tournament
selection [25, 27, 26, 19]. Here, in each iteration, k
(tournament size) networks are randomly selected
from the population and sorted according to their
performance; then, the best network is selected with
a probability of p, the second-best network has a
probability of p× (1− p), and so on.

• Crossover After selection, every two networks are se-
lected to generate a new offspring network, inheriting
half of the genetic information of each of its parents.
This process is analogous to the genetic recombina-
tion, which occurs during biological reproduction and
crossover. The particular manner of crossover varies
and depends on the encoding scheme. In binary en-
coding, networks are encoded as a linear string of
bits, where each bit represents a unit, such that two
parent networks can be combined through one- or
multiple-point crossover. However, the crossover of

11



the data arranged in such a fashion can sometimes
damage the data. Thus, Xie et al. [30] denoted the
basic unit in a crossover as a stage rather than a
bit, which is a higher-level structure constructed by
a binary string. For cellular encoding, a randomly se-
lected sub-tree is cut from one parent tree to replace
a sub-tree cut from the other parent tree. In another
approach, NEAT performs an artificial synapsis based
on historical markings, adding a new structure with-
out losing track of the gene present throughout the
simulation.

• Mutation As the genetic information of the parents
is copied and inherited by the next generation, gene
mutation also occurs. A point mutation [28, 30] is
one of the most widely used operations and involves
randomly and independently flipping each bit. Two
types of mutations have been described in [29]: one
enables or disables a connection between two lay-
ers, and the other adds or removes skip connections
between two nodes or layers. Meanwhile, Real and
Moore et al. [25] predefined a set of mutation opera-
tors, such as altering the learning rate and removing
skip connections between the nodes. By analogy with
the biological process, although a mutation may ap-
pear as a mistake that causes damage to the network
structure and leads to a loss of functionality, it also
enables the exploration of more novel structures and
ensures diversity.

• Update Many new networks are generated by com-
pleting the above steps, and considering the limita-
tions on computational resources, some of these must
be removed. In [25], the worst-performing network
of two randomly selected networks is immediately
removed from the population. Alternatively, in [26],
the oldest networks are removed. Other methods
[29, 30, 28] discard all models at regular intervals.
However, Liu et al. [19] did not remove any network
from the population, and instead, allowed the net-
work number to grow with time. Zhu et al. [149]
regulated the population number through a variable
λ, i.e., removed the worst model with probability λ
and the oldest model with 1− λ.

4.2.2. Reinforcement Learning

Zoph et al. [12] were among the first to apply reinforce-
ment learning (RL) to neural architecture search. Figure 14
presents an overview of an RL-based NAS algorithm. Here,
the controller is usually a recurrent neural network (RNN)
that executes an action At at each step t to sample a new ar-
chitecture from the search space and receives an observation
of the state St together with a reward scalar Rt from the
environment to update the controller’s sampling strategy.
Environment refers to the use of a standard neural net-
work training procedure to train and evaluate the network
generated by the controller, after which the corresponding

Controller
(RNN) Environment

action	At:	sample	an	architecture

reward	Rt

state	St

Rt+1

St+1

Figure 14: Overview of neural architecture search using reinforcement
learning.

results (such as accuracy) are returned. Many follow-up
approaches [23, 15, 16, 13] have used this framework, but
with different controller policies and neural-architecture
encoding. Zoph et al. [12] first used the policy gradient
algorithm [150] to train the controller, and sequentially
sampled a string to encode the entire neural architecture.
In a subsequent study [15], they used the proximal policy
optimization (PPO) algorithm [151] to update the con-
troller, and proposed the method shown in Figure 15 to
build a cell-based neural architecture. MetaQNN [23] is a
meta-modeling algorithm using Q-learning with an ε-greedy
exploration strategy and experience replay to sequentially
search for neural architectures.

Block	1	of	cell	k

Embedding

hidden
state

prediction
conv
5x5

Block	2	of	cell	k

skip
conv
3x3

conv
5x5

-2 -1

-2 skip -1

max-
pool0

conv
3x3

0

op	A op	Bindex	A index	B op	A op	Bindex	A index	B

max-
pool

-1

Empty
input

Figure 15: Example of a controller generating a cell structure. Each
block in the cell comprises two nodes that are specified with different
operations and inputs. The indices −2 and −1 indicate the inputs
are derived from prev-previous and previous cell, respectively.

Although the above RL-based algorithms have achieved
SOTA results on the CIFAR-10 and Penn Treebank (PTB)
[152] datasets, they incur considerable time and computa-
tional resources. For instance, the authors in [12] took 28
days and 800 K40 GPUs to search for the best-performing
architecture, and MetaQNN [23] also took 10 days and 10
GPUs to complete its search. To this end, some improved
RL-based algorithms have been proposed. BlockQNN [16]
uses a distributed asynchronous framework and an early-
stop strategy to complete searching on only one GPU
within 20 hours. The efficient neural architecture search
(ENAS) [13] is even better, as it adopts a parameter-sharing
strategy in which all child architectures are regarded as
sub-graphs of a supernet; this enables these architectures

12



to share parameters, obviating the need to train each child
model from scratch. Thus, ENAS took only approximately
10 hours using one GPU to search for the best architecture
on the CIFAR-10 dataset, which is nearly 1000× faster
than [12].

4.2.3. Gradient Descent

The above-mentioned search strategies sample neural
architectures from a discrete search space. A pioneering al-
gorithm, namely DARTS [17], was among the first gradient
descent (GD)-based method to search for neural architec-
tures over a continuous and differentiable search space by
using a softmax function to relax the discrete space, as
outlined below:

oi,j(x) =

K∑
k=1

exp
(
αki,j
)∑K

l=1 exp
(
αli,j
)ok(x) (4)

where o(x) indicates the operation performed on input
x, αki,j indicates the weight assigned to the operation ok

between a pair of nodes (i, j), and K is the number of
predefined candidate operations. After the relaxation, the
task of searching for architectures is transformed into a
joint optimization of neural architecture α and the weights
of this neural architecture θ. These two types of parameters
are optimized alternately, indicating a bilevel optimization
problem. Specifically, α and θ are optimized with the
validation and the training sets, respectively. The training
and the validation losses are denoted by Ltrain and Lval,
respectively. Hence, the total loss function can be derived
as follows:

minα Lval (θ∗, α)
s.t. θ∗ = argminθ Ltrain(θ, α)

(5)

Figure 16 presents an overview of DARTS, where a cell
is composed of N (here N = 4) ordered nodes and the
node zk (k starts from 0) is connected to the node zi, i ∈
{k + 1, ..., N}. The operation on each edge ei,j is initially
a mixture of candidate operations, each being of equal
weight. Therefore, the neural architecture α is a supernet
that contains all possible child neural architectures. At
the end of the search, the final architecture is derived by
retaining only the maximum-weight operation among all
mixed operations.

Although DARTS substantially reduces the search time,
it incurs several problems. First, as Eq. 5 shows, DARTS
describes a joint optimization of the neural architecture
and weights as a bilevel optimization problem. However,
this problem is difficult to solve directly, because both ar-
chitecture α and weights θ are high dimensional parameters.
Another solution is single-level optimization, which can be
formalized as

min
θ,α
Ltrain(θ, α) (6)

which optimizes both neural architecture and weights to-
gether. Although the single-level optimization problem

can be efficiently solved as a regular training, the searched
architecture α commonly overfits the training set and its
performance on the validation set cannot be guaranteed.
The authors in [153] proposed mixed-level optimization:

min
α,θ

[Ltrain (θ∗, α) + λLval (θ∗, α)] (7)

where α indicates the neural architecture, θ is the weight as-
signed to it, and λ is a non-negative regularization variable
to control the weights of the training loss and validation
loss. When λ = 0, Eq. 7 reduces to a single-level opti-
mization (Eq. 6); in contrast, Eq. 7 becomes a bilevel
optimization (Eq. 5). The experimental results presented
in [153] showed that mixed-level optimization not only over-
comes the overfitting issue of single-level optimization but
also avoids the gradient error of bilevel optimization.

Second, in DARTS, the output of each edge is the
weighted sum of all candidate operations (shown in Eq.
4) during the whole search stage, which leads to a linear
increase in the requirements of GPU memory with the
number of candidate operations. To reduce resource con-
sumption, many subsequent studies [154, 155, 153, 156, 131]
have developed a differentiable sampler to sample a child
architecture from the supernet by using a reparameteri-
zation trick, namely Gumbel Softmax [157]. The neural
architecture is fully factorized and modeled with a concrete
distribution [158], which provides an efficient approach to
sampling a child architecture and allows gradient backprop-
agation. Therefore, Eq. 4 is re-formulated as

oki,j(x) =

K∑
k=1

exp
((

logαki,j +Gki,j
)
/τ
)∑K

l=1 exp
((

logαli,j +Gli,j
)
/τ
)ok(x) (8)

where Gki,j = −log(−log(uki,j)) is the k-th Gumbel sample,

uki,j is a uniform random variable, and τ is the Softmax
temperature. When τ →∞, the possibility distribution of
all operations between each node pair approximates to one-
hot distribution. In GDAS [154], only the operation with
the maximum possibility for each edge is selected during
the forward pass, while the gradient is backpropagated
according to Eq. 8. In other words, only one path of the
supernet is selected for training, thereby reducing the GPU
memory usage. Besides, ProxylessNAS [132] alleviates
the huge resource consumption through path binarization.
Specifically, it transforms the real-valued path weights [17]
to binary gates, which activates only one path of the mixed
operations, and hence, solves the memory issue.

Another problem is the optimization of different op-
erations together, as they may compete with each other,
leading to a negative influence. For example, several studies
[159, 128] have found that skip-connect operation domi-
nates at a later search stage in DARTS, which causes the
network to be shallower and leads to a marked deterioration
in performance. To solve this problem, DARTS+ [159] uses
an additional early-stop criterion, such that when two or

13



0

1

2

3

0

1

2

3
0.3

0.1
0.6

0

1

2

3

												(a) 															(b) 												(c) 												(d)

0

1

?

2

?

?

3

?

?

Figure 16: Overview of DARTS. (a) The data can only flow from lower-level nodes to higher-level nodes, and the operations on edges are
initially unknown. (b) The initial operation on each edge is a mixture of candidate operations, each having equal weight. (c) The weight of
each operation is learnable and ranges from 0 to 1, but for previous discrete sampling methods, the weight could only be 0 or 1. (d) The final
neural architecture is constructed by preserving the maximum weight-value operation on each edge.

more skip-connects occur in a normal cell, the search pro-
cess stops. In another example, P-DARTS [128] regularizes
the search space by executing operation-level dropout to
control the proportion of skip-connect operations occurring
during training and evaluation.

4.2.4. Surrogate Model-based Optimization

Another group of architecture optimization methods is
surrogate model-based optimization (SMBO) algorithms
[33, 34, 160, 161, 162, 163, 164, 165, 166, 18, 161]. The
core concept of SMBO is that it builds a surrogate model
of the objective function by iteratively keeping a record
of past evaluation results, and uses the surrogate model
to predict the most promising architecture. Thus, these
methods can substantially shorten the search time and
improve efficiency.

SMBO algorithms differ from the surrogate models,
which can be broadly divided into Bayesian optimization
(BO) methods (including Gaussian process (GP) [167],
random forest (RF) [37], tree-structured Parzen estimator
(TPE) [168]), and neural networks [164, 169, 18, 166].

BO [170, 171] is one of the most popular methods for
hyperparameter optimization. Many recent studies [33,
34, 160, 161, 162, 163, 164, 165] have attempted to apply
these SOTA BO methods to AO. For example, in [172, 173,
160, 165, 174, 175], the validation results of the generated
neural architectures were modeled as a Gaussian process,
which guides the search for the optimal neural architectures.
However, in GP-based BO methods, the inference time
scales cubically in the number of observations, and they
cannot effectively handle variable-length neural networks.
Camero et al. [176] proposed three fixed-length encoding
schemes to cope with variable-length problems by using
RF as the surrogate model. Similarly, both [33] and [176]
used RF as a surrogate model, and [177] showed that it
works better in setting high dimensionality than GP-based
methods.

Instead of using BO, some studies have used a neural

network as the surrogate model. For example, in PNAS
[18] and EPNAS [166], an LSTM is derived as the surrogate
model to progressively predict variable-sized architectures.
Meanwhile, NAO [169] uses a simpler surrogate model, i.e.,
multilayer perceptron (MLP), and NAO is more efficient
and achieves better results on CIFAR-10 than does PNAS
[18]. White et al. [164] trained an ensemble of neural
networks to predict the mean and variance of the validation
results for candidate neural architectures.

4.2.5. Grid and Random Search

Both grid search (GS) and random search (RS) are sim-
ple optimization methods applied to several NAS studies
[178, 179, 180, 11]. For instance, Geifman et al. [179] pro-
posed a modular architecture search space (A = {A(B, i, j)|i ∈
{1, 2, ..., Ncells}, j ∈ {1, 2, ..., Nblocks}}) that is spanned
by the grid defined by the two corners A(B, 1, 1) and
A(B,Ncells, Nblocks), where B is a searched block struc-
ture. Evidently, a larger value Ncells ×Nblocks leads to the
exploration of a larger space, but requires more resources.

The authors in [180] conducted an effectiveness com-
parison between SOTA NAS methods and RS. The results
showed that RS is a competitive NAS baseline. Specifically,
RS with an early-stopping strategy performs as well as
ENAS [13], which is an RL-based leading NAS method.
Besides, Yu et al. [11] demonstrated that the SOTA NAS
techniques are not significantly better than random search.

4.2.6. Hybrid Optimization Method

The abovementioned architecture optimization methods
have their own advantages and disadvantages. 1) EA is a
mature global optimization method with high robustness.
However, it requires considerable computational resources
[26, 25], and its evolution operations (such as crossover and
mutations) are performed randomly. 2) Although RL-based
methods (e.g., ENAS [13]) can learn complex architectural
patterns, the searching efficiency and stability of the RL
controller are not guaranteed because it may take several

14



actions to obtain a positive reward. 3) The GD-based meth-
ods (e.g., DARTS [17]) substantially improve the searching
efficiency by relaxing the categorical candidate operations
to continuous variables. Nevertheless, in essence, they all
search for a child network from a supernet, which limits the
diversity of neural architectures. Therefore, some methods
have been proposed to incorporate different optimization
methods to capture the best of their advantages; these
methods are summarized as follows

EA+RL. Chen et al. [42] integrated reinforced muta-
tions into an EA, which avoids the randomness of evolution
and improves the searching efficiency. Another similar
method developed in parallel is the evolutionary-neural
hybrid controller (Evo-NAS) [41], which also captures the
merits of both RL-based methods and EA. The Evo-NAS
controller’s mutations are guided by an RL-trained neural
network, which can explore a vast search space and sample
architectures efficiently.

EA+GD. Yang et al. [40] combined the EA and GD-
based method. The architectures share parameters within
one supernet and are tuned on the training set with a few
epochs. Then, the populations and the supernet are di-
rectly inherited in the next generation, which substantially
accelerates the evolution. The authors in [40] only took 0.4
GPU days for searching, which is more efficient than early
EA methods (e.g., AmoebaNet [26] took 3150 GPU days
and 450 GPUs for searching).

EA+SMBO. The authors in [43] used RF as a surro-
gate to predict model performance, which accelerates the
fitness evaluation in EA.

GD+SMBO. Unlike DARTS, which learns weights
for candidate operations, NAO [169] proposes a variational
autoencoder to generate neural architectures and further
build a regression model as a surrogate to predict the
performance of the generated architecture. The encoder
maps the representations of the neural architecture to
continuous space, and then a predictor network takes the
continuous representations of the neural architecture as
input and predicts the corresponding accuracy. Finally,
the decoder is used to derive the final architecture from a
continuous network representation.

4.3. Hyperparameter Optimization

Most NAS methods use the same set of hyperparameters
for all candidate architectures during the whole search stage;
thus, after finding the most promising neural architecture,
it is necessary to redesign a hyperparameter set and use
it to retrain or fine-tune the architecture. As some HPO
methods (such as BO and RS) have also been applied in
NAS, we will only briefly introduce these methods here.

4.3.1. Grid and Random Search

Figure 17 shows the difference between grid search (GS)
and random search (RS): GS divides the search space into
regular intervals and selects the best-performing point after
evaluating all points; while RS selects the best point from
a set of randomly drawn points.

Important parameter

U
n

im
p

o
rt

a
n

t 
p

a
ra

m
e

te
r

Important parameter

U
n

im
p

o
rt

a
n

t 
p

a
ra

m
e

te
r

Figure 17: Examples of grid search (left) and random search (right) in
nine trials for optimizing a two-dimensional space function f(x, y) =
g(x) + h(y) ≈ g(x) [181]. The parameter in g(x) (light-blue part)
is relatively important, while that in h(y) (light-yellow part) is not
important. In a grid search, nine trials cover only three important
parameter values; however, random search can explore nine distinct
values of g. Therefore, random search is more likely to find the
optimal combination of parameters than grid search (the figure is
adopted from [181]).

GS is very simple and naturally supports parallel imple-
mentation; however, it is computationally expensive and
inefficient when the hyperparameter space is very large, as
the number of trials grows exponentially with the dimen-
sionality of hyperparameters. To alleviate this problem,
Hsu et al. [182] proposed a coarse-to-fine grid search, in
which a coarse grid is first inspected to locate a good re-
gion, and then a finer grid search is implemented on the
identified region. Similarly, Hesterman et al. [183] pro-
posed a contracting GS algorithm, which first computes
the likelihood of each point in the grid, and then generates
a new grid centered on the maximum-likelihood value. The
point separation in the new grid is reduced to half that
on the old grid. The above procedure is iterated until the
results converge to a local minimum.

Although the authors in [181] empirically and theoreti-
cally showed that RS is more practical and efficient than
GS, RS does not promise an optimum value. This means
that although a longer search increases the probability
of finding optimal hyperparameters, it consumes more re-
sources. Li and Jamieson et al. [184] proposed a hyperband
algorithm to create a tradeoff between the performance
of the hyperparameters and resource budgets. The hyper-
band algorithm allocates limited resources (such as time
or CPUs) to only the most promising hyperparameters, by
successively discarding the worst half of the configuration
settings long before the training process is finished.

4.3.2. Bayesian Optimization

Bayesian optimization (BO) is an efficient method for
the global optimization of expensive blackbox functions.
In this section, we briefly introduce BO. For an in-depth
discussion on BO, we recommend readers to refer to the
excellent surveys conducted in [171, 170, 185, 186].

BO is an SMBO method that builds a probabilistic

15



model mapping from the hyperparameters to the objective
metrics evaluated on the validation set. It well balances
exploration (evaluating as many hyperparameter sets as
possible) and exploitation (allocating more resources to
promising hyperparameters).

Algorithm 1 Sequential Model-Based Optimization

INPUT: f,Θ, S,M
D ← INITSAMPLES (f,Θ)
for i in [1, 2, .., T ] do
p(y|θ,D)← FITMODEL (M,D)
θi ← arg maxθ∈Θ S(θ, p(y|θ,D))
yi ← f (θi) . Expensive step
D ← D ∪ (θi, yi)

end for

The steps of SMBO are expressed in Algorithm 1 (adopted
from [170]). Here, several inputs need to be predefined ini-
tially, including an evaluation function f , search space Θ,
acquisition function S, probabilistic model M, and record
dataset D. Specifically, D is a dataset that records many
sample pairs (θi, yi), where θi ∈ Θ indicates a sampled
neural architecture and yi indicates its evaluation result.
After the initialization, the SMBO steps are described as
follows:

1. The first step is to tune the probabilistic model M
to fit the record dataset D.

2. The acquisition function S is used to select the next
promising neural architecture from the probabilistic
model M.

3. The performance of the selected neural architecture
is evaluated by f , which is an expensive step as it
involves training the neural network on the training
set and evaluating it on the validation set.

