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Abstract

Recent interest in complex and computationally expensive machine learn-
ing models with many hyperparameters, such as automated machine learning
(AutoML) frameworks and deep neural networks, has resulted in a resurgence
of research on hyperparameter optimization (HPO). In this chapter, we give an
overview of the most prominent approaches for HPO. We first discuss black-
box function optimization methods based on model-free methods and Bayesian
optimization. Since the high computational demand of many modern machine
learning applications renders pure blackbox optimization extremely costly, we
next focus on modern multi-fidelity methods that use (much) cheaper variants
of the blackbox function to approximately assess the quality of hyperparameter
setting. Lastly, we point to open problems and future research directions.

1.1 Introduction

Every machine learning system has hyperparameters, and the most basic task
in automated machine learning (AutoML) is to automatically set these hyper-
parameters to optimize performance. Especially recent deep neural networks
crucially depend on a wide range of hyperparameter choices about the neural
network’s architecture, regularization, and optimization. Automated hyperpa-
rameter optimization (HPO) has several important use cases; it can

• reduce the human effort necessary for applying machine learning. This is
particularly important in the context of AutoML.
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• improve the performance of machine learning algorithms (by tailoring
them to the problem at hand); this has led to new state-of-the-art per-
formances for important machine learning benchmarks in several studies
(e.g. [140, 105]).

• improve the reproducibility and fairness of scientific studies. Automated
HPO is clearly more reproducible than manual search. It facilitates fair
comparisons since different methods can only be compared fairly if they
all receive the same level of tuning for the problem at hand [14, 133].

The problem of HPO has a long history, dating back to the 1990s (e.g., [126,
107, 77, 82]), and it was also established early that different hyperparameter
configurations tend to work best for different datasets [82]. In contrast, it is a
rather new insight that HPO can be used to adapt general-purpose pipelines to
specific application domains [30]. Nowadays, it is also widely acknowledged that
tuned hyperparameters improve over the default setting provided by common
machine learning libraries [149, 100, 130, 116].

Because of the increased usage of machine learning in companies, HPO is
also of substantial commercial interest and plays an ever larger role there, be it
in company-internal tools [45], as part of machine learning cloud services [89, 6],
or as a service by itself [137].

HPO faces several challenges which make it a hard problem in practice:

• Function evaluations can be extremely expensive for large models (e.g., in
deep learning), complex machine learning pipelines, or large datesets.

• The configuration space is often complex (comprising a mix of continuous,
categorical and conditional hyperparameters) and high-dimensional. Fur-
thermore, it is not always clear which of an algorithm’s hyperparameters
need to be optimized, and in which ranges.

• We usually don’t have access to a gradient of the loss function with re-
spect to the hyperparameters. Furthermore, other properties of the target
function often used in classical optimization do not typically apply, such
as convexity and smoothness.

• One cannot directly optimize for generalization performance as training
datasets are of limited size.

We refer the interested reader to other reviews of HPO for further discussions
on this topic [64, 94].

This chapter is structured as follows. First, we define the HPO problem
formally and discuss its variants (Section 1.2). Then, we discuss blackbox opti-
mization algorithms for solving HPO (Section 1.3). Next, we focus on modern
multi-fidelity methods that enable the use of HPO even for very expensive mod-
els, by exploiting approximate performance measures that are cheaper than full
model evaluations (Section 1.4). We then provide an overview of the most
important hyperparameter optimization systems and applications to AutoML
(Section 1.5) and end the chapter with a discussion of open problems (Section
1.6).
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1.2 Problem Statement

Let A denote a machine learning algorithm with N hyperparameters. We denote
the domain of the n-th hyperparameter by Λn and the overall hyperparameter
configuration space as Λ = Λ1 × Λ2 × . . .ΛN . A vector of hyperparameters is
denoted by λ ∈ Λ, and A with its hyperparameters instantiated to λ is denoted
by Aλ.

The domain of a hyperparameter can be real-valued (e.g., learning rate),
integer-valued (e.g., number of layers), binary (e.g., whether to use early stop-
ping or not), or categorical (e.g., choice of optimizer). For integer and real-
valued hyperparameters, the domains are mostly bounded for practical reasons,
with only a few exceptions [12, 136, 113].

Furthermore, the configuration space can contain conditionality, i.e., a hy-
perparameter may only be relevant if another hyperparameter (or some combi-
nation of hyperparameters) takes on a certain value. Conditional spaces take
the form of directed acyclic graphs. Such conditional spaces occur, e.g., in the
automated tuning of machine learning pipelines, where the choice between dif-
ferent preprocessing and machine learning algorithms is modeled as a categorical
hyperparameter, a problem known as Full Model Selection (FMS) or Combined
Algorithm Selection and Hyperparameter (CASH) [30, 149, 83, 34]. They also
occur when optimizing the architecture of a neural network: e.g., the number
of layers can be an integer hyperparameter and the per-layer hyperparameters
of layer i are only active if the network depth is at least i [12, 14, 33].

Given a data set D, our goal is to find

λ∗ = argmin
λ∈Λ

E(Dtrain,Dvalid)∼DV(L,Aλ, Dtrain, Dvalid), (1.1)

where V(L,Aλ, Dtrain, Dvalid) measures the loss of a model generated by al-
gorithm A with hyperparameters λ on training data Dtrain and evaluated on
validation data Dvalid. In practice, we only have access to finite data D ∼ D
and thus need to approximate the expectation in Equation 1.1.

Popular choices for the validation protocol V(·, ·, ·, ·) are the holdout and
cross-validation error for a user-given loss function (such as misclassification
rate); see Bischl et al. [16] for an overview of validation protocols. Several
strategies for reducing the evaluation time have been proposed: It is possible
to only test machine learning algorithms on a subset of folds [149], only on
a subset of data [102, 147, 78], or for a small amount of iterations; we will
discuss some of these strategies in more detail in Section 1.4. Recent work on
multi-task [147] and multi-source [121] optimization introduced further cheap,
auxiliary tasks, which can be queried instead of Equation 1.1. These can provide
cheap information to help HPO, but do not necessarily train a machine learning
model on the dataset of interest and therefore do not yield a usable model as a
side product.
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1.2.1 Alternatives to Optimization: Ensembling and Marginal-
ization

Solving Equation 1.1 with one of the techniques described in the rest of this
chapter usually requires fitting the machine learning algorithm A with multiple
hyperparameter vectors λt. Instead of using the argmin-operator over these,
it is possible to either construct an ensemble (which aims to minimize the loss
for a given validation protocol) or to integrate out all the hyperparameters (if
the model under consideration is a probabilistic model). We refer to Guyon et
al. [50] and the references therein for a comparison of frequentist and Bayesian
model selection.

