Basic Linear Algebra Subprograms
for Fortran Usage

C. L. LAWSON

Jet Propuision Laboratory

R. J. HANSON

Sandia Laboratories

D. R. KINCAID

The University of Texas at Austin
and

F. T. KROGH

Jet Propulsion Laboratory

A package of 38 low level subprograms for many of the basic operations of numerical linear algebra
is presented. The package is intended to be used with Fortran. The operations in the package include
dot product, elementary vector operation, Givens transformation, vector copy and swap, vector norm,
vector scaling, and the determination of the index of the vector component of largest magnitude.

The subprograms and a test driver are available in portable Fortran. Versions of the subprograms
are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the
Univac 1108.

Key Words and Phrases: linear algebra, utilities

CR Categories: 4.49, 5.14

The Algorithm: Basic Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math. Software
5, 3 (Sept. 1979}, 324-325.

1. INTRODUCTION

This paper describes a package, called the BLAS (Basic Linear Algebra Subpro-
grams), of 38 Fortran-callable subprograms for basic operations of numerical
linear algebra. This paper and the associated package of subprograms and testing

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

The work of the first and fourth authors was supported by the National Aeronautics and Space
Administration under Contract NAS 7-100. The work of the second author was supported by the U.S.
Energy Research and Development Administration (ERDA) under Contract AT(29-1)-789 and (at
Washington State University) by the Office of Naval Research under Contract NR 044-457.
Authors’ addresses: C.L. Lawson, Jet Propulsion Laboratory, M/S 125-128, 4800 Oak Grove Drive,
Pasadena, CA 91103; R.J. Hanson, Numerical Mathematics, Div. 5122, Sandia Laboratories, Albu-
querque, NM 87115; D.R. Kincaid, Center for Numerical Analysis, The University of Texas at Austin,
Austin, TX 78712; F,T. Krogh, Jet Propulsion Laboratory, M/S 125-128, 4800 Oak Grove Drive,
Pasadena, CA 91103.

© 1979 ACM 0098-3500/79/0900-0308 $00.75

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979, Pages 308-323.

Basic Linear Algebra Subprograms for Fortran Usage . 309

programs are the result of a collaborative voluntary project of the ACM-SIGNUM
committee on basic linear algebra subprograms. This project was carried out
during the period 1973-1977.

The initial version of the subprogram specifications appeared in [11]. Following
distribution of [11] to persons active in the development of numerical linear
algebra software, open meetings of the project were held at the Mathematical
Software II Conference, Purdue University, May 1974 [13], and at the National
Computer Conference, Anaheim, May 1975. Extensive modifications of the spec-
ifications were made following the Purdue meeting, which was attended by 30
people. A few additional changes resulted from the Anaheim meeting. Most of
the further Fortran code changes resulted from an effort to improve the design
and to make the subroutines more robust.

2. REASONS FOR DEVELOPING THE PACKAGE

Designers of computer programs involving linear algebraic operations have fre-
quently chosen to implement certain low level operations such as the dot product
as separate subprograms. This may be observed both in many published codes
and in codes written for specific applications at many computer installations.
Following are some of the reasons for taking this approach:

(1) It can serve as a conceptual aid in both the design and coding stages of a
programming effort to regard an operation such as the dot product as a basic
building block. This is consistent with the ideas of structured programming which
encourage modularizing common code sequences.

(2) It improves the self-documenting quality of code to identify an operation
such as the dot product by a unique mnemonic name.

(3) Since a significant amount of the execution time in complicated linear
algebraic programs may be spent in a few low level operations, a reduction of the
execution time spent in these operations may be reflected in cost savings in the
running of programs. Assembly language coded subprograms for these operations
provide such savings on some computers.

(4) The programming of some of these low level operations involves algorithmic
and implementation subtleties that are likely to be ignored in the typical appli-
cations programming environment. For example, the subprograms provided for
the modified Givens transformation incorporate control of the scaling terms,
which otherwise can drift monotonically toward underflow.

If there could be general agreement on standard names and parameter lists for
some of these basic operations, it would add the additional benefit of portability
with efficiency on the assumption that the assembly language subprograms were
generally available. Such standard subprograms would provide building blocks
with which designers of portable subprograms for higher level linear algebraic
operations such as solving linear algebraic equations, eigenvalue problems, etc.,
could achieve additional efficiency. The package of subprograms described in this
paper is proposed to serve this purpose.

3. SCOPE OF THE PACKAGE

Specifications will be given for 38 Fortran-callable subprograms covering the
operations of dot product, vector plus a scalar times a vector, Givens transfor-

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

310 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

mation, modified Givens transformation, copy, swap, Euclidean norm, sum of
magnitudes, multiplying a scalar times a vector, and locating an element of largest
magnitude. Since we are thinking of these subprograms as being used in an ANSI
FORTRAN context, we provide for the cases of single precision, double precision,
and (single precision) complex data.

In Table I a concise summary of the operations provided and the conventions
adopted for naming the subprograms is given. Each type of operation is identified
by a root name. The root name is prefixed by one or more of the letters 1, S, D,
C, or Q to denote operations on integer, single precision, double precision, (single
precision) complex, or extended precision data types, respectively. For subpro-
grams involving a mixture of data types the type of the output quantity is
indicated by the leftmost prefix letter. Suffix letters are used on four of the dot
product subprograms to distinguish variants of the basic operation.