4. The record dataset D is updated by appending a new
pair of results (θi, yi).

The above four steps are repeated T times, where T
needs to be specified according to the total time or resources
available. The commonly used surrogate models for the
BO method are GP, RF, and TPE. Table 2 summarizes
the existing open-source BO methods, where GP is one of
the most popular surrogate models. However, GP scales
cubically with the number of data samples, while RF can
natively handle large spaces and scales better to many data
samples. Besides, Falkner and Klein et al. [38] proposed the
BO-based hyperband (BOHB) algorithm, which combines
the strengths of TPE-based BO and hyperband, and hence,
performs much better than standard BO methods. Fur-
thermore, FABOLAS [35] is a faster BO procedure, which
maps the validation loss and training time as functions of
dataset size, i.e., trains a generative model on a sub-dataset
that gradually increases in size. Here, FABOLAS is 10-100
times faster than other SOTA BO algorithms and identifies
the most promising hyperparameters.

Library Model
Spearmint

https://github.com/HIPS/Spearmint
GP

MOE
https://github.com/Yelp/MOE

GP

PyBO
https://github.com/mwhoffman/pybo

GP

Bayesopt
https://github.com/rmcantin/bayesopt

GP

SkGP
https://scikit-optimize.github.io

GP

GPyOpt
http://sheffieldml.github.io/GPyOpt

GP

SMAC
https://github.com/automl/SMAC3

RF

Hyperopt
http://hyperopt.github.io/hyperopt

TPE

BOHB
https://github.com/automl/HpBandSter

TPE

Table 2: Open-source Bayesian optimization libraries. GP, RF, and
TPE represent Gaussian process [167], random forest [37], and tree-
structured Parzen estimator [168], respectively.

4.3.3. Gradient-based Optimization

Another group of HPO methods are gradient-based op-
timization (GO) algorithms [187, 188, 189, 190, 191, 192].
Unlike the above blackbox HPO methods (e.g., GS, RS,
and BO), GO methods use the gradient information to
optimize the hyperparameters and substantially improve
the efficiency of HPO. Maclaurin et al. [189] proposed a
reversible-dynamics memory-tape approach to handle thou-
sands of hyperparameters efficiently through the gradient
information. However, optimizing many hyperparameters
is computationally challenging. To alleviate this issue, the
authors in [190] used approximate gradient information
rather than the true gradient to optimize continuous hy-
perparameters, where the hyperparameters can be updated
before the model is trained to converge. Franceschi et al.
[191] studied both reverse- and forward-mode GO meth-
ods. The reverse-mode method differs from the method
proposed in [189] and does not require reversible dynamics;
however, it needs to store the entire training history for
computing the gradient with respect to the hyperparame-
ters. The forward-mode method overcomes this problem by
using real-time updating hyperparameters, and is demon-
strated to significantly improve the efficiency of HPO on
large datasets. Chandra [192] proposed a gradient-based
ultimate optimizer, which can optimize not only the regular
hyperparameters (e.g., learning rate) but also those of the
optimizer (e.g., Adam optimizer [193]’s moment coefficient
β1, β2).

16

http://sheffieldml.github.io/GPyOpt
http://hyperopt.github.io/hyperopt


5. Model Evaluation

Once a new neural network has been generated, its
performance must be evaluated. An intuitive method is
to train the network to convergence and then evaluate its
performance. However, this method requires extensive time
and computing resources. For example, [12] took 800 K40
GPUs and 28 days in total to search. Additionally, NASNet
[15] and AmoebaNet [26] required 500 P100 GPUs and 450
K40 GPUs, respectively. In this section, we summarize
several algorithms for accelerating the process of model
evaluation.

5.1. Low fidelity

As model training time is highly related to the dataset
and model size, model evaluation can be accelerated in dif-
ferent ways. First, the number of images or the resolution
of images (in terms of image-classification tasks) can be
decreased. For example, FABOLAS [35] trains the model
on a subset of the training set to accelerate model evalu-
ation. In [194], ImageNet64×64 and its variants 32×32,
16×16 are provided, while these lower resolution datasets
can retain characteristics similar to those of the original
ImageNet dataset. Second, low-fidelity model evaluation
can be realized by reducing the model size, such as by
training with fewer filters per layer [15, 26]. By analogy
to ensemble learning, [195] proposes the Transfer Series
Expansion (TSE), which constructs an ensemble estimator
by linearly combining a series of basic low-fidelity estima-
tors, hence avoiding the bias that can derive from using
a single low-fidelity estimator. Furthermore, Zela et al.
[34] empirically demonstrated that there is a weak corre-
lation between performance after short or long training
times, thus confirming that a prolonged search for network
configurations is unnecessary.

5.2. Weight sharing

In [12], once a network has been evaluated, it is dropped.
Hence, the technique of weight sharing is used to acceler-
ate the process of NAS. For example, Wong and Lu et al.
[196] proposed transfer neural AutoML, which uses knowl-
edge from prior tasks to accelerate network design. ENAS
[13] shares parameters among child networks, leading to
a thousand-fold faster network design than [12]. Network
morphism based algorithms [20, 21] can also inherit the
weights of previous architectures, and single-path NAS
[197] uses a single-path over-parameterized ConvNet to
encode all architectural decisions with shared convolutional
kernel parameters.

5.3. Surrogate

The surrogate-based method [198, 199, 200, 43] is an-
other powerful tool that approximates the black-box func-
tion. In general, once a good approximation has been ob-
tained, it is trivial to find the configurations that directly
optimize the original expensive objective. For example,

Progressive Neural Architecture Search (PNAS) [18] intro-
duces a surrogate model to control the method of searching.
Although ENAS has been proven to be very efficient, PNAS
is even more efficient, as the number of models evaluated
by PNAS is over five times that evaluated by ENAS, and
PNAS is eight times faster in terms of total computational
speed. A well-performing surrogate usually requires large
amounts of labeled architectures, while the optimization
space is too large and hard to quantify, and the evalua-
tion of each configuration is extremely expensive [201]. To
alleviate this issue, Luo et al. [202] proposed SemiNAS,
a semi-supervised NAS method, which leverages amounts
of unlabeled architectures to train the surrogate, a con-
troller that is used to predict the accuracy of architectures
without evaluation. Initially, the surrogate is only trained
with a small number of labeled data pairs (architectures,
accuracy), then the generated data pairs will be gradually
added to the original data to further improve the surrogate.

5.4. Early stopping

Early stopping was first used to prevent overfitting in
classical ML, and it has been used in several recent studies
[203, 204, 205] to accelerate model evaluation by stopping
evaluations that are predicted to perform poorly on the
validation set. For example, [205] proposes a learning-curve
model that is a weighted combination of a set of parametric
curve models selected from the literature, thereby enabling
the performance of the network to be predicted. Further-
more, [206] presents a novel approach for early stopping
based on fast-to-compute local statistics of the computed
gradients, which no longer relies on the validation set and
allows the optimizer to make full use of all of the training
data.

6. NAS Discussion

In Section 4, we reviewed the various search space and
architecture optimization methods, and in Section 5, we
summarized commonly used model evaluation methods.
These two sections introduced many NAS studies, which
may cause the readers to get lost in details. Therefore, in
this section, we summarize and compare these NAS algo-
rithms’ performance from a global perspective to provide
readers a clearer and more comprehensive understanding of
NAS methods’ development. Then, we discuss some major
topics of the NAS technique.

6.1. NAS Performance Comparison

Many NAS studies have proposed several neural archi-
tecture variants, where each variant is designed for different
scenarios. For instance, some architecture variants perform
better but are larger, while some are lightweight for a mo-
bile device but with a performance penalty. Therefore, we
only report the representative results of each study. Besides,
to ensure a valid comparison, we consider the accuracy and
algorithm efficiency as comparison indices. As the number

17



Reference
Published

in
#Params
(Millions)

Top-1
Acc(%)

GPU
Days

#GPUs AO

ResNet-110 [2] ECCV16 1.7 93.57 - -
PyramidNet [207] CVPR17 26 96.69 - -
DenseNet [127] CVPR17 25.6 96.54 - -

Manually
designed

GeNet#2 (G-50) [30] ICCV17 - 92.9 17 -
Large-scale ensemble [25] ICML17 40.4 95.6 2,500 250
Hierarchical-EAS [19] ICLR18 15.7 96.25 300 200
CGP-ResSet [28] IJCAI18 6.4 94.02 27.4 2
AmoebaNet-B (N=6, F=128)+c/o [26] AAAI19 34.9 97.87 3,150 450 K40
AmoebaNet-B (N=6, F=36)+c/o [26] AAAI19 2.8 97.45 3,150 450 K40
Lemonade [27] ICLR19 3.4 97.6 56 8 Titan
EENA [149] ICCV19 8.47 97.44 0.65 1 Titan Xp
EENA (more channels)[149] ICCV19 54.14 97.79 0.65 1 Titan Xp

EA

NASv3[12] ICLR17 7.1 95.53 22,400 800 K40
NASv3+more filters [12] ICLR17 37.4 96.35 22,400 800 K40
MetaQNN [23] ICLR17 - 93.08 100 10
NASNet-A (7 @ 2304)+c/o [15] CVPR18 87.6 97.60 2,000 500 P100
NASNet-A (6 @ 768)+c/o [15] CVPR18 3.3 97.35 2,000 500 P100
Block-QNN-Connection more filter [16] CVPR18 33.3 97.65 96 32 1080Ti
Block-QNN-Depthwise, N=3 [16] CVPR18 3.3 97.42 96 32 1080Ti
ENAS+macro [13] ICML18 38.0 96.13 0.32 1
ENAS+micro+c/o [13] ICML18 4.6 97.11 0.45 1
Path-level EAS [139] ICML18 5.7 97.01 200 -
Path-level EAS+c/o [139] ICML18 5.7 97.51 200 -
ProxylessNAS-RL+c/o[132] ICLR19 5.8 97.70 - -
FPNAS[208] ICCV19 5.76 96.99 - -

RL

DARTS(first order)+c/o[17] ICLR19 3.3 97.00 1.5 4 1080Ti
DARTS(second order)+c/o[17] ICLR19 3.3 97.23 4 4 1080Ti
sharpDARTS [178] ArXiv19 3.6 98.07 0.8 1 2080Ti
P-DARTS+c/o[128] ICCV19 3.4 97.50 0.3 -
P-DARTS(large)+c/o[128] ICCV19 10.5 97.75 0.3 -
SETN[209] ICCV19 4.6 97.31 1.8 -
GDAS+c/o [154] CVPR19 2.5 97.18 0.17 1
SNAS+moderate constraint+c/o [155] ICLR19 2.8 97.15 1.5 1
BayesNAS[210] ICML19 3.4 97.59 0.1 1
ProxylessNAS-GD+c/o[132] ICLR19 5.7 97.92 - -
PC-DARTS+c/o [211] CVPR20 3.6 97.43 0.1 1 1080Ti
MiLeNAS[153] CVPR20 3.87 97.66 0.3 -
SGAS[212] CVPR20 3.8 97.61 0.25 1 1080Ti
GDAS-NSAS[213] CVPR20 3.54 97.27 0.4 -

GD

NASBOT[160] NeurIPS18 - 91.31 1.7 -
PNAS [18] ECCV18 3.2 96.59 225 -
EPNAS[166] BMVC18 6.6 96.29 1.8 1
GHN[214] ICLR19 5.7 97.16 0.84 -

SMBO

NAO+random+c/o[169] NeurIPS18 10.6 97.52 200 200 V100
SMASH [14] ICLR18 16 95.97 1.5 -
Hierarchical-random [19] ICLR18 15.7 96.09 8 200
RandomNAS [180] UAI19 4.3 97.15 2.7 -
DARTS - random+c/o [17] ICLR19 3.2 96.71 4 1
RandomNAS-NSAS[213] CVPR20 3.08 97.36 0.7 -

RS

NAO+weight sharing+c/o [169] NeurIPS18 2.5 97.07 0.3 1 V100 GD+SMBO
RENASNet+c/o[42] CVPR19 3.5 91.12 1.5 4 EA+RL
CARS[40] CVPR20 3.6 97.38 0.4 - EA+GD

Table 3: Performance of different NAS algorithms on CIFAR-10. The “AO” column indicates the architecture optimization method. The
dash (-) indicates that the corresponding information is not provided in the original paper. “c/o” indicates the use of Cutout [89]. RL, EA,
GD, RS, and SMBO indicate reinforcement learning, evolution-based algorithm, gradient descent, random search, and surrogate model-based
optimization, respectively.

18



Reference
Published

in
#Params
(Millions)

Top-1/5
Acc(%)

GPU
Days

#GPUs AO

ResNet-152 [2] CVPR16 230 70.62/95.51 - -
PyramidNet [207] CVPR17 116.4 70.8/95.3 - -
SENet-154 [126] CVPR17 - 71.32/95.53 - -
DenseNet-201 [127] CVPR17 76.35 78.54/94.46 - -
MobileNetV2 [215] CVPR18 6.9 74.7/- - -

Manually
designed

GeNet#2[30] ICCV17 - 72.13/90.26 17 -
AmoebaNet-C(N=4,F=50)[26] AAAI19 6.4 75.7/92.4 3,150 450 K40
Hierarchical-EAS[19] ICLR18 - 79.7/94.8 300 200
AmoebaNet-C(N=6,F=228)[26] AAAI19 155.3 83.1/96.3 3,150 450 K40
GreedyNAS [216] CVPR20 6.5 77.1/93.3 1 -

EA

NASNet-A(4@1056) ICLR17 5.3 74.0/91.6 2,000 500 P100
NASNet-A(6@4032) ICLR17 88.9 82.7/96.2 2,000 500 P100
Block-QNN[16] CVPR18 91 81.0/95.42 96 32 1080Ti
Path-level EAS[139] ICML18 - 74.6/91.9 8.3 -
ProxylessNAS(GPU) [132] ICLR19 - 75.1/92.5 8.3 -
ProxylessNAS-RL(mobile) [132] ICLR19 - 74.6/92.2 8.3 -
MnasNet[130] CVPR19 5.2 76.7/93.3 1,666 -
EfficientNet-B0[142] ICML19 5.3 77.3/93.5 - -
EfficientNet-B7[142] ICML19 66 84.4/97.1 - -
FPNAS[208] ICCV19 3.41 73.3/- 0.8 -

RL

DARTS (searched on CIFAR-10)[17] ICLR19 4.7 73.3/81.3 4 -
sharpDARTS[178] Arxiv19 4.9 74.9/92.2 0.8 -
P-DARTS[128] ICCV19 4.9 75.6/92.6 0.3 -
SETN[209] ICCV19 5.4 74.3/92.0 1.8 -
GDAS [154] CVPR19 4.4 72.5/90.9 0.17 1
SNAS[155] ICLR19 4.3 72.7/90.8 1.5 -
ProxylessNAS-G[132] ICLR19 - 74.2/91.7 - -
BayesNAS[210] ICML19 3.9 73.5/91.1 0.2 1
FBNet[131] CVPR19 5.5 74.9/- 216 -
OFA[217] ICLR20 7.7 77.3/- - -
AtomNAS[218] ICLR20 5.9 77.6/93.6 - -
MiLeNAS[153] CVPR20 4.9 75.3/92.4 0.3 -
DSNAS[219] CVPR20 - 74.4/91.54 17.5 4 Titan X
SGAS[212] CVPR20 5.4 75.9/92.7 0.25 1 1080Ti
PC-DARTS [211] CVPR20 5.3 75.8/92.7 3.8 8 V100
DenseNAS[220] CVPR20 - 75.3/- 2.7 -
FBNetV2-L1[221] CVPR20 - 77.2/- 25 8 V100

GD

PNAS-5(N=3,F=54)[18] ECCV18 5.1 74.2/91.9 225 -
PNAS-5(N=4,F=216)[18] ECCV18 86.1 82.9/96.2 225 -
GHN[214] ICLR19 6.1 73.0/91.3 0.84 -
SemiNAS[202] CVPR20 6.32 76.5/93.2 4 -

SMBO

Hierarchical-random[19] ICLR18 - 79.6/94.7 8.3 200
OFA-random[217] CVPR20 7.7 73.8/- - -

RS

RENASNet[42] CVPR19 5.36 75.7/92.6 - - EA+RL
Evo-NAS[41] Arxiv20 - 75.43/- 740 - EA+RL
CARS[40] CVPR20 5.1 75.2/92.5 0.4 - EA+GD

Table 4: Performance of different NAS algorithms on ImageNet. The “AO” column indicates the architecture optimization method. The dash
(-) indicates that the corresponding information is not provided in the original paper. RL, EA, GD, RS, and SMBO indicate reinforcement
learning, evolution-based algorithm, gradient descent, random search, and surrogate model-based optimization, respectively.

and types of GPUs used vary for different studies, we use
GPU Days to approximate the efficiency, which is defined
as:

GPU Days = N ×D (9)

where N represents the number of GPUs, and D represents

19



the actual number of days spent searching.
Tables 3 and 4 present the performances of different

NAS methods on CIFAR-10 and ImageNet, respectively.
Besides, as most NAS methods first search for the neural
architecture based on a small dataset (CIFAR-10), and then
transfer the architecture to a larger dataset (ImageNet),
the search time for both datasets is the same. The tables
show that the early studies on EA- and RL-based NAS
methods focused more on high performance, regardless of
the resource consumption. For example, although Amoe-
baNet [26] achieved excellent results for both CIFAR-10
and ImageNet, the searching took 3,150 GPU days and 450
GPUs. The subsequent NAS studies attempted to improve
the searching efficiency while ensuring the searched model’s
high performance. For instance, EENA [149] elaborately
designs the mutation and crossover operations, which can
reuse the learned information to guide the evolution pro-
cess, and hence, substantially improve the efficiency of
EA-based NAS methods. ENAS [13] is one of the first
RL-based NAS methods to adopt the parameter-sharing
strategy, which reduces the number of GPU budgets to
1 and shortens the searching time to less than one day.
We also observe that gradient descent-based architecture
optimization methods can substantially reduce the compu-
tational resource consumption for searching, and achieve
SOTA results. Several follow-up studies have been con-
ducted to achieve further improvement and optimization
in this direction. Interestingly, RS-based methods can also
obtain comparable results. The authors in [180] demon-
strated that RS with weight-sharing could outperform a
series of powerful methods, such as ENAS [13] and DARTS
[17].

6.1.1. Kendall Tau Metric

As RS is comparable to more sophisticated methods
(e.g., DARTS and ENAS), a natural question is, what are
the advantages and significance of the other AO algorithms
compared with RS? Researchers have tried to use other
metrics to answer this question, rather than simply con-
sidering the model’s final accuracy. Most NAS methods
comprise two stages: 1) search for a best-performing archi-
tecture on the training set and 2) expand it to a deeper
architecture and estimate it on the validation set. However,
there usually exists a large gap between the two stages. In
other words, the architecture that achieves the best result
in the training set is not necessarily the best one for the
validation set. Therefore, instead of merely considering
the final accuracy and search time cost, many NAS studies
[219, 222, 213, 11, 123] have used Kendall Tau (τ) metric
[223] to evaluate the correlation of the model performance
between the search and evaluation stages. The parameter
τ is defined as

τ =
NC −ND
NC +ND

(10)

where NC and ND indicate the numbers of concordant and
discordant pairs. τ is a number in the range [-1,1] with the

Retraining	the	
best-performing
model	of	the
searching	stage

Evaluation	Stage

modelSearch
Space

Architecture
Optimization

Parameter
Training

Searching	Stage

Architecture
Optimization

Search
Space

Parameter	Training

Model	1

Model	2

...