Only choosing a single hyperparameter configuration can be wasteful when
many good configurations have been identified by HPO, and combining them in
an ensemble can improve performance [109]. This is particularly useful in Au-
toML systems with a large configuration space (e.g., in FMS or CASH ), where
good configurations can be very diverse, which increases the potential gains
from ensembling [31, 19, 34, 4]. To further improve performance, Automatic
Frankensteining [155] uses HPO to train a stacking model [156] on the outputs
of the models found with HPO; the 2nd level models are then combined using a
traditional ensembling strategy.

The methods discussed so far applied ensembling after the HPO procedure.
While they improve performance in practice, the base models are not optimized
for ensembling. It is, however, also possible to directly optimize for models
which would maximally improve an existing ensemble [97].

Finally, when dealing with Bayesian models it is often possible to integrate
out the hyperparameters of the machine learning algorithm, for example using
evidence maximization [98], Bayesian model averaging [56], slice sampling [111]
or empirical Bayes [103].

1.2.2 Optimizing for Multiple Objectives

In practical applications it is often necessary to trade off two or more objectives,
such as the performance of a model and resource consumption [65] (see also
Chapter 3) or multiple loss functions [57]. Potential solutions can be obtained
in two ways.

First, if a limit on a secondary performance measure is known (such as
the maximal memory consumption), the problem can be formulated as a con-
strained optimization problem. We will discuss constraint handling in Bayesian
optimization in Section 1.3.2.

Second, and more generally, one can apply multi-objective optimization to
search for the Pareto front, a set of configurations which are optimal tradeoffs
between the objectives in the sense that, for each configuration on the Pareto
front, there is no other configuration which performs better for at least one and
at least as well for all other objectives. The user can then choose a configuration
from the Pareto front. We refer the interested reader to further literature on
this topic [65, 134, 53, 57].
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Figure 1.1: Comparison of grid search and random search for minimizing a
function with one important and one unimportant parameter. This figure is
based on the illustration in Figure 1 of Bergstra and Bengio [13].

1.3 Blackbox Hyperparameter Optimization

In general, every blackbox optimization method can be applied to HPO. Due
to the non-convex nature of the problem, global optimization algorithms are
usually preferred, but some locality in the optimization process is useful in order
to make progress within the few function evaluations that are usually available.
We first discuss model-free blackbox HPO methods and then describe blackbox
Bayesian optimization methods.

1.3.1 Model-Free Blackbox Optimization Methods

Grid search is the most basic HPO method, also known as full factorial de-
sign [110]. The user specifies a finite set of values for each hyperparameter,
and grid search evaluates the Cartesian product of these sets. This suffers from
the curse of dimensionality since the required number of function evaluations
grows exponentially with the dimensionality of the configuration space. An ad-
ditional problem of grid search is that increasing the resolution of discretization
substantially increases the required number of function evaluations.

A simple alternative to grid search is random search [13].1 As the name
suggests, random search samples configurations at random until a certain budget
for the search is exhausted. This works better than grid search when some
hyperparameters are much more important than others (a property that holds
in many cases [13, 61]). Intuitively, when run with a fixed budget of B function
evaluations, the number of different values grid search can afford to evaluate

1In some disciplines this is also known as pure random search[158].



8 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

for each of the N hyperparameters is only B1/N , whereas random search will
explore B different values for each; see Figure 1.1 for an illustration.

Further advantages over grid search include easier parallelization (since work-
ers do not need to communicate with each other and failing workers do not leave
holes in the design) and flexible resource allocation (since one can add an arbi-
trary number of random points to a random search design to still yield a random
search design; the equivalent does not hold for grid search).

Random search is a useful baseline because it makes no assumptions on the
machine learning algorithm being optimized, and, given enough resources, will,
in expectation, achieves performance arbitrarily close to the optimum. Interleav-
ing random search with more complex optimization strategies therefore allows to
guarantee a minimal rate of convergence and also adds exploration that can im-
prove model-based search [59, 3]. Random search is also a useful method for ini-
tializing the search process, as it explores the entire configuration space and thus
often finds settings with reasonable performance. However, it is no silver bullet
and often takes far longer than guided search methods to identify one of the
best performing hyperparameter configurations: e.g., when sampling without
replacement from a configuration space with N Boolean hyperparameters with
a good and a bad setting each and no interaction effects, it will require an ex-
pected 2N−1 function evaluations to find the optimum, whereas a guided search
could find the optimum in N + 1 function evaluations as follows: starting from
an arbitrary configuration, loop over the hyperparameters and change one at a
time, keeping the resulting configuration if performance improves and reverting
the change if it doesn’t. Accordingly, the guided search methods we discuss in
the following sections usually outperform random search [12, 14, 153, 90, 33].

Population-based methods, such as genetic algorithms, evolutionary algo-
rithms, evolutionary strategies, and particle swarm optimization are optimiza-
tion algorithms that maintain a population, i.e., a set of configurations, and
improve this population by applying local perturbations (so-called mutations)
and combinations of different members (so-called crossover) to obtain a new
generation of better configurations. These methods are conceptually simple,
can handle different data types, and are embarrassingly parallel [91] since a
population of N members can be evaluated in parallel on N machines.

One of the best known population-based methods is the covariance ma-
trix adaption evolutionary strategy (CMA-ES [51]); this simple evolutionary
strategey samples configurations from a multivariate Gaussian whose mean and
covariance are updated in each generation based on the success of the popula-
tion’s individuals. CMA-ES is one of the most competitive blackbox optimiza-
tion algorithms, regularly dominating the Black-Box Optimization Benchmark-
ing (BBOB) challenge [11].

