
BACKWARD SEARCH

FM-INDEX
(FULL-TEXT INDEX IN MINUTE SPACE)

Paper by

Ferragina & Manzini

Presentation by

Yuval Rikover



 Combine Text compression with indexing

(discard original text).

 Count and locate P by looking at only a small 

portion of the compressed text.

 Do it efficiently:

 Time: O(p)

 Space: O(n Hk(T)) + o(n)



 Exploit the relationship between the Burrows-

Wheeler Transform and the Suffix Array data 

structure.

 Compressed suffix array that encapsulates both the 

compressed text and the full-text indexing 

information.

 Supports two basic operations:

 Count – return number of occurrences of P in T.

 Locate – find all positions of P in T.



 Process T[1,..,n] using Burrows-Wheeler Transform

 Receive string L[1,..,n]    (permutation of T)

 Run Move-To-Front encoding on L

 Receive [1,…,n] 

 Encode runs of zeroes in          using run-length 
encoding

 Receive 

 Compress using variable-length prefix code

 Receive Z     (over alphabet {0,1} )

MTFL

MTFL

rleL

rleL



mississippi#

ississippi#m

ssissippi#mi 

sissippi#mis

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

ssippi#missi

issippi#miss Sort the rows

p  i#mississi  p

p  pi#mississ  i

s  ippi#missi  s

s  issippi#mi  s

s  sippi#miss  i

s  sissippi#m  i

i  ssippi#mis s

m  ississippi #

i  ssissippi# m

i  ppi#missis s

i  #mississip p

#  mississipp i

LF• Every column is a permutation of T.

• Given row i, char L[i] precedes F[i] in 

original T.

• Consecutive char’s in L are adjacent 

to similar strings in T.

• Therefore – L usually contains long 

runs of identical char’s.



1. Find F by sorting L  

2. First char of T? m

3. Find m in L

4. L[i] precedes F[i] in T. Therefore we get

mi

5. How do we choose the correct i in L?

 The i’s are in the same order in L and F

 As are the rest of the char’s

6. i is followed by s: mis

7. And so on….

F

Reminder:  Recovering T from L
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 Replace each char in L 

with the number of 

distinct char’s seen since 

its last occurrence.

 Keep MTF[1,…,|Σ|] array, 

sorted lexicographically.

 Runs of identical char’s 

are transformed into runs 

of zeroes in 
MTFL

iissip#msspi

spmi#

43210

1 3 13 4 4 4 440 0 0

L

spm#i

43210

sm#ip

43210

m#ips

43210

And so on…

• Bad example

• For larger, English texts, we will receive  

more runs of zeroes, and dominancy of 

smaller numbers.

• The reason being that BWT creates 

clusters of similar char’s.



 Replace any sequence of 

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

MTFL

rleL

iissip#msspi

1 3 13 4 4 4 440 0 0

L

0
m

Example

1. 0  1+1 = 2  10  01  0

2. 00  2+1 = 3  11 11  1

3. 000  3+1 = 4  100  001  00

4. 0000  4+1 = 5  101  101  10

5. 00000 5+1 = 6  110  011  01

6. 000000  6+1 = 7  111  111  11

7. 0000000  7+1 = 8  1000  0001000 

To give a meatier example (not really), we’ll 

change our text to:

T = pipeMississippi#

iissi#piemsspppi

0105254455050042

010525445505142rleL



 Replace any sequence of 

zeroes with:

 (m+1) in binary

 LSB first

 Discard MSB

 Add 2 new symbols – 0,1

 is defined over

{ 0,1,1,2,…,|Σ|}

rleL

0
m

Example

1. 0  1+1 = 2  10  01  0

2. 00  2+1 = 3  11 11  1

3. 000  3+1 = 4  100  001  00

4. 0000  4+1 = 5  101  101  10

5. 00000 5+1 = 6  110  011  01

6. 000000  6+1 = 7  111  111  11

7. 0000000  7+1 = 8  1000  0001000 

How to retrieve m

• given a binary number

•Replace each bit with a sequence of

zeroes

•10 Zeroes

kbbb ,...,10

jb

  j

jb 21 

  42)10(211 10 



 Compress as follows,

over alphabet  {0,1}:

 1  11 0  10

 For  i = 1,2,…, |Σ| - 1

 zeroes

 Followed by binary 

representation of  i+1

which takes 1+

 For a total of 1+2

bits

MTFLrleL

L

 )1log( i

Example

1. i=1  0’s, bin(2)  010

2. i=2  0’s, bin(3)  011

3. i=3  0’s, bin(4)  00100

4. i=4  0’s, bin(5)  00101

5. i=5  0’s, bin(6)  00110

6. i=6  0’s, bin(7)  00111

7. i=7  0’s, bin(8)  0001000

iissi#piemsspppi

0105254455050042

010525445505142rleL

 )1log( i

 )1log( i

 )2log(

 )3log(

 )4log(

 )5log(

 )6log(

 )7log(

 )8log(

011 00101 11 00110 10 00110 00110 00101 00101 00110 011 00110 10 010 10



 In 1999, Manzini showed the following upper bound for BWT 

compression ratio:



 The article presents a bound using :

 Modified empirical entropy

 The maximum compression ratio we can achieve, using for each 

symbol a codeword which depends on a context of size at most k

(instead of always using a context of size k).

 In 2001, Manzini showed that for every k, the above compression 

method is bounded by: 

        ,log108.08 kgnnTn H k

 TH k

*

       lognΟTnTnTn HHH k

*

kk


    ,5
*

kgTnH k



 Backward-search algorithm

 Uses only L (output of BWT)

 Relies on 2 structures:

 C[1,…,|Σ|] :    C[c] contains  the total number of text chars in T which are 
alphabetically smaller then c  (including repetitions of chars)

 Occ(c,q): number of occurrences of char c in prefix L[1,q]

Example

• C[ ] for T = mississippi#

• occ(s, 5) = 2

• occ(s,12) = 4

Occ     Rank

8651

1

2

3

4

5

6

7

8

9

10

11

12



i    m    p    s 



 Works in p iterations,  from p down to 1

 Remember that the BWT matrix rows = sorted suffixes of T

 All suffixes prefixed by pattern P, occupy a continuous set of rows

 This set of rows has starting position First

 and ending position Last

 So, (Last – First +1) gives total pattern occurrences

 At the end of the i-th phase,  First points to the first row prefixed by 

P[i,p], and Last points to the last row prefiex by P[i,p].

c = ‘m’

i = 1
P = msi msi

i = 3

c = ‘i’

i = 2

c = ‘s’
msi msi
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SUBSTRING SEARCH IN T (COUNT THE PATTERN OCCURRENCES)

#mississipp

i#mississip

ippi#missis

issippi#mis

ississippi#

mississippi

pi#mississi

ppi#mississ

sippi#missi

sissippi#mi

ssippi#miss

ssissippi#m
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L

mississippi

# 1

i 2

m 7

p 8

S 10

C

P = si
First step

fr

lr Inductive step: Given fr,lr for P[j+1,p]

ŒTake c=P[j]

P[ j ] 

•Find the first c in L[fr, lr]

ŽFind the last c in L[fr, lr]

•L-to-F mapping of these chars
lr

rows prefixed

by char “i” s

s

unknown

Occ() oracle is enough



8651
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i    m    p    s 

C[ ] = 

 P = pssi

 i = 

 c = 

 First =

 Last = 

 (Last – First + 1) =  

4

‘i’

C[‘i’] + 1 = 2 

C[‘i’ + 1] = C[‘m’] = 5 

4

First

Last
‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9 

C[‘s’] + Occ(‘s’,5)  = 8+2 = 10

2

3
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C[ ] = 

 P = pssi

 i = 

 c = 

 First =

 Last = 

 (Last – First + 1) =  

First

Last

‘s’

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9 

C[‘s’] + Occ(‘s’,5)  = 8+2 = 10

2

3

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11 

C[‘s’] + Occ(‘s’,10)  = 8+4 = 12

2
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C[ ] = 

 P = pssi

 i = 

 c = 

 First =

 Last = 

 (Last – First + 1) =  
First
Last

‘s’

2

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11 

C[‘s’] + Occ(‘s’,10)  = 8+4 = 12

2

‘p’

C[‘p’] + Occ(‘p’,10) +1 = 6+2+1 = 9 

C[‘p’] + Occ(‘p’,12)  = 6+2 = 8

0

1



 Backward-search makes P iterations, and is dominated by Occ( ) 

calculations.

 Implement Occ( ) to run in O(1) time, using bits.

 So Count will run in O(p) time, using bits.

 We saw a partitioning of binary strings into Buckets and 

Superblocks for answering Rank( ) queries.