Model	n

model

(a) Two-stage NAS comprises the searching stage and evaluation
stage. The best-performing model of the searching stage is further
retrained in the evaluation stage.

Retraining	the	
best-performing
model	of	the
searching	stage

Evaluation	Stage

modelSearch
Space

Architecture
Optimization

Parameter
Training

Searching	Stage

Architecture
Optimization

Search
Space

Parameter	Training

Model	1

Model	2

...

Model	n

model

(b) One-stage NAS can directly deploy a well-performing model
without extra retraining or fine-tuning. The two-way arrow indicates
that the processes of architecture optimization and parameter training
run simultaneously.

Figure 18: Illustration of two- and one-stage neural architecture
search flow.

following properties:

• τ = 1: two rankings are identical

• τ = −1: two rankings are completely opposite.

• τ = 0: there is no relationship between two rankings.

6.1.2. NAS-Bench Dataset

Although Tables 3 and 4 present a clear comparison
between different NAS methods, the results of different
methods are obtained under different settings, such as
training-related hyperparameters (e.g., batch size and train-
ing epochs) and data augmentation (e.g., Cutout [89]). In
other words, the comparison is not quite fair. In this con-
text, NAS-Bench-101 [224] is a pioneering work for improv-
ing the reproducibility. It provides a tabular dataset con-
taining 423,624 unique neural networks generated and eval-
uated from a fixed graph-based search space and mapped
to their trained and evaluated performance on CIFAR-10.
Meanwhile, Dong et al. [225] further built NAS-Bench-201,
which is an extension to NAS-Bench-101 and has a differ-
ent search space, results on multiple datasets (CIFAR-10,
CIFAR-100, and ImageNet-16-120 [194]), and more diag-
nostic information. Similarly, Klyuchnikov et al. [226]
proposed a NAS-Bench for the NLP task. These datasets
enable NAS researchers to focus solely on verifying the ef-
fectiveness and efficiency of their AO algorithms, avoiding

20



repetitive training for selected architectures and substan-
tially helping the NAS community to develop.

6.2. One-stage vs. Two-stage

The NAS methods can be roughly divided into two
classes according to the flow ––two-stage and one-stage––
as shown in Figure 18.

Two-stage NAS comprises the searching stage and
evaluation stage. The searching stage involves two pro-
cesses: architecture optimization, which aims to find the
optimal architecture, and parameter training, which is to
train the found architecture’s parameter. The simplest
idea is to train all possible architectures’ parameters from
scratch and then choose the optimal architecture. However,
it is resource-consuming (e.g., NAS-RL [12] took 22,400
GPU days with 800 K40 GPUs for searching) ), which is in-
feasible for most companies and institutes. Therefore, most
NAS methods (such as ENAS [13] and DARTS [17]) sample
and train many candidate architectures in the searching
stage, and then further retrain the best-performing archi-
tecture in the evaluation stage.

One-stage NAS refers to a class of NAS methods
that can export a well-designed and well-trained neural
architecture without extra retraining, by running AO and
parameter training simultaneously. In this way, the ef-
ficiency can be substantially improved. However, model
architecture and its weight parameters are highly coupled; it
is difficult to optimize them simultaneously. Several recent
studies [217, 227, 228, 218] have attempted to overcome this
challenge. For instance, the authors in [217] proposed the
progressive shrinking algorithm to post-process the weights
after the training was completed. They first pretrained the
entire neural network, and then progressively fine-tuned
the smaller networks that shared weights with the complete
network. Based on well-designed constraints, the perfor-
mance of all subnetworks was guaranteed. Thus, given a
target deployment device, a specialized subnetwork can be
directly exported without fine-tuning. However, [217] was
still computational resource-intensive, as the whole process
took 1,200 GPU hours with V100 GPUs. BigNAS [228] re-
visited the conventional training techniques of stand-alone
networks, and empirically proposed several techniques to
handle a wider set of models, ranging in size from 200M to
1G FLOPs, whereas [217] only handled models under 600M
FLOPs. Both AtomNAS [218] and DSNAS [219] proposed
an end-to-end one-stage NAS framework to further boost
the performance and simplify the flow.

6.3. One-shot/Weight-sharing

One-shot 6=one-stage. Note that one shot is not ex-
actly equivalent to one stage. As mentioned above, we
divide the NAS studies into one- and two-stage methods ac-
cording to the flow (Figure 18), whereas whether a NAS al-
gorithm belongs to a one-shot method depends on whether
the candidate architectures share the same weights (Fig-
ure 19). However, we observe that most one-stage NAS
methods are based on the one-shot paradigm.

Search	Space Search	Space

Figure 19: (Left) One-shot models. (Right) Non-one-shot models.
Each circle indicates a different model, and its area indicates the
model’s size. We use concentric circles to represent one-shot models,
as they share the weights with each other.

What is One-shot NAS? One-shot NAS methods
embed the search space into an overparameterized supernet,
and thus, all possible architectures can be derived from
the supernet. Figure 18 shows the difference between the
search spaces of one-shot and non-one-shot NAS. Each
circle indicates a different architecture, where the archi-
tectures of one-shot NAS methods share the same weights.
One-shot NAS methods can be divided into two categories
according to how to handle AO and parameter training:
coupled and decoupled optimization [229, 216].

Coupled optimization. The first category of one-
shot NAS methods optimizes the architecture and weights
in a coupled manner [13, 17, 154, 132, 155]. For instance,
ENAS [13] uses an LSTM network to discretely sample
a new architecture, and then uses a few batches of the
training data to optimize the weight of this architecture.
After repeating the above steps many times, a collection
of architectures and their corresponding performances are
recorded. Finally, the best-performing architecture is se-
lected for further retraining. DARTS [17] uses a similar
weight sharing strategy, but has a continuously parame-
terized architecture distribution. The supernet contains
all candidate operations, each with learnable parameters.
The best architecture can be directly derived from the
distribution. However, as DARTS [17] directly optimizes
the supernet weights and the architecture distribution, it
suffers from vast GPU memory consumption. Although
DARTS-like methods [132, 154, 155] have adopted different
approaches to reduce the resource requirements, coupled
optimization inevitably introduces a bias in both architec-
ture distribution and supernet weights [197, 229], as they
treat all subnetworks unequally. The rapidly converged
architectures can easily obtain more opportunities to be
optimized [17, 159], and are only a small portion of all
candidates; therefore, it is challenging to find the best
architecture.

Another disadvantage of coupling optimization is that
when new architectures are sampled and trained continu-
ously, the weights of previous architectures are negatively
impacted, leading to performance degradation. The authors
in [230] defined this phenomenon as multimodel forgetting.
To overcome this problem, Zhang et al. [231] modeled
supernet training as a constrained optimization problem

21



of continual learning and proposed novel search-based ar-
chitecture selection (NSAS) loss function. They applied
the proposed method to RandomNAS [180] and GDAS
[154], where the experimental result demonstrated that
the method effectively reduces the multimodel forgetting
and boosting the predictive ability of the supernet as an
evaluator.

Decoupled optimization. The second category of
one-shot NAS methods [209, 232, 229, 217] decouples the
optimization of architecture and weights into two sequential
phases: 1) training the supernet and 2) using the trained
supernet as a predictive performance estimator of different
architectures to select the most promising architecture.

In terms of the supernet training phase, the supernet
cannot be directly trained as a regular neural network be-
cause its weights are also deeply coupled [197]. Yu et al.
[11] experimentally showed that the weight-sharing strat-
egy degrades the individual architecture’s performance and
negatively impacts the real performance ranking of the
candidate architectures. To reduce the weight coupling,
many one-shot NAS methods [197, 209, 14, 214] adopt the
random sampling policy, which randomly samples an archi-
tecture from the supernet, activating and optimizing only
the weights of this architecture. Meanwhile, RandomNAS
[180] demonstrates that a random search policy is a compet-
itive baseline method. Although some one-shot approaches
[154, 13, 155, 132, 131] have adopted the strategy that
samples and trains only one path of the supernet at a time,
they sample the path according to the RL controller [13],
Gumbel Softmax [154, 155, 131], or the BinaryConnect net-
work [132], which instead highly couples the architecture
and supernet weights. SMASH [14] adopts an auxiliary
hypernetwork to generate weights for randomly sampled
architectures. Similarly, Zhang et al. [214] proposed a
computation graph representation, and used the graph hy-
pernetwork (GHN) to predict the weights for all possible
architectures faster and more accurately than regular hy-
pernetworks [14]. However, through a careful experimental
analysis conducted to understand the weight-sharing strat-
egy’s mechanism, Bender et al. [232] showed that neither a
hypernetwork nor an RL controller is required to find the
optimal architecture. They proposed a path dropout strat-
egy to alleviate the problem of weight coupling. During
supernet training, each path of the supernet is randomly
dropped with gradually increasing probability. GreedyNAS
[216] adopts a multipath sampling strategy to train the
greedy supernet. This strategy focuses on more potentially
suitable paths, and is demonstrated to effectively achieve
a fairly high rank correlation of candidate architectures
compared with RS.

The second phase involves the selection of the most
promising architecture from the trained supernet, which
is the primary purpose of most NAS tasks. Both SMASH
[14] and [232] randomly selected a set of architectures from
the supernet, and ranked them according to their perfor-
mance. SMASH can obtain the validation performance of
all selected architectures at the cost of a single training run

for each architecture, as these architectures are assigned
the weights generated by the hypernetwork. Besides, the
authors in [232] observed that the architectures with a
smaller symmetrized KL divergence value are more likely
to perform better. This can be expressed as follows:

DSKL = DKL(p‖q) +DKL(q‖p)

s.t. DKL(p‖q) =

n∑
i=1

pi log
pi
qi

(11)

where (p1, ..., pn) and (q1, ..., qn) indicate the predictions of
the sampled architecture and one-shot model, respectively,
and n indicates the number of classes. The cost of calcu-
lating the KL value is very small; in [232], only 64 random
training data examples were used. Meanwhile, EA is also
a promising search solution [197, 216]. For instance, SPOS
[197] uses EA to search for architectures from the supernet.
It is more efficient than the EA methods introduced in
Section 4, because each sampled architecture only performs
inference. The self-evaluated template network (SETN)
[209] proposes an estimator to predict the probability of
each architecture having a lower validation loss. The ex-
perimental results show that SETN can potentially find
an architecture with better performance than RS-based
methods [232, 14].

6.4. Joint Hyperparameter and Architecture Optimization

Most NAS methods fix the same setting of training-
related hyperparameters during the whole search stage. Af-
ter the search, the hyperparameters of the best-performing
architecture are further optimized. However, this paradigm
may result in suboptimal results as different architectures
tend to fit different hyperparameters, making the model
ranking unfair [233]. Therefore, a promising solution is the
joint hyperparameter and architecture optimization (HAO)
[34, 234, 233, 235]. We summary the existing joint HAO
methods as follows.

Zela et al. [34] cast NAS as a hyperparameter opti-
mization problem, where the search spaces of NAS and
standard hyperparameters are combined. They applied
BOHB [38], an efficient HPO method, to optimize the ar-
chitecture and hyperparameters jointly. Similarly, Dong
et al. [233] proposed a differentiable method, namely Au-
toHAS, which builds a Cartesian product of the search
spaces of both NAS and HPO by unifying the represen-
tation of all candidate choices for the architecture (e.g.,
number of layers) and hyperparameters (e.g., learning rate).
However, a challenge here is that the candidate choices for
the architecture search space are usually categorical, while
hyperparameters choices can be categorical (e.g., the type
of optimizer) and continuous (e.g., learning rate). To over-
come this challenge, AutoHAS discretizes the continuous
hyperparameters into a linear combination of multiple cat-
egorical bases. For example, the categorical bases for the
learning rate are {0.1, 0.2, 0.3}, and then, the final learning

22



rate is defined as lr = w1×0.1+w2×0.2+w3×0.3. Mean-
while, FBNetv3 [235] jointly searches both architectures
and the corresponding training recipes (i.e., hyperparam-
eters). The architectures are represented with one-hot
categorical variables and integral (min-max normalized)
range variables, and the representation is fed to an encoder
network to generate the architecture embedding. Then, the
concatenation of architecture embedding and the training
hyperparameters is used to train the accuracy predictor,
which will be applied to search for promising architectures
and hyperparameters at a later stage.

6.5. Resource-aware NAS

Early NAS studies [12, 15, 26] pay more attention to
searching for neural architectures that achieve higher per-
formance (e.g., classification accuracy), regardless of the
associated resource consumption (i.e., the number of GPUs
and time required). Therefore, many follow-up studies
investigate resource-aware algorithms to trade off perfor-
mance against the resource budget. To do so, these algo-
rithms add computational cost to the loss function as a
resource constraint. These algorithms differ in the type
of computational cost, which may be 1) the parameter
size; 2) the number of Multiply-ACcumulate (MAC) opera-
tions; 3) the number of float-point operations (FLOPs); or
4) the real latency. For example, MONAS [236] considers
MAC as the constraint, and as MONAS uses a policy-based
reinforcement-learning algorithm to search, the constraint
can be directly added to the reward function. MnasNet
[130] proposes a customized weighted product to approxi-
mate a Pareto optimal solution:

maximize
m

ACC(m)×
[
LAT (m)

T

]w
(12)

where LAT (m) denotes measured inference latency of the
model m on the target device, T is the target latency, and
w is the weight variable defined as:

w =

{
α, if LAT (m) ≤ T
β, otherwise

(13)

where the recommended value for both α and β is −0.07.
In terms of a differentiable neural architecture search

(DNAS) framework, the constraint (i.e., loss function)
should be differentiable. For this purpose, FBNet [131]
uses a latency lookup table model to estimate the overall
latency of a network based on the runtime of each operator.
The loss function is defined as

L (a, θa) = CE (a, θa) · α log(LAT(a))β (14)

where CE(a, θa) indicates the cross-entropy loss of architec-
ture a with weights θa. Similar to MnasNet [130], this loss
function also comprises two hyperparameters that need to
be set manually: α and β control the magnitude of the loss
function and the latency term, respectively. In SNAS [155],
the cost of time for the generated child network is linear

to the one-hot random variables, such that the resource
constraint’s differentiability is ensured.

7. Open Problems and Future Directions

This section discusses several open problems of the ex-
isting AutoML methods and proposes some future research
directions.

7.1. Flexible Search Space

As summarized in Section 4, there are various search
spaces where the primitive operations can be roughly clas-
sified into pooling and convolution. Some spaces even
use a more complex module (e.g., MBConv [130]) as the
primitive operation. Although these search spaces have
been proven effective for generating well-performing neural
architectures, all of them are based on human knowledge
and experience, which inevitably introduce human bias,
and hence, still do not break away from the human design
paradigm. AutoML-Zero [289] uses very simple mathemat-
ical operations (e.g., cos, sin,mean,std) as the primitive
operations of the search space to minimize the human
bias, and applies EA to discover complete machine learning
algorithms. AutoML-Zero successfully designs two-layer
neural networks based on these basic mathematical opera-
tions. Although the network searched by AutoML-Zero is
much simpler than both human-designed and NAS-designed
networks, the experimental results show the potential to
discover a new model design paradigm with minimal human
design. Therefore, the design of a more general, flexible,
and free of human bias search space and the discovery of
novel neural architectures based on this search space would
be challenging and advantageous.

7.2. Exploring More Areas

As described in Section 6, the models designed by NAS
algorithms have achieved comparable results in image clas-
sification tasks (CIFAR-10 and ImageNet) to those of man-
ually designed models. Additionally, many recent studies
have applied NAS to other CV tasks (Table 5).

However, in terms of the NLP task, most NAS studies
have only conducted experiments on the PTB dataset.
Besides, some NAS studies have attempted to apply NAS
to other NLP tasks (shown in Table 5). However, Figure
20 shows that, even on the PTB dataset, there is still a
big gap in performance between the NAS-designed models
([13, 17, 12]) and human-designed models (GPT-2 [290],
FRAGE AWD-LSTM-Mos [4], adversarial AWD-LSTM-
Mos [291] and Transformer-XL [5]). Therefore, the NAS
community still has a long way to achieve comparable
results to those of the models designed by experts on NLP
tasks.

Besides the CV and NLP tasks, Table 5 also shows that
AutoML technique has been applied to other tasks, such
as network compression, federate learning, image caption,

23



Category Application References

Computer Vision
(CV)

Medical Image Recognition [237, 238, 239]
Object Detection [240, 241, 242, 243, 244, 245]

Semantic Segmentation [246, 129, 247, 248, 249, 250, 251]
Person Re-identification [252]

Super-Resolution [253, 254, 255]
Image Restoration [256]

Generative Adversarial Network (GAN) [257, 258, 259, 260]
Disparity Estimation [261]

Video Task [262, 263, 264, 265]

Natural Language Processing
(NLP)

Translation [266]
Language Modeling [267]
Entity Recognition [267]
Text Classification [268]
Sequential Labeling [268]
Keyword Spotting [269]

Others

Network Compression [270, 271, 272, 273, 274, 275, 276, 277]
Graph Neural Network (GNN) [278]

Federate Learning [279, 280]
Loss Function Search [281, 282]

Activation Function Search [283]
Image Caption [284, 285]

Text to Speech (TTS) [202]
Recommendation System [286, 287, 288]

Table 5: Summary of the existing automated machine learning applications.

 

 

 

99.3

99

98.9

98.3

97.92

97.88

97.87

97.7

96.5 97 97.5 98 98.5 99 99.5

BiT-L

GPIPE

EfficientNet

Fast AA

ProxylessNAS

SENet

AmoebaNet

WRN

A
cc(%

)

Model

35.76

46.01

46.54

54.55

56.1

58.6

64

0 10 20 30 40 50 60 70

GPT-2

adversarial+AWD-LSTM-MoS

FRAGE + AWD-LSTM-MoS

Transformer-XL

DARTS

ENAS

NAS Cell

Model 

 

Human 

Auto 

 

 

 

Human 

Auto 

 

 

 

P
er
p
lex

ity
 

Figure 20: State-of-the-art models on the PTB dataset. The lower the
perplexity, the better is the performance. The green bar represents
the automatically generated model, and the yellow bar represents the
model designed by human experts. Best viewed in color.

recommendation system, and searching for loss and acti-
vation functions. Therefore, these interesting studies have
indicated the potential of AutoML to be applied in more
areas.

7.3. Interpretability

Although AutoML algorithms can find promising con-
figuration settings more efficiently than humans, there is a
lack of scientific evidence for illustrating why the found set-
tings perform better. For example, in BlockQNN [16], it is
unclear why the NAS algorithm tends to select the concate-

nation operation to process the output of each block in the
cell, instead of the element-wise addition operation. Some
recent studies [232, 292, 96] have shown that the explana-
tion for these occurrences is usually hindsight and lacks
rigorous mathematical proof. Therefore, increasing the
mathematical interpretability of AutoML is an important
future research direction.