For further details on population-based methods, we refer to [28, 138]; we
discuss applications to hyperparameter optimization in Section 1.5, applications
to neural architecture search in Chapter 3, and genetic programming for Au-
toML pipelines in Chapter 8.
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1.3.2 Bayesian Optimization

Bayesian optimization is a state-of-the-art optimization framework for the global
optimization of expensive blackbox functions, which recently gained traction in
HPO by obtaining new state-of-the-art results in tuning deep neural networks
for image classification [140, 141], speech recognition [22] and neural language
modeling [105], and by demonstrating wide applicability to different problem
settings. For an in-depth introduction to Bayesian optimization, we refer to the
excellent tutorials by Shahriari et al. [135] and Brochu et al. [18].

In this section we first give a brief introduction to Bayesian optimization,
present alternative surrogate models used in it, describe extensions to condi-
tional and constrained configuration spaces, and then discuss several important
applications to hyperparameter optimization.

Many recent advances in Bayesian optimization do not treat HPO as a black-
box any more, for example multi-fidelity HPO (see Section 1.4), Bayesian opti-
mization with meta-learning (see Chapter 2), and Bayesian optimization taking
the pipeline structure into account [160, 159]. Furthermore, many recent devel-
opments in Bayesian optimization do not directly target HPO, but can often
be readily applied to HPO, such as new acquisition functions, new models and
kernels, and new parallelization schemes.

Bayesian Optimization in a Nutshell

Bayesian optimization is an iterative algorithm with two key ingredients: a prob-
abilistic surrogate model and an acquisition function to decide which point to
evaluate next. In each iteration, the surrogate model is fitted to all observations
of the target function made so far. Then the acquisition function, which uses
the predictive distribution of the probabilistic model, determines the utility of
different candidate points, trading off exploration and exploitation. Compared
to evaluating the expensive blackbox function, the acquisition function is cheap
to compute and can therefore be thoroughly optimized.

Although many acquisition functions exist, the expected improvement (EI) [72]:

E[I(λ)] = E[max(fmin − Y, 0)] (1.2)

is common choice since it can be computed in closed form if the model prediction
Y at configuration λ follow a normal distribution:

E[I(λ)] = (fmin − µ(λ)) Φ

(
fmin − µ(λ)

σ

)
+ σφ

(
fmin − µ(λ)

σ

)
, (1.3)

where φ(·) and Φ(·) are the standard normal density and standard normal dis-
tribution function, and fmin is the best observed value so far.

Figure 1.2 illustrates Bayesian optimization optimizing a toy function.

Surrogate Models

Traditionally, Bayesian optimization employs Gaussian processes [124] to model
the target function because of their expressiveness, smooth and well-calibrated
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Figure 1.2: Illustration of Bayesian optimization on a 1-d function. Our goal
is to minimize the dashed line using a Gaussian process surrogate (predictions
shown as black line, with blue tube representing the uncertainty) by maximiz-
ing the acquisition function represented by the lower orange curve. (Top) The
acquisition value is low around observations, and the highest acquisition value
is at a point where the predicted function value is low and the predictive un-
certainty is relatively high. (Middle) While there is still a lot of variance to the
left of the new observation, the predicted mean to the right is much lower and
the next observation is conducted there. (Bottom) Although there is almost no
uncertainty left around the location of the true maximum, the next evaluation
is done there due to its expected improvement over the best point so far.
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uncertainty estimates and closed-form computability of the predictive distribu-
tion. A Gaussian process G (m(λ), k(λ,λ′)) is fully specified by a mean m(λ)
and a covariance function k(λ,λ′), although the mean function is usually as-
sumed to be constant in Bayesian optimization. Mean and variance predictions
µ(·) and σ2(·) for the noise-free case can be obtained by:

µ(λ) = kT∗K−1y, σ2(λ) = k(λ,λ)− kT∗K−1k∗, (1.4)

where k∗ denotes the vector of covariances between λ and all previous observa-
tions, K is the covariance matrix of all previously evaluated configurations and
y are the observed function values. The quality of the Gaussian process depends
solely on the covariance function. A common choice is the Mátern 5/2 kernel,
with its hyperparameters integrated out by Markov Chain Monte Carlo [140].

One downside of standard Gaussian processes is that they scale cubically
in the number of data points, limiting their applicability when one can afford
many function evaluations (e.g., with many parallel workers, or when function
evaluations are cheap due to the use of lower fidelities). This cubic scaling can be
avoided by scalable Gaussian process approximations, such as sparse Gaussian
processes. These approximate the full Gaussian process by using only a subset
of the original dataset as inducing points to build the kernel matrix K. While
they allowed Bayesian optimization with GPs to scale to tens of thousands
of datapoints for optimizing the parameters of a randomized SAT solver [62],
there are criticism about the calibration of their uncertainty estimates and their
applicability to standard HPO has not been tested [104, 154].

Another downside of Gaussian processes with standard kernels is their poor
scalability to high dimensions. As a result, many extensions have been pro-
posed to efficiently handle intrinsic properties of configuration spaces with large
number of hyperparameters, such as the use of random embeddings [153], us-
ing Gaussian processes on partitions of the configuration space [154], cylindric
kernels [114], and additive kernels [75, 40].

Since some other machine learning models are more scalable and flexible than
Gaussian processes, there is also a large body of research on adapting these mod-
els to Bayesian optimization. Firstly, (deep) neural networks are a very flexible
and scalable models. The simplest way to apply them to Bayesian optimization
is as a feature extractor to preprocess inputs and then use the outputs of the
final hidden layer as basis functions for Bayesian linear regression [141]. A more
complex, fully Bayesian treatment of the network weights, is also possible by
using a Bayesian neural network trained with stochastic gradient Hamiltonian
Monte Carlo [144]. Neural networks tend to be faster than Gaussian processes
for Bayesian optimization after ∼250 function evaluations, which also allows for
large-scale parallelism. The flexibility of deep learning can also enable Bayesian
optimization on more complex tasks. For example, a variational auto-encoder
can be used to embed complex inputs (such as the structured configurations of
the automated statistician, see Chapter 9) into a real-valued vector such that
a regular Gaussian process can handle it [92]. For multi-source Bayesian op-
timization, a neural network architecture built on factorization machines [125]
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can include information on previous tasks [131] and has also been extended to
tackle the CASH problem [132].

