
BACKWARD SEARCH

FM-INDEX
(FULL-TEXT INDEX IN MINUTE SPACE)

Paper by

Ferragina & Manzini

Presentation by

Yuval Rikover

 Combine Text compression with indexing

(discard original text).

 Count and locate P by looking at only a small

portion of the compressed text.

 Do it efficiently:

 Time: O(p)

 Space: O(n Hk(T)) + o(n)

 Exploit the relationship between the Burrows-

Wheeler Transform and the Suffix Array data

structure.

 Compressed suffix array that encapsulates both the

compressed text and the full-text indexing

information.

 Supports two basic operations:

 Count – return number of occurrences of P in T.

 Locate – find all positions of P in T.

 Process T[1,..,n] using Burrows-Wheeler Transform

 Receive string L[1,..,n] (permutation of T)

 Run Move-To-Front encoding on L

 Receive [1,…,n]

 Encode runs of zeroes in using run-length
encoding

 Receive

 Compress using variable-length prefix code

 Receive Z (over alphabet {0,1})

MTFL

MTFL

rleL

rleL

mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

ssippi#missi

issippi#miss Sort the rows

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

i ssippi#mis s

m ississippi #

i ssissippi# m

i ppi#missis s

i #mississip p

mississipp i

LF• Every column is a permutation of T.

• Given row i, char L[i] precedes F[i] in

original T.

• Consecutive char’s in L are adjacent

to similar strings in T.

• Therefore – L usually contains long

runs of identical char’s.

1. Find F by sorting L

2. First char of T? m

3. Find m in L

4. L[i] precedes F[i] in T. Therefore we get

mi

5. How do we choose the correct i in L?

 The i’s are in the same order in L and F

 As are the rest of the char’s

6. i is followed by s: mis

7. And so on….

F

Reminder: Recovering T from L

#

i

i

i

i

m

p

p

s

s

s

s

i

p

s

s

m

#

p

i

s

s

i

i

L

 Replace each char in L

with the number of

distinct char’s seen since

its last occurrence.

 Keep MTF[1,…,|Σ|] array,

sorted lexicographically.

 Runs of identical char’s

are transformed into runs

of zeroes in
MTFL

iissip#msspi

spmi#

43210

1 3 13 4 4 4 440 0 0

L

spm#i

43210

sm#ip

43210

m#ips

43210

And so on…

• Bad example

• For larger, English texts, we will receive

more runs of zeroes, and dominancy of

smaller numbers.

• The reason being that BWT creates

clusters of similar char’s.

 Replace any sequence of

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

MTFL

rleL

iissip#msspi

1 3 13 4 4 4 440 0 0

L

0
m

Example

1. 0  1+1 = 2  10  01  0

2. 00  2+1 = 3  11 11  1

3. 000  3+1 = 4  100  001  00

4. 0000  4+1 = 5  101  101  10

5. 00000 5+1 = 6  110  011  01

6. 000000  6+1 = 7  111  111  11

7. 0000000  7+1 = 8  1000  0001000

To give a meatier example (not really), we’ll

change our text to:

T = pipeMississippi#

iissi#piemsspppi

0105254455050042

010525445505142rleL

 Replace any sequence of

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

rleL

0
m

Example

1. 0  1+1 = 2  10  01  0

2. 00  2+1 = 3  11 11  1

3. 000  3+1 = 4  100  001  00

4. 0000  4+1 = 5  101  101  10

5. 00000 5+1 = 6  110  011  01

6. 000000  6+1 = 7  111  111  11

7. 0000000  7+1 = 8  1000  0001000

How to retrieve m

• given a binary number

•Replace each bit with a sequence of

zeroes

•10 Zeroes

kbbb ,...,10

jb

  j

jb 21 

  42)10(211 10 

 Compress as follows,

over alphabet {0,1}:

 1  11 0  10

 For i = 1,2,…, |Σ| - 1

 zeroes

 Followed by binary

representation of i+1

which takes 1+

 For a total of 1+2

bits

MTFLrleL

L

 )1log(i

Example

1. i=1  0’s, bin(2)  010

2. i=2  0’s, bin(3)  011

3. i=3  0’s, bin(4)  00100

4. i=4  0’s, bin(5)  00101

5. i=5  0’s, bin(6)  00110

6. i=6  0’s, bin(7)  00111

7. i=7  0’s, bin(8)  0001000

iissi#piemsspppi

0105254455050042

010525445505142rleL

 )1log(i

 )1log(i

 )2log(

 )3log(

 )4log(

 )5log(

 )6log(

 )7log(

 )8log(

011 00101 11 00110 10 00110 00110 00101 00101 00110 011 00110 10 010 10

 In 1999, Manzini showed the following upper bound for BWT

compression ratio:



 The article presents a bound using :

 Modified empirical entropy

 The maximum compression ratio we can achieve, using for each

symbol a codeword which depends on a context of size at most k

(instead of always using a context of size k).