7.4. Reproducibility

A major challenge with ML is reproducibility. AutoML
is no exception, especially for NAS, because most of the
existing NAS algorithms still have many parameters that
need to be set manually at the implementation level; how-
ever, the original papers do not cover much detail. For
instance, Yang et al. [123] experimentally demonstrated
that the seed plays an important role in NAS experiments;
however, most NAS studies do not mention the seed set in
the experiments. Besides, considerable resource consump-
tion is another obstacle to reproduction. In this context,
several NAS-Bench datasets have been proposed, such as
NAS-Bench-101 [224], NAS-Bench-201 [225], and NAS-
Bench-NLP [226]. These datasets allow NAS researchers
to focus on the design of optimization algorithms without
wasting much time on the model evaluation.

7.5. Robustness

NAS has been proven effective in searching promising
architectures on many open datasets (e.g., CIFAR-10 and

24



ImageNet). These datasets are generally used for research;
therefore, most of the images are well-labeled. However,
in real-world situations, the data inevitably contain noise
(e.g., mislabeling and inadequate information). Even worse,
the data might be modified to be adversarial with carefully
designed noises. Deep learning models can be easily fooled
by adversarial data, and so can NAS.

So far, there are a few studies [293, 294, 295, 296] have
attempted to boost the robustness of NAS against adver-
sarial data. Guo et al. [294] experimentally explored the
intrinsic impact of network architectures on network ro-
bustness against adversarial attacks, and observed that
densely connected architectures tend to be more robust.
They also found that the flow of solution procedure (FSP)
matrix [297] is a good indicator of network robustness, i.e.,
the lower is the FSP matrix loss, the more robust is the net-
work. Chen et al. [295] proposed a robust loss function for
effectively alleviating the performance degradation under
symmetric label noise. The authors in [296] adopted EA
to search for robust architectures from a well-designed and
vast search space, where various adversarial attacks are
used as the fitness function for evaluating the robustness
of neural architectures.

7.6. Joint Hyperparameter and Architecture Optimization

Most NAS studies have considered HPO and AO as two
separate processes. However, as already noted in Section
4, there is a tremendous overlap between the methods
used in HPO and AO, e.g., both of them apply RS, BO,
and GO methods. In other words, it is feasible to jointly
optimize both hyperparameters and architectures, which is
experimentally confirmed by several studies [234, 233, 235].
Thus, how to solve the problem of joint hyperparameter
and architecture optimization (HAO) elegantly is a worthy
studying issue.

7.7. Complete AutoML Pipeline

So far, many AutoML pipeline libraries have been pro-
posed, but most of them only focus on some parts of the
AutoML pipeline (Figure 1). For instance, TPOT [298],
Auto-WEAK [177], and Auto-Sklearn [299] are built on
top of scikit-learn [300] for building classification and re-
gression pipelines, but they only search for the traditional
ML models (such as SVM and KNN). Although TPOT
involves neural networks (using Pytorch [301] backend), it
only supports an MLP network. Besides, Auto-Keras [22]
is an open-source library developed based on Keras [302],
which focuses more on searching for deep learning models
and supports multi-modal and multi-task. NNI [303] is
a more powerful and lightweight toolkit of AutoML, as
its built-in capability contains automated feature engineer-
ing, hyperparameter optimization, and neural architecture
search. Additionally, the NAS module in NNI supports
both Pytorch [301] and Tensorflow [304] and reproduces
many SOTA NAS methods [13, 17, 132, 128, 197, 180, 224],
which is very friendly for NAS researchers and develop-
ers. Besides, NNI also integrates scikit-learn features [300],

which is one step closer to achieving a complete pipeline.
Similarly, Vega [305] is another AutoML algorithm tool that
constructs a complete pipeline covering a set of highly de-
coupled functions: data augmentation, HPO, NAS, model
compression, and full training. In summary, designing an
easy-to-use and complete AutoML pipeline system is a
promising research direction.

7.8. Lifelong Learning

Finally, most AutoML algorithms focus only on solving
a specific task on some fixed datasets, e.g., image classifica-
tion on CIFAR-10 and ImageNet. However, a high-quality
AutoML system should have the capability of lifelong learn-
ing, i.e., it should be able to 1) efficiently learn new data
and 2) remember old knowledge.

7.8.1. Learn New Data

First, the system should be able to reuse prior knowl-
edge to solve new tasks (i.e., learning to learn). For example,
a child can quickly identify tigers, rabbits, and elephants
after seeing several pictures of these animals. However, the
current DL models must be trained on considerable data
before they can correctly identify images. A hot topic in
this area is meta-learning, which aims to design models for
new tasks using previous experience.

Meta-learning. Most of the existing NAS methods
can search a well-performing architecture for a single task.
However, they have to search for a new architecture on
a new task; otherwise, the old architecture might not be
optimal. Several studies [306, 307, 308, 309] have combined
meta-learning and NAS to solve this problem. Recently,
Lian et al. [308] proposed a novel and meta-learning-based
transferable neural architecture search method to generate a
meta-architecture, which can adapt to new tasks easily and
quickly through a few gradient steps. Another challenge
of learning new data is few-shot learning scenarios, where
there are only limited data for the new tasks. To over-
come this challenge, the authors in [307] and [306] applied
NAS to few-shot learning, where they only searched for the
most promising architecture and optimized it to work on
multiple few-shot learning tasks. Elsken et al. [309] pro-
posed a gradient-based meta-learning NAS method, namely
METANAS, which can generate task-specific architectures
more efficiently as it does not require meta-retraining.

Unsupervised learning. Meta-learning-based NAS
methods focus more on labeled data, while in some cases,
only a portion of the data may have labels or even none
at all. Liu et al. [310] proposed a general problem setup,
namely unsupervised neural architecture search (UnNAS),
to explore whether labels are necessary for NAS. They ex-
perimentally demonstrated that the architectures searched
without labels are competitive with those searched with la-
bels; therefore, labels are not necessary for NAS, which has
provoked some reflection among researchers about which
factors do affect NAS.

25



7.8.2. Remember Old Knowledge

An AutoML system must be able to constantly learn
from new data, without forgetting the knowledge from
old data. However, when we use new datasets to train a
pretrained model, the model’s performance on the previous
datasets is substantially reduced. Incremental learning can
alleviate this problem. For example, Li and Hoiem [311]
proposed the learning without forgetting (LwF) method,
which trains a model using only new data while preserving
its original capabilities. In addition, iCaRL [312] makes
progress based on LwF. It only uses a small proportion of
old data for pretraining, and then gradually increases the
proportion of a new class of data used to train the model.

8. Conclusions

This paper provides a detailed and systematic review
of AutoML studies according to the DL pipeline (Figure
1), ranging from data preparation to model evaluation.
Additionally, we compare the performance and efficiency of
existing NAS algorithms on the CIFAR-10 and ImageNet
datasets, and provide an in-depth discussion of different
research directions on NAS: one/two-stage NAS, one-shot
NAS, and joint HAO. We also describe several interesting
open problems and discuss some important future research
directions. Although research on AutoML is in its infancy,
we believe that future researchers will effectively solve
these problems. In this context, this review provides a
comprehensive and clear understanding of AutoML for the
benefit of those new to this area, and will thus assist with
their future research endeavors.

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classi-
fication with deep convolutional neural networks, in: P. L.
Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, K. Q.
Weinberger (Eds.), Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States, 2012,
pp. 1106–1114.
URL https://proceedings.neurips.cc/paper/2012/hash/

c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, IEEE Computer Society, 2016, pp.
770–778. doi:10.1109/CVPR.2016.90.
URL https://doi.org/10.1109/CVPR.2016.90

[3] J. Redmon, S. K. Divvala, R. B. Girshick, A. Farhadi, You
only look once: Unified, real-time object detection, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, IEEE
Computer Society, 2016, pp. 779–788. doi:10.1109/CVPR.2016.
91.
URL https://doi.org/10.1109/CVPR.2016.91

[4] C. Gong, D. He, X. Tan, T. Qin, L. Wang, T. Liu, FRAGE:
frequency-agnostic word representation, in: S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
R. Garnett (Eds.), Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, 2018, pp. 1341–1352.
URL https://proceedings.neurips.cc/paper/2018/hash/

e555ebe0ce426f7f9b2bef0706315e0c-Abstract.html

[5] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, R. Salakhutdinov,
Transformer-XL: Attentive language models beyond a fixed-
length context, in: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, Association
for Computational Linguistics, Florence, Italy, 2019, pp. 2978–
2988. doi:10.18653/v1/P19-1285.
URL https://www.aclweb.org/anthology/P19-1285

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge,
International Journal of Computer Vision (IJCV) 115 (3) (2015)
211–252. doi:10.1007/s11263-015-0816-y.

[7] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, in: Y. Bengio, Y. LeCun
(Eds.), 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.
URL http://arxiv.org/abs/1409.1556

[8] M. Zoller, M. F. Huber, Benchmark and survey of automated
machine learning frameworks, arXiv preprint arXiv:1904.12054.

[9] Q. Yao, M. Wang, Y. Chen, W. Dai, H. Yi-Qi, L. Yu-Feng,
T. Wei-Wei, Y. Qiang, Y. Yang, Taking human out of learning
applications: A survey on automated machine learning, arXiv
preprint arXiv:1810.13306.

[10] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search:
A survey, arXiv preprint arXiv:1808.05377.

[11] K. Yu, C. Sciuto, M. Jaggi, C. Musat, M. Salzmann, Evaluating
the search phase of neural architecture search, in: 8th Inter-
national Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net,
2020.
URL https://openreview.net/forum?id=H1loF2NFwr

[12] B. Zoph, Q. V. Le, Neural architecture search with reinforce-
ment learning, in: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=r1Ue8Hcxg

[13] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, J. Dean, Efficient
neural architecture search via parameter sharing, in: J. G. Dy,
A. Krause (Eds.), Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, Vol. 80 of Proceedings
of Machine Learning Research, PMLR, 2018, pp. 4092–4101.
URL http://proceedings.mlr.press/v80/pham18a.html

[14] A. Brock, T. Lim, J. M. Ritchie, N. Weston, SMASH: one-shot
model architecture search through hypernetworks, in: 6th Inter-
national Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, OpenReview.net, 2018.
URL https://openreview.net/forum?id=rydeCEhs-

[15] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning
transferable architectures for scalable image recognition, in:
2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, IEEE Computer Society, 2018, pp. 8697–8710.
doi:10.1109/CVPR.2018.00907.
URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Zoph_Learning_Transferable_Architectures_CVPR_

2018_paper.html

[16] Z. Zhong, J. Yan, W. Wu, J. Shao, C. Liu, Practical block-wise
neural network architecture generation, in: 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, IEEE Computer
Society, 2018, pp. 2423–2432. doi:10.1109/CVPR.2018.00257.
URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_

paper.html

26

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper/2018/hash/e555ebe0ce426f7f9b2bef0706315e0c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e555ebe0ce426f7f9b2bef0706315e0c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e555ebe0ce426f7f9b2bef0706315e0c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e555ebe0ce426f7f9b2bef0706315e0c-Abstract.html
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
http://dx.doi.org/10.18653/v1/P19-1285
https://www.aclweb.org/anthology/P19-1285
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://dx.doi.org/10.1109/CVPR.2018.00907
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.html
http://dx.doi.org/10.1109/CVPR.2018.00257
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.html


[17] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable archi-
tecture search, in: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, OpenReview.net, 2019.
URL https://openreview.net/forum?id=S1eYHoC5FX

[18] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,
L. Fei-Fei, A. Yuille, J. Huang, K. Murphy, Progressive neural
architecture search (2018) 19–34.

[19] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu,
Hierarchical representations for efficient architecture search,
in: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, OpenReview.net, 2018.
URL https://openreview.net/forum?id=BJQRKzbA-

[20] T. Chen, I. J. Goodfellow, J. Shlens, Net2net: Accelerating
learning via knowledge transfer, in: Y. Bengio, Y. LeCun
(Eds.), 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1511.05641

[21] T. Wei, C. Wang, Y. Rui, C. W. Chen, Network morphism, in:
M. Balcan, K. Q. Weinberger (Eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, Vol. 48 of JMLR
Workshop and Conference Proceedings, JMLR.org, 2016, pp.
564–572.
URL http://proceedings.mlr.press/v48/wei16.html

[22] H. Jin, Q. Song, X. Hu, Auto-keras: An efficient neural
architecture search system, in: A. Teredesai, V. Kumar,
Y. Li, R. Rosales, E. Terzi, G. Karypis (Eds.), Proceed-
ings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchor-
age, AK, USA, August 4-8, 2019, ACM, 2019, pp. 1946–1956.
doi:10.1145/3292500.3330648.
URL https://doi.org/10.1145/3292500.3330648

[23] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural
network architectures using reinforcement learning, in: 5th
International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=S1c2cvqee

[24] K. O. Stanley, R. Miikkulainen, Evolving neural networks
through augmenting topologies, Evolutionary computation
10 (2) (2002) 99–127.

[25] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, A. Kurakin, Large-scale evolution of image classifiers,
in: D. Precup, Y. W. Teh (Eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, Vol. 70 of Proceedings of
Machine Learning Research, PMLR, 2017, pp. 2902–2911.
URL http://proceedings.mlr.press/v70/real17a.html

[26] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evo-
lution for image classifier architecture search, in: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2019, The Ninth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
AAAI Press, 2019, pp. 4780–4789. doi:10.1609/aaai.v33i01.

33014780.
URL https://doi.org/10.1609/aaai.v33i01.33014780

[27] T. Elsken, J. H. Metzen, F. Hutter, Efficient multi-objective
neural architecture search via lamarckian evolution, in: 7th
International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net,
2019.
URL https://openreview.net/forum?id=ByME42AqK7

[28] M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming
approach to designing convolutional neural network architec-
tures, in: J. Lang (Ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI

2018, July 13-19, 2018, Stockholm, Sweden, ijcai.org, 2018, pp.
5369–5373. doi:10.24963/ijcai.2018/755.
URL https://doi.org/10.24963/ijcai.2018/755

[29] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink,
O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy,
et al., Evolving deep neural networks (2019) 293–312.

[30] L. Xie, A. L. Yuille, Genetic CNN, in: IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, IEEE Computer Society, 2017, pp. 1388–
1397. doi:10.1109/ICCV.2017.154.
URL https://doi.org/10.1109/ICCV.2017.154

[31] K. Ahmed, L. Torresani, Maskconnect: Connectivity learning
by gradient descent (2018) 349–365.

[32] R. Shin, C. Packer, D. Song, Differentiable neural network
architecture search.

[33] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, F. Hutter,
Towards automatically-tuned neural networks (2016) 58–65.

[34] A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated
deep learning: Efficient joint neural architecture and hyperpa-
rameter search, arXiv preprint arXiv:1807.06906.

[35] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, Fast
bayesian optimization of machine learning hyperparameters on
large datasets, in: A. Singh, X. J. Zhu (Eds.), Proceedings of
the 20th International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale,
FL, USA, Vol. 54 of Proceedings of Machine Learning Research,
PMLR, 2017, pp. 528–536.
URL http://proceedings.mlr.press/v54/klein17a.html

[36] S. Falkner, A. Klein, F. Hutter, Practical hyperparameter
optimization for deep learning.

[37] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-
based optimization for general algorithm configuration, in: In-
ternational conference on learning and intelligent optimization,
2011, pp. 507–523.

[38] S. Falkner, A. Klein, F. Hutter, BOHB: robust and efficient
hyperparameter optimization at scale, in: J. G. Dy, A. Krause
(Eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, Vol. 80 of Proceedings of Machine
Learning Research, PMLR, 2018, pp. 1436–1445.
URL http://proceedings.mlr.press/v80/falkner18a.html

[39] J. Bergstra, D. Yamins, D. D. Cox, Making a science of model
search: Hyperparameter optimization in hundreds of dimen-
sions for vision architectures, in: Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, Vol. 28 of JMLR Workshop and
Conference Proceedings, JMLR.org, 2013, pp. 115–123.
URL http://proceedings.mlr.press/v28/bergstra13.html

[40] Z. Yang, Y. Wang, X. Chen, B. Shi, C. Xu, C. Xu, Q. Tian,
C. Xu, CARS: continuous evolution for efficient neural ar-
chitecture search, in: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, IEEE, 2020, pp. 1826–1835.
doi:10.1109/CVPR42600.2020.00190.
URL https://doi.org/10.1109/CVPR42600.2020.00190

[41] K. Maziarz, M. Tan, A. Khorlin, M. Georgiev, A. Gesmundo,
Evolutionary-neural hybrid agents for architecture searcharXiv:
1811.09828.

[42] Y. Chen, G. Meng, Q. Zhang, S. Xiang, C. Huang, L. Mu,
X. Wang, Reinforced evolutionary neural architecture search,
arXiv preprint arXiv:1808.00193.

[43] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, M. Zhang,
Surrogate-assisted evolutionary deep learning using an end-to-
end random forest-based performance predictor, IEEE Trans-
actions on Evolutionary Computation.

[44] B. Wang, Y. Sun, B. Xue, M. Zhang, A hybrid differential evolu-
tion approach to designing deep convolutional neural networks
for image classification, in: Australasian Joint Conference on
Artificial Intelligence, Springer, 2018, pp. 237–250.

[45] M. Wistuba, A. Rawat, T. Pedapati, A survey on neural archi-
tecture search, arXiv preprint arXiv:1905.01392.

27

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=BJQRKzbA-
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
http://proceedings.mlr.press/v48/wei16.html
http://proceedings.mlr.press/v48/wei16.html
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
http://dx.doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://openreview.net/forum?id=ByME42AqK7
https://openreview.net/forum?id=ByME42AqK7
https://openreview.net/forum?id=ByME42AqK7
https://doi.org/10.24963/ijcai.2018/755
https://doi.org/10.24963/ijcai.2018/755
https://doi.org/10.24963/ijcai.2018/755
http://dx.doi.org/10.24963/ijcai.2018/755
https://doi.org/10.24963/ijcai.2018/755
https://doi.org/10.1109/ICCV.2017.154
http://dx.doi.org/10.1109/ICCV.2017.154
https://doi.org/10.1109/ICCV.2017.154
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v28/bergstra13.html
http://proceedings.mlr.press/v28/bergstra13.html
http://proceedings.mlr.press/v28/bergstra13.html
http://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1109/CVPR42600.2020.00190
https://doi.org/10.1109/CVPR42600.2020.00190
http://dx.doi.org/10.1109/CVPR42600.2020.00190
https://doi.org/10.1109/CVPR42600.2020.00190
http://arxiv.org/abs/1811.09828
http://arxiv.org/abs/1811.09828


[46] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen,
X. Wang, A comprehensive survey of neural architecture search:
Challenges and solutions (2020). arXiv:2006.02903.

[47] R. Elshawi, M. Maher, S. Sakr, Automated machine learn-
ing: State-of-the-art and open challenges, arXiv preprint
arXiv:1906.02287.

[48] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the
IEEE 86 (11) (1998) 2278–2324.

[49] A. Krizhevsky, V. Nair, G. Hinton, The cifar-10 dataset, online:
http://www. cs. toronto. edu/kriz/cifar. html.

[50] J. Deng, W. Dong, R. Socher, L. Li, K. Li, F. Li, Ima-
genet: A large-scale hierarchical image database, in: 2009
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, IEEE Computer Society, 2009, pp. 248–255.
doi:10.1109/CVPR.2009.5206848.
URL https://doi.org/10.1109/CVPR.2009.5206848

[51] J. Yang, X. Sun, Y.-K. Lai, L. Zheng, M.-M. Cheng, Recog-
nition from web data: a progressive filtering approach, IEEE
Transactions on Image Processing 27 (11) (2018) 5303–5315.