Another alternative model for Bayesian optimization are random forests [59].
While GPs perform better than random forests on small, numerical configura-
tion spaces [29], random forests natively handle larger, categorical and condi-
tional configuration spaces where standard GPs do not work well [29, 70, 90].
Furthermore, the computational complexity of random forests scales far bet-
ter to many data points: while the computational complexity of fitting and
predicting variances with GPs for n data points scales as O(n3) and O(n2), re-
spectively, for random forests, the scaling in n is only O(n log n) and O(log n),
respectively. Due to these advantages, the SMAC framework for Bayesian opti-
mization with random forests [59] enabled the prominent AutoML frameworks
Auto-WEKA [149] and Auto-sklearn [34] (which are described in Chapters 4
and 6).

Instead of modeling the probability p(y|λ) of observations y given the config-
urations λ, the Tree Parzen Estimator (TPE [12, 14]) models density functions
p(λ|y < α) and p(λ|y ≥ α). Given a percentile α (usually set to 15%), the
observations are divided in good observations and bad observations and simple

1-d Parzen windows are used to model the two distributions. The ratio p(λ|y<α)
p(λ|y≥α)

is related to the expected improvement acquisition function and is used to pro-
pose new hyperparameter configurations. TPE uses a tree of Parzen estimators
for conditional hyperparameters and demonstrated good performance on such
structured HPO tasks [12, 14, 29, 149, 143, 160, 33], is conceptually simple,
and parallelizes naturally [91]. It is also the workhorse behind the AutoML
framework Hyperopt-sklearn [83] (which is described in Chapter 5).

Finally, we note that there are also surrogate-based approaches which do
not follow the Bayesian optimization paradigm: Hord [67] uses a deterministic
RBF surrogate, and Harmonica [52] uses a compressed sensing technique, both
to tune the hyperparameters of deep neural networks.

Configuration Space Description

Bayesian optimization was originally designed to optimize box-constrained, real-
valued functions. However, for many machine learning hyperparameters, such
as the learning rate in neural networks or regularization in support vector ma-
chines, it is common to optimize the exponent of an exponential term to describe
that changing it, e.g., from 0.001 to 0.01 is expected to have a similarly high
impact as changing it from 0.1 to 1. A technique known as input warping [142]
allows to automatically learn such transformations during the optimization pro-
cess by replacing each input dimension with the two parameters of a Beta dis-
tribution and optimizing these.

One obvious limitation of the box-constraints is that the user needs to de-
fine these upfront. To avoid this, it is possible to dynamically expand the con-
figuration space [136, 113]. Alternatively, the estimation-of-distribution-style
algorithm TPE [12] is able to deal with infinite spaces on which a (typically
Gaussian) prior is placed.
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Integers and categorical hyperparameters require special treatment but can
be integrated fairly easily into regular Bayesian optimization by small adapta-
tions of the kernel and the optimization procedure (see Section 12.1.2 of [58], as
well as [42]). Other models, such as factorization machines and random forests,
can also naturally handle these data types.

Conditional hyperparameters are still an active area of research (see Chap-
ters 6 and 5 for depictions of conditional configuration spaces in recent AutoML
systems). They can be handled natively by tree-based methods, such as random
forests [59] and tree Parzen estimators (TPE) [12], but due to the numerous ad-
vantages of Gaussian processes over other models, multiple kernels for structured
configuration spaces have also been proposed [12, 63, 146, 96, 70, 4, 92].

Constrained Bayesian Optimization

In realistic scenarios it is often necessary to satisfy constraints, such as memory
consumption [139, 149], training time [149], prediction time [41, 43], accuracy
of a compressed model [41], energy usage [43] or simply to not fail during the
training procedure [43].

Constraints can be hidden in that only a binary observation (success or
failure) is available [88]. Typical examples in AutoML are memory and time
constraints to allow training of the algorithms in a shared computing system,
and to make sure that a single slow algorithm configuration does not use all the
time available for HPO [149, 34] (see also Chapters 4 and 6).

Constraints can also merely be unknown, meaning that we can observe and
model an auxiliary constraint function, but only know about a constraint viola-
tion after evaluating the target function [46]. An example of this is the prediction
time of a support vector machine, which can only be obtained by training it as
it depends on the number of support vectors selected during training.

The simplest approach to model violated constraints is to define a penalty
value (at least as bad as the worst possible observable loss value) and use it
as the observation for failed runs [59, 149, 34, 45]. More advanced approaches
model the probability of violating one or more constraints and actively search
for configurations with low loss values that are unlikely to violate any of the
given constraints [88, 46, 41, 43].

Bayesian optimization frameworks using information theoretic acquisition
functions allow decoupling the evaluation of the target function and the con-
straints to dynamically choose which of them to evaluate next [43, 55]. This
becomes advantageous when evaluating the function of interest and the con-
straints require vastly different amounts of time, such as evaluating a deep
neural network’s performance and memory consumption [43].

1.4 Multi-Fidelity Optimization

Increasing dataset sizes and increasingly complex models are a major hurdle in
HPO since they make blackbox performance evaluation more expensive. Train-
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ing a single hyperparameter configuration on large datasets can nowadays easily
exceed several hours and take up to several days [85].

A common technique to speed up manual tuning is therefore to probe an al-
gorithm/hyperparameter configuration on a small subset of the data, by training
it only for a few iterations, by running it on a subset of features, by only using
one or a few of the cross-validation folds, or by using down-sampled images in
computer vision. Multi-fidelity methods cast such manual heuristics into for-
mal algorithms, using so-called low fidelity approximations of the actual loss
function to minimize. These approximations introduce a tradeoff between opti-
mization performance and runtime, but in practice, the obtained speedups often
outweigh the approximation error.

First, we review methods which model an algorithm’s learning curve dur-
ing training and can stop the training procedure if adding further resources is
predicted to not help. Second, we discuss simple selection methods which only
choose one of a finite set of given algorithms/hyperparameter configurations.
Third, we discuss multi-fidelity methods which can actively decide which fidelity
will provide most information about finding the optimal hyperparameters. We
also refer to Chapter 2 (which discusses how multi-fidelity methods can be used
across datasets) and Chapter 3 (which describes low-fidelity approximations for
neural architecture search).