 We’ll use a similar solution

 With the help of some new structures

 General Idea: Sum character occurrences in 3 stages











n

n
nZ

log

loglog

  









n

n
nTnH k log

loglog
5

Superblock Bucket Intra-

bucket

Compressed text



 Buckets

 Partition L into substrings of chars each, denoted         

 This partition induces a partition on , denoted

 Applying run-length encoding and prefix-free encoding on each bucket will 

result in n/log(n) variable-length buckets, denoted 

iBL

T = pipeMississippi#        |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

MTFL

4
MTF

iBL

MTF

iBL

010525445505142rleL

iBZ

lni /,..,1

011 00101 11 | 00110 10 00110 00110 | 00101 00101 00110 011 | 00110 10 010 10

1BZ 4BZ

nl log



 Superblocks

 We also partition L into superblocks of size each.

 Create a table for each superblock,  holding for each character c Є Σ, the 

number of c’s occurrences in L, up to the start of the specific superblock.

 Meaning, for , store occurrences of c in range 

8
Chars

MTF

iBL 32,...,2,1i

 nl 22 log

256 LT

64
CharsjSuperB 4,3,2,1j

jSuperB  2,...,1 ljL 

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

32a

25b

::

7z

55a

38b

::

8z




















n

n
n

l

n

log
log

2

3NO2NO



 Back to Buckets

 Create a similar table for buckets, but count only from current superblock's

start. Denote tables as 

 Only thing left is searching inside a bucket.

 For example, Occ(c,164) will require counting in  

 But we only have the compressed string Z.

 Need more structures

32a

25b

::

7z

55a

38b

::

8z

2a

1b

::

0z

2a

1b

::

1z

23a

13b

::

1z

21a

13b

::

1z

iON 

2NO 3NO

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

.   .   .   .   .   .   .   .   

.   

17ON 
18ON 

23ON 
24ON 

21BL

  
















 n

n

n
l

l

n
loglog

log
log 2



 Finding          ‘s starting position in Z, part 1

 Array keeps for every , the sum of  the sizes

of  the compressed buckets (in bits).

 Array keeps for every bucket , the sum of bucket 

sizes up to it (including), from the superblock’s beginning.

iBZ

 2/,...,1 lnW jSuperB

njBZBZ log1,....., 

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011 

1BZ 6BZW

W 

 lnW /,...,1 iBZ

754823

111613121310

   


















n

n
n

l

n
W

log
log21log

2
  

















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n

n
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n
W loglog
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 Finding          ‘s starting position in Z, part 2

 Given Occ(‘c’,q)
iBZ

njBZBZ log1,....., 

 nnW log/,...,1

Find i of : iBL 





n

q
i

log

niqh log)1( 

Find character in        to count up to:iBL

Find superblock of
iBLtSuperB

1
log











n

i
t

Locate position of         in Z:
iBZ

  1]1[  iWtW

21BL

c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8 c1,..,c8

128 192
136 144 152 160 168 176 184

2SuperB
3SuperB

18BL16BL 24BL17BL

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101

21BL

[]1W  []2W  []3W  []4W  []5W  []6W 
 1W  2W  3W

Occ(k,166)

166/8 = 20.75

 i = 21

h = 166 – 20*8

 h = 6

(21/8) = 2.625

 t = 2

Compressed bucket is at

W[2]+W`[20]+1



 We have the compressed bucket  

 And we have h (how many chars to check in ).

 But         contains compressed Move-To-Front information…

 Need more structures!

 For every i, before encoding bucket          with Move-To-Front, keep 

the state of the MTF table

iBZ

iBZ | 011  00101  11 |

iBZ

iBZ

iBL

T = pipeMississippi#        |T| = |L| = 16

iissi#piemsspppi

0105254455050042MTFL

L

spmie# sme#ip #ipsme smep#i

1MTF 2MTF 3MTF
4MTF




















n

n

n

n

log
log

log

h



 How do we use to count  inside         ?

 Final structure!

 Build a table , which stores the number of 

occurrences of ‘c’  among the first h characters of

 Possible because and             together, completely determine  

 ii MTFBZhcS ,,,

| 011  00101  11 |iBZ
iMTF

spmie#h

iBL

iBZ
iMTF iBL

s

spmie#

smpei#

#emips

#iemps

| 011  0010  11 | | 010  00101  011  0010| | 00111  00101  00111  00110|

logn…21

a

b

.

.

z



 Max size of a compressed bucket :

 Number of possible compressed buckets :

 Number of possible MFT table states:

 Size of inner table:   

 Size of each entry: 

 Total size of S[ ]:  

iBZ

   nnnllt loglogloglog2 

s

spmie#

smpei#

#emips

#iemps

| 011  0010  11 | | 010  00101  011  0010| | 00111  00101  00111  00110|

logn…21

a

b

.