If one were to extend this package to include double precision complex type
data (COMPLEX * 16 in IBM Fortran), we suggest that the prefix Z be used in
the names of the new subprograms. For example, subprograms CZDOTC and
CZDOTU for the dot product of (single precision) complex vectors, with double
precision accumulation, have been written for the CDC 6600. These may be
obtained directly from Kincaid.

"Section 5 lists all of the subprogram names and their parameter lists, and
defines the operations performed by each subprogram.

The criterion for including an operation in the package was that it should
involve just one level of looping and occur in the usual algorithms of numerical
linear algebra, such as Gaussian elimination or the various elimination methods
using orthogonal transformations.

Table 1. Summary of Functions and Names of the BLAS Subprograms

Root
of
Function Prefix and suffix of name name
Dot product SDS- DS- DQ-1 DQ-A C-U C-C D- 8 -DOT-
Constant times a vector) C- D- 8- ~AXPY
plus a vector
Set up Givens rotation D- S8 -ROTG
Apply rotation D- 8 -ROT
Set up modified Givens ro- D- 8- ~-ROTMG
tation
Apply modified rotation D- 8- -ROTM
Copy x into y Cc- D- 8 -COPY
Swap x and y C- D- 8- -SWAP
2-norm (Euclidean length) SC- D- S§- -NRM2
Sum of absolute values® SC- D- 8- -ASUM
Constant times a vector cs- C- D- 8- -SCAL
Index of element having IC- ID- IS- -AMAX
maximum absolute
value®
* For complex components z; = x; + iy, these subprograms compute {x| + |¥] instead of
(x,? + 34"

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

Basic Linear Algebra Subprograms for Fortran Usage . 311

This orientation affected the specifications of SCASUM and ICAMAX partic-
ularly. Although SASUM and DASUM compute 4 norms, we assumed that the
usage of either of these subprograms in numerical linear algebra software would
be for the purpose of computing a vector norm that was less expensive to compute
than the ¢ norm. Thus for the complex version, SCASUM, instead of specifying
the 4 norm which would be

w =¥ {[Re(x)]* + [Im(x)]*} %,

we specified the less expensive function,
w= Z{lRe(xi) |+ | Im(x)|}.

Similarly, whereas ISAMAX and IDAMAX may be regarded as determining
the 4 norm of a vector, we do not regard this as the essential property to be
carried over to the complex case. Thus ICAMAX is specified to find an index j
such that

| Re(x)) | + | Im(x) | = max (| Re(x) | + | Im(x;) |

rather than finding an index j such that
[Re(x)]* + [Im(x)]® = max {[Re(x)]* + [Im(x) %

Let [[x]li denote the function computed by SCASUM, and define ||x|: =
| Re(x;)] + |Im(x;)| where j is the index found by ICAMAX. The size functions
[x|li and || x|js in are approximations to the classical norms || x||; and || x ||. in the
sense that [x|, < [[x|i = 2"%||x]h and | x . = xlc = 2"%| x|

Furthermore, if one defines related size functions for matrices by

A= max fla;li

and
[Als= max fla: |,

then the following consistency relations can be verified:

Al = max (] Ax |l x i = 1)
and ’
Az = max{]|Ax|lz: | x||= = 1}.

Although these size functions satisfy || ax| = |a]-}lx] for real a, they do not
satisfy such homogeneity conditions for arbitrary complex «. They do, however,
satisfy the bounds 2% | a|-||x|li <[ax|1 =2 |a|-|x|i and 27* |a|-|x]z =
lax|le = 2% |a]-| x||s for complex a.

In both the computation of the #; norm and the Givens transformation a naive
computation of the squares of the given data would restrict the exponent range
of acceptable data. This package avoids this restriction by making use of ideas
described by Cody [7] and Blue [5]. Additionally, in the case of the Givens
transformation, an idea of Stewart [15] permits the storage of all the transfor-
mations of a matrix decomposition in the memory space occupied by the elements
zeroed by the transformation.

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

312 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

The modified Givens transformation is a relatively new innovation among
numerical linear algebra algorithms [9, 10, 14]. The significant features are the
reduction of the number of multiplications, the elimination of square root opes
ations, and the capability of removing rows of data in least squares problems
The details of this algorithm as implemented in this package are given in the
Appendix.

4. PROGRAMMING CONVENTIONS

Vector arguments are permitted to have a storage spacing between elements.
This spacing is specified by an increment parameter. For example, suppose n
vector x having components x;, £=1,..., N, isstored ina DOUBLE PRECISION
array DX() with increment parameter INCX. If INCX = 0 then x; is stored n
DX(1 + (¢ — 1*INCX). If INCX < 0 then x; is stored in DX(1 + (N -
i) *| INCX |). This method of indexing when INCX < 0 avoids negative indices in
the array DX() and thus permits the subprograms to be written in Fortran. Only
positive values of INCX are allowed for operations 26-38 in Section 5 that each
have a single vector argument.

It is intended that the loops in all subprograms process the elements of vector
arguments in order of increasing vector component indices, i.e. in the order x,,
1 =1,..., N. This implies processing in reverse storage order when INCX < 0. If
these subprograms are implemented on a computer having parallel processing
capability, it is recommended that this order of processing be adhered to as nearly
as is reasonable.

5. SPECIFICATION OF THE BLAS SUBPROGRAMS

Type and dimension information for variables occurring in the subprogram
specifications are as follows:

mx = max(l, N+|INCX), my = max(1l, N+ INCY]).