1.4.1 Learning Curve-Based Prediction for Early Stop-
ping

We start this section on multi-fidelity methods in HPO with methods that eval-
uate and model learning curves during HPO [82, 123] and then decide whether
to add further resources or stop the training procedure for a given hyperpa-
rameter configuration. Examples of learning curves are the performance of the
same configuration trained on increasing dataset subsets, or the performance of
an iterative algorithm measured for each iteration (or every i-th iteration if the
calculation of the performance is expensive).

Learning curve extrapolation is used in the context of predictive termina-
tion [26], where a learning curve model is used to extrapolate a partially ob-
served learning curve for a configuration, and the training process is stopped if
the configuration is predicted to not reach the performance of the best model
trained so far in the optimization process. Each learning curve is modeled as
a weighted combination of 11 parametric functions from various scientific ar-
eas. These functions’ parameters and their weights are sampled via Markov
chain Monte Carlo to minimize the loss of fitting the partially observed learning
curve. This yields a predictive distribution, which allows to stop training based
on the probability of not beating the best known model. When combined with
Bayesian optimization, the predictive termination criterion enabled lower error
rates than off-the-shelve blackbox Bayesian optimization for optimizing neural
networks. On average, the method sped up the optimization by a factor of
two and was able to find a (then) state-of-the-art neural network for CIFAR-10
(without data augmentation) [26].
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While the method above is limited by not sharing information across different
hyperparameter configurations, this can be achieved by using the basis functions
as the output layer of a Bayesian neural network [80]. The parameters and
weights of the basis functions, and thus the full learning curve, can thereby
be predicted for arbitrary hyperparameter configurations. Alternatively, it is
possible to use previous learning curves as basis function extrapolators [21].
While the experimental results are inconclusive on whether the proposed method
is superior to pre-specified learning curves, not having to manually define them
is a clear advantage.

Freeze-Thaw Bayesian optimization [148] is a full integration of learning
curves into the modeling and selection process of Bayesian optimization. In-
stead of terminating a configuration, the machine learning models are trained
iteratively for a few iterations and then frozen. Bayesian optimization can then
decide to thaw one of the frozen models, which means to continue training it.
Alternatively, the method can also decide to start a new configuration. Freeze-
Thaw models the performance of a converged algorithm with a regular Gaussian
process and introduces a special covariance function corresponding to exponen-
tially decaying functions to model the learning curves with per-learning curve
Gaussian processes.

1.4.2 Bandit-Based Algorithm Selection Methods

In this section, we describe methods that try to determine the best algorithm
out of a given finite set of algorithms based on low-fidelity approximations of
their performance; towards its end, we also discuss potential combinations with
adaptive configuration strategies. We focus on variants of the bandit-based
strategies successive halving and Hyperband, since these have shown strong per-
formance, especially for optimizing deep learning algorithms. Strictly speaking,
some of the methods which we will discuss in this subsection also model learn-
ing curves, but they provide no means of selecting new configurations based on
these models.

First, however, we briefly describe the historical evolution of multi-fidelity
algorithm selection methods. In 2000, Petrak [120] noted that simply testing
various algorithms on a small subset of the data is a powerful and cheap mech-
anism to select an algorithm. Later approaches used iterative algorithm elimi-
nation schemes to drop hyperparameter configurations if they perform badly on
subsets of the data [17], if they perform significantly worse than a group of top-
performing configurations [86], if they perform worse than the best configuration
by a user-specified factor [143], or if even an optimistic performance bound for
an algorithm is worse than the best known algorithm [128]. Likewise, it is possi-
ble to drop hyperparameter configurations if they perform badly on one or a few
cross-validation folds [149]. Finally, Jamieson and Talwalkar [69] proposed to
use the successive halving algorithm originally introduced by Karnin et al. [76]
for HPO.

Successive halving is an extremely simple, yet powerful, and therefore pop-
ular strategy for multi-fidelity algorithm selection: for a given initial budget,
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Figure 1.3: Illustration of successive halving for eight algorithms/configurations.
After evaluating all algorithms on 1

8 of the total budget, half of them are dropped
and the budget given to the remaining algorithms is doubled.

query all algorithms for that budget; then, remove the half that performed
worst, double the budget 2 and successively repeat until only a single algorithm
is left. This process is illustrated in Figure 1.3. Jamieson and Talwalkar [69]
benchmarked several common bandit methods and found that successive halv-
ing performs well both in terms of the number of required iterations and in the
required computation time, that the algorithm theoretically outperforms a uni-
form budget allocation strategy if the algorithms converge favorably, and that
it is preferable to many well-known bandit strategies from the literature, such
as UCB and EXP3.

While successive halving is an efficient approach, it suffers from the budget-
vs-number of configurations trade off. Given a total budget, the user has to
decide beforehand whether to try many configurations and only assign a small
budget to each, or to try only a few and assign them a larger budget. Assigning
too small a budget can result in prematurely terminating good configurations,
while assigning too large a budget can result in running poor configurations too
long and thereby wasting resources.

HyperBand [90] is a hedging strategy designed to combat this problem when
selecting from randomly sampled configurations. It divides the total budget into
several combinations of number of configurations vs. budget for each, to then
call successive halving as a subroutine on each set of random configurations. Due
to the hedging strategy which includes running some configurations only on the

2More precisely, drop the worst fraction η−1
η

of algorithms and multiply the budget for

the remaining algorithms by η, where η is a hyperparameter. Its default value was changed
from 2 to 3 with the introduction of HyperBand[90].
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maximal budget, in the worst case, HyperBand takes at most a constant factor
more time than vanilla random search on the maximal budget. In practice,
due to its use of cheap low-fidelity evaluations, HyperBand has been shown to
improve over vanilla random search and blackbox Bayesian optimization for data
subsets, feature subsets and iterative algorithms, such as stochastic gradient
descent for deep neural networks.