[52] X. Chen, A. Shrivastava, A. Gupta, NEIL: extracting visual
knowledge from web data, in: IEEE International Conference
on Computer Vision, ICCV 2013, Sydney, Australia, December
1-8, 2013, IEEE Computer Society, 2013, pp. 1409–1416. doi:

10.1109/ICCV.2013.178.
URL https://doi.org/10.1109/ICCV.2013.178

[53] Y. Xia, X. Cao, F. Wen, J. Sun, Well begun is half done:
Generating high-quality seeds for automatic image dataset
construction from web, in: European Conference on Computer
Vision, Springer, 2014, pp. 387–400.

[54] N. H. Do, K. Yanai, Automatic construction of action datasets
using web videos with density-based cluster analysis and outlier
detection, in: Pacific-Rim Symposium on Image and Video
Technology, Springer, 2015, pp. 160–172.

[55] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig,
J. Philbin, L. Fei-Fei, The unreasonable effectiveness of noisy
data for fine-grained recognition, in: European Conference on
Computer Vision, Springer, 2016, pp. 301–320.

[56] P. D. Vo, A. Ginsca, H. Le Borgne, A. Popescu, Harnessing
noisy web images for deep representation, Computer Vision
and Image Understanding 164 (2017) 68–81.

[57] B. Collins, J. Deng, K. Li, L. Fei-Fei, Towards scalable dataset
construction: An active learning approach, in: European con-
ference on computer vision, Springer, 2008, pp. 86–98.

[58] Y. Roh, G. Heo, S. E. Whang, A survey on data collection for
machine learning: a big data-ai integration perspective, IEEE
Transactions on Knowledge and Data Engineering.

[59] D. Yarowsky, Unsupervised word sense disambiguation rivaling
supervised methods, in: 33rd Annual Meeting of the Association
for Computational Linguistics, Association for Computational
Linguistics, Cambridge, Massachusetts, USA, 1995, pp. 189–
196. doi:10.3115/981658.981684.
URL https://www.aclweb.org/anthology/P95-1026

[60] I. Triguero, J. A. Sáez, J. Luengo, S. Garćıa, F. Herrera, On the
characterization of noise filters for self-training semi-supervised
in nearest neighbor classification, Neurocomputing 132 (2014)
30–41.

[61] M. F. A. Hady, F. Schwenker, Combining committee-based semi-
supervised learning and active learning, Journal of Computer
Science and Technology 25 (4) (2010) 681–698.

[62] A. Blum, T. Mitchell, Combining labeled and unlabeled data
with co-training, in: Proceedings of the eleventh annual con-
ference on Computational learning theory, ACM, 1998, pp.
92–100.

[63] Y. Zhou, S. Goldman, Democratic co-learning, in: Tools with
Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE Interna-
tional Conference on, IEEE, 2004, pp. 594–602.

[64] X. Chen, A. Gupta, Webly supervised learning of convolutional
networks, in: 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, IEEE

Computer Society, 2015, pp. 1431–1439. doi:10.1109/ICCV.

2015.168.
URL https://doi.org/10.1109/ICCV.2015.168

[65] Z. Xu, S. Huang, Y. Zhang, D. Tao, Augmenting strong super-
vision using web data for fine-grained categorization, in: 2015
IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, IEEE Computer
Society, 2015, pp. 2524–2532. doi:10.1109/ICCV.2015.290.
URL https://doi.org/10.1109/ICCV.2015.290

[66] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer,
Smote: synthetic minority over-sampling technique, Journal of
artificial intelligence research 16 (2002) 321–357.

[67] H. Guo, H. L. Viktor, Learning from imbalanced data sets
with boosting and data generation: the databoost-im approach,
ACM Sigkdd Explorations Newsletter 6 (1) (2004) 30–39.

[68] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, W. Zaremba, Openai gym, arXiv preprint
arXiv:1606.01540.

[69] Q. Wang, S. Zheng, Q. Yan, F. Deng, K. Zhao, X. Chu, Irs: A
large synthetic indoor robotics stereo dataset for disparity and
surface normal estimation, arXiv preprint arXiv:1912.09678.

[70] N. Ruiz, S. Schulter, M. Chandraker, Learning to simulate,
in: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenRe-
view.net, 2019.
URL https://openreview.net/forum?id=HJgkx2Aqt7

[71] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville, Y. Bengio, Generative
adversarial nets, in: Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, K. Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, 2014, pp. 2672–2680.
URL https://proceedings.neurips.cc/paper/2014/hash/

5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

[72] T.-H. Oh, R. Jaroensri, C. Kim, M. Elgharib, F. Durand,
W. T. Freeman, W. Matusik, Learning-based video motion
magnification, in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 633–648.

[73] L. Sixt, Rendergan: Generating realistic labeled data–with an
application on decoding bee tags, unpublished Bachelor Thesis,
Freie Universität, Berlin.

[74] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Ham-
mers, D. A. Dickie, M. V. Hernández, J. Wardlaw, D. Rueckert,
Gan augmentation: Augmenting training data using generative
adversarial networks, arXiv preprint arXiv:1810.10863.

[75] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park,
Y. Kim, Data synthesis based on generative adversarial net-
works, Proceedings of the VLDB Endowment 11 (10) (2018)
1071–1083.

[76] L. Xu, K. Veeramachaneni, Synthesizing tabular data using gen-
erative adversarial networks, arXiv preprint arXiv:1811.11264.

[77] D. Donahue, A. Rumshisky, Adversarial text generation without
reinforcement learning, arXiv preprint arXiv:1810.06640.

[78] T. Karras, S. Laine, T. Aila, A style-based generator ar-
chitecture for generative adversarial networks, in: IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
Computer Vision Foundation / IEEE, 2019, pp. 4401–4410.
doi:10.1109/CVPR.2019.00453.
URL http://openaccess.thecvf.com/content_CVPR_2019/

html/Karras_A_Style-Based_Generator_Architecture_for_

Generative_Adversarial_Networks_CVPR_2019_paper.html

[79] X. Chu, I. F. Ilyas, S. Krishnan, J. Wang, Data cleaning:
Overview and emerging challenges, in: F. Özcan, G. Koutrika,
S. Madden (Eds.), Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, ACM, 2016,
pp. 2201–2206. doi:10.1145/2882903.2912574.
URL https://doi.org/10.1145/2882903.2912574

[80] M. Jesmeen, J. Hossen, S. Sayeed, C. Ho, K. Tawsif, A. Rahman,

28

http://arxiv.org/abs/2006.02903
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/ICCV.2013.178
https://doi.org/10.1109/ICCV.2013.178
http://dx.doi.org/10.1109/ICCV.2013.178
http://dx.doi.org/10.1109/ICCV.2013.178
https://doi.org/10.1109/ICCV.2013.178
https://www.aclweb.org/anthology/P95-1026
https://www.aclweb.org/anthology/P95-1026
http://dx.doi.org/10.3115/981658.981684
https://www.aclweb.org/anthology/P95-1026
https://doi.org/10.1109/ICCV.2015.168
https://doi.org/10.1109/ICCV.2015.168
http://dx.doi.org/10.1109/ICCV.2015.168
http://dx.doi.org/10.1109/ICCV.2015.168
https://doi.org/10.1109/ICCV.2015.168
https://doi.org/10.1109/ICCV.2015.290
https://doi.org/10.1109/ICCV.2015.290
http://dx.doi.org/10.1109/ICCV.2015.290
https://doi.org/10.1109/ICCV.2015.290
https://openreview.net/forum?id=HJgkx2Aqt7
https://openreview.net/forum?id=HJgkx2Aqt7
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00453
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/2882903.2912574
http://dx.doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/2882903.2912574


E. Arif, A survey on cleaning dirty data using machine learning
paradigm for big data analytics, Indonesian Journal of Electrical
Engineering and Computer Science 10 (3) (2018) 1234–1243.

[81] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang,
Y. Ye, KATARA: A data cleaning system powered by knowledge
bases and crowdsourcing, in: T. K. Sellis, S. B. Davidson,
Z. G. Ives (Eds.), Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, ACM, 2015, pp.
1247–1261. doi:10.1145/2723372.2749431.
URL https://doi.org/10.1145/2723372.2749431

[82] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, T. Kraska,
T. Milo, E. Wu, Sampleclean: Fast and reliable analytics on
dirty data., IEEE Data Eng. Bull. 38 (3) (2015) 59–75.

[83] S. Krishnan, M. J. Franklin, K. Goldberg, J. Wang, E. Wu, Ac-
tiveclean: An interactive data cleaning framework for modern
machine learning, in: F. Özcan, G. Koutrika, S. Madden (Eds.),
Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, ACM, 2016, pp. 2117–2120.
doi:10.1145/2882903.2899409.
URL https://doi.org/10.1145/2882903.2899409

[84] S. Krishnan, M. J. Franklin, K. Goldberg, E. Wu, Boostclean:
Automated error detection and repair for machine learning,
arXiv preprint arXiv:1711.01299.

[85] S. Krishnan, E. Wu, Alphaclean: Automatic generation of data
cleaning pipelines, arXiv preprint arXiv:1904.11827.

[86] I. Gemp, G. Theocharous, M. Ghavamzadeh, Automated data
cleansing through meta-learning, in: S. P. Singh, S. Markovitch
(Eds.), Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA, AAAI Press, 2017, pp. 4760–4761.
URL http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/

view/14236

[87] I. F. Ilyas, Effective data cleaning with continuous evaluation.,
IEEE Data Eng. Bull. 39 (2) (2016) 38–46.

[88] M. Mahdavi, F. Neutatz, L. Visengeriyeva, Z. Abedjan, Towards
automated data cleaning workflows, Machine Learning 15 (2019)
16.

[89] T. DeVries, G. W. Taylor, Improved regularization of con-
volutional neural networks with cutout, arXiv preprint
arXiv:1708.04552.

[90] H. Zhang, M. Cissé, Y. N. Dauphin, D. Lopez-Paz, mixup:
Beyond empirical risk minimization, in: 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings, OpenReview.net, 2018.
URL https://openreview.net/forum?id=r1Ddp1-Rb

[91] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving,
C. Reinders, S. Yadav, J. Banerjee, G. Vecsei, A. Kraft,
Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer,
B. Cook, I. Fernández, F.-M. De Rainville, C.-H. Weng,
A. Ayala-Acevedo, R. Meudec, M. Laporte, et al., imgaug,
https://github.com/aleju/imgaug, online; accessed 01-Feb-
2020 (2020).

[92] A. Buslaev, A. Parinov, E. Khvedchenya, V. I. Iglovikov, A. A.
Kalinin, Albumentations: fast and flexible image augmenta-
tions, ArXiv e-printsarXiv:1809.06839.

[93] A. Miko lajczyk, M. Grochowski, Data augmentation for im-
proving deep learning in image classification problem, in: 2018
international interdisciplinary PhD workshop (IIPhDW), IEEE,
2018, pp. 117–122.

[94] A. Miko lajczyk, M. Grochowski, Style transfer-based image
synthesis as an efficient regularization technique in deep learn-
ing, in: 2019 24th International Conference on Methods and
Models in Automation and Robotics (MMAR), IEEE, 2019,
pp. 42–47.

[95] A. Antoniou, A. Storkey, H. Edwards, Data augmentation gen-
erative adversarial networks, arXiv preprint arXiv:1711.04340.

[96] S. C. Wong, A. Gatt, V. Stamatescu, M. D. McDonnell, Under-
standing data augmentation for classification: when to warp?,

arXiv preprint arXiv:1609.08764.
[97] Z. Xie, S. I. Wang, J. Li, D. Lévy, A. Nie, D. Jurafsky, A. Y. Ng,

Data noising as smoothing in neural network language models,
in: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=H1VyHY9gg

[98] A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen, M. Norouzi,
Q. V. Le, Qanet: Combining local convolution with global
self-attention for reading comprehension, in: 6th International
Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, OpenReview.net, 2018.
URL https://openreview.net/forum?id=B14TlG-RW

[99] E. Ma, Nlp augmentation, https://github.com/makcedward/
nlpaug (2019).

[100] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, Q. V. Le,
Autoaugment: Learning augmentation strategies from data,
in: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, Computer Vision Foundation / IEEE, 2019, pp. 113–123.
doi:10.1109/CVPR.2019.00020.
URL http://openaccess.thecvf.com/content_CVPR_

2019/html/Cubuk_AutoAugment_Learning_Augmentation_

Strategies_From_Data_CVPR_2019_paper.html

[101] Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson,
Y. Yang, Dada: Differentiable automatic data augmentation,
arXiv preprint arXiv:2003.03780.

[102] R. Hataya, J. Zdenek, K. Yoshizoe, H. Nakayama, Faster au-
toaugment: Learning augmentation strategies using backpropa-
gation, arXiv preprint arXiv:1911.06987.

[103] S. Lim, I. Kim, T. Kim, C. Kim, S. Kim, Fast autoaugment, in:
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, 2019, pp. 6662–6672.
URL https://proceedings.neurips.cc/paper/2019/hash/

6add07cf50424b14fdf649da87843d01-Abstract.html

[104] A. Naghizadeh, M. Abavisani, D. N. Metaxas, Greedy autoaug-
ment, arXiv preprint arXiv:1908.00704.

[105] D. Ho, E. Liang, X. Chen, I. Stoica, P. Abbeel, Population
based augmentation: Efficient learning of augmentation policy
schedules, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceed-
ings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA,
Vol. 97 of Proceedings of Machine Learning Research, PMLR,
2019, pp. 2731–2741.
URL http://proceedings.mlr.press/v97/ho19b.html

[106] T. Niu, M. Bansal, Automatically learning data augmenta-
tion policies for dialogue tasks, in: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Association for Com-
putational Linguistics, Hong Kong, China, 2019, pp. 1317–1323.
doi:10.18653/v1/D19-1132.
URL https://www.aclweb.org/anthology/D19-1132

[107] M. Geng, K. Xu, B. Ding, H. Wang, L. Zhang, Learning data
augmentation policies using augmented random search, arXiv
preprint arXiv:1811.04768.

[108] X. Zhang, Q. Wang, J. Zhang, Z. Zhong, Adversarial autoaug-
ment, in: 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
OpenReview.net, 2020.
URL https://openreview.net/forum?id=ByxdUySKvS

[109] C. Lin, M. Guo, C. Li, X. Yuan, W. Wu, J. Yan, D. Lin,
W. Ouyang, Online hyper-parameter learning for auto-
augmentation strategy, in: 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, IEEE, 2019, pp. 6578–6587.
doi:10.1109/ICCV.2019.00668.

29

https://doi.org/10.1145/2723372.2749431
https://doi.org/10.1145/2723372.2749431
http://dx.doi.org/10.1145/2723372.2749431
https://doi.org/10.1145/2723372.2749431
https://doi.org/10.1145/2882903.2899409
https://doi.org/10.1145/2882903.2899409
https://doi.org/10.1145/2882903.2899409
http://dx.doi.org/10.1145/2882903.2899409
https://doi.org/10.1145/2882903.2899409
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14236
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14236
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14236
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14236
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://github.com/aleju/imgaug
http://arxiv.org/abs/1809.06839
https://openreview.net/forum?id=H1VyHY9gg
https://openreview.net/forum?id=H1VyHY9gg
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00020
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://proceedings.neurips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html
http://proceedings.mlr.press/v97/ho19b.html
http://proceedings.mlr.press/v97/ho19b.html
http://proceedings.mlr.press/v97/ho19b.html
http://proceedings.mlr.press/v97/ho19b.html
https://www.aclweb.org/anthology/D19-1132
https://www.aclweb.org/anthology/D19-1132
http://dx.doi.org/10.18653/v1/D19-1132
https://www.aclweb.org/anthology/D19-1132
https://openreview.net/forum?id=ByxdUySKvS
https://openreview.net/forum?id=ByxdUySKvS
https://openreview.net/forum?id=ByxdUySKvS
https://doi.org/10.1109/ICCV.2019.00668
https://doi.org/10.1109/ICCV.2019.00668
http://dx.doi.org/10.1109/ICCV.2019.00668


URL https://doi.org/10.1109/ICCV.2019.00668

[110] T. C. LingChen, A. Khonsari, A. Lashkari, M. R. Nazari,
J. S. Sambee, M. A. Nascimento, Uniformaugment: A search-
free probabilistic data augmentation approach, arXiv preprint
arXiv:2003.14348.

[111] H. Motoda, H. Liu, Feature selection, extraction and construc-
tion, Communication of IICM (Institute of Information and
Computing Machinery, Taiwan) Vol 5 (67-72) (2002) 2.

[112] M. Dash, H. Liu, Feature selection for classification, Intelligent
data analysis 1 (1-4) (1997) 131–156.

[113] M. J. Pazzani, Constructive induction of cartesian product
attributes, in: Feature Extraction, Construction and Selection,
Springer, 1998, pp. 341–354.

[114] Z. Zheng, A comparison of constructing different types of new
feature for decision tree learning, in: Feature Extraction, Con-
struction and Selection, Springer, 1998, pp. 239–255.

[115] J. Gama, Functional trees, Machine Learning 55 (3) (2004)
219–250.

[116] H. Vafaie, K. De Jong, Evolutionary feature space transfor-
mation, in: Feature Extraction, Construction and Selection,
Springer, 1998, pp. 307–323.

[117] P. Sondhi, Feature construction methods: a survey, sifaka. cs.
uiuc. edu 69 (2009) 70–71.

[118] D. Roth, K. Small, Interactive feature space construction using
semantic information, in: Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learning (CoNLL-
2009), Association for Computational Linguistics, Boulder,
Colorado, 2009, pp. 66–74.
URL https://www.aclweb.org/anthology/W09-1110

[119] Q. Meng, D. Catchpoole, D. Skillicom, P. J. Kennedy, Rela-
tional autoencoder for feature extraction, in: 2017 International
Joint Conference on Neural Networks (IJCNN), IEEE, 2017,
pp. 364–371.

[120] O. Irsoy, E. Alpaydın, Unsupervised feature extraction with
autoencoder trees, Neurocomputing 258 (2017) 63–73.

[121] C. Cortes, V. Vapnik, Support-vector networks, Machine learn-
ing 20 (3) (1995) 273–297.

[122] N. S. Altman, An introduction to kernel and nearest-neighbor
nonparametric regression, The American Statistician 46 (3)
(1992) 175–185.

