
Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module

Or: It’s Finally Here! How Fast is it?

Joseph Izraelevitz Jian Yang Lu Zhang Juno Kim Xiao Liu
Amirsaman Memaripour Yun Joon Soh Zixuan Wang Yi Xu

Subramanya R. Dulloor Jishen Zhao Steven Swanson*

Computer Science & Engineering
University of California, San Diego

*Correspondence should be directed to swanson@cs.ucsd.edu.

Copyright © 2019 the authors.
2019-08-09 7041bc9

1

ar
X

iv
:1

90
3.

05
71

4v
3

 [
cs

.D
C

]
 9

 A
ug

 2
01

9

Abstract
After nearly a decade of anticipation, scalable nonvolatile memory DIMMs are finally commercially available with
the release of the Intel® Optane™ DC Persistent Memory Module (or just “Optane DC PMM”). This new nonvolatile
DIMM supports byte-granularity accesses with access times on the order of DRAM, while also providing data storage
that survives power outages.

This work comprises the first in-depth, scholarly, performance review of Intel’s Optane DC PMM, exploring its
capabilities as a main memory device, and as persistent, byte-addressable memory exposed to user-space applications.
For the past several months, our group has had access to machines with Optane DC memory and has investigated the
Optane DC PMM’s performance characteristics. This report details the chip’s performance under a number of modes
and scenarios, and across a wide variety of both micro- and macro-scale benchmarks. In total, this report represents
approximately 330 hours of machine time.

Optane DC memory occupies a tier in-between SSDs and DRAM. It has higher latency (346 ns) than DRAM
but lower latency than an SSD. Unlike DRAM, its bandwidth is asymmetric with respect to access type: for a single
Optane DC PMM, its max read bandwidth is 6.6 GB/s, whereas its max write bandwidth is 2.3 GB/s. However, the
expected price point of Optane DC memory means that machines with large quantities of Optane DC memory are
feasible — our test machine has 3 TB of Optane DC memory across two sockets.

Optane DC PMMs can be used as large memory devices with a DRAM cache to hide their lower bandwidth and
higher latency. When used in this Memory (or cached) mode, Optane DC memory has little impact on applications
with small memory footprints. Applications with larger memory footprints may experience some slow-down relative
to DRAM, but are now able to keep much more data in memory.

In contrast, in App Direct (or uncached) mode, Optane DC PMMs can be used as a persistent storage device. When
used under a file system, this configuration can result in significant performance gains, especially when the file system
is optimized to use the load/store interface of the Optane DC PMM and the application uses many small, persistent
writes. For instance, using the NOVA-relaxed NVMM file system, we can improve the performance of Kyoto Cabinet
by almost 2×.

In App Direct mode, Optane DC PMMs can also be used to enable user-space persistence where the application
explicitly controls its writes into persistent Optane DC media. By modifying the actual application, application pro-
grammers can gain additional performance benefits since persistent updates bypass both the kernel and file system. In
our experiments, modified applications that used user-space Optane DC persistence generally outperformed their file
system counterparts; for instance, the user-space persistent version of RocksDB performed almost 2× faster than the
equivalent program utilizing an NVMM-aware file system.

This early report is only the beginning in an effort to understand these new memory devices. We hope that these
results will be enlightening to the research community in general and will be useful in guiding future work into
nonvolatile memory systems.

Copyright © 2019 the authors.
2019-08-09 7041bc9

2

How to Use this Document
Specialists in different areas will be interested in different sections. Researchers who are interested in the basic
characteristics of Optane DC memory should pay close attention to Section 3. Application developers that use large
amounts of memory should read Section 4 to see how Optane DC memory performs when used as a very large main
memory device. File systems and storage researchers should head to Section 5 to see how Optane DC memory affects
file systems. Persistent memory researchers should see Section 6 to see how prototype persistent memory libraries
perform when run on real Optane DC PMMs and how prior methods of emulation compare.

All data presented in this document is included in the arxiv directory under the anc folder. All figures are tagged
with a reference to their data files.

We have called out “observations” in boxes throughout this document. These observations represent key facts or
findings about the Intel’s Optane DC PMM. In general, we highlight findings that are useful to a wide group of readers,
or that represent key statistics about the device.

We welcome and will try to answer any questions about the data or our methodology. However, many aspects of
Intel’s design are still not publicly available, so we may be limited on the information that we can provide.

Copyright © 2019 the authors.
2019-08-09 7041bc9

3

Versions
This is Version 1.0.1 of this document.

Version 0.1.0 (3/13/2019) The initial release of this document, with a number of results still under embargo.

Version 1.0.0 (4/3/2019) The first full release of this document, with all results released from embargo and including
non-normalized results.

Version 1.0.1 (8/9/2019) Updated release of this document. Includes minor textual clarifications, new experiments
on device bandwidth, and errata. In particular, earlier versions stated that the cache-line size for data movement
in Memory Mode between Optane DC and DRAM memory was 4 KB — it is in fact 64 bytes.

Copyright © 2019 the authors.
2019-08-09 7041bc9

4

Executive Summary
For the last ten years, researchers have been anticipating the arrival of commercially available, scalable non-volatile
main memory (NVMM) technologies that provide byte-granularity storage and survive power outages. Recently, Intel
released a product based on one of these technologies: the Intel® Optane™ DC Persistent Memory Module (or just
“Optane DC PMM”).

Researchers have not waited idly for real nonvolatile DIMMs (NVDIMMs) to arrive1. Over the past decade, they
have written a slew of papers proposing new programming models [5, 35, 29], file systems [37, 6, 15], and other tools
built to exploit the performance and flexibility that NVDIMMs promised to deliver.

Now that Optane DC PMMs are finally here, researchers can begin to grapple with their complexities and idiosyn-
crasies. We have started that process over the last several months by putting Optane DC memory through its paces on
test systems graciously provided by Intel.

This report describes how Optane DC PMMs attach to the processor and summarizes our findings about basic
Optane DC performance as an extension of volatile DRAM, as a fast storage medium in a conventional storage stack,
and as non-volatile main memory. The goal of this report is to help the computer architecture and systems research
community develop intuition about this new memory technology behaves.

This executive summary presents our key findings and provides a snapshot of the data on Optane DC that we think
are most useful. The full report provides more detail, a comparison to multiple memory technologies (e.g., DRAM
used to emulated Optane DC), data for additional software components, and much more data. It also provides pointers
to the raw data underlying each of the graphs.

Background (Section 2)
Like traditional DRAM DIMMs, the Optane DC PMM sits on the memory bus and connects to the processor’s on-
board memory controller. Our test systems use Intel’s new second generation Xeon Scalable processors (codenamed
Cascade Lake). A single CPU can host six Optane DC PMMs for a total of 3 TB of Optane DC memory. The
memory controller communicates with the Optane DC PMM via a custom protocol that is mechanically and electrically
compatible with DDR4 but allows for variable-latency memory transactions. Optane DC PMMs currently come in
three capacities: 128 GB, 256 GB, and 512 GB. In this article, we report numbers for 256 GB Optane DC PMMs.

Cascade Lake includes a suite of instruction to enforce ordering constraints between stores to Optane DC. Some
of these have existed for a long time (e.g., sfence and non-temporal stores that bypass the caches), but others are
new. For example, clwb writes back a cache line without necessarily invalidating it.

Optane DC PMMs can operate in two modes: Memory and App Direct modes.
Memory mode uses Optane DC to expand main memory capacity without persistence. It combines a Optane DC

PMM with a conventional DRAM DIMM that serves as a direct-mapped cache for the Optane DC PMM. The cache
block size is 64 bytes, and the CPU’s memory controller manages the cache transparently. The CPU and operating
system simply see a larger pool of main memory. In graphs, for brevity and clarity, we refer to this mode as cached.

App Direct mode is useful for building storage systems out of Optane DC. The Optane DC PMM appears as a
separate, persistent memory device. There is no DRAM cache. Instead, the system installs a file system to manage the
device. Optane DC-aware applications and the file system can access the Optane DC PMMs with load and store in-
structions and use the ordering facilities mentioned above to enforce ordering constraints and ensure crash consistency.
In graphs, for brevity and clarity, we refer to App Direct mode as uncached.

Our experiments explore a number of Optane DC memory configurations and modes. In addition to the cached/uncached
option, Optane DC memory can be integrated in two ways. It can be used as the main memory of the system as a direct
replacement for DRAM, an option we refer to as main memory or MM; or it can be used as a storage tier underlying
the file system, an option we refer to as persistent memory or PM.

1Optane DC PMM are not technically NVDIMMs since they do not comply with any of the NVMM-F, -N, or -P JEDEC standards.

Copyright © 2019 the authors.
2019-08-09 7041bc9

5

Basic Optane DC Performance (Section 3)
The most critical difference between Optane DC and DRAM is that Optane DC has longer latency and lower band-
width. Load and store performance is also asymmetric.

Latency To measure Optane DC load latency, we disable the DRAM cache and issue single load instructions with a
cold cache. On average, random loads take 305 ns compared to 81 ns for DRAM accesses on the same platform. For
sequential loads, latencies are 169 ns, suggesting some buffering or caching inside the Optane DC PMM.

Measuring write latency is difficult because we cannot detect when a store physically reaches the Optane DC
PMM. We can, however, detect when the store reaches the processor’s asynchronous DRAM refresh (ADR) domain,
which guarantees that the store’s effects are persistent. To measure that latency, we issue a store followed by a cache
flush instruction and a fence. That latency is 94 ns for Optane DC compared to 86 ns for DRAM.

Bandwidth Our measurements show that Optane DC bandwidth is lower than DRAM bandwidth, especially for
stores. Figure 1 plots sequential access bandwidth to six Optane DC PMMs for between 1 and 23 threads and compares
its bandwidth to six DRAM DIMMs (on a local and remote NUMA node). For reads (at left), bandwidth peaks at
39.4 GB/s. For writes (at right), it takes just four threads to reach saturation at 13.9 GB/s. For a single Optane DC
PMM, its max read bandwidth is 6.6 GB/s, whereas its max write bandwidth is 2.3 GB/s.

1 6 11 16 21
Threads

0

25

50

75

100

Ba
nd

wi
dt

h
(G

B/
s)

Read

1 6 11 16 21
Threads

0

20

40

60

80
Write

PM-LDRAM PM-RDRAM PM-Optane

Figure 1: Optane DC Sequential Bandwidth The data show read (left) and write (right) bandwidth for an array of
six Optane DC PMMs compared to a similar array of six DRAM DIMMs. Optane DC bandwidth is lower and, for
writes, reaches saturation with fewer threads.

Figure 2 plots bandwidth for random accesses of different sizes to a single DIMM issued by one thread. The left
edge of the graph corresponds to small (64 B) random updates, while the right edge measure accesses large enough
(128 kB) to be effectively sequential.

Performance for read and write rises quickly until access size reaches 256 B and slowly climbs to a peak of 1.5 GB/s
for stores and 2.8 GB/s for loads. 256 B is Optane DC’s internal block size. It represents the smallest efficient access
granularity for Optane DC. Loads and stores that are smaller than this granularity waste bandwidth as they have the
same latency as a 256 B access. Stores that are smaller also result in write amplification since Optane DC writes at
least 256 B for every update, incurring wear and consuming energy.

Copyright © 2019 the authors.
2019-08-09 7041bc9

6

64 B 256 B 2 KB 16 KB 128 KB
Access size

0

1000

2000

Ba
nd

wi
dt

h
(M

B/
s)

Read Write

Figure 2: Optane DC Random Access Bandwidth Bandwidth for small accesses rises quickly but begins to taper off
at 256 B. This data is for one thread accessing one DIMM.

Optane DC as Main Memory (Section 4)
When used as main memory, we expect that the Optane DC PMM will be used in Memory Mode (that is, with a
DRAM cache) in order to provide a large main memory device.

600.perlbench_s

602.gcc_s

605.mcf_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

641.leela_s

648.exchange2_s
657.xz_s

Gmean
0.0

0.5

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM

DRAM
INT

603.bwaves_s

607.cactuBSSN_s

619.lbm_s

621.wrf_s

627.cam4_s

628.pop2_s

638.imagick_s

644.nab_s

649.fotonik3d_s

654.roms_s
Gmean

0.0

0.5

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM

DRAM
FP

MM-Optane-Cached MM-Optane-Uncached

Figure 3: SPEC 2017 Performance on Optane DC Using cached Optane DC instead of normal DRAM does not
affect performance for the integer workloads in SPEC 2017. Without caching, performance drops 38%. For floating
point, cached Optane DC drops performance for the floating point workloads by 15%, probably due to bandwidth
limitations. Uncached drops it by 61%.

Figure 3 compares the performance of SPEC 2017 [3] running on cached Optane DC and uncached Optane DC
normalized to performance using DRAM. The working sets of the SPEC 2017 applications are all small enough to fit
in the DRAM cache. For the integer workloads, cached Optane DC is just as fast as DRAM, and uncached Optane
DC is 38% slower. Floating point performance, however, drops 15% with cached Optane DC and 61% with uncached.
The poor performance in cached mode is surprising, and we do not yet sure of the root cause. One likely candidate is

Copyright © 2019 the authors.
2019-08-09 7041bc9

7

the limited write bandwidth of Optane DC.
The caching mechanism works for larger memory footprints as well. Figure 4 measures performance for Mem-

cached and Redis (each configured as a non-persistent key-value store) each managing a 96 GB data set. Memcached
serves a workload of 50% SET operations, and Redis serves a workload with pure SETs. It shows that for these two
applications, replacing DRAM with uncached Optane DC reduces performance by 20.1% and 23.0% for memcached
and Redis, respectively. Enabling the DRAM cache, as would normally be done in system deployment, means perfor-
mance drops only between 8.6% and 19.2%. Regardless of performance losses, Optane DC memory is far denser; our
machine can fit 192 GB of DRAM but 1.5 TB of Optane DC memory on a socket, giving us the ability to run larger
workloads than fit solely in DRAM.