Despite HyperBand’s success for deep neural networks it is very limiting to
not adapt the configuration proposal strategy to the function evaluations. To
overcome this limitation, the recent approach BOHB [33] combines Bayesian
optimization and HyperBand to achieve the best of both worlds: strong any-
time performance (quick improvements in the beginning by using low fidelities
in HyperBand) and strong final performance (good performance in the long run
by replacing HyperBand’s random search by Bayesian optimization). BOHB
also uses parallel resources effectively and deals with problem domains ranging
from a few to many dozen hyperparameters. BOHB’s Bayesian optimization
component resembles TPE [12], but differs by using multidimensional kernel
density estimators. It only fits a model on the highest fidelity for which at least
|Λ|+ 1 evaluations have been performed (the number of hyperparameters, plus
one). BOHB’s first model is therefore fitted on the lowest fidelity, and over time
models trained on higher fidelities take over, while still using the lower fideli-
ties in successive halving. Empirically, BOHB was shown to outperform several
state-of-the-art HPO methods for tuning support vector machines, neural net-
works and reinforcement learning algorithms, including most methods presented
in this section [33]. Further approaches to combine HyperBand and Bayesian
optimization have also been proposed [15, 151].

Multiple fidelity evaluations can also be combined with HPO in other ways.
Instead of switching between lower fidelities and the highest fidelity, it is possible
to perform HPO on a subset of the original data and extract the best-performing
configurations in order to use them as an initial design for HPO on the full
dataset [152]. To speed up solutions to the CASH problem, it is also possible
to iteratively remove entire algorithms (and their hyperparameters) from the
configuration space based on poor performance on small dataset subsets [159].

1.4.3 Adaptive Choices of Fidelities

All methods in the previous subsection follow a predefined schedule for the fideli-
ties. Alternatively, one might want to actively choose which fidelities to evaluate
given previous observations to prevent a misspecification of the schedule.

Multi-task Bayesian optimization [147] uses a multi-task Gaussian process to
model the performance of related tasks and to automatically learn the tasks’ cor-
relation during the optimization process. This method can dynamically switch
between cheaper, low-fidelity tasks and the expensive, high-fidelity target task
based on a cost-aware information-theoretic acquisition function. In practice,
the proposed method starts exploring the configuration space on the cheaper
task and only switches to the more expensive configuration space in later parts of
the optimization, approximately halving the time required for HPO. Multi-task
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Bayesian optimization can also be used to transfer information from previous
optimization tasks, and we refer to Chapter 2 for further details.

Multi-task Bayesian optimization (and the methods presented in the previ-
ous subsection) requires an upfront specification of a set of fidelities. This can
be suboptimal since these can be misspecified [74, 78] and because the number
of fidelities that can be handled is low (usually five or less). Therefore, and
in order to exploit the typically smooth dependence on the fidelity (such as,
e.g., size of the data subset used), it often yields better results to treat the
fidelity as continuous (and, e.g., choose a continuous percentage of the full data
set to evaluate a configuration on), trading off the information gain and the
time required for evaluation [78]. To exploit the domain knowledge that perfor-
mance typically improves with more data, with diminishing returns, a special
kernel can be constructed for the data subsets [78]. This generalization of multi-
task Bayesian optimization improves performance and can achieve a 10-100 fold
speedup compared to blackbox Bayesian optimization.

Instead of using an information-theoretic acquisition function, Bayesian op-
timization with the Upper Confidence Bound (UCB) acquisition function can
also be extended to multiple fidelities [73, 74]. While the first such approach,
MF-GP-UCB [73], required upfront fidelity definitions, the later BOCA algo-
rithm [74] dropped that requirement. BOCA has also been applied to optimiza-
tion with more than one continuous fidelity, and we expect HPO for more than
one continuous fidelity to be of further interest in the future.

Generally speaking, methods that can adaptively choose their fidelity are
very appealing and more powerful than the conceptually simpler bandit-based
methods discussed in Section 1.4.2, but in practice we caution that strong models
are required to make successful choices about the fidelities. When the models
are not strong (since they do not have enough training data yet, or due to
model mismatch), these methods may spend too much time evaluating higher
fidelities, and the more robust fixed budget schedules discussed in Section 1.4.2
might yield better performance given a fixed time limit.

1.5 Applications to AutoML

In this section, we provide a historical overview of the most important hyperpa-
rameter optimization systems and applications to automated machine learning.

Grid search has been used for hyperparameter optimization since the 1990s [107,
71] and was already supported by early machine learning tools in 2002 [35]. The
first adaptive optimization methods applied to HPO were greedy depth-first
search [82] and pattern search [109], both improving over default hyperparame-
ter configurations, and pattern search improving over grid search, too. Genetic
algorithms were first applied to tuning the two hyperparameters C and γ of an
RBF-SVM in 2004 [119] and resulted in improved classification performance in
less time than grid search. In the same year, an evolutionary algorithm was
used to learn a composition of three different kernels for an SVM, the kernel hy-
perparameters and to jointly select a feature subset; the learned combination of
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kernels was able to outperform every single optimized kernel. Similar in spirit,
also in 2004, a genetic algorithm was used to select both the features used by
and the hyperparameters of either an SVM or a neural network [129].

CMA-ES was first used for hyperparameter optimization in 2005 [38], in that
case to optimize an SVM’s hyperparameters C and γ, a kernel lengthscale li for
each dimension of the input data, and a complete rotation and scaling matrix.
Much more recently, CMA-ES has been demonstrated to be an excellent choice
for parallel HPO, outperforming state-of-the-art Bayesian optimization tools
when optimizing 19 hyperparameters of a deep neural network on 30 GPUs in
parallel [91].

In 2009, Escalante et al. [30] extended the HPO problem to the Full Model
Selection problem, which includes selecting a preprocessing algorithm, a feature
selection algorithm, a classifier and all their hyperparameters. By being able
to construct a machine learning pipeline from multiple off-the-shelf machine
learning algorithms using HPO, the authors empirically found that they can
apply their method to any data set as no domain knowledge is required, and
demonstrated the applicability of their approach to a variety of domains [49,
32]. Their proposed method, particle swarm model selection (PSMS), uses a
modified particle swarm optimizer to handle the conditional configuration space.
To avoid overfitting, PSMS was extended with a custom ensembling strategy
which combined the best solutions from multiple generations [31]. Since particle
swarm optimization was originally designed to work on continuous configuration
spaces, PSMS was later also extended to use a genetic algorithm to optimize
the pipeline structure and only use particle swarm optimization to optimize the
hyperparameters of each pipeline [145].