 In 2001, Manzini showed that for every k, the above compression

method is bounded by:

        ,log108.08 kgnnTn H k

 TH k

*

       lognΟTnTnTn HHH k

*

kk


    ,5
*

kgTnH k

 Backward-search algorithm

 Uses only L (output of BWT)

 Relies on 2 structures:

 C[1,…,|Σ|] : C[c] contains the total number of text chars in T which are
alphabetically smaller then c (including repetitions of chars)

 Occ(c,q): number of occurrences of char c in prefix L[1,q]

Example

• C[] for T = mississippi#

• occ(s, 5) = 2

• occ(s,12) = 4

Occ Rank

8651

1

2

3

4

5

6

7

8

9

10

11

12



i m p s

 Works in p iterations, from p down to 1

 Remember that the BWT matrix rows = sorted suffixes of T

 All suffixes prefixed by pattern P, occupy a continuous set of rows

 This set of rows has starting position First

 and ending position Last

 So, (Last – First +1) gives total pattern occurrences

 At the end of the i-th phase, First points to the first row prefixed by

P[i,p], and Last points to the last row prefiex by P[i,p].

c = ‘m’

i = 1
P = msi msi

i = 3

c = ‘i’

i = 2

c = ‘s’
msi msi

P
a

o
lo

 F
e

rra
g
in

a
,

U
n
iv

e
rs

ità
 d

i P
is

a

fr
occ=2
[lr-fr+1]

SUBSTRING SEARCH IN T (COUNT THE PATTERN OCCURRENCES)

#mississipp

i#mississip

ippi#missis

issippi#mis

ississippi#

mississippi

pi#mississi

ppi#mississ

sippi#missi

sissippi#mi

ssippi#miss

ssissippi#m

i

p

s

s

m

#

p

i

s

s

i

i

L

mississippi

1

i 2

m 7

p 8

S 10

C

P = si
First step

fr

lr Inductive step: Given fr,lr for P[j+1,p]

ŒTake c=P[j]

P[j]

•Find the first c in L[fr, lr]

ŽFind the last c in L[fr, lr]

•L-to-F mapping of these chars
lr

rows prefixed

by char “i” s

s

unknown

Occ() oracle is enough

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =

4

‘i’

C[‘i’] + 1 = 2

C[‘i’ + 1] = C[‘m’] = 5

4

First

Last
‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =

First

Last

‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9

C[‘s’] + Occ(‘s’,5) = 8+2 = 10

2

3

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

8651

1

2

3

4

5

6

7

8

9

10

11

12

i m p s

C[] =

 P = pssi

 i =

 c =

 First =

 Last =

 (Last – First + 1) =
First
Last

‘s’

2

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11

C[‘s’] + Occ(‘s’,10) = 8+4 = 12

2

‘p’

C[‘p’] + Occ(‘p’,10) +1 = 6+2+1 = 9

C[‘p’] + Occ(‘p’,12) = 6+2 = 8

0

1

 Backward-search makes P iterations, and is dominated by Occ()

calculations.

 Implement Occ() to run in O(1) time, using bits.

 So Count will run in O(p) time, using bits.

 We saw a partitioning of binary strings into Buckets and

Superblocks for answering Rank() queries.

 We’ll use a similar solution

 With the help of some new structures

 General Idea: Sum character occurrences in 3 stages











n

n
nZ

log

loglog

  









n

n
nTnH k log

loglog
5

Superblock Bucket Intra-

bucket

Compressed text

 Buckets

 Partition L into substrings of chars each, denoted

 This partition induces a partition on , denoted

 Applying run-length encoding and prefix-free encoding on each bucket will

result in n/log(n) variable-length buckets, denoted

iBL

T = pipeMississippi# |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

MTFL

4
MTF

iBL

MTF

iBL

010525445505142rleL

iBZ

lni /,..,1

011 00101 11 | 00110 10 00110 00110 | 00101 00101 00110 011 | 00110 10 010 10

1BZ 4BZ

nl log

 Superblocks

 We also partition L into superblocks of size each.