Redis Memcached
0.0

0.5

1.0
Th

ro
ug

hp
ut

 (K
op

/s
)

MM-LDRAM
MM-Optane-Uncached

MM-Optane-Cached

Figure 4: Large Key-Value Store Performance Optane DC can extend the capacity of in-memory key-value stores
like Memcached and Redis, and Cascade Lake can use normal DRAM to hide some of Optane DC’s latency. The
performance with uncached Optane DC is 4.8-12.6% lower than cached Optane DC. Despite performance losses,
Optane DC memory allows for far larger sized databases than DRAM due to its density — we cannot fit the larger
workloads in DRAM.

Optane DC as Persistent Storage (Section 5)
Optane DC will profoundly affect the performance of storage systems. Using Optane DC PMMs as storage me-
dia disables the DRAM cache and exposes the Optane DC as a persistent memory block device in Linux. Several
persistent-memory file systems are available to run on such a device: Ext4 and XFS were built for disks but have
direct access (or “DAX”) modes, while NOVA [37] is purpose-built for persistent memory.

Figure 5 summarizes performance for several file systems performing random reads and random writes with be-
tween one and sixteen threads. It also compares performance to a SATA flash-based SSD and an Optane SSD that
exposes Optane DC as block device via the PCIe bus. The data show that Optane DC improves basic storage perfor-
mance over both of those storage devices by a wide margin.

The data also demonstrate the benefits of designing software specifically for persistent memory. NOVA outper-
forms the legacy file systems and provides much better performance scaling.

Figure 6 shows how Optane DC affects application-level performance for RocksDB [16], Redis [30], MySQL [28],
SQLite [31], MongoDB [24], Kyoto Cabinet [17], and LMDB [32]. MySQL is running TPC-C; the others are running
workloads that insert key-value pairs.

The impact at the application level varies widely. Interestingly, for MongoDB, the legacy version of Ext4 outper-
forms the DAX version. We suspect this result occurs because DAX disables the DRAM page cache, but the cache is
still useful since DRAM is faster than Optane DC.

Copyright © 2019 the authors.
2019-08-09 7041bc9

8

1 2 4 8 16
Threads

0

5

10

15

20

25

30

Ba
nd

wi
dt

h
(G

B/
s)

Random 4KB Reads

1 2 4 8 16
Threads

0

5

10

15

20

25

30
Sequential 4KB Reads

Ext4-SATA Ext4-Optane Ext4 Ext4-DAX XFS-DAX NOVA

1 2 4 8 16
Threads

0

2

4

6

8

10
Random 4KB Writes

1 2 4 8 16
Threads

0

2

4

6

8

10
Sequential 4KB Writes

Figure 5: Raw Performance in Persistent Memory File Systems Optane DC PMMs provides a big boost for basic
file access performance compared to SATA SSDs (“Ext4-SATA”) and Optane-based SSDs (“Ext4-Optane”). The data
also show the improved scalability that NOVA offers relative to legacy file systems in DAX mode.

SQLite Kyoto Cabinet LMDB RocksDB Redis0
5

10
15
20
25
30
35
40

No
rm

al
ize

d
Op

s/
Se

c

Ext4 SSD-SATA
Ext4 SSD-Optane

Ext4 PM-Optane
Ext4-DAX PM-Optane

NOVA PM-Optane
NOVA-Relaxed PM-Optane

Mapped PM-Optane

MySQL MongoDB0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.051 75 129

Figure 6: Application Performance on Optane DC and SSDs These data show the impact of more aggressively
integrating Optane DC into the storage system. Replacing flash memory with Optane DC in the SSD gives a significant
boost, but for most applications deeper integration with hardware (i.e., putting the Optane DC on a DIMM rather than
an SSD) and software (i.e., using an PMEM-optimized file system or rewriting the application to use memory-mapped
Optane DC) yields the highest performance.

Copyright © 2019 the authors.
2019-08-09 7041bc9

9

Optane DC as Persistent Memory (Section 6)
Optane DC’s most intriguing application is as a byte-addressable persistent memory that user space applications map
into their address space (with the mmap() system call) and then access directly with loads and stores.

Using Optane DC in this way is more complex than accessing it through a conventional file-based interface be-
cause the application has to ensure crash consistency rather than relying on the file system. However, the potential
performance gains are much larger.

Figure 6 includes results for versions of Redis and RocksDB modified to use Optane DC in this manner. The
impact varies widely: performance for RocksDB increases by 3.5×, while Redis 3.2 gains just 20%. Understanding
the root cause of the difference in performance and how to achieve RocksDB-like results will be fertile ground for
developers and researchers.

Conclusion
Intel’s Optane DC is the first new memory technology to arrive in the processor’s memory hierarchy since DRAM.
It will take many years to fully understand how this new memory behaves, how to make the best use of it, and how
applications should exploit it.

The data we present are a drop in the bucket compared to our understanding of other memory technologies. The
data are exciting, though, because they show Optane DC’s strengths and its weaknesses, both where it can have an
immediate positive impact on systems and where more work is required.

We are most excited to see what emerges as persistent main memory moves from a subject of research and de-
velopment by a small number engineers and academics to a mainstream technology used by, eventually, millions
of developers. Their experiences and the challenges they encounter will give rise to the most innovative tools, the
most exciting applications, and the most challenging research questions for Optane DC and other emerging NVMM
technologies.

Copyright © 2019 the authors.
2019-08-09 7041bc9

10

Contents
1 Introduction 12

2 Background and Methodology 13
2.1 Optane DC Memory . 13

2.1.1 Intel’s Optane DC PMM . 13
2.1.2 Operation Modes . 13

2.2 System Description . 14
2.3 Configurations . 15

2.3.1 Memory Configurations . 16
2.3.2 Persistence Configurations . 16

3 Basic Performance 18
3.1 Latency . 18

3.1.1 Read Latency . 18
3.1.2 Memory Instruction Latency . 19

3.2 Bandwidth . 20
3.2.1 Maximum Bandwidth . 20
3.2.2 Concurrency and Bandwidth . 21
3.2.3 Access Size and Bandwidth . 22
3.2.4 Bandwidth under Mixed Workloads . 23
3.2.5 Performance under Load . 25

4 Optane DC as Main Memory 27
4.1 SPEC CPU 2006 and 2017 . 27
4.2 PARSEC . 32
4.3 Memcached . 34
4.4 Redis . 36

5 Optane DC as Persistent Storage 38
5.1 File Operation Latency . 38
5.2 FIO Bandwidth . 41
5.3 Filebench . 43
5.4 RocksDB . 45
5.5 Redis . 46
5.6 Kyoto Cabinet . 46
5.7 MySQL . 47
5.8 SQLite . 48
5.9 LMDB . 48
5.10 MongoDB . 49

6 Optane DC as Persistent Memory 51
6.1 Redis-PMEM . 51
6.2 RocksDB-PMEM . 51
6.3 MongoDB-PMEM . 52
6.4 PMemKV . 53
6.5 WHISPER . 54
6.6 Summary . 55

7 Conclusion 57

A Observations 60

Copyright © 2019 the authors.
2019-08-09 7041bc9

11

1 Introduction
Over the past ten years, researchers have been anticipating the arrival of commercially available, scalable non-volatile
main memory (NVMM) technologies that provide byte-granularity storage that survives power outages. In the near
future, Intel is expected to release a enterprise product based on one of these technologies: the Intel® Optane™ DC
Persistent Memory Module (or just “Optane DC PMM”).

Researchers have not idly waited for real nonvolatile DIMMs (NVDIMMs) to arrive2. Over the past decade, they
have written a slew of papers proposing new programming models [5, 35], file systems [37, 38, 36, 34, 6, 15], libraries
[2, 4, 29], and applications built to exploit the performance and flexibility that NVDIMMs promised to deliver.

Those papers drew conclusions and made design decisions without detailed knowledge of how real NVDIMMs
would behave, what level of performance they would offer, or how industry would integrate them into computer
architectures. In its place, researchers have used a variety to techniques to model the performance of NVDIMMs,
including custom hardware [15], software simulation [5], slowing the DRAM frequency [19], exploiting NUMA
effects [14], or simply pretending that DRAM is persistent.

Now that Optane DC PMMs are actually here, we can begin to grapple with their complexities and idiosyncrasies.
The first step in understanding Optane DC PMM performance is to conduct measurements that explore fundamental
questions about the Optane DC memory technology and how Intel has integrated it into a system. This report provides
some of those measurements.

We have attempted to answer several questions, namely:

1. What are the basic performance characteristics of Optane DC memory?
2. What are the basic performance characteristics of persistent memory-specific instructions?
3. How does Optane DC memory affect the performance of applications when used as an extension of (non-

persistent) DRAM?
4. How does Optane DC memory affect the performance of applications when used as storage?
5. How does Optane DC memory affect the performance of system software (e.g. file systems)?
6. How does custom software written for NVMMs perform on Optane DC memory?
7. How does the performance of Optane DC compare to prior methods used to emulate Optane DC?

This report presents measurements over of a wide range of applications, benchmark suites, and microbenchmarks,
representing over 330 hours of machine time. All of the underlying data is freely available in the attached anc/
directory. We hope that the community finds this data useful.

2Optane DC PMM are not technically NVDIMMs since they do not comply with any of the NVMM-F, -N, or -P JEDEC standards.

Copyright © 2019 the authors.
2019-08-09 7041bc9

12

2 Background and Methodology
In this section, we provide background on the Intel® Optane™ DC Persistent Memory Module, describe the test
system, and then describe the configurations we use throughout the rest of the paper.

2.1 Optane DC Memory
The Intel® Optane™ DC Persistent Memory Module, which we term the Optane DC PMM for shorthand, is the first
commercially available NVDIMM that creates a new tier between volatile DRAM and block-based storage. Compared
to existing storage devices (including the related Optane SSDs) that connect to an external interface such as PCIe, the
Optane DC PMM has better performance and uses a byte-addressable memory interface. Compared to DRAM, it
has higher density and persistence. At its debut, the Optane DC PMM is available in 3 different capacities: 128 GB,
256 GB, and 512 GB.

2.1.1 Intel’s Optane DC PMM

Like traditional DRAM DIMMs, the Optane DC PMM sits on the memory bus, and connects to the integrated memory
controller (iMC) on the CPU. The Optane DC PMM debuts alongside the new Intel second generation Xeon Scalable
processors (codenamed Cascade Lake). On this platform, each CPU has two iMCs, and each iMC supports three
channels. Therefore, in total, a CPU socket can support a total of six Optane DC PMMs, for a maximum of 6 TB of
Optane DC memory.

For ensuring data persistency, the iMC sits within the asynchronous DRAM refresh (ADR) domain — Intel’s ADR
feature ensures that CPU stores that reach the ADR domain will survive a power failure (i.e. will be flushed to the
NVDIMM within the hold-up time, < 100 µs). The ADR domain does not include the processor caches, so stores will
only be persistent after they reach the iMC.

The iMC communicates with the Optane DC PMM using the DDR-T interface. This interface shares a mechanical
and electrical interface with DDR4 but uses a different protocol that allows for variable latencies, since Optane DC
memory access latencies are not deterministic. Like DDR4 (with ECC), it uses 72-bit data bus and transfers data in
cache-line (64-byte) granularity for CPU loads and stores.

When a memory access request arrives on the NVDIMM, it is received by the on-DIMM Controller. This central
controller handles most of the processing required on the NVDIMM and coordinates access to the banks of Optane
DC media.

After an access request reaches the controller, the address is internally translated. Like SSDs, the Optane DC PMM
performs an internal address translation for wear-leveling and bad-block management. The address indirection table
(AIT) translates from the DIMM physical address to an internal Optane DC media device address. The AIT resides in
Optane DC media, though on-DIMM DRAM keeps a copy of the AIT entries.

After the request is translated, the actual access to storage media occurs. As Optane DC media access granularity
is 256 bytes, the controller will translate 64-byte load/stores into larger 256 byte accesses. As a consequence, write
amplification occurs as smaller stores issued by the CPU are handled as read-modify-write operations on Optane DC
memory by the controller.

Unlike DRAM, Optane DC memory does not need constant refresh for data retention; consequently it consumes
less power when idle. The Optane DC PMM has two configurable power budgets. The average power budget controls
the power budget allowed for contiguous workloads, and the peak power budget controls the maximum power usage
under burst traffic. Both budgets are configurable by the user.

2.1.2 Operation Modes

Each Optane DC PMM can be configured into one of the following two modes, or can be partitioned and used in both
modes respectively:

• Memory mode: In this two-level mode, the DDR4 DIMMs connected to the same iMC operate as caches for
slower Optane DC memory. In this scheme, the DDR4 DIMM acts as a direct mapped write-back cache for

Copyright © 2019 the authors.
2019-08-09 7041bc9

13

the Optane DC PMM, where each cache line is 64 bytes. The Optane DC PMMs are exposed to the operating
system as large volatile regions of memory and do not have persistence (since updates may not be written back
all the way into Optane DC memory).

• App Direct mode: In this one-level mode, the Optane DC PMMs are directly exposed to the CPU and operating
system and can consequently be used as persistent storage. Both Optane DC PMMs and their adjacent DDR4
DIMMs are visible to the operating system as memory devices. In App Direct mode, the Optane DC PMM is
exposed to operating system via configurable regions on contiguously-addressed ranges.

