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Automatic Self Allocating Threads (ASAT) is pro-
posed as a way to balance the number of active threads
across a shared-memory multiprocessing system. Qur
approach is significant in that it is designed for a sys-
tem running multiple jobs, and it considers the load of
all running jobs in its thread allocation. In addition,
the overhead of ASAT is sufficiently small so that the
run times of all jobs improve when it is in use. In
this paper we consider the application of ASAT for
improving the scheduling of threads on an SGI Chal-
lenge. We demonstrate how the number of threads
of an ASAT job adjusts to the overall system load to
maintain thread balance and improve system through-
put.

INTRODUCTION

A multi-threaded runtime environment which sup-
ports lightweight threads can be used to support many
aspects of parallel processing including: virtual pro-
cessors, concurrent objects, and compiler run-time en-
vironments. However, such a library must depend on
the underlying thread mechanism provided by the op-
erating system. Threads working on compute inten-
sive tasks work best when there is one thread perform-
ing real work on each processor. Matching the number
of running threads to the number of processors can
yield both good wall-clock run time and good over-
all machine utilization. The challenge is to schedule
threads to maintain one running thread per proces-
sor by dynamically adjusting the number of threads
as the load on the machine changes. It is generally
not efficient to involve the operating system during a
thread switch between lightweight threads. As such,
a lightweight thread must operate within the param-
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eters provided by the operating system.

If an application runs on a dedicated system with
a known number of available processors, a multi-
threaded run-time environment can utilize a known
number of operating system threads and assume that
each operating system thread will have relatively un-
interrupted access to CPU resources. However, 1t is
much more common to operate in an environment
in which resources are shared by a number of multi-
threaded applications running on the same multipro-
cessing system. This work is directed at implement-
ing efficient multi-threaded runtime environments in
such a shared environment. This work identifies the
situations on a multiprocessing system when the op-
eration of a lightweight thread environment might be
negatively impacted by other threads running on the
system.

The paper consists of several parts. (1) A pro-
posed mechanism (ASAT) which allows processes to
adjust their thread usage to maximize overall system
utilization, (2) A characterization of the performance
impact of having the improper number of threads on a
multiprocessing system, and (3) an experiment using
this technique in a multi-threaded compiler run-time
environment.

EXECUTION MODEL

This work focuses on an execution model in which
a serial portion of the code is periodically executed
between the parallel sections of the code.

In a procedural-language environment such as
FORTRAN, a loop similar to the following will gen-
erate that pattern:



DO ITIME=1,INFINITY
DO PARALLEL IPROB=1,PROBSIZE
ENDDO

ENDDO

The parallel portions of the code may be executed
by any number of operating system threads. This
work focuses on how to insure that the right number
of operating system threads are used each time the
parallel code is executed.

Our approach does not necessarily apply to all
multi-threaded environments. Database or network
server environments may want to have significantly
more operating system threads than available CPU
resources in order to mask latencies due to I/O from
the network, disk or other sources.

1 PREVIOUS WORK

In [11] the problem of matching the overall system-
wide number of threads to the number of processors
was studied on an Encore Multimax. They identified
a number of the major problems with having too many
threads including:

1. Preemption during spin-lock critical section,

2. Preemption of the wrong thread in a producer-
consumer relationship,

3. Unnecessary context switch overhead, and

4. Corruption of caches due to context switches
(also see [4]).

The general topic of scheduling for parallel loops is
one that is well studied. The basic approach of these
techniques 1s to partition the iterations of a parallel
loop among a number of executing threads in a par-
allel process. The goal is to have balanced execution
times on the processors while minimizing the overhead
for partitioning the iterations. An excellent survey of
these techniques is presented in [3].

The implementation of these techniques on most
shared-memory parallel processors works with a fixed
number of threads determined when the program is
initially started. For the purpose of this paper, we call
this technique Fixed Thread Scheduling (FTS). The
FTS approach is reasonable for many of the existing
parallel processing systems as long as each applica-
tion has dedicated resources. As we point out in this

paper, not having a dedicated system can seriously
degrade the effectiveness of the FTS approach.

Other dynamic, run-time, thread management
techniques which are geared toward compiler detected
parallelism include: Automatic Self-Adjusting Pro-
cessors (ASAP) from Convex [1] and Autotasking on
Cray Research [2] computers.

A previous study of the benefits of Automatic Self-
Allocating Threads (ASAT) for the Convex Exemplar
was done in [6], details on multiple ASAT jobs appears
in [7].

ASAT

The general goal of our Automatic Self-Allocating
Threads (ASAT) is to eliminate thread imbalance by
detecting thrashing and then dynamically reducing
the number of active threads to achieve balanced exe-
cution over the long term. In this way, multi-threaded
applications will experience thread imbalance only
during a small percentage of the execution time of
the application. To implement ASAT on a parallel
processing system, there are a number of problems
which must be solved. The most important are:

1. Detecting if too many active threads exist.
2. Detecting if too few active threads exist.
3. Adjusting the number of threads.