[123] A. Yang, P. M. Esperança, F. M. Carlucci, NAS evaluation is
frustratingly hard, in: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=HygrdpVKvr

[124] F. Chollet, Xception: Deep learning with depthwise separable
convolutions, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, IEEE Computer Society, 2017, pp. 1800–1807.
doi:10.1109/CVPR.2017.195.
URL https://doi.org/10.1109/CVPR.2017.195

[125] F. Yu, V. Koltun, Multi-scale context aggregation by dilated
convolutions, in: Y. Bengio, Y. LeCun (Eds.), 4th International
Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.
URL http://arxiv.org/abs/1511.07122

[126] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks,
in: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, IEEE Computer Society, 2018, pp. 7132–7141.
doi:10.1109/CVPR.2018.00745.
URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_

paper.html

[127] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely
connected convolutional networks, in: 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society,
2017, pp. 2261–2269. doi:10.1109/CVPR.2017.243.
URL https://doi.org/10.1109/CVPR.2017.243

[128] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable
architecture search: Bridging the depth gap between search and
evaluation, in: 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, IEEE, 2019, pp. 1294–1303. doi:

10.1109/ICCV.2019.00138.
URL https://doi.org/10.1109/ICCV.2019.00138

[129] C. Liu, L. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille,
F. Li, Auto-deeplab: Hierarchical neural architecture search
for semantic image segmentation, in: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, Computer Vision Founda-
tion / IEEE, 2019, pp. 82–92. doi:10.1109/CVPR.2019.00017.
URL http://openaccess.thecvf.com/content_CVPR_

2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_

Architecture_Search_for_Semantic_Image_Segmentation_

CVPR_2019_paper.html

[130] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, Q. V. Le, Mnasnet: Platform-aware neural archi-
tecture search for mobile, in: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, Computer Vision Foundation / IEEE,
2019, pp. 2820–2828. doi:10.1109/CVPR.2019.00293.
URL http://openaccess.thecvf.com/content_CVPR_2019/

html/Tan_MnasNet_Platform-Aware_Neural_Architecture_

Search_for_Mobile_CVPR_2019_paper.html

[131] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, Y. Jia, K. Keutzer, Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search,
in: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, Computer Vision Foundation / IEEE, 2019, pp.
10734–10742. doi:10.1109/CVPR.2019.01099.
URL http://openaccess.thecvf.com/content_CVPR_

2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_

Design_via_Differentiable_Neural_Architecture_Search_

CVPR_2019_paper.html

[132] H. Cai, L. Zhu, S. Han, Proxylessnas: Direct neural architecture
search on target task and hardware, in: 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.
URL https://openreview.net/forum?id=HylVB3AqYm

[133] M. Courbariaux, Y. Bengio, J. David, Binaryconnect: Training
deep neural networks with binary weights during propagations,
in: C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
R. Garnett (Eds.), Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, 2015, pp. 3123–3131.
URL https://proceedings.neurips.cc/paper/2015/hash/

3e15cc11f979ed25912dff5b0669f2cd-Abstract.html

[134] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a
neural network, arXiv preprint arXiv:1503.02531.

[135] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable
are features in deep neural networks?, in: Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, 2014,
pp. 3320–3328.
URL https://proceedings.neurips.cc/paper/2014/hash/

375c71349b295fbe2dcdca9206f20a06-Abstract.html

[136] T. Wei, C. Wang, C. W. Chen, Modularized morphing of neural
networks, arXiv preprint arXiv:1701.03281.

[137] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient
architecture search by network transformation, in: S. A.
McIlraith, K. Q. Weinberger (Eds.), Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18),

30

https://doi.org/10.1109/ICCV.2019.00668
https://www.aclweb.org/anthology/W09-1110
https://www.aclweb.org/anthology/W09-1110
https://www.aclweb.org/anthology/W09-1110
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://dx.doi.org/10.1109/CVPR.2018.00745
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/ICCV.2019.00138
https://doi.org/10.1109/ICCV.2019.00138
https://doi.org/10.1109/ICCV.2019.00138
http://dx.doi.org/10.1109/ICCV.2019.00138
http://dx.doi.org/10.1109/ICCV.2019.00138
https://doi.org/10.1109/ICCV.2019.00138
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00017
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00293
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.01099
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755


New Orleans, Louisiana, USA, February 2-7, 2018, AAAI
Press, 2018, pp. 2787–2794.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16755

[138] A. Kwasigroch, M. Grochowski, M. Mikolajczyk, Deep neu-
ral network architecture search using network morphism, in:
2019 24th International Conference on Methods and Models in
Automation and Robotics (MMAR), IEEE, 2019, pp. 30–35.

[139] H. Cai, J. Yang, W. Zhang, S. Han, Y. Yu, Path-level network
transformation for efficient architecture search, in: J. G. Dy,
A. Krause (Eds.), Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, Vol. 80 of Proceedings
of Machine Learning Research, PMLR, 2018, pp. 677–686.
URL http://proceedings.mlr.press/v80/cai18a.html

[140] J. Fang, Y. Sun, K. Peng, Q. Zhang, Y. Li, W. Liu, X. Wang,
Fast neural network adaptation via parameter remapping and
architecture search, in: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=rklTmyBKPH

[141] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang,
E. Choi, Morphnet: Fast & simple resource-constrained
structure learning of deep networks, in: 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, IEEE Computer
Society, 2018, pp. 1586–1595. doi:10.1109/CVPR.2018.00171.
URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Gordon_MorphNet_Fast__CVPR_2018_paper.html

[142] M. Tan, Q. V. Le, Efficientnet: Rethinking model scaling for
convolutional neural networks, in: K. Chaudhuri, R. Salakhut-
dinov (Eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, Vol. 97 of Proceedings of Machine Learning
Research, PMLR, 2019, pp. 6105–6114.
URL http://proceedings.mlr.press/v97/tan19a.html

[143] J. F. Miller, S. L. Harding, Cartesian genetic programming,
in: Proceedings of the 10th annual conference companion on
Genetic and evolutionary computation, ACM, 2008, pp. 2701–
2726.

[144] J. F. Miller, S. L. Smith, Redundancy and computational
efficiency in cartesian genetic programming, IEEE Transactions
on Evolutionary Computation 10 (2) (2006) 167–174.

[145] F. Gruau, Cellular encoding as a graph grammar, in: IEEE
Colloquium on Grammatical Inference: Theory, Applications
& Alternatives, 1993.

[146] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau,
M. Jaderberg, M. Lanctot, D. Wierstra, Convolution by evolu-
tion: Differentiable pattern producing networks, in: Proceed-
ings of the Genetic and Evolutionary Computation Conference
2016, ACM, 2016, pp. 109–116.

[147] M. Kim, L. Rigazio, Deep clustered convolutional kernels, in:
Feature Extraction: Modern Questions and Challenges, 2015,
pp. 160–172.

[148] J. K. Pugh, K. O. Stanley, Evolving multimodal controllers
with hyperneat, in: Proceedings of the 15th annual conference
on Genetic and evolutionary computation, ACM, 2013, pp.
735–742.

[149] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, Y. Xu, Eena: Efficient
evolution of neural architecture (2019). arXiv:1905.07320.

[150] R. J. Williams, Simple statistical gradient-following algorithms
for connectionist reinforcement learning, Machine learning 8 (3-
4) (1992) 229–256.

[151] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov,
Proximal policy optimization algorithms, arXiv preprint
arXiv:1707.06347.

[152] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, B. Schasberger, The Penn
Treebank: Annotating predicate argument structure, in: Hu-
man Language Technology: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994, 1994.

URL https://www.aclweb.org/anthology/H94-1020

[153] C. He, H. Ye, L. Shen, T. Zhang, Milenas: Efficient neu-
ral architecture search via mixed-level reformulation, in: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, IEEE,
2020, pp. 11990–11999. doi:10.1109/CVPR42600.2020.01201.
URL https://doi.org/10.1109/CVPR42600.2020.01201

[154] X. Dong, Y. Yang, Searching for a robust neural architecture
in four GPU hours, in: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, Computer Vision Foundation / IEEE, 2019,
pp. 1761–1770. doi:10.1109/CVPR.2019.00186.
URL http://openaccess.thecvf.com/content_CVPR_2019/

html/Dong_Searching_for_a_Robust_Neural_Architecture_

in_Four_GPU_Hours_CVPR_2019_paper.html

[155] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural ar-
chitecture search, in: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, OpenReview.net, 2019.
URL https://openreview.net/forum?id=rylqooRqK7

[156] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, K. Keutzer,
Mixed precision quantization of convnets via differentiable
neural architecture search (2018). arXiv:1812.00090.

[157] E. Jang, S. Gu, B. Poole, Categorical reparameterization with
gumbel-softmax, in: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=rkE3y85ee

[158] C. J. Maddison, A. Mnih, Y. W. Teh, The concrete distribution:
A continuous relaxation of discrete random variables, in: 5th
International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=S1jE5L5gl

[159] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, Z. Li,
Darts+: Improved differentiable architecture search with early
stopping, arXiv preprint arXiv:1909.06035.

[160] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, E. P.
Xing, Neural architecture search with bayesian optimisation
and optimal transport, in: S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett
(Eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
2018, pp. 2020–2029.
URL https://proceedings.neurips.cc/paper/2018/hash/

f33ba15effa5c10e873bf3842afb46a6-Abstract.html

[161] R. Negrinho, G. Gordon, Deeparchitect: Automatically design-
ing and training deep architectures (2017). arXiv:1704.08792.

[162] R. Negrinho, M. R. Gormley, G. J. Gordon, D. Patil, N. Le,
D. Ferreira, Towards modular and programmable architecture
search, in: H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, 2019, pp.
13715–13725.
URL https://proceedings.neurips.cc/paper/2019/hash/

4ab50afd6dcc95fcba76d0fe04295632-Abstract.html

[163] G. Dikov, J. Bayer, Bayesian learning of neural network ar-
chitectures, in: K. Chaudhuri, M. Sugiyama (Eds.), The 22nd
International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan,
Vol. 89 of Proceedings of Machine Learning Research, PMLR,
2019, pp. 730–738.
URL http://proceedings.mlr.press/v89/dikov19a.html

[164] C. White, W. Neiswanger, Y. Savani, Bananas: Bayesian op-
timization with neural architectures for neural architecture
search (2019). arXiv:1910.11858.

[165] M. Wistuba, Bayesian optimization combined with incremen-
tal evaluation for neural network architecture optimization,

31

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
http://proceedings.mlr.press/v80/cai18a.html
http://proceedings.mlr.press/v80/cai18a.html
http://proceedings.mlr.press/v80/cai18a.html
https://openreview.net/forum?id=rklTmyBKPH
https://openreview.net/forum?id=rklTmyBKPH
https://openreview.net/forum?id=rklTmyBKPH
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://dx.doi.org/10.1109/CVPR.2018.00171
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://arxiv.org/abs/1905.07320
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/H94-1020
https://doi.org/10.1109/CVPR42600.2020.01201
https://doi.org/10.1109/CVPR42600.2020.01201
http://dx.doi.org/10.1109/CVPR42600.2020.01201
https://doi.org/10.1109/CVPR42600.2020.01201
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00186
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
http://arxiv.org/abs/1812.00090
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
http://arxiv.org/abs/1704.08792
https://proceedings.neurips.cc/paper/2019/hash/4ab50afd6dcc95fcba76d0fe04295632-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4ab50afd6dcc95fcba76d0fe04295632-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4ab50afd6dcc95fcba76d0fe04295632-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4ab50afd6dcc95fcba76d0fe04295632-Abstract.html
http://proceedings.mlr.press/v89/dikov19a.html
http://proceedings.mlr.press/v89/dikov19a.html
http://proceedings.mlr.press/v89/dikov19a.html
http://arxiv.org/abs/1910.11858


in: Proceedings of the International Workshop on Automatic
Selection, Configuration and Composition of Machine Learning
Algorithms, 2017.

[166] J. Perez-Rua, M. Baccouche, S. Pateux, Efficient progressive
neural architecture search, in: British Machine Vision Confer-
ence 2018, BMVC 2018, Newcastle, UK, September 3-6, 2018,
BMVA Press, 2018, p. 150.
URL http://bmvc2018.org/contents/papers/0291.pdf

[167] C. E. Rasmussen, Gaussian processes in machine learning,
Lecture Notes in Computer Science (2003) 63–71.

[168] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms
for hyper-parameter optimization, in: J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. C. N. Pereira, K. Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14 December
2011, Granada, Spain, 2011, pp. 2546–2554.
URL https://proceedings.neurips.cc/paper/2011/hash/

86e8f7ab32cfd12577bc2619bc635690-Abstract.html

[169] R. Luo, F. Tian, T. Qin, E. Chen, T. Liu, Neural architecture
optimization, in: S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, 2018, pp. 7827–7838.
URL https://proceedings.neurips.cc/paper/2018/hash/

933670f1ac8ba969f32989c312faba75-Abstract.html

[170] M. M. Ian Dewancker, S. Clark, Bayesian optimization primer.
URL https://app.sigopt.com/static/pdf/SigOpt_

Bayesian_Optimization_Primer.pdf

[171] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. De Fre-
itas, Taking the human out of the loop: A review of bayesian
optimization, Proceedings of the IEEE 104 (1) (2016) 148–175.

[172] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sun-
daram, M. M. A. Patwary, Prabhat, R. P. Adams, Scalable
bayesian optimization using deep neural networks, in: F. R.
Bach, D. M. Blei (Eds.), Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, Vol. 37 of JMLR Workshop and Conference
Proceedings, JMLR.org, 2015, pp. 2171–2180.
URL http://proceedings.mlr.press/v37/snoek15.html

[173] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian
optimization of machine learning algorithms, in: P. L. Bartlett,
F. C. N. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States, 2012, pp. 2960–2968.
URL https://proceedings.neurips.cc/paper/2012/hash/

05311655a15b75fab86956663e1819cd-Abstract.html

[174] J. Stork, M. Zaefferer, T. Bartz-Beielstein, Improving neuroevo-
lution efficiency by surrogate model-based optimization with
phenotypic distance kernels (2019). arXiv:1902.03419.

[175] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, M. A. Osborne,
Raiders of the lost architecture: Kernels for bayesian optimiza-
tion in conditional parameter spaces (2014). arXiv:1409.4011.

[176] A. Camero, H. Wang, E. Alba, T. Bäck, Bayesian neural archi-
tecture search using a training-free performance metric (2020).
arXiv:2001.10726.

[177] C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown, Auto-
weka: combined selection and hyperparameter optimization of
classification algorithms, in: I. S. Dhillon, Y. Koren, R. Ghani,
T. E. Senator, P. Bradley, R. Parekh, J. He, R. L. Grossman,
R. Uthurusamy (Eds.), The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, ACM, 2013, pp.
847–855. doi:10.1145/2487575.2487629.
URL https://doi.org/10.1145/2487575.2487629

[178] A. sharpdarts, V. Jain, G. D. Hager, sharpdarts: Faster and
more accurate differentiable architecture search, Tech. rep.
(2019).

[179] Y. Geifman, R. El-Yaniv, Deep active learning with a
neural architecture search, in: H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019, pp. 5974–5984.
URL https://proceedings.neurips.cc/paper/2019/hash/

b59307fdacf7b2db12ec4bd5ca1caba8-Abstract.html

[180] L. Li, A. Talwalkar, Random search and reproducibility for
neural architecture search, in: A. Globerson, R. Silva (Eds.),
Proceedings of the Thirty-Fifth Conference on Uncertainty in
Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25,
2019, Vol. 115 of Proceedings of Machine Learning Research,
AUAI Press, 2019, pp. 367–377.
URL http://proceedings.mlr.press/v115/li20c.html

[181] J. Bergstra, Y. Bengio, Random search for hyper-parameter
optimization, Journal of machine learning research 13 (Feb)
(2012) 281–305.

[182] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., A practical guide to
support vector classification.

[183] J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, L. R.
Furenlid, Maximum-likelihood estimation with a contracting-
grid search algorithm, IEEE transactions on nuclear science
57 (3) (2010) 1077–1084.

[184] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,
Hyperband: A novel bandit-based approach to hyperparameter
optimization, The Journal of Machine Learning Research 18 (1)
(2017) 6765–6816.

[185] M. Feurer, F. Hutter, Hyperparameter Optimization, Springer
International Publishing, Cham, 2019, pp. 3–33.
URL https://doi.org/10.1007/978-3-030-05318-5_1

[186] T. Yu, H. Zhu, Hyper-parameter optimization: A review of
algorithms and applications, arXiv preprint arXiv:2003.05689.

[187] Y. Bengio, Gradient-based optimization of hyperparameters,
Neural computation 12 (8) (2000) 1889–1900.

[188] J. Domke, Generic methods for optimization-based modeling,
in: Artificial Intelligence and Statistics, 2012, pp. 318–326.

[189] D. Maclaurin, D. Duvenaud, R. P. Adams, Gradient-based hy-
perparameter optimization through reversible learning, in: F. R.
Bach, D. M. Blei (Eds.), Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, Vol. 37 of JMLR Workshop and Conference
Proceedings, JMLR.org, 2015, pp. 2113–2122.
URL http://proceedings.mlr.press/v37/maclaurin15.html

[190] F. Pedregosa, Hyperparameter optimization with approximate
gradient, in: M. Balcan, K. Q. Weinberger (Eds.), Proceedings
of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, Vol. 48
of JMLR Workshop and Conference Proceedings, JMLR.org,
2016, pp. 737–746.
URL http://proceedings.mlr.press/v48/pedregosa16.html

[191] L. Franceschi, M. Donini, P. Frasconi, M. Pontil, Forward
and reverse gradient-based hyperparameter optimization,
in: D. Precup, Y. W. Teh (Eds.), Proceedings of the 34th
International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, Vol. 70 of
Proceedings of Machine Learning Research, PMLR, 2017, pp.
1165–1173.
URL http://proceedings.mlr.press/v70/franceschi17a.

html

[192] K. Chandra, E. Meijer, S. Andow, E. Arroyo-Fang, I. Dea,
J. George, M. Grueter, B. Hosmer, S. Stumpos, A. Tempest,
et al., Gradient descent: The ultimate optimizer, arXiv preprint
arXiv:1909.13371.

[193] D. P. Kingma, J. Ba, Adam: A method for stochastic opti-
mization, in: Y. Bengio, Y. LeCun (Eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
URL http://arxiv.org/abs/1412.6980

[194] P. Chrabaszcz, I. Loshchilov, F. Hutter, A downsampled variant

32

http://bmvc2018.org/contents/papers/0291.pdf
http://bmvc2018.org/contents/papers/0291.pdf
http://bmvc2018.org/contents/papers/0291.pdf
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
http://proceedings.mlr.press/v37/snoek15.html
http://proceedings.mlr.press/v37/snoek15.html
http://proceedings.mlr.press/v37/snoek15.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
http://arxiv.org/abs/1902.03419
http://arxiv.org/abs/1409.4011
http://arxiv.org/abs/2001.10726
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
http://dx.doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://proceedings.neurips.cc/paper/2019/hash/b59307fdacf7b2db12ec4bd5ca1caba8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b59307fdacf7b2db12ec4bd5ca1caba8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b59307fdacf7b2db12ec4bd5ca1caba8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b59307fdacf7b2db12ec4bd5ca1caba8-Abstract.html
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v48/pedregosa16.html
http://proceedings.mlr.press/v48/pedregosa16.html
http://proceedings.mlr.press/v48/pedregosa16.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1707.08819


of imagenet as an alternative to the CIFAR datasets, CoRR
abs/1707.08819. arXiv:1707.08819.
URL http://arxiv.org/abs/1707.08819

[195] Y. Hu, Y. Yu, W. Tu, Q. Yang, Y. Chen, W. Dai, Multi-
fidelity automatic hyper-parameter tuning via transfer series
expansion, in: The Thirty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, AAAI Press, 2019, pp. 3846–3853.
doi:10.1609/aaai.v33i01.33013846.
URL https://doi.org/10.1609/aaai.v33i01.33013846

[196] C. Wong, N. Houlsby, Y. Lu, A. Gesmundo, Transfer learning
with neural automl, in: S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, 2018, pp. 8366–8375.
URL https://proceedings.neurips.cc/paper/2018/hash/

bdb3c278f45e6734c35733d24299d3f4-Abstract.html

[197] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyan-
tha, J. Liu, D. Marculescu, Single-path nas: Designing
hardware-efficient convnets in less than 4 hours, arXiv preprint
arXiv:1904.02877.

[198] K. Eggensperger, F. Hutter, H. H. Hoos, K. Leyton-Brown,
Surrogate benchmarks for hyperparameter optimization., in:
MetaSel@ ECAI, 2014, pp. 24–31.

[199] C. Wang, Q. Duan, W. Gong, A. Ye, Z. Di, C. Miao, An
evaluation of adaptive surrogate modeling based optimization
with two benchmark problems, Environmental Modelling &
Software 60 (2014) 167–179.