In this paper, for simplicity, we only evaluate a single operation mode at a time and use the same NVDIMM
configuration across across all Optane DC memory. That is, for a given configuration, we allocate all Optane DC
memory in the same mode (i.e. Memory / App Direct), and, when using Memory mode, share a single fsdax namespace
across all NVDIMMs on a socket.

2.2 System Description
We perform our experiments on a dual-socket evaluation platform provided by Intel Corporation. The hardware and
software configuration is shown in Table 1.

Two CPUs are installed on the evaluation platform. They are Intel’s new second generation Xeon Scalable proces-
sors (codenamed Cascade Lake), and are engineering samples with an obfuscated model number. The overall specifi-
cations of these CPUs are close to Xeon Platinum 8160 (former-gen Skylake) with higher base clock at 2.2 GHz, and
same single-core turbo boost frequency at 3.7 GHz. Each CPU has 24 cores, each with exclusive 32 KB L1 instruction
and data caches, and 1 MB L2 caches. All cores share a 33 MB L3 cache. Each CPU has two iMCs and six memory
channels (three channels per iMC). A 32 GB Micron DDR4 DIMM and a 256 GB Intel Intel® Optane™ DC Persistent
Memory Module are attached to each of the memory channels. Thus the system has 384 GB (2 socket x 6 channel
x 32 GB/DIMM) of DRAM, and 3 TB (2 socket x 6 channel x 256 GB/DIMM) of NVMM. To compare Optane DC
memory with traditional blocked based storage, we use an NVMe Optane SSD (NVMe interface) and an NAND SSD
(SATA interface) as baselines.

On this system, we run Fedora 27 with Linux kernel version 4.13.0 built from source. For all of the experiments,
we disable hyper-threading and set the CPU power governor to performance mode, which forces the CPU to use the
highest possible clock frequency. All Optane DC PMMs have the same firmware (version 01.01.00.5253) and use the
default power budget (average 15 W / peak 20 W).

In all experiments, transparent huge pages (THP) are enabled unless explicitly mentioned. We do not apply secu-
rity mitigations (KASLR, KPTI, Spectre and L1TF patches) because Cascade Lake fixes these vulnerabilities at the
hardware level [27].

Copyright © 2019 the authors.
2019-08-09 7041bc9

14

Sockets 2
Microarch Intel Cascade Lake-SP (engineering sample)
CPU Spec. 24 Cores at 2.2 GHz (Turbo Boost at 3.7 GHz)
L1 Cache 32 KB i-Cache & 32 KB d-Cache (per-core)
L2 Cache 1 MB (per-core)
L3 Cache 33 MB (shared)
DRAM Spec. 32 GB Micron DDR4 2666 MHz (36ASF4G72PZ)
Total DRAM 384 GB [2 (socket) ×6 (channel) × 32 GB]
NVMM Spec. 256 GB Intel Optane DC 2666 MHz QS (NMA1XXD256GQS)
Total NVMM 3 TB [2 (socket) ×6 (channel) × 256 GB]
Storage (NVMe) Intel Optane SSD DC P4800X 375 GB
Storage (SATA) Intel SSD DC S3610 1.6 TB (MLC)
GNU/Linux Distro Fedora 27
Linux Kernel 4.13.0
CPUFreq Governor Performance
Hyper-Threading Disabled
NVDIMM Firmware 01.01.00.5253
Avg. Power Budget 15 W
Peak Power Budget 20 W
Transparent Huge Page (THP) Enabled
Kernel ASLR Disabled
KPTI & Security Mitigations Not Applied

Table 1: Evaluation platform specifications

2.3 Configurations
As the Optane DC PMM is both persistent and byte-addressable, it can fill the role of either a main memory device
(i.e. replacing DRAM) or as a persistent device (i.e. replacing disk). Both use cases will be common. To fully examine
the performance of Optane DC memory, we test its performance in both roles. We examine six system configurations
— three that explore the main memory role and three that explore the persistence role. They are shown in Table 2.

DRAM NVDIMM Persistence Namespace Size
Mode Mode (per-socket)

MM-LDRAM Memory n/a No unmanaged 192 GB
MM-Optane-Cached Cache Memory No unmanaged 1.5 TB
MM-Optane-Uncached Memory App Direct No unmanaged 1.5 TB
PM-Optane Memory App Direct Yes fsdax 1.5 TB
PM-LDRAM Fake PMem n/a Emulated fsdax 80 GB
PM-RDRAM Fake PMem n/a Emulated fsdax 80 GB
SSD-Optane Memory n/a Yes n/a 375 GB (total)
SSD-SATA Memory n/a Yes n/a 1.6 TB (total)

Table 2: Evaluation modes summary A summary of our experimental configurations. Modes that begin with MM-
represent systems where we vary the type of memory attached behind the traditional DRAM interface. Modes that
begin with PM- or SSD- represent systems where system memory is in DRAM, but we vary the device underneath the
file system.

Copyright © 2019 the authors.
2019-08-09 7041bc9

15

2.3.1 Memory Configurations

We use our first set of configurations to examine the performance of Optane DC as memory; they therefore vary the
type of memory attached behind the traditional DRAM interface. In these configurations, the main memory used
by the system is of a single type. These configurations, prefixed by MM (main memory), are explored in detail in
Section 4. They are:

MM-LDRAM Our baseline configuration simply uses the DRAM in the system as DRAM and ignores the Optane
DC PMMs. This configuration is our control configuration and represents an existing system without NVDIMMs. It
provides a DRAM memory capacity of 192 GB per socket.

MM-Optane-Cached This configuration uses cached Optane DC as the system memory. That is, all memory in
the system is comprised of Optane DC PMMs but with the adjacent DRAM DIMMs as caches. This configuration
represents the likely system configuration used when Optane DC PMMs are utilized as large (but volatile) memory. In
this configuration, we set Optane DC into Memory mode, so each Optane DC PMM uses volatile DRAM as a cache.
This configuration provides 1.5 TB of Optane DC per socket. The 192 GB per-socket DRAM functions as a cache and
is transparent to the operating system.

MM-Optane-Uncached In this configuration, we use uncached Optane DC as the system memory, that is, without
DRAM caching Optane DC. This configuration represents a Optane DC system configuration where raw, uncached
Optane DC is used as the main memory device. We include this configuration since the DRAM cache in MM-Optane-
Cached obscures the raw performance of the Optane DC media — we do not expect this to be a common system
configuration. To build this configuration, we configured the Optane DC PMM into App Direct mode and let the
Linux kernel consider Optane DC to be DRAM. The kernel considers Optane DC to be slower memory and DRAM
to be faster memory, and puts them in two separate NUMA nodes. Although it would be interesting to measure the
performance when the whole system running directly on the NVMM, we cannot boot the operating system without any
DRAM. Therefore, to run the tests, we configure applications to bind their memory to a NUMA node with exclusively
Optane DC memory.

2.3.2 Persistence Configurations

Our second set of configurations explores the persistence capabilities of Optane DC PMM, and we explore the persis-
tence performance of the Optane DC PMM in Sections 5 and 6. As such, these configurations assume a machine model
in which system memory resides in DRAM and we vary the device underlying the file system. These configurations
use fsdax mode, which exposes the memory as a persistent memory device under /dev/pmem. This arrangement
allows both DAX (direct access) file systems and user-level libraries to directly access the memory using a load/store
interface while still supporting block based access for non-DAX file systems.

These configurations, which we prefix by PM (persistent memory), vary the memory media underneath the file
system. The configurations are:

PM-Optane This configuration uses Optane DC as persistent memory. The configuration represents a system with
both DRAM and large quantities of NVMM used for storage. In it, we set Optane DC to be persistent memory running
in App Direct mode. Each persistent memory device has a capacity of 1.5 GB.

PM-LDRAM This configuration uses local DRAM as an emulated persistent memory device. Pretending that
DRAM is persistent is a simple way of emulating Optane DC, and has served as a common baseline for research in
the past decade. This configuration helps us understand how existing methods of emulating NVMM compare to real
Optane DC memory. For this configuration, we create 80 GB emulated pmem devices on the same platform using
DRAM. In this setup, Optane DC memory is configured in App Direct mode but not used.

PM-RDRAM Like the previous configuration, this configuration uses DRAM (but in this case remote DRAM)
to emulate a persistent memory device. Using DRAM on a remote NUMA node simulates the delay when accessing
slower NVMM, and researchers used this configuration to investigate the costs of integrating NVMM into real systems
before real Optane DC PMMs were available. Like the previous configuration, we use this configuration to examine
how prior emulation methods used in research compare to real NVDIMMs. In this configuration, we allocate a
simulated pmem device on one socket, and ensure all applications are run on the other.

Copyright © 2019 the authors.
2019-08-09 7041bc9

16

For experiments that run on file systems, we can also compare Optane DC PMMs against traditional block based
storage devices (see Section 5). For these experiments, we also use the following block-based devices underneath the
file system:

SSD-Optane This configuration loads an Intel Optane drive underneath the file system using the NVMe interface.
This PCIe device uses Optane media as the underlying storage technology, but is optimized for block-based storage.
We use this configuration to compare the load/store interface of the Optane DC PMM with a comparable block-based
device using the same storage technology.

SSD-SATA This configuration loads a NAND flash solid state drive beneath the file system using the SATA inter-
face. We use this configuration to compare novel storage devices and interfaces with a more established technology.

Copyright © 2019 the authors.
2019-08-09 7041bc9

17

3 Basic Performance
The impact of Optane DC on the performance of a particular application depends on the details of Optane DC’s basic
parameters. Since Optane DC is persistent, the landscape of its performance characteristics is more complex than
DRAM’s. In this section, we measure the performance of reads and writes of various sizes, compare the performance
different types of stores, and quantify the costs of enforcing persistence with Optane DC.

In particular, we focus on three questions:
1. What are the performance characteristics of Optane DC memory and how do they differ from local and remote

DRAM?
2. What is the cost of performing a persistent write to Optane DC memory?
3. How do access patterns impact the performance of Optane DC media?

In order to answer these questions, we experiment on system configurations that load persistent memory under-
neath a file system, namely PM-LDRAM, PM-RDRAM, and PM-Optane, and use two different experimental tools,
the Intel Memory Latency Checker (MLC) [8], and a self-built tool called LATTester.

Intel MLC is a tool designed to accurately measure memory latencies and bandwidth. In particular, every thread
in MLC accesses its own mmapped file created on a pmem device mounted with ext4 file system with direct access
(DAX) enabled. MLC also disables hardware prefetching to get accurate memory latency measurements. Finally, for
multithreaded microbenchmarks, each thread writes to its own 400 MB buffer.

LATTester is our tool for running microbenchmarks that measure the latency and bandwidth through a combination
of load/store (64-byte, 128-byte and 256-byte granularity) and flush (clflush, clflushopt, clwb and non-
temporary store) instructions. To ensure timing results are accurate, we take a number of precautions. To avoid
interference with other software, we built LATTester as a kernel module that exposes a mock DAX file system interface
and works on a pmem device in fsdax mode. It runs kernel threads that pin to specific cores with IRQ disabled, so it
will not be descheduled. Like MLC, we disable prefetching. For latency tests, an mfence instruction is inserted after
each load/store to prevent pipelining from affecting timing results.

3.1 Latency
In this subsection, we investigate the latency of operations to Optane DC memory under several conditions and explore
how its latency changes in comparison to DRAM.

3.1.1 Read Latency

The most basic latency measurement is the latency of a single access to a local Optane DC PMM. Such a measurement
assumes that the access misses in the entire cache hierarchy as would happen when the system is idle and the cache is
cold. We use MLC to measure the raw read latency by timing the latency of reading a random cacheline on a single
core. Since MLC turns off prefetching, this load access is guaranteed to touch Optane DC memory.

Our next experiment investigates the sequential read latency of the Optane DC PMM. We again use MLC to
measure the latency of sequential loads with prefetching turned off. Like the previous read latency test, we measure
this latency using a single core. Figure 7 shows the evaluation result for both random and sequential accesses, for local
Optane DC memory and demonstrates that Optane DC memory improves its performance under sequential accesses,
indicating some amount of on-DIMM prefetching and batching logic.

Observation 1. The read latency of random Optane DC memory loads is 305 ns This latency is about 3× slower than
local DRAM.

Observation 2. Optane DC memory latency is significantly better (2×) when accessed in a sequential pattern. This
result indicates that Optane DC PMMs merge adjacent requests into a single 256 byte access.

Copyright © 2019 the authors.
2019-08-09 7041bc9

18

Sequential Random
0

100

200

300

Id
le

 L
at

en
cy

 (n
s)

PM-LDRAM PM-RDRAM PM-Optane

Figure 7: Read latency An experiment showing random and sequential read latency to Optane DC memory on a cache
miss. Optane DC memory is about 3× slower than DRAM for random accesses and about 2× slower for sequential
access (see data in csvroot/basic/idle latency.csv).

3.1.2 Memory Instruction Latency

Our next experiment shows the raw latency for a variety of ways of accessing Optane DC memory. Using our LAT-
Tester tool, this microbenchmark measures the latency of memory access instructions for a combination of load/store,
flush and fence instructions used to access a persistent memory region. The test runs on a single kernel thread over the
first 16 GB region of a pmem device. We use 256-bit SSE instructions (64-bit instructions show similar results), and
record the timing for each set of instructions executed one million times over sequential and pre-calculated random
addresses. We drain the CPU pipeline before each access and issue an mfence after each access.