INTEGER N, INCX, INCY, IMAX, QC(10)

REAL SX(mx), SY(my), SA, SB, SC, SS

REAL SD1, SD2, SB1, SB2, SPARAM(5), SW

DOUBLE PRECISION DX(mx), DY(my), DA, DB, DC, DS
DOUBLE PRECISION DD1, DD2, DB, DB2, DPARAM(5), DW
COMPLEX CX(mx), CY(my), CA,CW

Type declarations for function names are as follows:

INTEGER ISAMAX, IDAMAX, ICAMAX

REAL SDOT, SDSDOT, SNRM2, SCNRM2, SASUM, SCASUM

DOUBLE PRECISION DSDOT, DDOT, DQDOTI, DQDOTA, DNRM2, DASUM
COMPLEX CDOTC CDOTU

Dot Product Subprograms
1. SW = SDOT(N, SX, INCX, SY, INCY),

N

wi= 3 XY
i=1

2. DW = DSDOT(N, SX, INCX, SY, INCY),
N

w = Z XiYi.

=}

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

Basic Linear Algebra Subprograms for Fortran Usage . 313

Double precision accumulation is used within the subprogram DSDOT.
3. SW = SDSDOT(N, SB, SX, INCX, SY, INCY}),
N
w=b+ Y xiy.

=]

The accumulation of the inner product and the addition of b are in double
precision. The conversion of the final result to single precision is done in
the same way as the intrinsic function SNGL().

4. DW = DDOT(N, DX, INCX, DY, INCY),

N
W=y XY
=1
5. DW = DQDOTI(N, DB, QC, DX, INCX, DY, INCY),
N
wi==>b+ Y xiy.
i=1
The input data, b, x, and y, are converted internally to extended precision.
The result is stored in extended precision form in QC() and returned in
double precision form as the value of the function DQDOTTL
6. DW = DQDOTA(N, DB, QC, DX, INCX, DY, INCY),
’ N
wi=c:=b+c+ Y xy:.
i=]1
The input value of ¢ in QC() is in extended precision. The value ¢ must
have resulted from a previous execution of DQDOTI or DQDOTA since no
other way is provided for defining an extended precision number. The
computation is done in extended precision arithmetic and the result is
stored in extended precision form in QC() and is returned in double
precision form as the function value DQDOTA.
7. CW = CDOTC(N, CX, INCX, CY, INCY),
" N
wi= Y Iy
=1
The suffix C on CDOTC indicates that the complex conjugates of the
components x; are used.
8. CW = CDOTU(N, CX, INCX, CY, INCY),
N
W=y Xy
f=]
The suffix U on CDOTU indicates that the vector components x; are used
unconjugated.

In the preceding eight subprograms the value of th will be set to zero if N < 0.

Elementary Vector Operation: y (= ax +y

9. CALL SAXPY(N, SA, SX, INCX, SY, INCY).
10. CALL DAXPY(N, DA, DX, INCX, DY, INCY).

ACM Transactions on Mathematical Software, Vo! 5, No. 3, Septeruber 1979,

314 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

11. CALL CAXPY(N, CA, CX, INCX, CY, INCY).
If @ = 0 or if N = 0 these subroutines return immediately.
Construct Givens Plane Rotation

12. CALL SROTG(SA, SB, SC, S8).
13. CALL DROTG(DA, DB, DC, DS).

Given a and b, each of these subroutines computes

o= {Sgn(a) if |a|>|b] r=o(a® + b2,

sgn(b) if |b|=]|a],

_la/r if rs#0, _[b/r if rs0,
¢ {1 if r=0, S”{o if r=o0.

The numbers ¢, s, and r then satisfy the matrix equation

L e e o)

The introduction of ¢ is not essential to the computation of a Givens
rotation matrix, but its use permits later stable reconstruction of ¢ and s
from just one stored number, an idea due to Stewart [15]. For this purpose
the subroutine also computes

s if |a|>]b]

z=1{1/c if |b]l=|a]l and c#0,
1 if c¢=0.

The subroutines return r overwriting a, and z overwriting b, as well as

returning ¢ and s.

If the user later wishes to reconstruct ¢ and s from z, it can be done as
follows:

Ifz=1setc=0ands= 1.
Ifjz|<lsetc=(1l-2z"ands =2z
Ifjz]>1setc=1/zand s = (1 — ¢)"*

Apply a Plane Rotation

14. CALL SROT(N, SX, INCX, SY, INCY, SC, SS).
156. CALL DROT(N, DX, INCX, DY, INCY, DC, DS).
Each of these subroutines computes

[x']::’: ¢ s:l[x,} for i=1, .. ,N.
Yi —-§ ¢ Yi

If N=<0orifc=1and s = 0 the subroutines return immediately.

Construct a Modified Givens Transformation

16. CALL SROTMG(SD1, SD2, SB1, SB2, SPARAM).
17. CALL DROTMG(DD1, DD2, DB1, DB2, DPARAM).

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979,

Basic Linear Aigebra Subprograms for Fortran Usage . 315

The input quantities di, dz, b, and b, define a 2-vector [ai, a:]" in

partitioned form as
@ - }/2 0 b,
a; 0 d‘}/z : bz !