To the best of our knowledge, the first application of Bayesian optimization
to HPO dates back to 2005, when Frohlich and Zell [39] used an online Gaussian
process together with EI to optimize the hyperparameters of an SVM, achieving
speedups of factor 10 (classification, 2 hyperparameters) and 100 (regression, 3
hyperparameters) over grid search. Tuned Data Mining [84] proposed to tune
the hyperparameters of a full machine learning pipeline using Bayesian optimiza-
tion; specifically, this used a single fixed pipeline and tuned the hyperparameters
of the classifier as well as the per-class classification threshold and class weights.

In 2011, Bergstra et al. [12] were the first to apply Bayesian optimization to
tune the hyperparameters of a deep neural network, outperforming both manual
and random search. Furthermore, they demonstrated that TPE resulted in
better performance than a Gaussian process-based approach. TPE, as well as
Bayesian optimization with random forests, were also successful for joint neural
architecture search and hyperparameter optimization [14, 106].

Another important step in applying Bayesian optimization to HPO was made
by Snoek et al. in the 2012 paper Practical Bayesian Optimization of Machine
Learning Algorithms [140], which describes several tricks of the trade for Gaus-
sian process-based HPO implemented in the Spearmint system and obtained
a new state-of-the-art result for hyperparameter optimization of deep neural
networks.

Independently of the Full Model Selection paradigm, Auto-WEKA [149] (see
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also Chapter 4) introduced the Combined Algorithm Selection and Hyperparam-
eter Optimization (CASH) problem, in which the choice of a classification algo-
rithm is modeled as a categorical variable, the algorithm hyperparameters are
modeled as conditional hyperparameters, and the random-forest based Bayesian
optimization system SMAC [59] is used for joint optimization in the resulting
786-dimensional configuration space.

In recent years, multi-fidelity methods have become very popular, especially
in deep learning. Firstly, using low-fidelity approximations based on data sub-
sets, feature subsets and short runs of iterative algorithms, Hyperband [90]
was shown to outperform blackbox Bayesian optimization methods that did not
take these lower fidelities into account. Finally, most recently, in the 2018 paper
BOHB: Robust and Efficient Hyperparameter Optimization at Scale, Falkner et
al. [33] introduced a robust, flexible, and parallelizable combination of Bayesian
optimization and Hyperband that substantially outperformed both Hyperband
and blackbox Bayesian optimization for a wide range of problems, including
tuning support vector machines, various types of neural networks, and rein-
forcement learning algorithms.

At the time of writing, we make the following recommendations for which
tools we would use in practical applications of HPO:

• If multiple fidelities are applicable (i.e., if it is possible to define substan-
tially cheaper versions of the objective function of interest, such that the
performance for these roughly correlates with the performance for the full
objective function of interest), we recommend BOHB [33] as a robust, ef-
ficient, versatile, and parallelizable default hyperparameter optimization
method.

• If multiple fidelities are not applicable:

– If all hyperparameters are real-valued and one can only afford a few
dozen function evaluations, we recommend the use of a Gaussian
process-based Bayesian optimization tool, such as Spearmint [140].

– For large and conditional configuration spaces we suggest either the
random forest-based SMAC [59] or TPE [14], due to their proven
strong performance on such tasks [29].

– For purely real-valued spaces and relatively cheap objective func-
tions, for which we can afford more than hundreds of evaluations, we
recommend CMA-ES [51].

1.6 Open Problems and Future Research Direc-
tions

We conclude this chapter with a discussion of open problems, current research
questions and potential further developments we expect to have an impact on
HPO in the future. Notably, despite their relevance, we leave out discussions
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on hyperparameter importance and configuration space definition as these fall
under the umbrella of meta-learning and can be found in Chapter 2.

Benchmarks and Comparability

Given the breadth of existing HPO methods, a natural question is what are the
strengths and weaknesses of each of them. In order to allow for a fair com-
parison between different HPO approaches, the community needs to design and
agree upon a common set of benchmarks that expands over time, as new HPO
variants, such as multi-fidelity optimization, emerge. As a particular example
for what this could look like we would like to mention the COCO platform
(short for comparing continuous optimizers), which provides benchmark and
analysis tools for continuous optimization and is used as a workbench for the
yearly Black-Box Optimization Benchmarking (BBOB) challenge [11]. Efforts
along similar lines in HPO have already yielded the hyperparameter optimiza-
tion library (HPOlib [29]) and a benchmark collection specifically for Bayesian
optimization methods [25]. However, neither of these has gained similar traction
as the COCO platform.

Additionaly, the community needs clearly defined metrics, but currently dif-
ferent works use different metrics. One important dimension in which evalua-
tions differ is whether they report performance on the validation set used for
optimization or on a separate test set. The former helps to study the strength
of the optimizer in isolation, without the noise that is added in the evaluation
when going from validation to test set; on the other hand, some optimizers may
lead to more overfitting than others, which can only be diagnosed by using the
test set. Another important dimension in which evaluations differ is whether
they report performance after a given number of function evaluations or after
a given amount of time. The latter accounts for the difference in time between
evaluating different hyperparameter configurations and includes optimization
overheads, and therefore reflects what is required in practice; however, the for-
mer is more convenient and aids reproducibility by yielding the same results
irrespective of the hardware used. To aid reproducibility, especially studies that
use time should therefore release an implementation.

We note that it is important to compare against strong baselines when us-
ing new benchmarks, which is another reason why HPO methods should be
published with an accompanying implementation. Unfortunately, there is no
common software library as is, for example, available in deep learning research
that implements all the basic building blocks [2, 117]. As a simple, yet effec-
tive baseline that can be trivially included in empirical studies, Jamieson and
Recht [68] suggest to compare against different parallelization levels of random
search to demonstrate the speedups over regular random search. When com-
paring to other optimization techniques it is important to compare against a
solid implementation, since, e.g., simpler versions of Bayesian optimization have
been shown to yield inferior performance [140, 142, 79].
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Gradient-Based Optimization

In some cases (e.g., least-squares support vector machines and neural networks)
it is possible to obtain the gradient of the model selection criterion with respect
to some of the model hyperparameters. Different to blackbox HPO, in this case
each evaluation of the target function results in an entire hypergradient vector
instead of a single float value, allowing for faster HPO.