Figure 8 shows the median latency for a variety of instruction sequences. Along the x-axis, we use Size Type
to identify different types of persistent memory accesses, where the type can be one of the following: L stands for
regular loads, LN stands for non-temporal loads, SF stands for stores followed by clflush, SN stands for non-
temporal stores, SO stands for stores followed by clflushopt, and SW stands for stores followed by clwb.

As shown in the data, the load latency of PM-Optane is higher, whereas the store latency of PM-Optane is similar
to PM-LDRAM since it is hidden within the ADR domain. Finally, for small accesses, clflushopt and clwb give
better performance than clflush or non-temporal stores.

Observation 3. For small accesses, clflushopt and clwb give better performance than clflush or non-
temporal stores. This result demonstrates the utility of ISA modifications in support of persistent memory.

Copyright © 2019 the authors.
2019-08-09 7041bc9

19

64
_L

12
8_

L

25
6_

L

64
_L

N

12
8_

LN

25
6_

LN

64
_S

F

12
8_

SF

25
6_

SF

64
_S

N

12
8_

SN

25
6_

SN

64
_S

O

12
8_

SO

25
6_

SO

64
_S

W

12
8_

SW

25
6_

SW

0

200

400

600

800
La

te
nc

y
(n

s)
PM-LDRAM
PM-RDRAM

PM-Optane

Figure 8: Memory Instruction Latency This graph shows the median latency for a variety of ways of accessing
persistent memory. Note that for store instructions followed by flushes, there is little performance difference be-
tween PM-LDRAM and PM-Optane, whereas DRAM outperforms Optane DC memory for load sequences (see data
in csvroot/basic/instruction latency.csv).

3.2 Bandwidth
This subsection investigates the bandwidth of the Optane DC PMM under varying loads and conditions.

3.2.1 Maximum Bandwidth

Our first bandwidth experiment explores the maximum read and write bandwidth of the memory device. We use the
MLC tool to spawn threads that spin issuing sequential reads or writes. By gradually increasing the thread count, we
find the point at which the memory device’s bandwidth becomes saturated. We use up to 23 threads (leaving one core
of the CPU idle to avoid contention). Figure 9 has the result.

For read accesses, PM-Optane keeps scaling with the thread count but at a lower rate than PM-LDRAM. For non-
cached writes, PM-Optane peaks at four threads and then stops scaling, whereas both PM-LDRAM and PM-Optane
show better scalability.

Observation 4. Our six interleaved Optane DC PMMs’ maximum read bandwidth is 39.4 GB/sec, and their maximum
write bandwidth is 13.9 GB/sec. This experiment utilizes our six interleaved Optane DC PMMs, so accesses are spread
across the devices.

Observation 5. Optane DC reads scale with thread count; whereas writes do not. Optane DC memory bandwidth
scales with thread count, achieving maximum throughput at 17 threads. However, four threads are enough to saturate
Optane DC memory write bandwidth.

Copyright © 2019 the authors.
2019-08-09 7041bc9

20

1 6 11 16 21
Threads

0

25

50

75

100

Ba
nd

wi
dt

h
(G

B/
s)

Read

1 6 11 16 21
Threads

0

20

40

60

80
Write

PM-LDRAM PM-RDRAM PM-Optane

Figure 9: Sequential memory bandwidth with different # threads This graph shows memory performance under
a varying number of threads performing reads (left) or non-temporal stores (right). Note that Optane DC reads scale
well with the number of threads, whereas write bandwidth is saturated with only four threads. Remote DRAM has
an interesting access pattern that peaks around 35 GB/sec due to the bus bandwidth (see data in csvroot/basic/read
bandwidth.csv and csvroot/basic/write bandwidth.csv).

3.2.2 Concurrency and Bandwidth

In this section, we measure Optane DC and DRAM bandwidth for random and sequential reads and writes under
different levels of concurrency. Figure 10 shows the bandwidth achieved at different thread counts for sequential
accesses with 256 B access granularity. We show loads and stores (Write(ntstore)), as well as cached writes
with flushes (Write(clwb)). All experiments use AVX-512 instructions and access the data at 64 B granularity.
The left-most graph plots performance for interleaved DRAM accesses, while the center and right-most graphs plot
performance for non-interleaved and interleaved Optane DC. In the non-interleaved measurements all the accesses go
to a single DIMM.

The data shows that DRAM bandwidth is both significantly higher than Optane DC and scales predictably (and
monotonically) with thread count until it saturates the DRAM’s bandwidth and that bandwidth is mostly independent
of access size.

The results for Optane DC are wildly different. First, for a single DIMM, the maximal read bandwidth is 2.9× of
the maximal write bandwidth (6.6 GB/s and 2.3 GB/s respectively), where DRAM has a smaller gap (1.3×) between
read and write bandwidth.

Second, with the exception of interleaved reads, Optane DC performance is non-monotonic with increasing thread
count. For the non-interleaved (i.e., single-DIMM) cases, performance peaks at between one and four threads and then
tails off. Interleaving pushes the peak to twelve threads for store+clwb.

Copyright © 2019 the authors.
2019-08-09 7041bc9

21

1 6 11 16 21
Threads

0

25

50

75

100
Ba

nd
wi

dt
h

(G
B/

s)
PM-LDRAM

1 6 11 16 21
Threads

2

4

6

PM-Optane (1 PMM)

1 6 11 16 21
Threads

0

10

20

30

PM-Optane (6 PMMs)

Read Write(clwb) Write(ntstore)

Figure 10: Bandwidth vs. thread count An experiment showing maximal bandwidth as thread count increases (from
left to right) on local DRAM, on a single Optane DC PMM, and interleaved Optane DC memory across six Optane
DC PMMs. All threads use a 256 B access size. (Note the difference in vertical scales). (see data in csvroot/basic/
bandwidth dram.csv, csvroot/basic/bandwidth optane 1pmm.csv and csvroot/basic/bandwidth optane 6pmms.csv)

3.2.3 Access Size and Bandwidth

Figure 11 shows how performance varies with access size. The graphs plot aggregate bandwidth for random accesses
of a given size. We use the best-performing thread count for each curve (given as “load thread count/ntstore thread
count/store+clwb thread count” in the figure). Note that the best performing thread count for PM-Optane(Read) varies
with different access sizes for random accesses, where 16 threads show good performance consistently.

Note that Optane DC bandwidth for random accesses under 256 B is poor. This “knee” corresponds to the Optane
DC’s access granularity of 256 bytes. DRAM bandwidth does not exhibit a similar “knee” at 8 kB (the typical DRAM
page size), because the cost of opening a page of DRAM is much lower than accessing a new page of Optane DC.

Interleaving (which spreads accesses across all six DIMMs) adds further complexity: Figure 11(right) measures
bandwidth across six interleaved NVDIMMs as a function of access size. Interleaving improves peak read and write
bandwidth by 5.8× and 5.6×, respectively. These speedups match the number of DIMMs in the system (6) and
highlight the per-DIMM bandwidth limitations of Optane DC. The most striking feature of the graph is a dip in
performance at 4 KB — we believe this dip is an emergent effect caused by contention at the iMC, and it is maximized
when threads perform random accesses close to the interleaving size.

Observation 6. The application-level Optane DC bandwidth is affected by access size. To fully utilize the Optane DC
device bandwidth, 256 byte or larger accesses are preferred.

Copyright © 2019 the authors.
2019-08-09 7041bc9

22

64B 512B 4KB 32KB256KB 2MB
Access Size (byte)

0

25

50

75

100
Ba

nd
wi

dt
h

(G
B/

s)
PM-LDRAM (24/24/24)

64B 512B 4KB 32KB256KB 2MB
Access Size (byte)

0

2

4

6

PM-Optane (1 PMM) (4/1/2)

64B 512B 4KB 32KB256KB 2MB
Access Size (byte)

0

10

20

30

40
PM-Optane (6 PMMs) (16/4/12)

Read Write(ntstore) Write(clwb)

Figure 11: Bandwidth over access size An experiment showing maximal bandwidth over different access
sizes on (from left to right) local DRAM, on a single Optane DC PMM, and interleaved Optane DC mem-
ory across six Optane DC PMMs. Graph titles include the number of threads used in each experiment
(Read/Write(ntstore)/Write(clwb)) (see data in csvroot/basic/bw access size dram.csv, csvroot/basic/
bw access size optane 1pmm.csv and csvroot/basic/bw access size optane 6pmms.csv) .

3.2.4 Bandwidth under Mixed Workloads

This experiment investigates the device’s memory bandwidth under varying patterns of reads and writes. The ex-
periment, using Intel’s MLC tool, measures the bandwidth using multiple threads accessing memory in a sequential
pattern, where each thread is performing one configuration that issues reads, writes or non-temporal writes (writes that
bypass the CPU caches), or a combination of two types of instructions. Figure 12 shows the results.

Mixing reads and writes hurts Optane DC performance more than DRAM. For pure reads and writes (see Sec-
tion 3.2.1), the PM-LDRAM outperforms PM-Optane by 2.90× and 5.72×, and PM-RDRAM achieves 0.87× perfor-
mance to PM-Optane on read and outperforms by 2.39× on write. whereas for mixed workloads, both PM-LDRAM
and PM-RDRAM outperform PM-Optane by a large margin (up to 12.0× and 7.5× respectively).

Observation 7. Optane DC is more affected than DRAM by access patterns. Optane DC memory is vulnerable to
workloads with mixed reads and writes.

Finally, we run a mix of read and write workloads. For each run, we use sixteen total threads and change the
number of read and write threads. Figure 13 shows the result. As expected, PM-Optane shows best result on all-read
scenarios, and performs much better on sequential workloads.

Copyright © 2019 the authors.
2019-08-09 7041bc9

23

1 6 11 16 21
Threads

25

50

75

100
Ba

nd
wi

dt
h

(G
B/

s)
1:1 R/W

1 6 11 16 21
Threads

25

50

75

100
2:1 R/W

1 6 11 16 21
Threads

25

50

75

100
2:1 R/NT Store

PM-LDRAM PM-RDRAM PM-Optane

Figure 12: Sequential memory bandwidth with different # threads for mixed workloads This graph shows memory
performance under a varying number of threads performing (from left to right) reads and writes with 1:1 ratio, reads
and writes with 2:1 ratio, or reads and non-temporal stores with 2:1 ratio (see data in csvroot/basic/mixed bandwidth
1r1w.csv, csvroot/basic/mixed bandwidth 2r1w.csv and csvroot/basic/mixed bandwidth 2r1nt.csv).

All Wr. Wr. Dominant Rd. Dominant All Rd.

50

100

Ba
nd

wi
dt

h
(G

B/
s)

R/NT Sequential

All Wr. Wr. Dominant Rd. Dominant All Rd.
0

25

50

75

R/NT Random

All Wr. Wr. Dominant Rd. Dominant All Rd.
0

50

100

Ba
nd

wi
dt

h
(G

B/
s)

R/RW Sequential

PM-LDRAM PM-RDRAM PM-Optane

All Wr. Wr. Dominant Rd. Dominant All Rd.

25

50

75

R/RW Random

Figure 13: Memory bandwidth with different mix of read and write threads This graph shows how bandwidth
varies under a mix of read and write threads. On the left of each graph, all threads are performing some write
instruction (either a non-temporal store, abbreviated “NT”, or a regular write, abbreviated “W”), whereas on the right
of each graph, all threads are performing reads (see data in csvroot/basic/bandwidth readwrite rw seq.csv, csvroot/
basic/bandwidth readwrite rw rand.csv, csvroot/basic/bandwidth readwrite nt seq.csv and csvroot/basic/bandwidth
readwrite nt rand.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

24

3.2.5 Performance under Load

Our final experiment examines how latency and bandwidth vary under load by gradually increasing the load on the
device. In this test, we use MLC and use 23 threads for loads, and, for non-temporal stores, we use 12 threads. Each
of the worker threads repeatedly accesses memory. Each thread performs memory accesses to cache lines and delays
for a set interval between two accesses. For each delay interval, varying from 0 to 80 µs, we plot the latency and
bandwidth in Figure 14. When the delay time is zero (corresponding to the right side of the graph), the bandwidth is
close to the maximum bandwidth and latency skyrockets as queuing effects dominate. When the delay time is high
enough (80 µs, corresponding to the left side of the graph), the latency is close to the raw, unloaded, latency. The
“knee” in the graph shows the point at which the device is able to maintain steady bandwidth without suffering from
queuing effects. The experimental results show that the Optane DC PMM’s performance deviates significantly from
DRAM. In particular, the Optane DC PMM’s read bandwidth tops out much lower limits than DRAM: 38.9 GB/sec
for Optane DC vs 105.9 GB/sec for DRAM on sequential accesses, and 10.3 GB/sec for Optane DC vs 70.4 GB/sec
for DRAM on random accesses. We observe a similar effect on sequential writes: Optane DC PMM’s write bandwidth
tops out around 11.5 GB/sec while the DRAM achieves 52.3GB/sec when fully loaded.

Observation 8. Optane DC bandwidth is significantly higher (4×) when accessed in a sequential pattern. This result
indicates that Optane DC PMMs contain access to merging logic to merge overlapping memory requests — merged,
sequential, accesses do not pay the write amplification cost associated with the NVDIMM’s 256 byte access size.