The subroutine determines the modified Givens rotation matrix H, as
defined in egs. (A6) and (A7) of the Appendix, that transforms b, and thus
az, to zero. A representation of this matrix is stored in the array
SPARAMY() or DPARAM() as follows. Locations in PARAM not listed
are left unchanged.

PARAM(1) = 1, PARAM(1) =0, PARAM() = -1,
case of eq. (A7) case of eq. (A6) case of rescaling
h];g = l, hg] = —] h“ = h22 =1 PARAM(Z) o= hn
PARAM(2) = hy, PARAM(3) = hy PARAM(3) = Ay,

PARAM(5) = hy PARAM®4) = hp PARAM4) = hy,

In addition PARAM(1) = —2 indicates H = I.

The values of di, d», and b, are changed to represent the effect of the
transformation. The quantity b, which would be zeroed by the transfor-
mation is left unchanged in storage.

The input value of d; should be nonnegative, but d; can be negative for
the purpose of removing data from a least squares problem. Further details
can be found in the Appendix.

Apply a Modified Givens Transformation

18. CALL SROTM(N, SX, INCX, SY, INCY, SPARAM).
19. CALL DROTM(N, DX, INCX, DY, INCY, DPARAM).

Let H denote the modified Givens transformation defined by the param-
eter array SPARAM() or DPARAMY(). The subroutines compute

[x.] == H[xi] for i=1,...,N.
Yi Yi

If N < 0 or if H is an identity matrix the subroutines return immediately.
See the Appendix for further details.

Copy a Vector xtoy:y = x

20. CALL SCOPY(N, SX, INCX, 8Y, INCY).
21. CALL DCOPY(N, DX, INCX, DY, INCY).
22. CALL CCOPY(N, CX, INCX, CY, INCY).

Return immediately if N < 0.
Interchange Vectors x and y: x =:y

23. CALL SSWAP(N, SX, INCX, SY, INCY).
24. CALL DSWAP(N, DX, INCX, DY, INCY).
25. CALL CSWAP(N, CX, INCX, CY, INCY).

Return immediately if N = 0.

ACM Transactions on Mathematical Software, Vol. 5, No. 3, Septernber 1979,

316 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. 7. Krogh

Euclidean Length or ¢; Norm of a Vector

N /2
v | 51t

26. SW = SNRM2(N, SX, INCX).

27. DW = DNRM2(N, DX, INCX).

28. SW = SCNRM2(N, CX, INCX).
If N =< 0 the result is set to zero.

Sum of Magnitudes of Vector Components

29. SW = SASUM(N, SX, INCX).
30. DW = DASUM(N, DX, INCX).
31. SW = SCASUM(N, CX, INCX).

The functions SASUM and DASUM compute w := 2’11 | x:|. The function
SCASUM computes

N
w:= ¥ {|Re(x)| + |Im(xd|}.

; =1
These functions return immediately with the result set to zero if N < 0.

Vector Scaling: x = ax

32. CALL SSCAL(N, SA, SX, INCX).
33. CALL DSCAL(N, DA, DX, INCX).
34. CALL CSCAL(N, CA, CX, INCX).
35. CALL CSSCAL(N, SA, CX, INCX).

Return immediately if N < 0.

Find Largest Component of a Vector

36. IMAX = ISAMAX(N, SX, INCX).
37. IMAX = IDAMAX(N, DX, INCX).
38. IMAX = ICAMAX(N, CX, INCX).

The functions ISAMAX and IDAMAX determine the smallest index i
such that | x;| = max{|x;|:j=1, ..., N}.

The function ICAMAX determines the smallest index i such that | x;|
= max{|Re(x)| + |Im(x)|: /=1, ..., N}.

These functions set the result to zero and return immediately if N < 0.

6. IMPLEMENTATION

In addition to the Fortran versions, all of the subprograms except DQDOTT and
DQDOTA are also supplied in assembler language for the Univac 1108, the IBM
360/67, and the CDC 6600 and 7600. The Fortran versions of DQDOTI and
DQDOTA use part of Brent’s multiple precision package [6]. Assembler language
modules for these two subprograms are given only for the Univac 1108.

Only four of the assembly routines for the CDC 6600 and 7600 take advantage
of the pipeline architecture of these machines. The four routines SDOT(),
ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

Basic Linear Algebra Subprograms for Fortran Usage . 317

SAXPY(), SROT(), and SROTM() are those typically used in the innermost
loop of computations. Some timing results are given in Section 8.

7. RELATION TO THE ANSI FORTRAN STANDARD

American National Standard Fortran, ANSI X3.9-1966 [1, 3, 4], which will be
referred to as 1966 FORTRAN, is widely supported by existing Fortran compilers.
We will refer to American National Standard Fortran, ANSI X3.9-1977 [2], as
FORTRAN 77.

The calling sequences of the BLAS subprograms would require that the
subprograms contain declarations of the form

REAL SX(MAXO0(1, N*IABS(INCX)))

to precisely specify the array lengths. Neither 1966 FORTRAN nor FORTRAN
77 permits such a statement. A statement of the form REAL SX(1) is permitted
by major Fortran compilers to cover cases in which it is inconvenient to specify
an exact dimension. This latter form is used in the BLAS subprograms even
though it does not conform to 1966 FORTRAN. FORTRAN 77 allows the form
REAL SX(*) for this situation. Thus the BLAS package can be made to conform
to FORTRAN 77 by changing 1’s to *’s in the subprogram array declarations.