 Create a table for each superblock, holding for each character c Є Σ, the

number of c’s occurrences in L, up to the start of the specific superblock.

 Meaning, for , store occurrences of c in range

8
Chars

MTF

iBL 32,...,2,1i

 nl 22 log

256 LT

64
CharsjSuperB 4,3,2,1j

jSuperB  2,...,1 ljL 

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

32a

25b

::

7z

55a

38b

::

8z




















n

n
n

l

n

log
log

2

3NO2NO

 Back to Buckets

 Create a similar table for buckets, but count only from current superblock's

start. Denote tables as

 Only thing left is searching inside a bucket.

 For example, Occ(c,164) will require counting in

 But we only have the compressed string Z.

 Need more structures

32a

25b

::

7z

55a

38b

::

8z

2a

1b

::

0z

2a

1b

::

1z

23a

13b

::

1z

21a

13b

::

1z

iON 

2NO 3NO

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

.

.

17ON 
18ON 

23ON 
24ON 

21BL

  
















 n

n

n
l

l

n
loglog

log
log 2

 Finding ‘s starting position in Z, part 1

 Array keeps for every , the sum of the sizes

of the compressed buckets (in bits).

 Array keeps for every bucket , the sum of bucket

sizes up to it (including), from the superblock’s beginning.

iBZ

 2/,...,1 lnW jSuperB

njBZBZ log1,....., 

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011

1BZ 6BZW

W 

 lnW /,...,1 iBZ

754823

111613121310

   


















n

n
n

l

n
W

log
log21log

2
  

















 n

n

n
l

l

n
W loglog

log
log 2

 Finding ‘s starting position in Z, part 2

 Given Occ(‘c’,q)
iBZ

njBZBZ log1,....., 

 nnW log/,...,1

Find i of : iBL 





n

q
i

log

niqh log)1(

Find character in to count up to:iBL

Find superblock of
iBLtSuperB

1
log











n

i
t

Locate position of in Z:
iBZ

  1]1[ iWtW

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101

21BL

[]1W  []2W  []3W  []4W  []5W  []6W 
 1W  2W  3W

Occ(k,166)

166/8 = 20.75

 i = 21

h = 166 – 20*8

 h = 6

(21/8) = 2.625

 t = 2

Compressed bucket is at

W[2]+W`[20]+1

 We have the compressed bucket

 And we have h (how many chars to check in).

 But contains compressed Move-To-Front information…

 Need more structures!

 For every i, before encoding bucket with Move-To-Front, keep

the state of the MTF table

iBZ

iBZ | 011 00101 11 |

iBZ

iBZ

iBL

T = pipeMississippi# |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

spmie# sme#ip #ipsme smep#i

1MTF 2MTF 3MTF
4MTF




















n

n

n

n

log
log

log

h

 How do we use to count inside ?

 Final structure!

 Build a table , which stores the number of

occurrences of ‘c’ among the first h characters of

 Possible because and together, completely determine

 ii MTFBZhcS ,,,

| 011 00101 11 |iBZ
iMTF

spmie#h

iBL

iBZ
iMTF iBL

s

spmie#

smpei#

#emips

#iemps

| 011 0010 11 | | 010 00101 011 0010| | 00111 00101 00111 00110|

logn…21

a

b

.

.

z

 Max size of a compressed bucket :

 Number of possible compressed buckets :

 Number of possible MFT table states:

 Size of inner table:

 Size of each entry:

 Total size of S[]:

iBZ

   nnnllt loglogloglog2 

s

spmie#

smpei#

#emips

#iemps

| 011 0010 11 | | 010 00101 011 0010| | 00111 00101 00111 00110|

logn…21

a

b

.

.

z

 )log21(l

  tl
22

)log21(




 log
2

l
llog

•But – having a linear sized index is bad for practical uses when n is

large.

•We want to keep the index size sub-linear, specifically:

•Choose bucket size , such as:

•We get  nnn  log2  nnnS logloglog  

  1,  n

l   nl log)log21( 1

 Summing everything:

 & both take

 & both take

 MTF takes

 S takes

 Total Size: Total Time:

W

 1











n

n

log

 nnn logloglog  

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011

55a

38b

::

8z2NO

754823

111613121310W 

W

23a

13b

::

1z 1ON 

spmie#

1MTF

NO

ON  W 








 n

n

n
loglog

log











n

n

log









 n

n

n
Z loglog

log

 We now want to retrieve the positions in T of the (Last – First+1)

pattern occurrences.