Copyright © 2019 the authors.
2019-08-09 7041bc9

25

0 20 40 60 80 100
Bandwidth (GB/s)

200

400

600

La
te

nc
y

(n
s)

Load Sequential

0 10 20 30 40 50 60 70
Bandwidth (GB/s)

200

400

600

Load Random

0 10 20 30 40 50
Bandwidth (GB/s)

100

150

200

250

La
te

nc
y

(n
s)

NT Store Sequential

0 10 20 30 40 50
Bandwidth (GB/s)

100

200

300

400

500

NT Store Random

PM-LDRAM
PM-RDRAM
PM-Optane

Figure 14: Performance under load This experiment shows memory latency and bandwidth under varying load.
The “knee” in the graph occurs when the device begins to suffer from queuing effects and maximum bandwidth is
reached. Note that DRAM memory can support significantly higher bandwidth than Optane DC memory, and that
Optane DC memory is much more sensitive to the access pattern (see data in csvroot/basic/bandwidth loadedlat load
seq.csv, csvroot/basic/bandwidth loadedlat load rand.csv, csvroot/basic/bandwidth loadedlat nt seq.csv and csvroot/
basic/bandwidth loadedlat nt rand.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

26

4 Optane DC as Main Memory
The advent of Intel® Optane™ DC Persistent Memory Modules means that large memory devices are now more
affordable — the memory capacity of a single host has increased, and the unit cost of memory has decreased. By
using Optane DC PMMs, customers can pack larger datasets into main memory than before.

In this section, we explore Optane DC memory’s performance when placed in the role of a large main memory
device, and therefore use system configurations that vary the device underlying the DRAM interface (MM-LDRAM,
MM-Optane-Cached, and MM-Optane-Uncached). Naturally, two questions arise:
1. How does slower Optane DC memory affect application performance?
2. Is the DRAM cache effective at hiding Optane DC’s higher latency and lower bandwidth?

To understand how slower Optane DC memory impacts performance when used as application memory, we run
existing applications on Optane DC without modifying them. These applications generate memory footprints that fit
in both DRAM and Optane DC, and can be found in Sections 4.1 and 4.2. In these tests, Optane DC memory can be
considered to be a larger capacity (but slower) alternative to DRAM. These tests include three standardized benchmark
suites: SPEC CPU 2006 [18], SPEC CPU 2017 [3], and PARSEC [40].

To investigate the effectiveness of using DRAM as a cache for Optane DC memory, we run applications with
workloads that exceed the DRAM capacity of the system. We use two in-memory data stores (Memcached [22] and
Redis [30]), and adjust their workset size to exceed DRAM capacity. These experiments can be found in Sections 4.3
and 4.4

4.1 SPEC CPU 2006 and 2017
SPEC CPU [18, 3] is a popular benchmark suite for measuring CPU performance. We use SPEC CPU to investigate
how Optane DC memory impacts system performance when used as the primary main memory device, since SPEC
CPU exercises both the processor and memory hierarchy. SPEC CPU contains a wide range of benchmarks, and these
benchmarks can be divided into integer and floating point groups, indicating what the majority of their computation
handles. The included benchmarks are different between the 2006 and 2017 versions of SPEC — as such we used both
for our tests. The memory footprint of SPEC CPU workloads varies from several megabytes to several gigabytes [21],
so they easily fit into memory on our test system.

Both SPEC suites include speed and rate variants, called SPECspeed and SPECrate respectively. SPECspeed
tests the system with a single instance of the benchmark (all benchmarks are single threaded). In contrast, SPECrate
measures the system throughput with multiple task copies running as separate processes. SPEC 2006 uses the same
benchmarks for both rate and speed, whereas SPEC 2017 creates different versions of a benchmark for rate and speed
(therefore SPEC 2017 contains four benchmark sub-suites: int speed, int rate, float speed and float rate). For SPECrate,
we use 24 copies of each benchmark to fully occupy all the cores on a single socket. We use the default configuration
throughout all tests.

We report our results in terms of speedup relative to the execution time of the local DRAM configuration (MM-
LDRAM). These results can be found in Figures 16 through 18.

Our SPEC CPU tests demonstrate a number of points. First, in general, DRAM outperforms cached Optane DC
memory, and cached outperforms uncached Optane DC. Second, uncached Optane DC memory is significantly slower
in the rate test as multiple copies of the same workloads in the rate test saturate the memory bandwidth. Third, cached
Optane DC memory is almost as fast as DRAM, which indicates the effectiveness of DRAM cache for relatively small
memory footprints. Finally, certain workloads show better performance on uncached Optane DC memory than DRAM
in the speed test; we are still investigating this result.

Observation 9. The DRAM cache is effective for workloads with small memory footprints. With the Optane DC
PMM cached mode, workloads that fit in DRAM are unaffected by Optane DC memory’s higher latency and lower
throughput.

Copyright © 2019 the authors.
2019-08-09 7041bc9

27

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ee
du

p
vs

. M
M

-L
DR

AM MM-LDRAM
INT Speed

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.libquantum

464.h264ref

471.omnetpp
473.astar

483.xalancbmk
Gmean

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM MM-LDRAM

INT Rate

MM-Optane-Cached MM-Optane-Uncached

(a)

0

200

400

600

Se
co

nd

INT Speed

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.libquantum

464.h264ref

471.omnetpp
473.astar

483.xalancbmk
Gmean

0

2500

5000

7500

10000

12500

Se
co

nd

INT Rate

MM-Optane-Cached MM-LDRAM MM-Optane-Uncached

(b)

Figure 15: SPEC 2006 integer suite This graph shows (a) the speedup relative to MM-LDRAM for the SPEC 2006
integer suite and (b) the execution time. Speed tests run the benchmark single threaded, whereas the rate tests run the
same benchmark on each core in a separate process (24 cores). Note that the rate test maxes out the bandwidth of
uncached Optane DC memory, but the DRAM cache effectively hides this issue (see data in csvroot/spec/spec06 int
rate ratio normalized.csv, csvroot/spec/spec06 int speed ratio normalized.csv, csvroot/spec/spec06 int rate time.csv
and csvroot/spec/spec06 int speed time.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

28

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM MM-LDRAM

FP Speed

10.bwaves
433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD
465.tonto

470.lbm
481.wrf

482.sphinx3
Gmean

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM MM-LDRAM

FP Rate

MM-Optane-Cached MM-Optane-Uncached

(a)

0

500

1000

1500

Se
co

nd

FP Speed

10.bwaves
433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD
465.tonto

470.lbm
481.wrf

482.sphinx3
Gmean

0

5000

10000

15000

Se
co

nd

FP Rate

MM-Optane-Cached MM-LDRAM MM-Optane-Uncached

(b)

Figure 16: SPEC 2006 floating point suite This graph shows (a) the speedup relative to MM-LDRAM for the SPEC
2006 floating point suite and (b) the execution time (see data in csvroot/spec/spec06 fp rate ratio normalized.csv,
csvroot/spec/spec06 fp speed ratio normalized.csv, csvroot/spec/spec06 fp rate time.csv and csvroot/spec/spec06
fp speed time.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

29

600.perlbench_s

602.gcc_s

605.mcf_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

641.leela_s

648.exchange2_s
657.xz_s

Gmean
0.0

0.5

1.0
Sp

ee
du

p
vs

. M
M

-L
DR

AM MM-LDRAM
INT Speed

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

523.xalancbmk_r

525.x264_r

531.deepsjeng_r

541.leela_r

548.exchange2_r
557.xz_r

Gmean
0.0

0.5

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM MM-LDRAM

INT Rate

MM-Optane-Cached MM-Optane-Uncached

(a)

600.perlbench_s

602.gcc_s

605.mcf_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

641.leela_s

648.exchange2_s
657.xz_s

Gmean
0

1000

2000

Se
co

nd

INT Speed

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

523.xalancbmk_r

525.x264_r

531.deepsjeng_r

541.leela_r

548.exchange2_r
557.xz_r

Gmean
0

2000

4000

6000

Se
co

nd

INT Rate

MM-Optane-Cached MM-LDRAM MM-Optane-Uncached

(b)

Figure 17: SPEC 2017 integer suite This graph shows (a) the speedup relative to MM-LDRAM for the
SPEC 2017 integer suite and (b) the execution time (see data in csvroot/spec/spec17 int rate ratio normalized.csv,
csvroot/spec/spec17 int speed ratio normalized.csv, csvroot/spec/spec17 int rate time.csv and csvroot/spec/spec17
int speed time.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

30

603.bwaves_s

607.cactuBSSN_s

619.lbm_s

621.wrf_s

627.cam4_s

628.pop2_s

638.imagick_s

644.nab_s

649.fotonik3d_s

654.roms_s
Gmean

0.0

0.5

1.0
Sp

ee
du

p
vs

. M
M

-L
DR

AM MM-LDRAM
FP Speed

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r
Gmean

0.0

0.5

1.0

Sp
ee

du
p

vs
. M

M
-L

DR
AM MM-LDRAM

FP Rate

MM-Optane-Cached MM-Optane-Uncached

(a)

603.bwaves_s

607.cactuBSSN_s

619.lbm_s

621.wrf_s

627.cam4_s

628.pop2_s

638.imagick_s

644.nab_s

649.fotonik3d_s

654.roms_s
Gmean

0

10

20

Se
co

nd

FP Speed

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r
Gmean

0

5000

10000

15000

Se
co

nd

FP Rate

MM-Optane-Cached MM-LDRAM MM-Optane-Uncached

(b)

Figure 18: SPEC 2017 floating point suite This graph shows (a) the speedup relative to MM-LDRAM for the SPEC
2017 floating point suite and (b) the execution time (see data in csvroot/spec/spec06 int rate ratio normalized.csv,
csvroot/spec/spec17 fp speed ratio normalized.csv, csvroot/spec/spec17 fp rate time.csv and csvroot/spec/spec17
fp speed time.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

31

4.2 PARSEC
PARSEC [40] is a benchmark suite for testing multi-processors. Similar to SPEC, PARSEC tests the CPU and memory
hierarchy of the system, however, unlike SPEC, PARSEC is a multi-threaded benchmark suite. Users can specify the
number of threads, and we scale the thread count from one to sixteen for each benchmark throughout our tests. We
use the largest default input to create the largest possible memory footprint. We tuned the iteration parameter to run
the benchmark for an adequate length of time, but we keep the rest of the configuration set to its default values.

As Figure 19 shows, we only observe performance differences on facesim, fluidanimate, raytrace, freqmine and
x264, because the memory footprints for the rest of the benchmarks can fit into the last level cache on chip. Among
those workloads that display differences, we observe a performance gap between uncached Optane DC memory and
DRAM that increases as the number of threads increases and the Optane DC memory bandwidth gets saturated. In
general, DRAM outperforms the other two memory settings, while cached Optane DC has a close performance to
DRAM, indicating the DRAM cache’s utility for small memory footprints.

Observation 10. Optane DC memory’s lower bandwidth can impact real-world applications. Optane DC memory’s
bandwidth can be saturated with real-world multi-threaded applications, resulting in a performance overhead when
using uncached Optane DC as main memory.

Copyright © 2019 the authors.
2019-08-09 7041bc9

32

1 2 4 8 16

50

100

Se
co

nd
Blackscholes

1 2 4 8 16

50

100

Se
co

nd

Bodytrack
MM-Optane-Cached MM-LDRAM MM-Optane-Uncached

1 2 4 8 16

200

400

600

800

Se
co

nd

Facesim

1 2 4 8 16

100

200

Se
co

nd

Ferret

1 2 4 8 16

500

1000

Se
co

nd

Fluidanimate

1 2 4 8 16

200

400
Se

co
nd

Freqmine

1 2 4 8 16
50

100

150

Se
co

nd

Raytrace

1 2 4 8 16

100

200

300

Se
co

nd

Swaptions

1 2 4 8 16

20

40

60

Se
co

nd

Vips

1 2 4 8 16

20

40

60

80

Se
co

nd

X264

Figure 19: PARSEC These graphs show runtime for the PARSEC benchmark suite run on varying numbers of threads.
Many benchmarks have a memory footprint that fits in the LLC, so they display no difference between the memory
types. (see data in csvroot/parsec/blackscholes.csv, csvroot/parsec/bodytrack.csv, csvroot/parsec/facesim.csv, csvroot/
parsec/ferret.csv, csvroot/parsec/fluidanimate.csv, csvroot/parsec/freqmine.csv, csvroot/parsec/raytrace.csv, csvroot/
parsec/swaptions.csv, csvroot/parsec/vips.csv, and csvroot/parsec/x264.csv.)

Copyright © 2019 the authors.
2019-08-09 7041bc9

33

4.3 Memcached
Memcached [22] is a popular in-memory key-value store used to accelerate web applications. It uses slab allocation
to allocate data and maintains a single hash-table for keys and values. We investigated memcached performance for
both different types of workloads (read or write dominant) and different total data sizes.

In our first experiment, to investigate how read/write performance is impacted by memory type, we run two work-
loads: a GET-dominant (10% SET) workload, and a SET-dominant (50% SET) workload. The key size is set at
128 Byte and the value size is set as 1 KB, and the total memcached object storage memory size is set to 32 GB.
For each run, we start the memcached server with an empty cache. We use the memaslap [1] tool to generate the
workload, and set the thread count to 12 and the concurrency to 144 (each thread can have up to 144 requests pending
at once). Both server and client threads are bound to dedicated cores on the same physical CPU. Figure 20 shows the
throughput among different main memory configurations. This result demonstrates the real-world impact of Optane
DC memory’s asymmetry between reads and writes, since the DRAM cache is effective at hiding read latency, but has
more trouble hiding write latency.

10% SET 50% SET
0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (K

op
/s

)

MM-LDRAM
MM-Optane-Uncached

MM-Optane-Cached

Figure 20: Memcached on read/write workloads This graph shows memcached throughput for different mixes of
operations. Note that the DRAM cache is effective in hiding read latency, but has more trouble hiding write latency (see
data in csvroot/memory/memcached.csv).

In our second experiment, we vary the total size of the memcached object store. We run memcached with the 50%
SET workload as above and adjust the total size of the memcached store (between 32 GB and 768 GB). For each run,
we add a warm-up phase before test execution. The warm-up time and execution time are increased proportionally to
the memcached store size.