8. TESTING

A Master Test Program has been written in Fortran and is included with the
submitted code. This package consists of a main program and a set of subprograms
containing built-in test data and correct answers. It executes a fixed set of test
cases exercising all 38 subprograms or optionally any selected subset of these.

We have attempted to design the test cases and the Master Test Program to be
usable on a wide variety of nondecimal machines having Fortran systems.

The Master Test Program has been successfully executed, testing the Fortran
coded version of the BLAS subprograms, on Univac 1108, IBM 360/67, Burroughs
6700, CIDC 6600, and CDC 7600 computers. These tests have also been run
successfully testing the respective assembler packages on the Univac 1108, IBM
360767, CDC 6600, and CDC 7600 computers.

The following method of comparing true and computed numbers is used in the
Master Test Program. Let z denote a prestored true result and let Z denote the
corresponding computed result to be tested. The numbers ¢ and ¢ are prestored
constants that will be discussed below. The test program computes

d=(z~2), g=1fl(lo|+ |fllo*d)]), A=|o|, T=1flg—-h),

where fl denotes machine floating-point arithmetic of the current working preci-
sion, either single precision or double precision. It is further assumed that g and
h are truncated to working precision before being used in the computation of .
The test is passed if r = 0 and fails if = # 0. Note that 7 will be zero if |d] is so
small that adding |fl(¢*d)]| to | o| gives a result that is not distinguished from
| o] when truncated to working precision.
For example, suppose ¢ = 1.0, ¢ = 0.5, d = 107, then the mathematical value
of o + ¢*d is 1.0000000005, but the single precision computed value of g on the
ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

318 - C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

Univac 1108 will be 1.0, resulting in 7 = 0. Thus in this case d is small enough to
pass the test.

The number o is prestored along with the correct result z in the testing
program. In general ¢ has different values for different test cases.

The number ¢ is a “tuning” factor which has been determined empirically to
make the test perform correctly on a variety of machines. Note that the stringency
of the test is relaxed by decreasing the value of ¢. This has been used to
desensitize the testing to the effects of differences in the treatment of trailing
digits in the floating-point arithmetic of different machines.

There are four different values of ¢ prestored in the main program, TBLA, of
the testing package. These values are called SFAC, SDFAC, DFAC, and DQFAC.
These are used for testing operations which are respectively single precision,
mixed single and double precision, double precision, and mixed double and
extended precision.

It is intended that the test package be useful to anyone who undertakes the
implementation of an assembly coded version of this package. In working on a
new machine, one may find it necessary to reduce the values of one or more of
the numbers SFAC, SDFAC, DFAC, or DQFAC to obtain correct test perform-
ance. The authors would appreciate hearing of any new assembly coded versions
of the packages and of any need to reduce the values of these tuning parameters.

9. SELECTED RESULTS FOR THE IBM 360/67, CDC 6600, AND UNIVAC
1108 TIMING OF DOT PRODUCTS AND ELEMENTARY VECTOR OPERA-
TIONS

The most obvious implementation of the dot product and elementary vector
operations for vectors with unit storage increments are in-line Fortran loops 1
-and 2:

W =0. In-line
DO10I=1,N Fortran for
10 W=W+ XD~ YD) dot products,
loop 1
In-line
Fortran for
DO20I=1 N elementary
20 YD) =A«X({1)+ YD vector
operations,
loop 2

The BLAS replacements for these in-line Fortran loops, using the same variable
names and appropriate type statements, are

BLAS

W= _DOT(N,X,1,Y, 1) replacoment

loop 1

BLAS
replacement
for
loop 2

CALL _AXPY(N, A X,1,Y, 1)

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979

Basic Linear Algebra Subprograms for Fortran Usage . 31¢

Table II. _DOT() Function and In-Line Loop 1 Timings

Time, in seconds, is given for 1000 executions of in-line Fortran loop 1 and calls to the __DOT()
function. Times for 5 runs were averaged.

Apply factors of 1.1 and 0.75 to 1BM 360/67 times to get approximate respective times for
nonequally spaced increments and single precision. No distinction for nonequal increments is
necessary for the CDC 6600 and Univac 1108.

IBM 360/67, CDC 6600, Univac 1108,
double precision single precision single precision
Vector In-line In-line
length, Fortran Fortran In-line
N {H, Opt = 2) Assembler (FTN, Opt=2) Assembler Fortran Assembler
10 0.1438 0.1917 0.0360 0.0480 0.0756 0.0790
25 0.3436 0.3854 0.0750 0.0625 0.1836 0.1730
50 0.6719 0.7188 0.1400 0.0800 0.3598 0.3182
100 1.3750 1.3750 0.2800 0.1250 0.6986 0.6162

Table III. _AXPY() Subprogram and In-Line Loop 2 Timings

Time, in seconds, is given for 1000 executions of in-line Fortran loop 2 and calls to the __AXPY()
subprogram. Times for 5 runs were averaged.

Apply factor of 0.75 to get single precision IBM 360/67 times. Only vectors with unit increments
were used in this timing.

IBM 360/67, CDC 6600, Univac 1108,
double precision single precision single precision

Vector In-Line In-line
length, Fortran Fortran In-line

N (H, Opt = 2) Assembler (FTN, Opt=2) Assembler Fortran Assembler

10 0.0590 0.2050 0.0500 0.0650 0.0740 0.0886

25 0.3930 0.4375 0.1125 0.1000 0.1806 0.1890

50 0.7950 0.8400 0.2100 0.1725 0.3544 0.3574

100 1.5500 1.6000 0.4200 0.3000 0.7292 0.7170

The * 7 in front of the BLAS subprogram names is due to the fact that both

single and double precision versions are discussed here.