.

z

 )log21( l

  tl
22

)log21(




 log
2

l
llog

•But – having a linear sized index is bad for practical uses when n is 

large.

•We want to keep the index size sub-linear, specifically: 

•Choose bucket size    , such as:  

•We get  nnn  log2  nnnS logloglog  

  1,  n

l   nl log)log21(  1



 Summing everything:

 & both take 

 &          both take

 MTF  takes 

 S takes

 Total Size: Total Time:    

W

 1











n

n

log

 nnn logloglog  

011 00101 11 | 00110 10 00110 | 00101 00101 011 | 00110 10 010 10 | 00110 10 00110 | 00101 00101 011 

55a

38b

::

8z2NO

754823

111613121310W 

W

23a

13b

::

1z 1ON 

spmie#

1MTF

NO

ON  W 








 n

n

n
loglog

log











n

n

log









 n

n

n
Z loglog

log



 We now want to retrieve the positions in T of the (Last – First+1) 

pattern occurrences.

 Meaning: for every        i = first, first+1,…,Last

Find position in T of the suffix which prefixes the i-th row.

 Denote the above as pos(i)

 We can’t find pos(i) directly, but we can do:

 Given row i (9) , we can find row j

(11)                             such that pos(j) = pos(i) – 1

 This algorithm is called backward_step(i)

 Running time O(1) Uses previous structures

P = si

1

2

3

4

5

6

7

8

9

10

11

12

pos(9) = 7

#ippississim

121110987654321



 L[i] precedes F[i] in T.

 All char’s appear at the same order in L and F.

 So ideally, we would just compute Occ(L[i],i)+C[L[i]]

P = si

#ippississim

121110987654321

1

2

3

4

5

6

7

8

9

10
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 Solution:

 Compare Occ(c,i) to Occ(c,i-1) for every  

 Obviously, will only differ at  c = L[i].

 Now we can compute Occ(L[i],i)+C[L[i]].

 Calling Occ() is O(1)



 Therefore backward_step takes O(1) time.
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 Now we are ready for the final algorithm.

 First, mark every character from T 

and its corresponding row (suffix) in L.

 For each marked row , store its position 

Pos(    ) in data structure  S.

 For example, querying S for Pos(     ) will return 8.
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 Given row index i, find Pos(i) as follows:

 If        is a marked row, return Pos(i) from S. DONE!

 Otherwise - use backward_step(i)  to find i’ such 

that :        Pos(i’) = Pos(i) – 1

 Repeat t times until we find a marked row.

 Then – retrieve Pos(i’) from S and compute Pos(i)

by computing:  Pos(i’) + t
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Example – finding “si”

 For   i = last = 10

 is marked – get Pos(10) from S : 

 Pos(10) = 4

 For  i = first = 9

 isn’t marked.   backward_step(9)

 backward_step(9) = ( t = 1)

 isn’t marked either.   backward_step(11)

 Backward_step(11) = ( t = 2)
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Example – finding “si”

 For   i = last = 10

 is marked – get Pos(10) from S : 

 Pos(10) = 4

 For  i = first = 9

 isn’t marked.   backward_step(9)

 backward_step(9) = ( t = 1)

 isn’t marked either.   backward_step(11)

 Backward_step(11) = ( t = 2)

 isn’t marked either.  backward_step(4)

 Backward_step(4) = ( t = 3)

 is marked – get Pos(10) from S. Pos(10) = 4

 Pos(9) = Pos(10) + t = 4 + 3 = 7
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 A  marked row will be found in at most 

iterations.

 Each iteration uses backward_step, which is O(1).

 So finding a single position takes 

 Finding all  occ occurrences of P in T takes:

but  only if querying S for membership is O(1)!!
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 Partition L’s rows into buckets of rows each.

 For each bucket

 Store all marked rows in a Packed-B-Tree (unique for each row),

 Using their distance from the beginning of the bucket 

as the key.    (also storing the mapping)

 A tree will contain at most keys, of size

bits each.

 O(1) access time
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 The number of marked rows is

 Each key encoded in a tree takes bits,

and we need an additional O(logn) bits to keep

the Pos(i) value.

 So S takes 

 The structure we used to count P, uses

bits, so choose ε between 0 and

1  (because going lower than doesn’t

reduce the asymptotic space usage.)
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