[200] K. Eggensperger, F. Hutter, H. H. Hoos, K. Leyton-Brown,
Efficient benchmarking of hyperparameter optimizers via
surrogates, in: B. Bonet, S. Koenig (Eds.), Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, AAAI Press, 2015,
pp. 1114–1120.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI15/

paper/view/9993

[201] K. K. Vu, C. D’Ambrosio, Y. Hamadi, L. Liberti, Surrogate-
based methods for black-box optimization, International Trans-
actions in Operational Research 24 (3) (2017) 393–424.

[202] R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, T.-Y. Liu,
Semi-supervised neural architecture search (2020). arXiv:

2002.10389.
[203] A. Klein, S. Falkner, J. T. Springenberg, F. Hutter, Learning

curve prediction with bayesian neural networks, in: 5th Inter-
national Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceed-
ings, OpenReview.net, 2017.
URL https://openreview.net/forum?id=S11KBYclx

[204] B. Deng, J. Yan, D. Lin, Peephole: Predicting network perfor-
mance before training, arXiv preprint arXiv:1712.03351.

[205] T. Domhan, J. T. Springenberg, F. Hutter, Speeding up auto-
matic hyperparameter optimization of deep neural networks by
extrapolation of learning curves, in: Q. Yang, M. J. Wooldridge
(Eds.), Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, AAAI Press, 2015, pp. 3460–3468.
URL http://ijcai.org/Abstract/15/487

[206] M. Mahsereci, L. Balles, C. Lassner, P. Hennig, Early stopping
without a validation set, arXiv preprint arXiv:1703.09580.

[207] D. Han, J. Kim, J. Kim, Deep pyramidal residual networks,
in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, IEEE Computer Society, 2017, pp. 6307–6315. doi:

10.1109/CVPR.2017.668.
URL https://doi.org/10.1109/CVPR.2017.668

[208] J. Cui, P. Chen, R. Li, S. Liu, X. Shen, J. Jia, Fast and practical
neural architecture search, in: 2019 IEEE/CVF International

Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, IEEE, 2019, pp. 6508–
6517. doi:10.1109/ICCV.2019.00661.
URL https://doi.org/10.1109/ICCV.2019.00661

[209] X. Dong, Y. Yang, One-shot neural architecture search via self-
evaluated template network, in: 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, IEEE, 2019, pp. 3680–
3689. doi:10.1109/ICCV.2019.00378.
URL https://doi.org/10.1109/ICCV.2019.00378

[210] H. Zhou, M. Yang, J. Wang, W. Pan, Bayesnas: A bayesian
approach for neural architecture search, in: K. Chaudhuri,
R. Salakhutdinov (Eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, Vol. 97 of Proceedings of Machine
Learning Research, PMLR, 2019, pp. 7603–7613.
URL http://proceedings.mlr.press/v97/zhou19e.html

[211] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, H. Xiong,
PC-DARTS: partial channel connections for memory-efficient
architecture search, in: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=BJlS634tPr

[212] G. Li, G. Qian, I. C. Delgadillo, M. Müller, A. K. Thabet,
B. Ghanem, SGAS: sequential greedy architecture search, in:
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, IEEE, 2020, pp. 1617–1627. doi:10.1109/CVPR42600.

2020.00169.
URL https://doi.org/10.1109/CVPR42600.2020.00169

[213] M. Zhang, H. Li, S. Pan, X. Chang, S. W. Su, Overcom-
ing multi-model forgetting in one-shot NAS with diversity
maximization, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, IEEE, 2020, pp. 7806–7815. doi:

10.1109/CVPR42600.2020.00783.
URL https://doi.org/10.1109/CVPR42600.2020.00783

[214] C. Zhang, M. Ren, R. Urtasun, Graph hypernetworks for neu-
ral architecture search, in: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, OpenReview.net, 2019.
URL https://openreview.net/forum?id=rkgW0oA9FX

[215] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, L. Chen,
Mobilenetv2: Inverted residuals and linear bottlenecks, in:
2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, IEEE Computer Society, 2018, pp. 4510–4520.
doi:10.1109/CVPR.2018.00474.
URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_

paper.html

[216] S. You, T. Huang, M. Yang, F. Wang, C. Qian, C. Zhang,
Greedynas: Towards fast one-shot NAS with greedy supernet,
in: 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, IEEE, 2020, pp. 1996–2005. doi:10.1109/CVPR42600.

2020.00207.
URL https://doi.org/10.1109/CVPR42600.2020.00207

[217] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-all:
Train one network and specialize it for efficient deployment,
in: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, Open-
Review.net, 2020.
URL https://openreview.net/forum?id=HylxE1HKwS

[218] J. Mei, Y. Li, X. Lian, X. Jin, L. Yang, A. L. Yuille, J. Yang,
Atomnas: Fine-grained end-to-end neural architecture search,
in: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, Open-
Review.net, 2020.
URL https://openreview.net/forum?id=BylQSxHFwr

[219] S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, D. Lin,

33

http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819
https://doi.org/10.1609/aaai.v33i01.33013846
https://doi.org/10.1609/aaai.v33i01.33013846
https://doi.org/10.1609/aaai.v33i01.33013846
http://dx.doi.org/10.1609/aaai.v33i01.33013846
https://doi.org/10.1609/aaai.v33i01.33013846
https://proceedings.neurips.cc/paper/2018/hash/bdb3c278f45e6734c35733d24299d3f4-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/bdb3c278f45e6734c35733d24299d3f4-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/bdb3c278f45e6734c35733d24299d3f4-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/bdb3c278f45e6734c35733d24299d3f4-Abstract.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://arxiv.org/abs/2002.10389
http://arxiv.org/abs/2002.10389
https://openreview.net/forum?id=S11KBYclx
https://openreview.net/forum?id=S11KBYclx
https://openreview.net/forum?id=S11KBYclx
http://ijcai.org/Abstract/15/487
http://ijcai.org/Abstract/15/487
http://ijcai.org/Abstract/15/487
http://ijcai.org/Abstract/15/487
https://doi.org/10.1109/CVPR.2017.668
http://dx.doi.org/10.1109/CVPR.2017.668
http://dx.doi.org/10.1109/CVPR.2017.668
https://doi.org/10.1109/CVPR.2017.668
https://doi.org/10.1109/ICCV.2019.00661
https://doi.org/10.1109/ICCV.2019.00661
http://dx.doi.org/10.1109/ICCV.2019.00661
https://doi.org/10.1109/ICCV.2019.00661
https://doi.org/10.1109/ICCV.2019.00378
https://doi.org/10.1109/ICCV.2019.00378
http://dx.doi.org/10.1109/ICCV.2019.00378
https://doi.org/10.1109/ICCV.2019.00378
http://proceedings.mlr.press/v97/zhou19e.html
http://proceedings.mlr.press/v97/zhou19e.html
http://proceedings.mlr.press/v97/zhou19e.html
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://doi.org/10.1109/CVPR42600.2020.00169
http://dx.doi.org/10.1109/CVPR42600.2020.00169
http://dx.doi.org/10.1109/CVPR42600.2020.00169
https://doi.org/10.1109/CVPR42600.2020.00169
https://doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
http://dx.doi.org/10.1109/CVPR42600.2020.00783
http://dx.doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://dx.doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR42600.2020.00207
http://dx.doi.org/10.1109/CVPR42600.2020.00207
http://dx.doi.org/10.1109/CVPR42600.2020.00207
https://doi.org/10.1109/CVPR42600.2020.00207
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=BylQSxHFwr
https://openreview.net/forum?id=BylQSxHFwr


DSNAS: direct neural architecture search without param-
eter retraining, in: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, IEEE, 2020, pp. 12081–12089.
doi:10.1109/CVPR42600.2020.01210.
URL https://doi.org/10.1109/CVPR42600.2020.01210

[220] J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, X. Wang, Densely
connected search space for more flexible neural architecture
search, in: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, IEEE, 2020, pp. 10625–10634. doi:10.1109/

CVPR42600.2020.01064.
URL https://doi.org/10.1109/CVPR42600.2020.01064

[221] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu,
M. Yu, T. Xu, K. Chen, P. Vajda, J. E. Gonzalez, Fbnetv2:
Differentiable neural architecture search for spatial and channel
dimensions, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, IEEE, 2020, pp. 12962–12971. doi:

10.1109/CVPR42600.2020.01298.
URL https://doi.org/10.1109/CVPR42600.2020.01298

[222] R. Istrate, F. Scheidegger, G. Mariani, D. S. Nikolopoulos,
C. Bekas, A. C. I. Malossi, TAPAS: train-less accuracy predic-
tor for architecture search, in: The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, AAAI Press, 2019, pp.
3927–3934. doi:10.1609/aaai.v33i01.33013927.
URL https://doi.org/10.1609/aaai.v33i01.33013927

[223] M. G. Kendall, A new measure of rank correlation, Biometrika
30 (1/2) (1938) 81–93.
URL http://www.jstor.org/stable/2332226

[224] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, F. Hut-
ter, Nas-bench-101: Towards reproducible neural architecture
search, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceed-
ings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA,
Vol. 97 of Proceedings of Machine Learning Research, PMLR,
2019, pp. 7105–7114.
URL http://proceedings.mlr.press/v97/ying19a.html

[225] X. Dong, Y. Yang, Nas-bench-201: Extending the scope of
reproducible neural architecture search, in: 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=HJxyZkBKDr

[226] N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fe-
dorov, E. Burnaev, Nas-bench-nlp: Neural architecture search
benchmark for natural language processing (2020). arXiv:

2006.07116.
[227] X. Zhang, Z. Huang, N. Wang, You only search once: Single

shot neural architecture search via direct sparse optimization,
arXiv preprint arXiv:1811.01567.

[228] J. Yu, P. Jin, H. Liu, G. Bender, P.-J. Kindermans, M. Tan,
T. Huang, X. Song, R. Pang, Q. Le, Bignas: Scaling up neural
architecture search with big single-stage models, arXiv preprint
arXiv:2003.11142.

[229] X. Chu, B. Zhang, R. Xu, J. Li, Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search, arXiv
preprint arXiv:1907.01845.

[230] Y. Benyahia, K. Yu, K. Bennani-Smires, M. Jaggi, A. C. Davi-
son, M. Salzmann, C. Musat, Overcoming multi-model forget-
ting, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of
the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, Vol. 97 of
Proceedings of Machine Learning Research, PMLR, 2019, pp.
594–603.
URL http://proceedings.mlr.press/v97/benyahia19a.html

[231] M. Zhang, H. Li, S. Pan, X. Chang, S. W. Su, Overcom-
ing multi-model forgetting in one-shot NAS with diversity

maximization, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, IEEE, 2020, pp. 7806–7815. doi:

10.1109/CVPR42600.2020.00783.
URL https://doi.org/10.1109/CVPR42600.2020.00783

[232] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan, Q. V. Le,
Understanding and simplifying one-shot architecture search,
in: J. G. Dy, A. Krause (Eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, Vol. 80 of
Proceedings of Machine Learning Research, PMLR, 2018, pp.
549–558.
URL http://proceedings.mlr.press/v80/bender18a.html

[233] X. Dong, M. Tan, A. W. Yu, D. Peng, B. Gabrys, Q. V.
Le, Autohas: Differentiable hyper-parameter and architecture
search (2020). arXiv:2006.03656.

[234] A. Klein, F. Hutter, Tabular benchmarks for joint archi-
tecture and hyperparameter optimization, arXiv preprint
arXiv:1905.04970.

[235] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen,
Y. Tian, M. Yu, P. Vajda, et al., Fbnetv3: Joint architecture-
recipe search using neural acquisition function, arXiv preprint
arXiv:2006.02049.

[236] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-
C. Chang, J.-Y. Pan, Y.-T. Chen, W. Wei, D.-C. Juan, Monas:
Multi-objective neural architecture search using reinforcement
learning, arXiv preprint arXiv:1806.10332.

[237] X. He, S. Wang, S. Shi, X. Chu, J. Tang, X. Liu, C. Yan,
J. Zhang, G. Ding, Benchmarking deep learning models and
automated model design for covid-19 detection with chest ct
scans, medRxiv.

[238] L. Faes, S. K. Wagner, D. J. Fu, X. Liu, E. Korot, J. R. Ledsam,
T. Back, R. Chopra, N. Pontikos, C. Kern, et al., Automated
deep learning design for medical image classification by health-
care professionals with no coding experience: a feasibility study,
The Lancet Digital Health 1 (5) (2019) e232–e242.

[239] X. He, S. Wang, X. Chu, S. Shi, J. Tang, X. Liu, C. Yan,
J. Zhang, G. Ding, Automated model design and benchmarking
of 3d deep learning models for covid-19 detection with chest ct
scans (2021). arXiv:2101.05442.

[240] G. Ghiasi, T. Lin, Q. V. Le, NAS-FPN: learning scalable
feature pyramid architecture for object detection, in: IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
Computer Vision Foundation / IEEE, 2019, pp. 7036–7045.
doi:10.1109/CVPR.2019.00720.
URL http://openaccess.thecvf.com/content_CVPR_

2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_

Pyramid_Architecture_for_Object_Detection_CVPR_2019_

paper.html

[241] H. Xu, L. Yao, Z. Li, X. Liang, W. Zhang, Auto-fpn: Automatic
network architecture adaptation for object detection beyond
classification, in: 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, IEEE, 2019, pp. 6648–6657. doi:

10.1109/ICCV.2019.00675.
URL https://doi.org/10.1109/ICCV.2019.00675

[242] M. Tan, R. Pang, Q. V. Le, Efficientdet: Scalable and efficient
object detection, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, IEEE, 2020, pp. 10778–10787. doi:

10.1109/CVPR42600.2020.01079.
URL https://doi.org/10.1109/CVPR42600.2020.01079

[243] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, J. Sun, Detnas:
Neural architecture search on object detection, arXiv preprint
arXiv:1903.10979 1 (2) (2019) 4–1.

[244] J. Guo, K. Han, Y. Wang, C. Zhang, Z. Yang, H. Wu, X. Chen,
C. Xu, Hit-detector: Hierarchical trinity architecture search for
object detection, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, IEEE, 2020, pp. 11402–11411. doi:

34

https://doi.org/10.1109/CVPR42600.2020.01210
https://doi.org/10.1109/CVPR42600.2020.01210
http://dx.doi.org/10.1109/CVPR42600.2020.01210
https://doi.org/10.1109/CVPR42600.2020.01210
https://doi.org/10.1109/CVPR42600.2020.01064
https://doi.org/10.1109/CVPR42600.2020.01064
https://doi.org/10.1109/CVPR42600.2020.01064
http://dx.doi.org/10.1109/CVPR42600.2020.01064
http://dx.doi.org/10.1109/CVPR42600.2020.01064
https://doi.org/10.1109/CVPR42600.2020.01064
https://doi.org/10.1109/CVPR42600.2020.01298
https://doi.org/10.1109/CVPR42600.2020.01298
https://doi.org/10.1109/CVPR42600.2020.01298
http://dx.doi.org/10.1109/CVPR42600.2020.01298
http://dx.doi.org/10.1109/CVPR42600.2020.01298
https://doi.org/10.1109/CVPR42600.2020.01298
https://doi.org/10.1609/aaai.v33i01.33013927
https://doi.org/10.1609/aaai.v33i01.33013927
http://dx.doi.org/10.1609/aaai.v33i01.33013927
https://doi.org/10.1609/aaai.v33i01.33013927
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
http://arxiv.org/abs/2006.07116
http://arxiv.org/abs/2006.07116
http://proceedings.mlr.press/v97/benyahia19a.html
http://proceedings.mlr.press/v97/benyahia19a.html
http://proceedings.mlr.press/v97/benyahia19a.html
https://doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
http://dx.doi.org/10.1109/CVPR42600.2020.00783
http://dx.doi.org/10.1109/CVPR42600.2020.00783
https://doi.org/10.1109/CVPR42600.2020.00783
http://proceedings.mlr.press/v80/bender18a.html
http://proceedings.mlr.press/v80/bender18a.html
http://arxiv.org/abs/2006.03656
http://arxiv.org/abs/2101.05442
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00720
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV.2019.00675
https://doi.org/10.1109/ICCV.2019.00675
https://doi.org/10.1109/ICCV.2019.00675
http://dx.doi.org/10.1109/ICCV.2019.00675
http://dx.doi.org/10.1109/ICCV.2019.00675
https://doi.org/10.1109/ICCV.2019.00675
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.01079
http://dx.doi.org/10.1109/CVPR42600.2020.01079
http://dx.doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.01142
https://doi.org/10.1109/CVPR42600.2020.01142
http://dx.doi.org/10.1109/CVPR42600.2020.01142


10.1109/CVPR42600.2020.01142.
URL https://doi.org/10.1109/CVPR42600.2020.01142

[245] C. Jiang, H. Xu, W. Zhang, X. Liang, Z. Li, SP-NAS: serial-
to-parallel backbone search for object detection, in: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, IEEE,
2020, pp. 11860–11869. doi:10.1109/CVPR42600.2020.01188.
URL https://doi.org/10.1109/CVPR42600.2020.01188

[246] Y. Weng, T. Zhou, Y. Li, X. Qiu, Nas-unet: Neural architecture
search for medical image segmentation, IEEE Access 7 (2019)
44247–44257.

[247] V. Nekrasov, H. Chen, C. Shen, I. D. Reid, Fast neural
architecture search of compact semantic segmentation models
via auxiliary cells, in: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, Computer Vision Foundation / IEEE, 2019,
pp. 9126–9135. doi:10.1109/CVPR.2019.00934.
URL http://openaccess.thecvf.com/content_CVPR_2019/

html/Nekrasov_Fast_Neural_Architecture_Search_of_

Compact_Semantic_Segmentation_Models_via_CVPR_2019_

paper.html

[248] W. Bae, S. Lee, Y. Lee, B. Park, M. Chung, K.-H. Jung, Re-
source optimized neural architecture search for 3d medical
image segmentation, in: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention,
Springer, 2019, pp. 228–236.

[249] D. Yang, H. Roth, Z. Xu, F. Milletari, L. Zhang, D. Xu, Search-
ing learning strategy with reinforcement learning for 3d medical
image segmentation, in: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention,
Springer, 2019, pp. 3–11.

[250] N. Dong, M. Xu, X. Liang, Y. Jiang, W. Dai, E. Xing, Neural
architecture search for adversarial medical image segmentation,
in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2019, pp. 828–836.

[251] S. Kim, I. Kim, S. Lim, W. Baek, C. Kim, H. Cho, B. Yoon,
T. Kim, Scalable neural architecture search for 3d medical
image segmentation, in: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention,
Springer, 2019, pp. 220–228.

[252] R. Quan, X. Dong, Y. Wu, L. Zhu, Y. Yang, Auto-reid: Search-
ing for a part-aware convnet for person re-identification, in:
2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, IEEE, 2019, pp. 3749–3758. doi:10.1109/ICCV.2019.

00385.
URL https://doi.org/10.1109/ICCV.2019.00385

[253] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, Y. Wang, Efficient
residual dense block search for image super-resolution., in:
AAAI, 2020, pp. 12007–12014.

[254] X. Chu, B. Zhang, H. Ma, R. Xu, J. Li, Q. Li, Fast, accurate
and lightweight super-resolution with neural architecture search,
arXiv preprint arXiv:1901.07261.

[255] Y. Guo, Y. Luo, Z. He, J. Huang, J. Chen, Hierarchical neural
architecture search for single image super-resolution, arXiv
preprint arXiv:2003.04619.