These subprograms, coded in assembly language, were timed and compared
with the time for the in-line loops. As was stated in Section 2, one reason for the
development of the package was to make highly efficient code possible. This goal
has been achieved for the CDC 6600 but not for the IBM 360/67. The IBM
360/67 Fortran H compiler, operating with Opt = 2, generates nearly perfect
object code.

In Tables II and III we give some sample times for the three machines; loops
1 and 2 and their BLAS replacements are compared. Interpretation of Tables 11
and I11, supported more fully in [12], are as follows:

—Because of linkage overhead, the BLAS subprograms for the IBM 360/67
are always less efficient than the in-line loops. For vectors of large enough length
the linkage overhead is relatively negligible.

—The dot product and elementary vector operation subprograms for the CDC

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1578,

320 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

Table IV. Standard and Modified Givens Transformation in Matrix Triangularization

Time, in seconds, is given for the triangularization of 2N by N matrices using standard and modified
Givens transformations. Times for 5 runs were averaged.

IBM 360/67, CDC 6600, Univac 1108,
double precision single precision single precision

Standard Modified Standard Modified Standard Modified

N Givens Givens Givens Givens Givens Givens
10 0.0800 0.0650 0.0200 0.0190 0.0335 0.0298
25 0.8789 0.6250 0.1719 0.1445 0.3633 0.3001

6600 are respectively 3.1 and 1.6 times more efficient than in-line code for vectors
of large enough length.

—For the CDC 6600, dot products are considerably more efficient than ele-
mentary vector operations on vectors of the same length.

Timing of Standard and Modified Givens Methods. Gentleman’s modification
of the Givens transformation [9] is discussed in the Appendix. This technique
eliminates-square roots and two of the four multiply operations when forming the
product of the resulting matrix by a 2-vector.

The relative efficiency of Gentleman’s modification to the standard Givens
transformation was compared. Both techniques were used to triangularize 2N by
N matrices A = {a;} where

a,’j*"“—(i‘f‘j“l)"l

In Table IV there are some sample times which resulted from the triangulari-
zations using both methods.

We are primarily interested in algorithm comparison here, so both methods
were timed using their assembler versions to apply the matrix products.

A conclusion is that in the context of triangularizing matrices, the modified
Givens transformation method is ultimately more efficient in computer time by
factors varying between 1.4 and 1.6. This is fully supported in [12}. The compar-
ison is most favorable on the IBM 360/67 in double precision.

APPENDIX. THE MODIFIED GIVENS TRANSFORMATION
The Givens transformation which eliminates z;, if z; # 0, is
ow= (s) [ee) (A1)
-8 C 2y 2N
where ¢ = wy/r, s = z/r, r = £ (w} + 2})"/?. This requires ~4N floating-point
multiplications, 2N floating-point additions, and one square root. Gentleman [9]
has reported on a modification to the Givens transformation which reduces this
operation count. Gentleman’s idea is presented here in a slightly different form
from that found in his paper.
Suppose that W in eq. (Al) is available in factored form:

y d\/z 1) x
wenrwe [] 53] (a2

ACM Transaciions on Mathematical Software, Vol. 5, No. 3, September 1979.

Basic Linear Algebra Subprograms for Fortran Usage . 321

Substituting D'* X for W and refactoring GD"* as D'?H yields

)
0]HX (A3)

GW=GD'"?X = D'’HX = [
The right-hand side of eq. (A3) yields an updated factored form for the matrix
product GW. The crucial point is that the matrix H is selected so that two
elements are exactly units. This eliminates 2N floating-point multiplications
when forming the matrix product HX. To preserve numerical stability two cases
are considered:

For |s| <|c|,

gpr=| A dfis)_ldi% 0 1 tldz/dy) 2
-d\%s Y 0 adfel|| —tld/d))

- di”® 0 1 doyi/dixy | _ 7
T 4] o]

where ¢ = s/c.

For | c| =|s], by similar manipulations,

' d? 0 dixi/dayr 1 o
V2 . i /62 = FI\2
G = [0 (i}”] [-1 xl/y;} = DH, (A5)

where di” = di’s and di’* = di’s. This factorization can be done for any plane

rotation matrix.

Only the squares of the scale factors d}/? are involved in the nonunit elements
of the matrix H defined in eqs. (A4) and (A5), which permits the Givens
transformation, eq. (A1), to be computed without square roots. Using the identity
¢ = (1 + ¢*)7" and eq. (A4) allows the squares of the scale factors to be updated:
di=dd{1+ ¢, i=1,2 Letting v = ¢/s in eq. (A5), we have d\ = dy(1 + %)~
and d; = dy(1 + 771

For |c| > |s]| or, equivalently, | dix}| > | doyi],

hiy =1, hag = dayi/dixy, (A6a)
ha = =y1/x;, Ao =1, (A6b)

u=1-— honhy, (A6c)
d; :==di/u, (A6d)
dy = ds/u, (A6e)
X1 1= XU, (A6f)

For | c| = |s| or, equivalently, | dix}| = | d: |,

hu = dixy/doy;, hiz =1, (A7a)
ho = —1, hae = x1/31, (AT7b)
u=21+ hphg, (A7c)
v=d/u, (A74)

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979,

322 . C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh

d, = ds/u (A7e)
dy = v, (A7H
X1 =yl (A7g)

When using the modified Givens transformation in the context of “row accu-
mulation,” d; > 0, i = 1, 2, the values of u in egs. (A6) and (A7) will satisfy 1 <
u < 2. Thus the squares d;, i = 1, 2, decrease by as much as } at each updating
step. If no rescaling action is taken, these scale factors would ultimately underflow.
The details concerning rescaling are implemented in the modified Givens subpro-
grams.