Maclaurin et al. [99] described a procedure to compute the exact gradients
of validation performance with respect to all continuous hyperparameters of a
neural network by backpropagating through the entire training procedure of
stochastic gradient descent with momentum (using a novel, memory-efficient
algorithm). Being able to handle many hyperparameters efficiently through
gradient-based methods allows for a new paradigm of hyperparametrizing the
model to obtain flexibility over model classes, regularization, and training meth-
ods. Maclaurin et al. demonstrated the applicability of gradient-based HPO to
many high-dimensional HPO problems, such as optimizing the learning rate of
a neural network for each iteration and layer separately, optimizing the weight
initialization scale hyperparameter for each layer in a neural network, opti-
mizing the l2 penalty for each individual parameter in logistic regression, and
learning completely new training datasets. As a small downside, backpropagat-
ing through the entire training procedure comes at the price of doubling the
time complexity of the training procedure. The described method can also be
generalized to work with other parameter update algorithms [36]. To overcome
the necessity of backpropagating through the complete training procedure, later
work allows to perform hyperparameter updates with respect to a separate val-
idation set interleaved with the training process [93, 36, 37, 5, 10].

Recent examples of gradient-based optimization of simple model’s hyperpa-
rameters [118] and of neural network structures (see Chapter 3) show promising
results, outperforming state-of-the-art Bayesian optimization models. Despite
being highly model-specific, the fact that gradient-based hyperparemeter opti-
mization allows tuning several hundreds of hyperparameters could allow sub-
stantial improvements in HPO.

Scalability

Despite recent successes in multi-fidelity optimization, there are still machine
learning problems which have not been directly tackled by HPO due to their
scale, and which might require novel approaches. Here, scale can mean both the
size of the configuration space and the expense of individual model evaluations.
For example, there has not been any work on HPO for deep neural networks
on the ImageNet challenge dataset [127] yet, mostly because of the high cost of
training even a simple neural network on the dataset. It will be interesting to
see whether methods going beyond the blackbox view from Section 1.3, such as
the multi-fidelity methods described in Section 1.4, gradient-based methods, or
meta-learning methods (described in Chapter 2) allow to tackle such problems.
Chapter 3 describes first successes in learning neural network building blocks
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on smaller datasets and applying them to ImageNet, but the hyperparameters
of the training procedure are still set manually.

Given the necessity of parallel computing, we are looking forward to new
methods that fully exploit large-scale compute clusters. While there exists much
work on parallel Bayesian optimization [44, 12, 60, 140, 24, 135, 54, 33], ex-
cept for the neural networks described in Section 1.3.2 [141], so far no method
has demonstrated scalability to hundreds of workers. Despite their popular-
ity, and with a single exception of HPO applied to deep neural networks [91]3,
population-based approaches have not yet been shown to be applicable to hy-
perparameter optimization on datasets larger than a few thousand data points.

Overall, we expect that more sophisticated and specialized methods, leaving
the blackbox view behind, will be needed to further scale hyperparameter to
interesting problems.

Overfitting and Generalization

An open problem in HPO is overfitting. As noted in the problem statement (see
Section 1.2), we usually only have a finite number of data points available for
calculating the validation loss to be optimized and thereby do not necessarily
optimize for generalization to unseen test datapoints. Similarly to overfitting a
machine learning algorithm to training data, this problem is about overfitting
the hyperparameters to the finite validation set; this was also demonstrated to
happen experimentally [81, 20].

A simple strategy to reduce the amount of overfitting is to employ a differ-
ent shuffling of the train and validation split for each function evaluation; this
was shown to improve generalization performance for SVM tuning, both with
a holdout and a cross-validation strategy [95]. The selection of the final con-
figuration can be further robustified by not choosing it according to the lowest
observed value, but according to the lowest predictive mean of the Gaussian
process model used in Bayesian optimization [95].

Another possibility is to use a separate holdout set to assess configurations
found by HPO to avoid bias towards the standard validation set [159, 108].
Different approximations of the generalization performance can lead to different
test performances [108], and there have been reports that several resampling
strategies can result in measurable performance differences for HPO of support
vector machines[150].

A different approach to combat overfitting might be to find stable optima in-
stead of sharp optima of the objective function [112]. The idea is that for stable
optima, the function value around an optimum does not change for slight pertur-
bations of the hyperparameters, whereas it does change for sharp optima. Stable
optima lead to better generalization when applying the found hyperparameters
to a new, unseen set of datapoints (i.e., the test set). An acquisition function
built around this was shown to only slightly overfit for support vector machine
HPO, while regular Bayesian optimization exhibited strong overfitting [112].

3See also Chapter 3 where population-based methods are applied to Neural Architecture
Search problems.
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Further approaches to combat overfitting are the ensemble methods and
Bayesian methods presented in Section 1.2.1. Given all these different tech-
niques, there is no commonly agreed-upon technique for how to best avoid
overfitting, though, and it remains up to the user to find out which strategy
performs best on their particular HPO problem. We note that the best strategy
might actually vary across HPO problems.

Arbitrary-Size Pipeline Construction

All HPO techniques we discussed so far assume a finite set of components for
machine learning pipelines or a finite maximum number of layers in neural net-
works. For machine learning pipelines (see the AutoML systems covered in Part
II of this book) it might be helpful to use more than one feature preprocessing
algorithm and dynamically add them if necessary for a problem, enlarging the
searchspace by a hyperparameter to select an appropriate preprocessing algo-
rithm and its own hyperparameters. While a searchspace for standard blackbox
optimization tools could easily include several extra such preprocessors (and
their hyperparameters) as conditional hyperparameters, an unbounded number
of these would be hard to support.

One approach for handling arbitrary-sized pipelines more natively is the
tree-structured pipeline optimization toolkit (TPOT [115], see also Chapter 8),
which uses genetic programming and describes possible pipelines by a grammar.
TPOT uses multi-objective optimization to trade off pipeline complexity with
performance to avoid generating unnecessarily complex pipelines.

A different pipeline creation paradigm is the usage of hierarchical planning;
the recent ML-Plan [108, 101] uses hierarchical task networks and shows com-
petitive performance compared to Auto-WEKA [149] and Auto-sklearn [34].

So far these approaches are not consistently outperforming AutoML systems
with a fixed pipeline length, but larger pipelines may provide more improvement.
Similarly, neural architecture search yields complex configuration spaces and we
refer to Chapter 3 for a description of methods to tackle them.
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