[256] H. Zhang, Y. Li, H. Chen, C. Shen, Ir-nas: Neural architecture
search for image restoration, arXiv preprint arXiv:1909.08228.

[257] X. Gong, S. Chang, Y. Jiang, Z. Wang, Autogan: Neural
architecture search for generative adversarial networks, in:
2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, IEEE, 2019, pp. 3223–3233. doi:10.1109/ICCV.2019.

00332.
URL https://doi.org/10.1109/ICCV.2019.00332

[258] Y. Fu, W. Chen, H. Wang, H. Li, Y. Lin, Z. Wang, Autogan-
distiller: Searching to compress generative adversarial networks,
in: Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
Vol. 119 of Proceedings of Machine Learning Research, PMLR,
2020, pp. 3292–3303.

URL http://proceedings.mlr.press/v119/fu20b.html

[259] M. Li, J. Lin, Y. Ding, Z. Liu, J. Zhu, S. Han, GAN compression:
Efficient architectures for interactive conditional gans, in: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, IEEE,
2020, pp. 5283–5293. doi:10.1109/CVPR42600.2020.00533.
URL https://doi.org/10.1109/CVPR42600.2020.00533

[260] C. Gao, Y. Chen, S. Liu, Z. Tan, S. Yan, Adversarialnas: Adver-
sarial neural architecture search for gans, in: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, IEEE, 2020,
pp. 5679–5688. doi:10.1109/CVPR42600.2020.00572.
URL https://doi.org/10.1109/CVPR42600.2020.00572

[261] T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, T. Brox, Au-
todispnet: Improving disparity estimation with automl, in:
2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, IEEE, 2019, pp. 1812–1823. doi:10.1109/ICCV.2019.

00190.
URL https://doi.org/10.1109/ICCV.2019.00190

[262] W. Peng, X. Hong, G. Zhao, Video action recognition via neural
architecture searching, in: 2019 IEEE International Conference
on Image Processing (ICIP), IEEE, 2019, pp. 11–15.

[263] M. S. Ryoo, A. J. Piergiovanni, M. Tan, A. Angelova, Assem-
blenet: Searching for multi-stream neural connectivity in video
architectures, in: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=SJgMK64Ywr

[264] V. Nekrasov, H. Chen, C. Shen, I. Reid, Architecture search of
dynamic cells for semantic video segmentation, in: The IEEE
Winter Conference on Applications of Computer Vision, 2020,
pp. 1970–1979.

[265] A. J. Piergiovanni, A. Angelova, A. Toshev, M. S. Ryoo,
Evolving space-time neural architectures for videos, in: 2019
IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, IEEE, 2019, pp. 1793–1802. doi:10.1109/ICCV.2019.

00188.
URL https://doi.org/10.1109/ICCV.2019.00188

[266] Y. Fan, F. Tian, Y. Xia, T. Qin, X.-Y. Li, T.-Y. Liu, Searching
better architectures for neural machine translation, IEEE/ACM
Transactions on Audio, Speech, and Language Processing.

[267] Y. Jiang, C. Hu, T. Xiao, C. Zhang, J. Zhu, Improved dif-
ferentiable architecture search for language modeling and
named entity recognition, in: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), Association for Compu-
tational Linguistics, Hong Kong, China, 2019, pp. 3585–3590.
doi:10.18653/v1/D19-1367.
URL https://www.aclweb.org/anthology/D19-1367

[268] J. Chen, K. Chen, X. Chen, X. Qiu, X. Huang, Exploring
shared structures and hierarchies for multiple nlp tasks, arXiv
preprint arXiv:1808.07658.

[269] H. Mazzawi, X. Gonzalvo, A. Kracun, P. Sridhar, N. Subrah-
manya, I. Lopez-Moreno, H.-J. Park, P. Violette, Improving
keyword spotting and language identification via neural ar-
chitecture search at scale., in: INTERSPEECH, 2019, pp.
1278–1282.

[270] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, S. Han, Amc: Automl
for model compression and acceleration on mobile devices, in:
Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 784–800.

[271] X. Xiao, Z. Wang, S. Rajasekaran, Autoprune: Automatic
network pruning by regularizing auxiliary parameters, in:
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, 2019, pp. 13681–13691.

35

http://dx.doi.org/10.1109/CVPR42600.2020.01142
https://doi.org/10.1109/CVPR42600.2020.01142
https://doi.org/10.1109/CVPR42600.2020.01188
https://doi.org/10.1109/CVPR42600.2020.01188
http://dx.doi.org/10.1109/CVPR42600.2020.01188
https://doi.org/10.1109/CVPR42600.2020.01188
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://dx.doi.org/10.1109/CVPR.2019.00934
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Nekrasov_Fast_Neural_Architecture_Search_of_Compact_Semantic_Segmentation_Models_via_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV.2019.00385
https://doi.org/10.1109/ICCV.2019.00385
http://dx.doi.org/10.1109/ICCV.2019.00385
http://dx.doi.org/10.1109/ICCV.2019.00385
https://doi.org/10.1109/ICCV.2019.00385
https://doi.org/10.1109/ICCV.2019.00332
https://doi.org/10.1109/ICCV.2019.00332
http://dx.doi.org/10.1109/ICCV.2019.00332
http://dx.doi.org/10.1109/ICCV.2019.00332
https://doi.org/10.1109/ICCV.2019.00332
http://proceedings.mlr.press/v119/fu20b.html
http://proceedings.mlr.press/v119/fu20b.html
http://proceedings.mlr.press/v119/fu20b.html
https://doi.org/10.1109/CVPR42600.2020.00533
https://doi.org/10.1109/CVPR42600.2020.00533
http://dx.doi.org/10.1109/CVPR42600.2020.00533
https://doi.org/10.1109/CVPR42600.2020.00533
https://doi.org/10.1109/CVPR42600.2020.00572
https://doi.org/10.1109/CVPR42600.2020.00572
http://dx.doi.org/10.1109/CVPR42600.2020.00572
https://doi.org/10.1109/CVPR42600.2020.00572
https://doi.org/10.1109/ICCV.2019.00190
https://doi.org/10.1109/ICCV.2019.00190
http://dx.doi.org/10.1109/ICCV.2019.00190
http://dx.doi.org/10.1109/ICCV.2019.00190
https://doi.org/10.1109/ICCV.2019.00190
https://openreview.net/forum?id=SJgMK64Ywr
https://openreview.net/forum?id=SJgMK64Ywr
https://openreview.net/forum?id=SJgMK64Ywr
https://openreview.net/forum?id=SJgMK64Ywr
https://doi.org/10.1109/ICCV.2019.00188
http://dx.doi.org/10.1109/ICCV.2019.00188
http://dx.doi.org/10.1109/ICCV.2019.00188
https://doi.org/10.1109/ICCV.2019.00188
https://www.aclweb.org/anthology/D19-1367
https://www.aclweb.org/anthology/D19-1367
https://www.aclweb.org/anthology/D19-1367
http://dx.doi.org/10.18653/v1/D19-1367
https://www.aclweb.org/anthology/D19-1367
https://proceedings.neurips.cc/paper/2019/hash/4efc9e02abdab6b6166251918570a307-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4efc9e02abdab6b6166251918570a307-Abstract.html


URL https://proceedings.neurips.cc/paper/2019/hash/

4efc9e02abdab6b6166251918570a307-Abstract.html

[272] R. Zhao, W. Luk, Efficient structured pruning and architecture
searching for group convolution, in: Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2019,
pp. 0–0.

[273] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin,
S. Han, APQ: joint search for network architecture, pruning
and quantization policy, in: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, IEEE, 2020, pp. 2075–2084. doi:

10.1109/CVPR42600.2020.00215.
URL https://doi.org/10.1109/CVPR42600.2020.00215

[274] X. Dong, Y. Yang, Network pruning via transformable architec-
ture search, in: H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, 2019, pp.
759–770.
URL https://proceedings.neurips.cc/paper/2019/hash/

a01a0380ca3c61428c26a231f0e49a09-Abstract.html

[275] Q. Huang, K. Zhou, S. You, U. Neumann, Learning to prune
filters in convolutional neural networks (2018). arXiv:1801.

07365.
[276] Y. He, P. Liu, L. Zhu, Y. Yang, Meta filter pruning to accelerate

deep convolutional neural networks (2019). arXiv:1904.03961.
[277] T.-W. Chin, C. Zhang, D. Marculescu, Layer-compensated

pruning for resource-constrained convolutional neural networks
(2018). arXiv:1810.00518.

[278] K. Zhou, Q. Song, X. Huang, X. Hu, Auto-gnn: Neural ar-
chitecture search of graph neural networks, arXiv preprint
arXiv:1909.03184.

[279] C. He, M. Annavaram, S. Avestimehr, Fednas: Federated
deep learning via neural architecture search (2020). arXiv:

2004.08546.
[280] H. Zhu, Y. Jin, Real-time federated evolutionary neural archi-

tecture search, arXiv preprint arXiv:2003.02793.
[281] C. Li, X. Yuan, C. Lin, M. Guo, W. Wu, J. Yan, W. Ouyang,

AM-LFS: automl for loss function search, in: 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, IEEE,
2019, pp. 8409–8418. doi:10.1109/ICCV.2019.00850.
URL https://doi.org/10.1109/ICCV.2019.00850

[282] B. Ru, C. Lyle, L. Schut, M. van der Wilk, Y. Gal, Revisiting
the train loss: an efficient performance estimator for neural
architecture search, arXiv preprint arXiv:2006.04492.

[283] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation
functions (2017). arXiv:1710.05941.

[284] H. Wang, H. Wang, K. Xu, Evolutionary recurrent neural
network for image captioning, Neurocomputing.

[285] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, R. Fonseca, Neural
architecture search using deep neural networks and monte carlo
tree search, arXiv preprint arXiv:1805.07440.

[286] P. Zhao, K. Xiao, Y. Zhang, K. Bian, W. Yan, Amer: Automatic
behavior modeling and interaction exploration in recommender
system, arXiv preprint arXiv:2006.05933.

[287] X. Zhao, C. Wang, M. Chen, X. Zheng, X. Liu, J. Tang, Au-
toemb: Automated embedding dimensionality search in stream-
ing recommendations, arXiv preprint arXiv:2002.11252.

[288] W. Cheng, Y. Shen, L. Huang, Differentiable neural
input search for recommender systems, arXiv preprint
arXiv:2006.04466.

[289] E. Real, C. Liang, D. R. So, Q. V. Le, Automl-zero: Evolving
machine learning algorithms from scratch, in: Proceedings of
the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, Vol. 119 of Proceedings
of Machine Learning Research, PMLR, 2020, pp. 8007–8019.
URL http://proceedings.mlr.press/v119/real20a.html

[290] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
Language models are unsupervised multitask learners, OpenAI

Blog 1 (2019) 8.
[291] D. Wang, C. Gong, Q. Liu, Improving neural language modeling

via adversarial training, in: K. Chaudhuri, R. Salakhutdinov
(Eds.), Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, Vol. 97 of Proceedings of Machine Learning
Research, PMLR, 2019, pp. 6555–6565.
URL http://proceedings.mlr.press/v97/wang19f.html

[292] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, F. Hut-
ter, Understanding and robustifying differentiable architecture
search, in: 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
OpenReview.net, 2020.
URL https://openreview.net/forum?id=H1gDNyrKDS

[293] S. KOTYAN, D. V. VARGAS, Is neural architecture search a
way forward to develop robust neural networks?, Proceedings
of the Annual Conference of JSAI JSAI2020 (2020) 2K1ES203–
2K1ES203.

[294] M. Guo, Y. Yang, R. Xu, Z. Liu, D. Lin, When NAS meets
robustness: In search of robust architectures against adversarial
attacks, in: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, IEEE, 2020, pp. 628–637. doi:10.1109/CVPR42600.
2020.00071.
URL https://doi.org/10.1109/CVPR42600.2020.00071

[295] Y. Chen, Q. Song, X. Liu, P. S. Sastry, X. Hu, On robustness
of neural architecture search under label noise, in: Frontiers in
Big Data, 2020.

[296] D. V. Vargas, S. Kotyan, Evolving robust neural architec-
tures to defend from adversarial attacks, arXiv preprint
arXiv:1906.11667.

[297] J. Yim, D. Joo, J. Bae, J. Kim, A gift from knowledge distil-
lation: Fast optimization, network minimization and transfer
learning, in: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, IEEE Computer Society, 2017, pp. 7130–7138.
doi:10.1109/CVPR.2017.754.
URL https://doi.org/10.1109/CVPR.2017.754

[298] G. Squillero, P. Burelli, Applications of Evolutionary Com-
putation: 19th European Conference, EvoApplications 2016,
Porto, Portugal, March 30–April 1, 2016, Proceedings, Vol.
9597, Springer, 2016.

[299] M. Feurer, A. Klein, K. Eggensperger, J. T. Springen-
berg, M. Blum, F. Hutter, Efficient and robust automated
machine learning, in: C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, 2015, pp. 2962–2970.
URL https://proceedings.neurips.cc/paper/2015/hash/

11d0e6287202fced83f79975ec59a3a6-Abstract.html

[300] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12
(2011) 2825–2830.

[301] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
S. Chintala, Pytorch: An imperative style, high-performance
deep learning library, in: H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019, pp. 8024–8035.
URL https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[302] F. Chollet, et al., Keras, https://github.com/fchollet/keras

36

https://proceedings.neurips.cc/paper/2019/hash/4efc9e02abdab6b6166251918570a307-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4efc9e02abdab6b6166251918570a307-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.00215
https://doi.org/10.1109/CVPR42600.2020.00215
http://dx.doi.org/10.1109/CVPR42600.2020.00215
http://dx.doi.org/10.1109/CVPR42600.2020.00215
https://doi.org/10.1109/CVPR42600.2020.00215
https://proceedings.neurips.cc/paper/2019/hash/a01a0380ca3c61428c26a231f0e49a09-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a01a0380ca3c61428c26a231f0e49a09-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a01a0380ca3c61428c26a231f0e49a09-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a01a0380ca3c61428c26a231f0e49a09-Abstract.html
http://arxiv.org/abs/1801.07365
http://arxiv.org/abs/1801.07365
http://arxiv.org/abs/1904.03961
http://arxiv.org/abs/1810.00518
http://arxiv.org/abs/2004.08546
http://arxiv.org/abs/2004.08546
https://doi.org/10.1109/ICCV.2019.00850
http://dx.doi.org/10.1109/ICCV.2019.00850
https://doi.org/10.1109/ICCV.2019.00850
http://arxiv.org/abs/1710.05941
http://proceedings.mlr.press/v119/real20a.html
http://proceedings.mlr.press/v119/real20a.html
http://proceedings.mlr.press/v119/real20a.html
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS
https://doi.org/10.1109/CVPR42600.2020.00071
https://doi.org/10.1109/CVPR42600.2020.00071
https://doi.org/10.1109/CVPR42600.2020.00071
http://dx.doi.org/10.1109/CVPR42600.2020.00071
http://dx.doi.org/10.1109/CVPR42600.2020.00071
https://doi.org/10.1109/CVPR42600.2020.00071
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
http://dx.doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://github.com/fchollet/keras


(2015).
[303] NNI (Neural Network Intelligence), 2020.

URL https://github.com/microsoft/nni

[304] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
X. Zheng, Tensorflow: A system for large-scale machine learning
(2016). arXiv:1605.08695.

[305] Vega, 2020.
URL https://github.com/huawei-noah/vega

[306] R. Pasunuru, M. Bansal, Continual and multi-task architec-
ture search, in: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, Association for
Computational Linguistics, Florence, Italy, 2019, pp. 1911–1922.
doi:10.18653/v1/P19-1185.
URL https://www.aclweb.org/anthology/P19-1185

[307] J. Kim, S. Lee, S. Kim, M. Cha, J. K. Lee, Y. Choi, Y. Choi,
D.-Y. Cho, J. Kim, Auto-meta: Automated gradient based
meta learner search, arXiv preprint arXiv:1806.06927.

[308] D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang,
S. Gao, Towards fast adaptation of neural architectures with
meta learning, in: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1eowANFvr

[309] T. Elsken, B. Staffler, J. H. Metzen, F. Hutter, Meta-learning of
neural architectures for few-shot learning, in: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, IEEE, 2020,
pp. 12362–12372. doi:10.1109/CVPR42600.2020.01238.
URL https://doi.org/10.1109/CVPR42600.2020.01238

[310] C. Liu, P. Dollár, K. He, R. Girshick, A. Yuille, S. Xie, Are
labels necessary for neural architecture search? (2020). arXiv:

2003.12056.
[311] Z. Li, D. Hoiem, Learning without forgetting, IEEE transactions

on pattern analysis and machine intelligence 40 (12) (2018)
2935–2947.

[312] S. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert, icarl:
Incremental classifier and representation learning, in: 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE
Computer Society, 2017, pp. 5533–5542. doi:10.1109/CVPR.

2017.587.
URL https://doi.org/10.1109/CVPR.2017.587

37

https://github.com/microsoft/nni
https://github.com/microsoft/nni
http://arxiv.org/abs/1605.08695
https://github.com/huawei-noah/vega
https://github.com/huawei-noah/vega
https://www.aclweb.org/anthology/P19-1185
https://www.aclweb.org/anthology/P19-1185
http://dx.doi.org/10.18653/v1/P19-1185
https://www.aclweb.org/anthology/P19-1185
https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=r1eowANFvr
https://doi.org/10.1109/CVPR42600.2020.01238
https://doi.org/10.1109/CVPR42600.2020.01238
http://dx.doi.org/10.1109/CVPR42600.2020.01238
https://doi.org/10.1109/CVPR42600.2020.01238
http://arxiv.org/abs/2003.12056
http://arxiv.org/abs/2003.12056
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587

	1 Introduction
	2 Data Preparation
	2.1 Data Collection
	2.1.1 Data Searching
	2.1.2 Data Synthesis

	2.2 Data Cleaning
	2.3 Data Augmentation

	3 Feature Engineering
	3.1 Feature Selection
	3.2 Feature Construction
	3.3 Feature Extraction

	4 Model Generation
	4.1 Search Space
	4.1.1 Entire-structured Search Space
	4.1.2 Cell-based Search Space
	4.1.3 Hierarchical Search Space
	4.1.4 Morphism-based Search Space

	4.2 Architecture Optimization
	4.2.1 Evolutionary Algorithm
	4.2.2 Reinforcement Learning
	4.2.3 Gradient Descent
	4.2.4 Surrogate Model-based Optimization
	4.2.5 Grid and Random Search
	4.2.6 Hybrid Optimization Method

	4.3 Hyperparameter Optimization
	4.3.1 Grid and Random Search
	4.3.2 Bayesian Optimization
	4.3.3 Gradient-based Optimization


	5 Model Evaluation
	5.1 Low fidelity
	5.2 Weight sharing
	5.3 Surrogate
	5.4 Early stopping

	6 NAS Discussion
	6.1 NAS Performance Comparison
	6.1.1 Kendall Tau Metric
	6.1.2 NAS-Bench Dataset

	6.2 One-stage vs. Two-stage
	6.3 One-shot/Weight-sharing
	6.4 Joint Hyperparameter and Architecture Optimization
	6.5 Resource-aware NAS

	7 Open Problems and Future Directions
	7.1 Flexible Search Space
	7.2 Exploring More Areas
	7.3 Interpretability
	7.4 Reproducibility
	7.5 Robustness
	7.6 Joint Hyperparameter and Architecture Optimization
	7.7 Complete AutoML Pipeline
	7.8 Lifelong Learning
	7.8.1 Learn New Data
	7.8.2 Remember Old Knowledge


	8 Conclusions