Since only the squares of the weights, i.e. d: and d;, appear in the formulas of
egs. (A6) and (A7), it is possible to use the same formulas to remove a row from
a least squares problem simply by setting d: = —1. Remarks about this row
removal method are found in [14, ch. 27].

When the modified Givens transformation is used in the context of the “row
removal method” mentioned above, the values of u in eqs. (A6) and (A7) satisfy
0 = u = 1. The case u = 0 is eliminated by restricting d, = 0. If d; < 0, we define
H as the zero matrix, the updated d; = 0, ¢ = 1, 2, and x;, = 0. With this restriction,
we have 0 < u < 2 in eqs. (A6) and (A7). Thus the change in the scale factors d;,
I = 1, 2, is unbounded at each step. Either underflow or overflow can occur if no
rescaling is performed.

The problem is rescaled by the modified Givens subprograms to keep within
the conservative limits:

yr=ldi| =¥, 1=1,2, vy=4096.

Note that when we rescale d, := diy’, we must rescale h; = h,y™', j = 1, 2,
and, when i = 1, rescale x, := x;y"".

ACKNOWLEDGMENTS

We are grateful for the contributions that numerous people have made to this
project. The Master Test Program was developed by Lawson, with a few modi-
fications by Hanson. The Fortran versions of the BLAS subprograms were written
by Lawson, Krogh, Hanson, and J. Dongarra. The assembly coded versions for
the Univac 1108 were programmed by Krogh and S. Singletary Gold. The
assembly coded versions for the IBM 360/67 were programmed by Hanson and
K. Haskell. The assembly coded versions for the CDC 6600 were programmed by
Kincaid, J. Sullivan, and E. Williams. Four of these routines were recoded by
Hanson and C. Moler. Test runs were made on a variety of machines by P. Fox
and E.W. McMahon (Honeywell 6000), P. Knowlton (PDP 10), L. Fosdick (CDC
6600), C. Moler (IBM 360/67), K. Fong (CDC 7600), B. Garbow and J. Dongarra
(IBM 370/195), W. Brainerd (Burroughs 6700), and others.

Helpful suggestions, based on previous similar work of their own, were given
by P.S. Jensen and C. Bailey. Valuable help was also contributed by J. Wisniewski,
W. MacGregor, and G. Terrell.

J. Dongarra supplied versions of several Fortran implementations of the
subprograms. The choice of coding technique used by J. Dongarra is based on a
ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

Basic Linear Aigebra Subprograms for Fortran Usage . 323

set of tests that was carried out at over 40 different installations with various
machines in operation. The choice of coding technique was made on the basis of
superior timing performance at the largest number of these sites [8].

REFERENCES

1. ANSI FORTRAN X3.9-1966. American National Standards Institute, New York, 1966.

9 ANSI FORTRAN X3.9-1978. American National Standards Institute, New York, 1978. (Also
known as FORTRAN 77.)

3. ANSI Subcommittee X3J3. Clarification of FORTRAN standards—second report. Comni. ACM
14, 10 (1971), 628-642.

4. ASA Sectional Committee X3. FORTRAN vs. Basic FORTRAN Comm. ACM 7, 10 (Oct. 1964),
591-625.

5. BLUE, J.L. A portable Fortran program to find the Euclidean norm of a vector. ACM Trans.
Math. Software 4, 1 (March 1978), 15-23.

6. BReNT, R. A Fortran multiple precision arithmetic package. ACM Trans. Math. Software 4, 1
(March 1978), 57-70.

7. Copy, W.J. Software for the elementary functions. In Mathematical Software, J.R. Rice, Ed.,
Academic Press, New York, 1971, pp. 171-186.

8. DONGARRA, 4.J. Fortran BLAS timing. LINPACK Working Note 3, Argonne Nat. Lab., Argonne,
1. draft of March 1977.

9. GENTLEMAN, W.M. Least squares computations by Givens transformations without square roots.
J. Inst. Math. Appl. 12 (1973), 329-336.

16. HAMMARLING, S. A note on modifications of the Givens plane rotation. J. Inst. Math. Appl. 13,
2 (1974), 215-218.

11. Hanson, R.J., Kroch, F.T., aND Lawson, C.L. A proposal for standard linear algebra subpro-
grams. TM 33-660, Jet Propulsion Lab., Pasadena, Calif., Nov. 1973.

19. Hanson, R.J., Lawson, C L., Kincaip, D.R., anp Krocy, F.T. Basic linear algebra subprograms
for FORTRAN usage—an extended report. Sandia Tech. Rep. SAND 77-0898, Sandia Lab.,
Albuquerque, N. Mex., 1977.

13. Lawson, C.L. Standardization of FORTRAN callable subprograms for basic linear algebra.
Software I, Purdue U., W. Lafayette, Ind., May 1974. (Abstract on p. 261.)