Figure 21 shows two types of graphs. The top shows the throughput of the different main memory configurations.
The lower graph, in order to view the effectiveness of the DRAM cache, shows the size ratio between client-requested
accesses (that is, key and value size as reported by memaslap) and the total size of accesses that actually reached Optane
DC memory in MM-Optane-Cached and MM-Optane-Uncached mode using device-level counters on the Optane DC
PMM. Note the machine has 192 GB DRAM on the local socket and another 192 GB on the remote socket, so at
some point the memcached store no longer only fits in the DRAM cache. Due to write amplification, both within the
application and within the Optane DC PMM itself, Optane DC memory may experience more bytes written than total
bytes requested from the client.

Copyright © 2019 the authors.
2019-08-09 7041bc9

34

32 96 160 224 288 352 416 480 544 608 672 736
0

200

400

600

800

Th
ro

ug
hp

ut
 (K

op
/s

)

Throughput

MM-LDRAM
MM-Optane-Uncached

MM-Optane-Cached

32 96 160 224 288 352 416 480 544 608 672 736
Workload Size (GB)

0

2

4

6

8

10

Ac
ce

ss
 ra

tio
 (O

pt
an

eD
C/

Ap
p.

) OptaneDC read/written size vs. Application issued size

Read(Uncached)
Read(Cached)

Write(Uncached)
Write(Cached)

Figure 21: Memcached 50% SET throughput and memory access ratio The upper chart shows memcached
throughput as the total size of the store grows. We ran the experiments 5 times and report the average with error bars
covering the minimal and maximal values of each run. Note that at 288 GB, the store no longer fits only in DRAM. Also
note that the DRAM cache is ineffective at hiding the latency of Optane DC even when the store lies within DRAM ca-
pacity. The lower graph shows the proportion of application memory accesses that actually touch Optane DC memory
in both MM-Optane-Cached and MM-Optane-Uncached mode. (see data in csvroot/memory/memcached cache.csv
and csvroot/memory/memcached ratio.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

35

4.4 Redis
Redis [30] is an in-memory key-value store widely used in website development as a caching layer and for message
queue applications. While Redis usually logs transactions to files, we turned off this capability in order to tests its raw
memory performance. Our Redis experiment uses workloads issuing pure SETs followed by pure GETs. Each key
is an 8-byte integer and each value is 512 bytes, and we run both the server and 12 concurrent clients on the same
machine. As with memcached, for the Optane DC memory modes, we recorded the proportion of memory accesses
that were seen by Optane DC memory versus the combined value size of the requests issued by the client. Figure 22
shows the result (thoughput in the top two graphs, and access ratio below).

In this experiment, MM-Optane-Cached is effective when the workload fits into DRAM. The benefit of the cache
on SET requests decreases as the workload size increases. As with memcached, the DRAM cache can effectively
reduce the data accesses to the actual Optane DC media.

Copyright © 2019 the authors.
2019-08-09 7041bc9

36

32 96 160 224 288 352 416 480 544 608 672 736
0

50

100

150

200

Th
ro

ug
hp

ut
 (K

op
/s

)
GET Throughput

MM-LDRAM
MM-Optane-Uncached

MM-Optane-Cached

32 96 160 224 288 352 416 480 544 608 672 736
0

50

100

150

200

Th
ro

ug
hp

ut
 (K

op
/s

)

SET Throughput

MM-LDRAM
MM-Optane-Uncached

MM-Optane-Cached

32 96 160 224 288 352 416 480 544 608 672 736
Workload Size (GB)

0

2

4

6

8

10

Ac
ce

ss
 ra

tio
 (O

pt
an

eD
C/

Ap
p.

) OptaneDC read/written size vs. Application issued size

Read(Uncached)
Read(Cached)

Write(Uncached)
Write(Cached)

Figure 22: Redis throughput and memory access ratio The upper two charts show Redis throughput as the total size
of the store grows for workloads that are both read-dominant and write-dominant. Note that at 288 GB, the store no
longer fits only in DRAM. The lower graph shows the proportion of application memory accesses that actually touch
Optane DC memory in both MM-Optane-Cached and MM-Optane-Uncached mode. Due to access amplification both
within the application and Optane DC PMM, Optane DC experiences significantly more bytes accessed than total value
size. (see data in csvroot/memory/redis get.csv, csvroot/memory/redis set.csv and csvroot/memory/redis ratio.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

37

5 Optane DC as Persistent Storage
Intel® Optane™ DC Persistent Memory Modules have the potential to profoundly affect the performance of storage
systems. This section explores the performance of Optane DC as a storage technology underlying various file systems.
For this section, we use DRAM as the system memory, and use either memory-based (e.g. Optane DC or DRAM) or
disk-based (e.g. Optane or Flash SSD) storage underneath the file system. These options correspond to the system
configurations PM-LDRAM, PM-RDRAM, PM-Optane, SSD-Optane, and SSD-SATA.

We are interested in answering the following questions about Optane DC memory as storage:
1. How well do existing file systems exploit Optane DC memory’s performance?
2. Do custom file systems for NVMM give better performance than adaptations of block-based file systems?
3. Can using a load/store interface (DAX) interface to persistent memory improve performance?
4. How well do existing methods of emulating NVMM (namely, running the experiment on DRAM) actually work?

We explore the performance of Optane DC memory as a storage device using a number of different benchmarks.
We first investigate basic performance by running raw file operations in Section 5.1, synthetic I/O in Section 5.2,
and emulated application performance in Section 5.3. Next, in Sections 5.4 through 5.10, we explore application
performance with the workloads listed in Table 4.

We evaluate seven file systems and file system configurations with these benchmarks. Each benchmark runs on all
file systems, mounted on the three memory configurations and the two SSD configurations (when compatible).

Ext4 Ext4 is a widely deployed Linux file system. This configuration runs Ext4 in normal (i.e., non-DAX) mode
with its default mount options and page cache. Ext4 only journals its metadata for crash consistency, but not data,
which means a power failure that occurs in the middle of writing a file page can result in a torn page.

Ext4-DJ This mode of Ext4 provides stronger consistency guarantees than its default setting by journaling both
file system metadata and file data updates. It ensures every write() operation is transactional and cannot be torn by
a power failure.

Ext4-DAX Mounting Ext4 with the DAX option bypasses the page cache. Therefore, Ext4-DAX accesses data
directly in memory (that is, on the Optane DC device). It is not compatible with the data journaling feature, so
Ext4-DAX can not provide consistency guarantees for file data writes.

XFS XFS is another popular Linux file system. This configuration uses the file system in its default (i.e., non-DAX)
mode. Similar to Ext4, XFS also uses the page cache and does not provide failure-atomic data writes to files.

XFS-DAX This is the DAX mode for XFS. Similar to Ext4-DAX, this mode does not use the page cache and also
does not provide data consistency guarantees.

NOVA NOVA [37, 38] is a purpose-built NVMM file system. It implements a log-structured metadata and a copy-on-
write mechanism for file data updates to provide crash-consistency guarantees for all metadata and file data operations.
NOVA only operates with Optane DC devices in DAX mode, bypassing the page cache, and consequentially is incom-
patible with block-based devices.

NOVA-Relaxed In this mode, NOVA relaxes its consistency guarantees for file data updates, by allowing in-place
file page writes, to improve write performance for applications that do not require file data consistency for every write.
This mode still guarantees metadata consistency for all file system operations.

5.1 File Operation Latency
We begin by taking basic performance measurements on our file systems. We measure single-threaded system call
latencies for the following file system operations:

• Create: Create a file with open(), and close() it, without writing any file data or calling fsync().
• Append (4K): open() an existing file, write() 4 KB of data to its end, call fsync(), and close() the

file.
• Write (4K): open() an existing file, write() 4 KB of data to the middle, call fsync(), and close() the

file.

Copyright © 2019 the authors.
2019-08-09 7041bc9

38

• Write (512B): open() an existing file, write() 512 bytes of data to the middle, call fsync(), and close()
the file.

• Read (4K): open() an existing file, read() 4 KB of data, and close() the file.

Figure 23 shows the measured operation latencies. Non-DAX file systems (hatched bars) experience the longest la-
tencies on the SATA SSD. Their write performance, however, is the best on the Optane SSD, implying their write()
and fsync() paths are not optimized for memory-type storage.

On DRAM and Optane DC devices, Ext4-DAX and XFS-DAX show better write latency numbers than their non-
DAX counterparts. Purpose-built NOVA and NOVA-Relaxed file systems outperform conventional file systems for
create and append operations. NOVA’s write latency is longer than Ext4-DAX, especially for 512 byte writes, because
NOVA performs page-level copy-on-write for file data consistency. NOVA-Relaxed regains performance by allowing
in-place file data writes.

For memory-type storage devices, Optane DC’s longer latency than DRAM affects all file systems, increasing their
operation latencies by between 3.3% (XFS-DAX) and 156% (NOVA).

DAX-enabled file systems (Ext4-DAX, XFS-DAX, NOVA, and NOVA-Relaxed) all have similar read latency
numbers, and they all increase latency when moving from DRAM to Optane DC. In comparison, read latencies of
non-DAX file systems are less affected because they still leverage the DRAM-based page cache to hide the Optane
DC memory’s latency.

Observation 11. Non-DAX file systems can outperform DAX file systems on Optane DC because non-DAX file systems
benefit from the fast DRAM page cache. For non-DAX systems, the page cache can serve to hide the read latency of
Optane DC memory.

Observation 12. The relatively long latency of Optane DC can amplify small inefficiencies in file system designs.
NOVA’s copy-on-write mechanism for ensuring strong consistency of data writes incurs extra latency overhead.

Copyright © 2019 the authors.
2019-08-09 7041bc9

39

0

5

10

15

20

La
te

nc
y

(u
s)

PM-LDRAM

0

10

20

La
te

nc
y

(u
s)

PM-RDRAM

0

10

20

La
te

nc
y

(u
s)

PM-Optane

0

5

10

15

La
te

nc
y

(u
s)

SSD-Optane

Create Append (4K) Write (4K) Write (512B) Read (4K)
0

10

20

30

La
te

nc
y

(u
s)

SSD-SATA

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed

Figure 23: File operation latency This chart shows average file operation latencies across all storage types and
file systems. Only non-DAX file systems (hatched bars) work with SSD storage devices. Among memory-backed
configurations, PM-Optane has the longest latency numbers, especially for the write paths, indicating that using
DRAM to emulate Optane DC memory overestimates performance. With PM-Optane, non-DAX file systems have
shorter read latencies than DAX file systems because they leverage DRAM through the page cache. (see data
in csvroot/storage/fileops/fileops.ldram.csv, csvroot/storage/fileops/fileops.rdram.csv, csvroot/storage/fileops/fileops.
pm-optane.csv, csvroot/storage/fileops/fileops.ssd-optane.csv, and csvroot/storage/fileops/fileops.ssd-sata.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

40

5.2 FIO Bandwidth
FIO is a versatile storage benchmark tool that can generate synthetic I/O traffic to emulate practical workloads. We
run FIO to measure the bandwidth of basic read/write file operations.

We run FIO v3.11 using the “sync” ioengine with four types of read/write workloads: sequential read, random
read, sequential write, and random write. All workloads use a 512 MB file size per thread and 4 KB read or write size
(“blocksize”). For write workloads, we issue an fsync() after writing every 4 KB file data. Each workload runs for
30 seconds, and the number of threads vary from one to sixteen, with each thread accessing a different file. FIO by
default invalidates a file’s page cache before performing each IO operation, and therefore, for non-DAX file systems
(Ext4, Ext4-DJ, and XFS) their read paths copy data twice: first from the storage media to the page cache, and then
from the page cache to a user buffer. Figure 24 illustrates the FIO bandwidths with different file system and storage
configurations.

Copyright © 2019 the authors.
2019-08-09 7041bc9

41

1 2 4 8 16
0

20

40

60
Ba

nd
wi

dt
h

(G
B/

s)
PM-LDRAM Rnd 4KB Rd

1 2 4 8 16
0

20

40

60
PM-LDRAM Seq 4KB Rd

1 2 4 8 16
0

5

10

15

20

25
PM-LDRAM Rnd 4KB Wr

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed

1 2 4 8 16
0

5

10

15

20

25
PM-LDRAM Seq 4KB Wr

1 2 4 8 16
0

10

20

30

Ba
nd

wi
dt

h
(G

B/
s)

PM-RDRAM Rnd 4KB Rd

1 2 4 8 16
0

10

20

30
PM-RDRAM Seq 4KB Rd

1 2 4 8 16
0

5

10

15
PM-RDRAM Rnd 4KB Wr

1 2 4 8 16
0

5

10

15
PM-RDRAM Seq 4KB Wr

1 2 4 8 16
0

10

20

30

Ba
nd

wi
dt

h
(G

B/
s)

PM-Optane Rnd 4KB Rd

1 2 4 8 16
0

10

20

30
PM-Optane Seq 4KB Rd

1 2 4 8 16
0

2.5

5

7.5

10

12.5
PM-Optane Rnd 4KB Wr

1 2 4 8 16
0

2.5

5

7.5

10

12.5
PM-Optane Seq 4KB Wr

1 2 4 8 16
0

1

2

3

Ba
nd

wi
dt

h
(G

B/
s)

SSD-Optane Rnd 4KB Rd

1 2 4 8 16
0

1

2

3
SSD-Optane Seq 4KB Rd

1 2 4 8 16
0

0.2

0.4

0.6

0.8
SSD-Optane Rnd 4KB Wr

1 2 4 8 16
0

0.2

0.4

0.6

0.8
SSD-Optane Seq 4KB Wr

1 2 4 8 16
Threads

0

0.1

0.2

0.3

0.4

Ba
nd

wi
dt

h
(G

B/
s)

SSD-SATA Rnd 4KB Rd

1 2 4 8 16
Threads

0

0.1

0.2

0.3

0.4
SSD-SATA Seq 4KB Rd

1 2 4 8 16
Threads

0

0.02

0.04

0.06

0.08
SSD-SATA Rnd 4KB Wr

1 2 4 8 16
Threads

0

0.02

0.04

0.06

0.08
SSD-SATA Seq 4KB Wr

Figure 24: FIO 4 KB read and write bandwidth This graph shows the 4 KB read and write throughput of various
file systems as a function of thread count on different kinds of storage. In memory-backed configurations, DAX-
enabled file systems demonstrate better performance than non-DAX ones due to bypassing the page cache. NOVA and
NOVA-Relaxed generally outperform other file systems and scale much better — only these file systems demonstrate
that Optane DC memory has much better performance than SSDs. (see data in csvroot/storage/fio/fio data.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

42

5.3 Filebench
Filebench [33] is a popular storage benchmark suite that mimics the behavior of common storage applications. We ran
four of the predefined workloads, and their properties are summarized in Table 3.