ASAT takes advantage of the basic parallel loop
structure shown earlier. Under Fixed Thread
Scheduling (FTS) the beginning of the parallel loop
activates the same number of threads each time it is
executed over the duration of an application. When
ASAT is used, the run-time library will activate the
appropriate number of threads based on the overall
load on the system. The goal is to create the precise
number of threads which match the available proces-
sors.

A critical concept of ASAT is that a job will exam-
ine the availability of system resources with respect to
current system load. The process is accurate, efficient
and completely decentralized. The thread imbalance
detected 1s for all threads currently on the system,
not simply for this job’s threads. Whether other jobs
are scheduled using ASAT doesn’t matter. However,
the stability of multiple ASAT jobs is an important
question we examine later in the paper.

ASAT uses a timed barrier test to detect thread
imbalance on the system. A special barrier routine
is inserted to test the system while executing as a



single thread. Using the clock, the elapsed time be-
tween the first thread entering the barrier and the
last thread leaving the barrier is measured. There is
a three-orders of magnitude difference between bar-
rier passage times under thread-balanced and thread-
imbalanced conditions. That difference is significant
enough to make the barrier a good test for load im-
balance.

The interval between barrier evaluations can be ad-
justed. We set the ASAT software to only run the
barrier test once every 1 second of elapsed time by
default. The ASAT routine could then be called thou-
sands of times per second, but most of the calls would
return immediately because the time between ASAT
barrier tests had not yet expired.

The number of spawned threads is decreased when
the barrier transit time indicates a thread imbalance.
ASAT has tunable values which determine the val-
ues for what is a “bad” transit time and the number
of “bad” transit times necessary to trigger a drop in
threads.

To determine whether or not to increase the num-
ber of threads, the ASAT barrier test is executed with
one additional thread and the barrier transit time is
measured. If the barrier transit time indicates that
one more thread would execute effectively, the com-
putation is attempted with one more thread. We call
it “dipping your toe in the water.” If the number of
threads we are using has been working smoothly for a
while, we test with more threads for a single barrier.
If this barrier runs well, we dive in and run the whole
application with more threads. Of course, if the in-
crease in threads results in an imbalance, ASAT will
drop the thread count at the next spawn opportunity.

ASAT IN A COMPILER RUN-TIME
ENVIRONMENT

The basic goal of ASAT is to allow a multithreaded
run-time environment to operate most efficiently in
an environment where the overall load on a system
changes dynamically.

The first multi-threaded runtime environment
which we have investigated is a compiler run-time en-
vironment. For this study, ASAT was implemented
without modifications to the actual compiler library.
Because it is not implemented inside the compiler li-
brary, the calls to ASAT must be explicitly added to
the application. The two routines are ASAT_INIT
and ASAT_ADJUST. ASAT_INIT is called at the be-
ginning of the program before any parallel loops have

executed and ASAT_ADJUST is called periodically

outside of a parallel loop. A highly stylized example
1s as follows:

CALL ASAT_INIT()
DO ITIME=1,INFINITY
CALL ASAT_ADJUST()
C$DOACROSS LOCAL(I),SHARE(PARTICLE),SCHED(GSS)
DO IPART=1,10000
Work. .
ENDDO
ENDDO
END

Once ASAT is supported directly by the compiler,
its use can be controlled using a directive.

C$DOACROSS LOCAL(I),SHARE(PARTICLE),
c$ SCHED(GSS) , THREADS (ASAT)

C$DOACROSS LOCAL(I),SHARE(PARTICLE),
c$ SCHED(GSS) , THREADS(FTS)

It it important to separate the thread management
aspects from the chunking and work distribution is-
sues. Work distribution techniques such as Guided
Self Scheduling (GSS) depend of the variation of the
length of each iteration. Thread management sim-
ply controls the number of threads which are used to
process the work. Most compiler run-time libraries
are designed to check the number of threads at the
beginning of each parallel section.

AN EXISTING MECHANISM

An good example of dynamic thread balancing is
the mechanism available on the Convex C-Series (C-
240, C-3X00, C4XXX) supercomputers is called Au-
tomatic Self Allocating Processing (ASAP) [1]. We
use ASAP as a model for comparison.

The ASAP processing in the Convex C-Series sys-
tems is made possible because of an architectural
feature called “Communication Registers” which are
shared by all of the CPUs. These communication reg-
isters allow a multi-threaded process to create, delete,
or context-switch threads with minimal performance
impact. Using this hardware, the compiler can par-
allize loops without regard for the number of threads
which will actually execute in the parallel loop. An
idle CPU can dynamically create thread and “join” a
parallel computation with a very small overhead.