14. Lawson, C.L., anp Hanson, RJ. Solving Least Squares Problems. Prentice-Hall, Englewood,
Cliffs, N.J., 1974.

15. STEWART, G.W. The economical storage of plane rotations. Numer. Math. 25, 2 (1976), 137-139.

Received July 1977; revised February 1978

ACM Transactions on Mathematical Software, Vol. 5, No. 3, Seplember 1979.

ALGORITHM 539
Basic Linear Algebra Subprograms
for Fortran Usage [F1]

C. L. LAWSON
Jet Propuision Laboratory

R. J. HANSON
Sandia Laboratories, Albuquerque

D. R. KINCAID
The University of Texas, Austin

and

F. T. KROGH
Jet Propulsion Laboratory

Key Words and Phrases: linear algebra, utilities
CR Categories: 4.49, 5.14
Language: Fortran, assembly language

DESCRIPTION
This package complements [1], where further details are given.

REFERENCES

1. Lawson, C.L., Hanson, R.J., Kincaip, DR, aNp KroGR, F.'T. Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Software 5, 3 (September 1979), 308-323.

ALGORITHM

[Summary information and part of the listing is printed here. The complete
listing is available from the ACM Algorithms Distribution Service (see inside
back cover for order form), or may be found in “Collected Algorithms from
ACM.”]

Received 13 July 1977.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct cornmercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.)
The work of the first and fourth authors was supported by the National Aeronautics and Space
Administration under Contract NAS 7-100. The work of the second author was supported by the U.S.
Energy Research and Development Administration (ERDA) under Contract AT (29-1)-789 and (at
Washington State University) by the Office of Naval Research under Contract NR 044-457.
Authors’ addresses: C.L. Lawson, Jet Propulsion Laboratory, M/S 125-128, 4800 Oak Grove Drive,
Pasadena, CA 91103; R.J. Hanson, Numerical Mathematics, Div. 5122, Sandia Laboratories, Albu-
querque, NM 87115; D.R. Kincaid, Center for Numerical Analysis, The University of Texas at Austin,
Austin, TX 78712; F.T. Krogh, Jet Propulsion Laboratory, M/S 125-128, 4800 Qak Grove Drive,
Pasadena, CA 91103.

© 1979 ACM 0098-3500/79/0900-0324 $00.75

ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979, Pages 324-325.

Algorithms . 325

Contents: This package consists of four files. The first file contains Fortran
versions for the BLAS (38 subprograms), programs for testing the
BLAS (13 modules), and 18 subprograms from Brent’s multiple preci-
sion package that are used in the implementation of the extended
precision inner products. The remaining 3 files contain Fortran callable
assembly language versions for 3 different machines: IBM 360/370
series, CDC 6000 series, and Univac 1100 series.

REAL FUNCTION SDOT(N,SX,INCX,SY,INCY) 19

c 20
C RETURNS THE DOT PRODUCT OF SINGLE PRECISION SX AND SY. 30
C SDOT = SUM FOR I = @ TO N-1 OF SX(LX+I*INCX) * SY(LY+I*INCY), 4
C WHERE LX = 1 IF INCX .GE. ¢, ELSE LX = (-INCX)*N, AND LY IS 5¢
c DEFINED IN A SIMILAR WAY USING INCY. 60
c 79
REAL SX(1),SY(1) 80

SDOT = ¢.¢EQ 9¢
IF(N.LE.®)RETURN 100
IF(INCX.EG.INCY) IF(INCX-1)5,20,60 116

5 CONTINUE 126

C 130
C CODE FOR UNEQUAL INCREMENTS OR NONPOSITIVE INCREMENTS. 146
C 150
IX =1 166

Iy = 1 ’ 17¢
IF(INCX.LT.®)IX = (-N+1)*INCX + 1 18¢
IF(INCY.LT.®)IY = (-N+1)*INCY + 1 199

DO 1¢ I = 1,N 200

SDOT = SDOT + SX({IX)*SY(IY) 210

IX = IX + INCX 220

1Y = IY + INCY 230

1¢ CONTINUE 249
RETURN 250

C 260
C CODE FOR BOTH INCREMENTS EQUAL TO 1 27¢
C 28¢
C 29¢
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5. 300
C 31¢
2¢ M = MOD(N,5) 320
IF(M .EQ. &) GO TO 4§ 336

DO 3¢ I = 1,M 34¢

SDOT = SDOT + SX(I)*SY(I) 35¢

3¢ CONTINUE 3660
IF(N .LT. 5) RETURN 379

4p MP1 = M + 1 380
DO 50 I = MP1,N,5 39¢

SDOT = SDOT + SX(I)*SY(I) + SX(I + 1L)*SY(I + 1) + 400

$ SX(I + 2)*SY(I + 2) + SX(I + 3)*SY(I + 3) + SX(I + &)*SY(I + &) 410

5¢ CONTINUE 420
RETURNK 430

c 44
c CODE FOR POSITIVE EQUAL INCREMENTS .NE.1. 450
C 460
6¢ CONTINUE 470
NS=N*INCX 480

DO 7¢ I=1,NS,INCX 490

SDOT = SDOT + SX(I)*SY(I) 500

7¢ CONTINUE 510
RETURN 526

END 530

CM Transactions on Mathematical Software, Vol. 5, No. 3, September 1875,