Fileserver Varmail Webproxy Webserver
nfiles 500 K 1 M 1 M 500 K
meandirwidth 20 1 M 1 M 20
meanfilesize 128 K 32 K 32 K 64 K
iosize 16 K 1 M 1 M 1 M
nthreads 50 50 50 50
R/W Ratio 1:2 1:1 5:1 10:1

Table 3: Filebench configurations These configurations are used for the experiments in Figure 25.

1. fileserver emulates the I/O activities of a file server with write-intensive workloads. It performs mixed operations
of creates, deletes, appends, reads, and writes.

2. varmail emulates a mail server that saves each email in a separate file, producing a mix of multi-threaded create-
append-sync, read-append-sync, read, and delete operations.

3. webproxy emulates the I/O activities of a a simple web proxy server. The workload consists of create-write-close,
open-read-close, delete, and proxy log appending operations.

4. webserver emulates a web server with read-intensive workloads, consisting of open-read-close activities on multi-
ple files and log appends.
Figure 25 presents the measured throughput using Filebench workloads. The tested file systems perform similarly

on read-intensive workloads (e.g. webserver), however, NOVA and NOVA-Relaxed outperform others when more
write traffic is involved (e.g. fileserver and varmail). On average, NOVA is faster than other evaluated file systems by
between 1.43× and 3.13×, and NOVA-Relaxed is marginally faster than NOVA. Interestingly, ext4 performs better
on block devices than even DRAM. Investigation of this anomaly suggested inefficiencies in ext4’s byte-granularity
code path are responsible.

Observation 13. Small random writes can result in drastic performance differences between DRAM emulation and
real Optane DC memory. PM-Optane impacts NOVA and NOVA-Relaxedmost with the fileserver workload because
it generates lots of small random writes that consequently cause write amplification on Optane DC PMMs.

Copyright © 2019 the authors.
2019-08-09 7041bc9

43

0

200

400

600

800

Th
ro

ug
hp

ut
 (k

op
s/

s)

Fileserver

0

250

500

750

1000

Th
ro

ug
hp

ut
 (k

op
s/

s)

Varmail

PM-LDRAM
PM-RDRAM
PM-Optane
SSD-Optane
SSD-SATA

0

250

500

750

1000

Th
ro

ug
hp

ut
 (k

op
s/

s)

Webproxy

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

500

1000

Th
ro

ug
hp

ut
 (k

op
s/

s)

Webserver

Figure 25: Filebench throughput This graph shows file system throughput on a series of simulated workloads from
the Filebench suite. In general, file systems perform similarly on read-intensive workloads (webserver), but NOVA
and NOVA-Relaxed outperform other file systems when more write traffic is involved. (see data in csvroot/storage/
filebench/fileserver.csv, csvroot/storage/filebench/varmail.csv, csvroot/storage/filebench/webproxy.csv, and csvroot/
storage/filebench/webserver.csv)

Copyright © 2019 the authors.
2019-08-09 7041bc9

44

5.4 RocksDB
Having taken simple measurements using microbenchmarks and emulated workloads for basic system performance,
we transition to larger scale application workloads; detailed workload descriptions and their runtime arguments can be
found in Table 4.

Application Version Type Benchmark Workload
RocksDB 5.4 Embedded db bench K/V=16B/100B, 10M random SET, 1 thread
Redis 3.2 Client/server redis-benchmark K/V=4B/4B, 1M random MSET, 1 thread
Kyoto Cabinet 1.2.76 Embedded kchashtest K/V=8B/1KB, 1M random SET, 1 thread
MySQL 5.7.21 Client/server TPC-C W10, 1 client for 5 minutes
SQLite 3.19.0 Embedded Mobibench 1M random INSERT, 1 thread
LMDB 0.9.70 Embedded db bench K/V=16B/96B, 10M sequential SET, 1 thread
MongoDB 3.5.13 Client/server YCSB 100k ops of Workload A,B, 1 thread

Table 4: Application configurations These workload configurations are used for experiments in Sections 5.4
through 5.10

RocksDB [16] is a high-performance embedded key-value store, designed by Facebook and inspired by Google’s
LevelDB [13]. RocksDB’s design is centered around the log-structured merge tree (LSM-tree), which is designed for
block-based storage devices, absorbing random writes and converting them to sequential writes to maximize hard disk
bandwidth.

RocksDB is composed of two parts: a memory component and a disk component. The memory component is a
sorted data structure, called the memtable, that resides in DRAM. The memtable absorbs new inserts and provides fast
insertion and searches. When applications write data to an LSM-tree, it is first inserted to the memtable. The memtable
is organized as a skip-list, providing O(log n) inserts and searches. To ensure persistency, RocksDB also appends the
data to a write-ahead logging (WAL) file. The disk component is structured into multiple layers with increasing sizes.
Each level contains multiple sorted files, called the sorted sequence table (SSTable). When the memtable is full, it is
flushed to disk and becomes an SSTable in the first layer. When the number of SSTables in a layer exceeds a threshold,
RocksDB merges the SSTables with the next layer’s SSTables that have overlapping key ranges. This compaction
process reduces the number of disk accesses for read operations.

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

50
100
150
200
250
300
350

Th
ro

ug
hp

ut
 (k

op
s/

s)

PM-LDRAM
PM-RDRAM
PM-Optane
SSD-Optane
SSD-SATA

Figure 26: RocksDB throughput This graph shows throughput on a write-dominant workload for the RocksDB
key/value store. The frequent use of syncs in the application means that non-NVMM file systems incur significant
flushing costs and cannot batch updates, whereas the NOVA-type file systems’ fast sync mechanism drastically im-
proves performance (see data in csvroot/storage/app/rocksdb.csv).

RocksDB makes all I/O requests sequential to make the best use of hard disks’ sequential access strength. It

Copyright © 2019 the authors.
2019-08-09 7041bc9

45

supports concurrent writes when the old memtable is flushed to disk, and only performs large writes to the disk
(except for WAL appends). However, WAL appending and sync operations can still impact performance significantly
on NVMM file systems. Using the db bench benchmark, we investigate the SET throughput with 20-byte key size
and 100-byte value size, syncing the database after each SET operation. We illustrate the result in Figure 26. Note that
the frequent use of sync operations in the application significantly hurts the performance of most file systems, though
NOVA-type file systems maintain their performance through the use of an NVM-optimized sync operation.

5.5 Redis

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

25

50

75

100

125

150

Th
ro

ug
pu

t (
ko

ps
/s

)

PM-LDRAM
PM-RDRAM

PM-Optane
SSD-Optane

SSD-SATA

Figure 27: Redis throughput This graph shows throughput on the Redis key-value store using a write-dominant
workload. Like RocksDB, Redis issues frequent sync operations, and consequently the NOVA-type file systems
perform the best (see data in csvroot/storage/app/redis storage.csv).

Redis [30] is an in-memory key-value store widely used in website development as a caching layer and for message
queue applications. Redis uses an “append-only file” (AOF) to log all the write operations to the storage device. At
recovery, it replays the log. The frequency at which Redis flushes the AOF to persistent storage allows the administrator
to trade-off between performance and consistency.

Figure 27 measures Redis’s MSET (multiple sets) benchmark performance where each MSET operation updates
ten key/value pairs (190 bytes). One MSET operation generates a 335 byte log record and appends it to the AOF. Redis
supports three fsync modes - “always”, “everysec”, “no” - for flushing the AOF to the persistent storage. For our
experiment, we chose the “always” fsync policy where fsync is called after every log append. This version of Redis
is “persistent” since it ensures that no data is lost after recovery. We measure this mode to see how the safest version
of Redis performs on different NVMM file systems. We put Redis server and client processes in the same machine for
this experiment, though the processes communicate via TCP. As with RocksDB, the strong consistency requirement
of Redis and its frequent use of syncs results in a performance win for NOVA-type file systems. Interestingly, XFS
performs better on block-based devices than even DRAM. Investigation into this anomaly suggested inefficiencies in
xfs’s byte-granularity code path are responsible and manifest in a few other benchmarks.

5.6 Kyoto Cabinet
Kyoto Cabinet [17] (KC) is a high-performance database library. It stores the database in a single file with database
metadata at the head. Kyoto Cabinet memory maps the metadata region, uses load/store instructions to access and
update it, and calls msync to persist the changes. Kyoto Cabinet uses write-ahead logging to provide failure atomicity
for SET operations.

We measure the throughput for SET operations on Kyoto Cabinet’s HashDB data structure (Figure 28). HashDB
is a hash table implementation where each bucket is the root of the binary search tree. A transaction on HashDB

Copyright © 2019 the authors.
2019-08-09 7041bc9

46

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

20

40

60

80
Th

ro
ug

hp
ut

 (k
op

s/
s)

PM-LDRAM
PM-RDRAM
PM-Optane
SSD-Optane
SSD-SATA

Figure 28: Kyoto Cabinet throughput This graph shows the throughput of Kyoto Cabinet’s HashDB on a write-
dominant workload. As with the RocksDB and Redis experiments, NOVA-Relaxed performs the best due to a fast
sync mechanism (see data in csvroot/storage/app/kc.csv).

first appends an undo log record to the WAL and then updates the target record in place. During commit, it flushes
the updated data using msync and truncates the WAL file to invalidate log records. We use KC’s own benchmark,
kchashtest order, to measure the throughput of HashDB’s with one million random SET transactions, where,
for each transaction, the key size is 8 bytes, and the value size is 1024 bytes. By default, each transaction is not
persisted (i.e., not fsync’d) during commit, so we modified the benchmark such that every transaction persists at its
end. In these experiments, we uncovered a performance issue when msync is used on transparent huge pages with
DAX-file systems; performance dropped over 90%. Switching off huge pages fixed the issue — DAX file systems for
this benchmark are reported with huge pages turned off and we are continuing to investigate the bug.

5.7 MySQL

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Th
ro

ug
hp

ut
 (k

op
s/

s)

PM-LDRAM
PM-RDRAM

PM-Optane
SSD-Optane

SSD-SATA

Figure 29: MySQL running TPC-C This experiment demonstrates the popular MySQL’s performance on the TPC-
C benchmark. Note that performance across memory types remains surprisingly stable due to MySQL’s aggressive
use of a buffer pool and checkpointing mechanism that avoid putting the file system on the critical path as much as
possible (see data in csvroot/storage/app/mysql.csv).

We further evaluate the throughput of databases on Optane DC with MySQL [28], a widely-used relational

Copyright © 2019 the authors.
2019-08-09 7041bc9

47

database. We measure the throughput of MySQL with TPC-C [26], a workload representative of online transaction
processing (OLTP). We use ten warehouses, and each run takes five minutes. Figure 29 shows the MySQL throughput.
As MySQL’s default settings include aggressive use of the buffer pool and also a checkpointing mechanism to avoid
writing to persistence regularly and to hide access latency, performance remains surprisingly stable across file systems
and storage device.

5.8 SQLite
SQLite [31] is a lightweight embedded relational database that is popular in mobile systems. SQLite stores data in
a B+tree contained in a single file. To ensure consistency, SQLite can use several mechanisms to log updates. We
configure it to use write-ahead, redo logging (WAL) since our measurements show it provides the best performance.

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

10

20

30

40

Th
ro

ug
hp

ut
 (k

op
s/

s)

PM-LDRAM
PM-RDRAM
PM-Optane
SSD-Optane
SSD-SATA

Figure 30: SQLite throughput This graph shows SQLite throughput on a write-dominant workload.
NOVA-Relaxed’s optimization to allow in-place data updates to a file give it a significant performance boost on
this benchmark, since all accesses modify a single B+tree contained in a single file (see data in csvroot/storage/app/
sqlite.csv).

We use Mobibench [20] to test the SET performance of SQLite in WAL mode. The workload inserts 100 byte
values into a single table with one thread. Figure 30 shows the result. NOVA-Relaxed performs the best on this
benchmark and significantly improves over regular NOVA. This difference, which can be attributed solely to the in-
place update optimization, is significant in SQLite due to its randomly distributed writes to a B+tree contained in a
single file.

5.9 LMDB
Lightning Memory-Mapped Database Manager (LMDB) [32] is a Btree-based, lightweight database management
library. LMDB memory-maps the entire database so that all data accesses directly load and store the mapped memory
region. LMDB performs copy-on-write on data pages to provide atomicity, a technique that requires frequent msync
calls.