 Meaning: for every i = first, first+1,…,Last

Find position in T of the suffix which prefixes the i-th row.

 Denote the above as pos(i)

 We can’t find pos(i) directly, but we can do:

 Given row i (9) , we can find row j

(11) such that pos(j) = pos(i) – 1

 This algorithm is called backward_step(i)

 Running time O(1) Uses previous structures

P = si

1

2

3

4

5

6

7

8

9

10

11

12

pos(9) = 7

#ippississim

121110987654321

 L[i] precedes F[i] in T.

 All char’s appear at the same order in L and F.

 So ideally, we would just compute Occ(L[i],i)+C[L[i]]

P = si

#ippississim

121110987654321

1

2

3

4

5

6

7

8

9

10

11

12

#

i

i

i

i

m

p

p

s

s

s

s

i

p

s

s

m

#

p

i

s

s

i

i

LF

P = si

i = 9

1

2

3

 Solution:

 Compare Occ(c,i) to Occ(c,i-1) for every

 Obviously, will only differ at c = L[i].

 Now we can compute Occ(L[i],i)+C[L[i]].

 Calling Occ() is O(1)



 Therefore backward_step takes O(1) time.

#ippississim

121110987654321

i

p

s

s

m

#

p

i

s

s

i

i

L

P = si

i = 9

 #c
O

cc(c,9
)

O
cc(c,8

)

)1(

 Now we are ready for the final algorithm.

 First, mark every character from T

and its corresponding row (suffix) in L.

 For each marked row , store its position

Pos() in data structure S.

 For example, querying S for Pos() will return 8.

#ippississim

121110987654321

P = si

i = 9

 n1log

1

2

3

4

5

6

7

8

9

10

11

12

first

last

jr

jr

3r

 Given row index i, find Pos(i) as follows:

 If is a marked row, return Pos(i) from S. DONE!

 Otherwise - use backward_step(i) to find i’ such

that : Pos(i’) = Pos(i) – 1

 Repeat t times until we find a marked row.

 Then – retrieve Pos(i’) from S and compute Pos(i)

by computing: Pos(i’) + t

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

ir

Example – finding “si”

 For i = last = 10

 is marked – get Pos(10) from S :

 Pos(10) = 4

 For i = first = 9

 isn’t marked.  backward_step(9)

 backward_step(9) = (t = 1)

 isn’t marked either.  backward_step(11)

 Backward_step(11) = (t = 2)

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

10r

9r

11r
11r

4r

Example – finding “si”

 For i = last = 10

 is marked – get Pos(10) from S :

 Pos(10) = 4

 For i = first = 9

 isn’t marked.  backward_step(9)

 backward_step(9) = (t = 1)

 isn’t marked either.  backward_step(11)

 Backward_step(11) = (t = 2)

 isn’t marked either.  backward_step(4)

 Backward_step(4) = (t = 3)

 is marked – get Pos(10) from S. Pos(10) = 4

 Pos(9) = Pos(10) + t = 4 + 3 = 7

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last

10r

9r

11r
11r

4r

4r
10r

10r

 A marked row will be found in at most

iterations.

 Each iteration uses backward_step, which is O(1).

 So finding a single position takes

 Finding all occ occurrences of P in T takes:

but only if querying S for membership is O(1)!!

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

first

last
 n1log

 n1log

 n 1log

 nocc  1log

 Partition L’s rows into buckets of rows each.

 For each bucket

 Store all marked rows in a Packed-B-Tree (unique for each row),

 Using their distance from the beginning of the bucket

as the key. (also storing the mapping)

 A tree will contain at most keys, of size

bits each.

 O(1) access time

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

 n2log

1

3

6

4

 n2log

    nn loglogloglog 2 

 The number of marked rows is

 Each key encoded in a tree takes bits,

and we need an additional O(logn) bits to keep

the Pos(i) value.

 So S takes

 The structure we used to count P, uses

bits, so choose ε between 0 and

1 (because going lower than doesn’t

reduce the asymptotic space usage.)

#ippississim

121110987654321

P = si

i = 9

1

2

3

4

5

6

7

8

9

10

11

12

 nloglog

 










nn

n

n
logloglog

log1 











 n

n
1log









 n

n

n
Z loglog

log









 n

n

n
loglog

log