This hardware support allows users to compile
their applications assuming a generalized parallel en-
vironment regardless of whether or not there will be
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Figure 1: Performance of the Convex on Parallel Jobs

enough resources at run-time to execute with multi-
ple CPUs. One significant benefit of ASAP is that a
long running job that is compiled to run in parallel
can “soak-up” idle cycles as load changes. This flex-
ibility allows a parallel /vector computer to be nearly
100 percent utilized over long time periods.

Throughout this section, a simple, very parallel
computation will be used as the benchmark applica-
tion. The kernel for these tests is as follows:

C$ DO_PARALLEL
DO J=1,100000
// 3Flops, 5 Memory references,
// no data dependencies
ENDDO

Figure 1 shows the performance of the code with
several compiler options and load scenarios. The first
pair of bars shows the CPU time (dark) and wall time
(white) for the application on a single CPU. The sec-
ond pair of bars shows the performance of the same
application on four CPUs. The third pair of bars is
another application which is single-threaded and can-
not run in parallel. The fourth pair of bars shows
the CPU and wall time for the ideal combination of
the two codes assuming perfect load balancing on four
CPUs. In this case, the ideal CPU time is the sum
of the individual times and the wall time i1s the max-
imum of the individual wall times. The last pair of
bars shows the actual performance achieved on the
Convex C-240 when the jobs are run together. In the
actual run using ASAP both the CPU time and the
wall time are essentially the same as the ideal times
(approximately 1.05 times longer).
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Figure 2: Performance of the SGI Under Load

PARALLEL APPLICATIONS AND
LOAD ON THE SGI

When multiple jobs are run on a less tightly cou-
pled parallel machine the competing jobs can show
dramatic interference with each other. Figure 2 shows
what happens when the experiment performed on the
Convex (Figure 1) is performed on a loaded and un-
loaded 4-CPU SGI Challenge system.

As on the Convex, the application code parallelizes
automatically without any user modifications. Like
the Convex, the load application only runs on a sin-
gle CPU. However, unlike the Convex, the system per-
forms much worse than ideal when both codes are run
simultaneously. The wall time for the combination job
is 1.68 times longer than ideal and the CPU time of
the combination job is 1.76 times longer than the ideal
CPU time. In fact, with the two jobs running simul-
taneously, the SGI performs worse than if you ran the
jobs sequentially (i.e. submitted the jobs to a batch
queue).

COMPILER OPTIONS ON THE SGI

The SGI has several compiler options for load loop
scheduling provided as part of its parallel FORTRAN
compiler [8] [9]. Similar options are typically avail-
able on most parallel FORTRAN compilers. Are these
compiler options sufficient to solve the unbalanced
threads problem? The scheduling options for a paral-
lel loop on the SGI include:

Simple At the beginning of a parallel loop each
thread takes a fixed number of iterations of the
loop.
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Dynamic With dynamic scheduling, each thread
processes a “chunk” of data and when it has com-
pleted processing, a new “chunk” is processed.
The “chunk_size” can be varied by the program-
mer based on the application.

Guided Self Scheduled This is essentially a modi-
fication of Dynamic scheduling except that large
“chunks” are taken during the first few iterations,
and the “chunksize” is reduced as the loop nears
completion. GSS is designed to even out wide
variations in the execution times of the iterations

of the parallel loop. GSS is described in [5].

Figure 3 shows parallel performance of the simple
application on an unloaded 4-CPU SGI with various
compiler options:

The Dynamic and GSS options add overhead to the
loops. Unlike the Convex, this overhead is in software
and has a greater impact on the performance of the
application. These options do not affect the allocation
of threads so they only partially solve the the problem
of having too many threads in a loaded system.

PERFORMANCE OF ASAT

In this section we show that adding ASAT to the
SGI allows it to run with a balanced number of
threads. In addition, we show how competing jobs
interact with each other. Figure 4 shows how ASAT
generally operates when working on a system with
variable load. In this figure, an application using
ASAT is executing while other users are using the sys-
tem. As the load average increases due to other users,
the ASAT application releases threads to maintain its
balance. Under high load conditions, the ASAT ap-
plication only has one thread. As the other load de-
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Figure 5: Performance of ASAT on the SGI

creases, the ASAT application adds threads increasing
its throughput by using the idle cycles.

The goal for the rest of this section i1s to compare
the application executed with ASAT on the SGI with
the execution on the Convex C-240 using ASAP.

The first test is to duplicate the experiment which
was performed for Figures 1 and 2 using ASAT to
schedule the threads in the application code. Simple
scheduling was used along with ASAT.

There are several observations about Figure 5.
Running the application with ASAT enabled on an
empty system did not change the performance of the
program significantly (1-2 percent). The performance
of the system with both the application and load run-
ning simultaneously is very close to ideal. Wall time
for Both/ASAT was the same as ideal because the
ASAT application ran to completion using the spare
cycles while the load was running. The ASAT job
runs at a lower priority than the load job so the load
job got 100 percent of the CPU for the duration of
its run. CPU time for Both/ASAT was 1.14 times
the ideal CPU time. Recall that both the CPU and
wall time were 1.05 times ideal for the ASAP on the
Convex in Figure 1. Also from Figure 5, the wall time
for gang scheduling is 1.68 times longer than ideal and
the CPU time for gang scheduling is 1.76 times longer
than the ideal CPU time.

To test ASAT under more varied load patterns, two
time-oriented tests were performed. The first time-
oriented test measured the ASAT response to rapidly
changing load patterns. In the rapidly changing load
scenario, the varying load conditions consisted of:

1. One job that averaged 5 minutes CPU time and
arrived approximately every 15 minutes

2. Three jobs that averaged 1 minute of CPU time
and arrived approximately every 4 minutes
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Figure 4: Example operation of ASAT

These load jobs were all sequential and were given
higher priority than the ASAT application. The sys-
tem load for the combination of “load” jobs i1s shown
as the bottom plot in Figure 6.

Gang scheduling and ASAT are compared in Fig-
ure 6. In the figure, the combination “load” job fin-
ishes 4 minutes (11 percent) earlier when using ASAT
scheduling. In addition, because ASAT processes run
at lower priority, the time that the random load (sim-
ulating other users) completed was only 1 minute
(4 percent) later than when the load completed on
an empty system. Using gang scheduling, the simu-
lated random load completed 7 minutes (20 percent)
later than it would have completed with no load. In
essence, the ASAT process “soaked-up” the idle cy-
cles of the system with little or no impact on the rest
of the load on the system. Because the ASAT process
maintained a balanced number of threads it executed
more efficiently and terminated faster than the gang
scheduled process which had a significant negative im-
pact on the other jobs.

The second time-oriented test 1s exactly the same
as the previous test except that the applied load is
more regular. In 2.5 minute intervals, the load is in-
creased from 1 to 4 and then back down to zero. This
applied load is shown in Figure 7 as an inverted “V”
representing the increase in threads followed by a de-
crease. The same ASAT and gang processes were each
run together with this new load profile.

Figure 7 again compares gang vs. ASAT—the for-
mer is the top line and the latter 1s the second line.
The figure also shows the load by itself (inverted “V”)
and the number of ASAT threads. As the load is in-
creased over the time of the run, ASAT quickly ad-
justs the number of threads, maintaining system bal-

ance. When the load goes up, the number of ASAT
threads goes down. As resources free up, the number
of ASAT threads is increased to take advantage of the
idle resources. The dynamic adjustment of threads
results in complete and efficient utilization of the re-
sources while providing priority to the short term load
on the system.

CONCLUSION

The ability to dynamically adjust a parallel appli-
cation to the amount of available resources is an im-
portant tool which allows parallel processors to be
used more efficiently and applications to complete
more quickly.

In this paper, the performance impact of having
a system with an unbalanced number of threads was
investigated.

ASAT is proposed as a technique which is easily im-
plementable in a run-time library and effectively bal-
ances thread use across an entire system. As load in-
creased on the whole system as ASAT job dynamically
reduced its threads. When system load decreased the
ASAT job dynamically increased its threads to soak
up available cycles.

ASAT is examined in the context of a FORTRAN
run-time thread management environment. The per-
formance of ASAT is shown to be superior to the exist-
ing compiler-provided scheduling mechanisms in SGI
Power FORTRAN. ASAT performs nearly as well in
diverse load situations as the hardware approach used

by Convex ASAP.
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FUTURE WORK

We need to further study how to best implement
ASAT using more compiler and operating system
modifications. ASAT, as currently implemented, does
not make or require any operating system changes.
One operating system change we believe would be
helpful to ASAT is to assign a lower priority to pro-
cesses with more active threads. This modification
would naturally encourage processes with the largest
number of threads to give up their threads and bal-
ance overall usage in the long run. Such an approach
would also penalize non-ASAT processes which make
irresponsible use of system resources.

Another area of work is to do a long-term study
of the overall effect of ASAT. This work would
allow one to study the average time spent in a
parallel section across a wide variety of applica-
tions. We hope to have a version of ASAT avail-
able via anonymous FTP. Please check the URL
http://clunix.msu.edu/~crs/projects/asat for details
on the availability of ASAT.

Thanks to: David Kuck and Paul Petersen, Kuck and
Associates; Jerry McAllister, Michigan State Univer-
sity; Dave McWilliams, National Center for Super-
computing Applications and Lisa Krause, Cray Re-
search.
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