We measure the throughput of sequential SET operations using LevelDB’s db bench benchmark. Each SET
operation is synchronous and consists of 16-byte key and 96-byte value. Figure 31 shows the result.

Copyright © 2019 the authors.
2019-08-09 7041bc9

48

XFS XFS-DAX Ext4 Ext4-DJ Ext4-DAX NOVA NOVA-Relaxed
0

20

40

60

80

100

120
Th

ro
ug

hp
ut

 (k
op

s/
s)

PM-LDRAM
PM-RDRAM
PM-Optane

SSD-Optane
SSD-SATA

Figure 31: LMDB throughput This graph shows the throughput of the LMDB key-value store on a write-dominant
workload that accesses keys sequentially (see data in csvroot/storage/app/lmdb.csv).

5.10 MongoDB
MongoDB is an open-source, NoSQL, document-oriented database program [24]. It supports pluggable storage en-
gines, which are components of the database that manage storage and retrieval of data for both memory and storage. In
this section, we use MongoDB 3.5.13 with its default storage engine, WiredTiger (WT). The WT engine maintains data
in memory, journals updates to the database to ensure immediate persistence of committed transactions, and creates
periodic checkpoints of the in-memory data [23].

We use the Yahoo Cloud Serving Benchmark (YCSB [7]) to evaluate the performance of MongoDB using its
default engine. YCSB allows running a write-dominant (YCSB-A with 50% reads and 50% updates) and a read-
dominant (YCSB-B with 95% reads and 5% updates) workload against MongoDB through a user-level client that
interacts with the MongoDB server via TCP/IP. We have configured YCSB to populate the database with 100 K entries
(26 byte keys and 1024 byte values) prior to executing 100 K operations (based on the workload characteristics) against
the database.

We run both server (MongoDB) and client (YCSB) processes on the same socket and report the single threaded
throughput for YCSB-A and YCSB-B workloads. Figure 32 shows the result.

Observation 14. Applications generally perform slower on real Optane DC than on emulated persistent memory,
and the gap grows when the file system is fast. This result is expected given the latency differences observed in the
previous sections.

Observation 15. Block-oriented file systems are not necessarily slower than their DAX counterparts in real-world
application benchmarks, especially on read-oriented workloads. This result seems to indicate the importance of
using the DRAM page cache for boosting application performance.

Observation 16. Native NVMM file systems (NOVA, NOVA-Relaxed) generally provide better performance than
adapted file systems throughout all applications we studied, especially those that use frequent sync operations. Al-
though this trend might not be the case for other types of applications or workloads, our result highlights the value of
native NVMM file systems and efficient sync mechanisms.

Copyright © 2019 the authors.
2019-08-09 7041bc9

49

XF
S

XF
S-

DA
X

Ex
t4

Ex
t4

-D
J

Ex
t4

-D
AX

NO
VA

NO
VA

-R
el

ax
ed

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (k

op
s/

s)

(a) YCSB A

PM-LDRAM PM-RDRAM PM-Optane SSD-Optane SSD-SATA

XF
S

XF
S-

DA
X

Ex
t4

Ex
t4

-D
J

Ex
t4

-D
AX

NO
VA

NO
VA

-R
el

ax
ed

0

2

4

6

8

10
(b) YCSB B

Figure 32: MongoDB throughput with YCSB workloads This graph shows the single threaded throughput of Mon-
goDB on a write-dominant workload (YCSB-A) in (a) and on a read-dominant workload (YCSB-B) in (b) (see data
in csvroot/storage/app/mongodb a.csv and csvroot/storage/app/mongodb b.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

50

6 Optane DC as Persistent Memory
While the Intel® Optane™ DC Persistent Memory Module can be used as either a memory or storage device, perhaps
the most interesting, and novel, use case is when it is both; that is, when it is a persistent memory device. In this
role, Optane DC memory provides user space applications with direct access to persistent storage using a load/store
interface. User space applications that desire persistent memory access can mmap a file into their virtual address
space. The application can then use simple loads and stores to access persistent data, and use cache line flushes to
ensure that writes leave the caches and become persistent on Optane DC memory. In this section, we investigate the
performance of software designed to access persistent memory from user space, without the need for an intervening
file system. Like the previous section on storage, we again expose the memory as a pmem device, and use the relevant
configurations (PM-LDRAM, PM-RDRAM, and PM-Optane).

6.1 Redis-PMEM
Our first persistent memory application is a modified version of Redis [30] (seen previously in Sections 4.4 and 5.5).
We used a forked repository of Redis 3.2 [11] that uses PMDKs libpmemobj [9] for ensuring that its state is persistent
(and no longer uses a logging file, as was done previously in Section 5.5). As with Section 5.5, we use the redis-
benchmark executable to measure the throughput. In order to compare the results side-by-side, we used the same
configuration as the Section 5.5: 4B for both key and value, 12 clients generated by a single thread, and a million
random MSET operations.

storage pmem
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (k

op
s/

s)

PM-LDRAM PM-RDRAM PM-Optane

Figure 33: Redis throughput on file systems or user-level persistence This result compares Redis logging on an
NVMM-aware file system (NOVA-Relaxed) on the left to a persistent memory-aware version of Redis using Intel’s
PMDK library to ensure that its state is persistent in user-space. Notably, the PMDK version on the right has better
performance, indicating the utility of user-space persistence that bypasses the file system (see data in csvroot/pmem/
redis pmem.csv).

Figure 33 shows Redis’s throughput with two potential usages of the Optane DC PMM. The left set of bars are
a direct copy from section 5.5, where Redis used a backing file on the NOVA-Relaxed file system to ensure data
persistence. The right set is the PMDK version of Redis when using Optane DC as user-space persistent memory.
Interestingly, the PMDK version of Redis outperforms the file-backed Redis, even when the file-backed Redis is run
on an NVMM-aware file system. This result indicates that custom user-space persistent libraries are likely to be
useful for performant applications, and in order for programmers to capture the promise of fast NVMM persistence,
application level changes may be required.

6.2 RocksDB-PMEM
Our next persistent memory application is a modified version of RocksDB. Since the volatile memtable data structure
in RocksDB contains the same information as the write-ahead log (WAL) file, we can eliminate the latter by making
the former a persistent data structure, thereby making RocksDB an NVMM-aware user space application. Among
the several data structures that RocksDB supports, we modified the default skip-list implementation and made it
crash-consistent in NVMM using PMDK’s libpmem library [9]. In our RocksDB experiment, we used the same

Copyright © 2019 the authors.
2019-08-09 7041bc9

51

benchmark as in Section 5.4 and compare to the best results that used the write-ahead log file (NOVA-Relaxed for
this benchmark). Figure 34 shows the throughput of both modes.

storage pmem
0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (k

op
s/

s)

PM-LDRAM
PM-RDRAM
PM-Optane

Figure 34: RocksDB throughput with persistent skip-list The performance of the persistent memory-aware
RocksDB implementation with a persistent memtable outperforms that of write-ahead-logging, volatile memtable
architecture by a wide margin (see data in csvroot/pmem/rocksdb.csv).

The left set of bars (storage) is the result of volatile memtable backed by WAL using NOVA-Relaxed, and the
right set of bars (pmem) is the result of crash-consistent memtable made persistent in NVMM. As with our Redis results
in Section 6.1, the persistent data structure provides better performance than using both a volatile data structure and
file-backed logging mechanism. Unlike Redis, which has network stack overheads, RocksDB is embedded software,
and, consequently, its achieved gain is much larger (73% on PM-Optane).

6.3 MongoDB-PMEM
Our third persistent memory application is MongoDB. We extend the experiment setup in Section 5.10 to measure the
performance implications of replacing MongoDB’s default storage engine (WT) with Intel’s persistent memory storage
engine for MongoDB (PMem [10]). The PMem engine uses Intel’s PMDK [9] to transactionally manage MongoDB’s
data and to obviate the need to create snapshots and/or journal.

Figure 35 shows the performance impact of using PM-LDRAM, PM-RDRAM, and PM-Optane to store Mon-
goDB’s data using either the default WT storage engine (with a snapshots and journaling) or using the PMem storage
engine. We run both server (MongoDB) and client (YCSB) processes on the same socket and report the single-threaded
throughput for YCSB-A and YCSB-B workloads.

Observation 17. Switching between PM-LDRAM, PM-RDRAM, and PM-Optane does not have a considerable impact
on the performance (i.e., throughput) of running YCSB-A and YCSB-B workloads against MongoDB storage engines.
We believe this observation correlates to the high cost of the client-server communications between the YCSB client
and MongoDB server as well as the software overhead of MongoDB’s query processing engine.

Observation 18. PMem storage engine provides similar performance to MongoDB’s default storage engine
(WiredTiger) for both write-dominant (YCSB A) and read-dominant (YCSB B) workloads.

Copyright © 2019 the authors.
2019-08-09 7041bc9

52

PMem MongoDB+NOVA
0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 (k
op

s/
s)

(a) YCSB A

PMem MongoDB+NOVA
0

2

4

6

8

10

12
(b) YCSB B

PM-LDRAM PM-RDRAM PM-Optane

Figure 35: Measuring the single-threaded throughput of MongoDB using write-dominant (YCSB A) and read-
dominant (YCSB B) workloads in presence of PMem and WiredTiger storage engines. The PMem engine outperforms
MongoDB’s WiredTiger for all configurations (see data in csvroot/pmem/mongodb.csv).

6.4 PMemKV
Intel’s Persistent Memory Key-Value Store (PMemKV [12]) is an NVMM-optimized key-value data-store. It imple-
ments various tree data structures (called “storage engines”) to index programs data and uses the Persistent Memory
Development Kit (PMDK [9]) to manage its persistent data.

We run our evaluation using PMemKV’s benchmark tool to test the two available storage engines: kvtree2 and
btree. The kvtree2 engine adopts PMDK to implement a B+Tree similar to NV-Tree [39], where only the leaf nodes
are persistent and the internal nodes are reconstructed after a restart. The btree engine employs copy-on-write to
maintain a fully-persistent B+Tree.

Figure 36 reports average latency for five single-threaded runs for each configuration, with each run performing
2 million operations with 20 byte keys and 128 byte values against a 16 GB memory-mapped file backed by NOVA.
Each configuration varies the operation performed: either random insert (fillrandom), sequential insert (fillseq), over-
write, random read (readrandom) and sequential read (readseq) operations.

Observation 19. For sequential reads in applications, Optane DC memory provides comparable latency to DRAM.
In comparison to PM-LDRAM, running PMemKV on PM-Optane increases the latency by 2% to 15% for sequential
read and between 45% and 87% for random read operations.

Observation 20. Optane DC incurs up to 2.05× higher latency for PMemKV write operations in comparison to PM-
LDRAM. This result agrees with the write performance gap between Optane DC memory and DRAM measured in
Section 3.

Copyright © 2019 the authors.
2019-08-09 7041bc9

53

fillr
an

do
m-bt

ree

fillr
an

do
m-kv

tre
e2

fills
eq

-bt
ree

fills
eq

-kv
tre

e2

ov
erw

rite
-bt

ree

ov
erw

rite
-kv

tre
e2

rea
dra

nd
om

-bt
ree

rea
dra

nd
om

-kv
tre

e2

rea
dse

q-b
tre

e

rea
dse

q-k
vtr

ee
2

0

1

2

3

4

5

6

7
Av

er
ag

e
la

te
nc

y
(

s)
PM-LDRAM
PM-RDRAM
PM-Optane

Figure 36: Implications of Optane DC on Intel’s PMemKV performance: We report average latency of performing
random insert, sequential insert, random read, sequential read and overwrite operations against PMemKV’s storage
engines (btree and kvtree2). Compared to PM-LDRAM, running PMemKV on PM-Optane shows similar latency for
sequential read but up to 2.05× higher latency for write operations (see data in csvroot/pmem/pmemkv.csv).

6.5 WHISPER
The Wisconsin-HPL Suite for Persistence (WHISPER [25]) is a benchmark suite for non-volatile main memories.
It provides an interface to run a set of micro and macro benchmarks against a particular NVMM setup (e.g., PM-
LDRAM, PM-RDRAM, and PM-Optane) and reports the total execution time of each benchmark. WHISPER also
provides a knob to configure the size of the workloads to be small, medium, or large — we use the large configuration
in our test. Figure 37 reports the execution time of running each benchmark normalized to its PM-LDRAM execution
time as well as the average for all benchmarks.

Observation 21. In comparison to PM-LDRAM, PM-Optane increases execution time of WHISPER benchmarks by
an average of 24%. This is an expected outcome due to the performance gap between Optane DC memory and DRAM.

Observation 22. The performance difference between PM-Optane and PM-LDRAM is greatest for persistent data
structures and lowest for client-server applications. We observe that the portion of persistent memory accesses of
each benchmark correlates to the gap between its PM-LDRAM and PM-Optane execution times.

Copyright © 2019 the authors.
2019-08-09 7041bc9

54

ycsb tpcc echo ctree hashmap redis vacation average
0.00

0.25

0.50

0.75

1.00

1.25

1.50
No

rm
al

ize
d

ex
ec

ut
io

n
tim

e PM-LDRAM PM-RDRAM PM-Optane

Figure 37: Using WHISPER to measure the impact of Optane DC on the performance of applications. In
comparison to PM-LDRAM, PM-Optane and PM-RDRAM increase the execution time of WHISPER benchmarks by
an average of 24% and 7%, respectively (see data in csvroot/pmem/whisper.csv).

6.6 Summary
In summary, we offer a global look at applications run across all different devices, file systems, and with user-space
persistence (Figure 38). This graph demonstrates not only the wide range of options for providing persistent storage,
but also the benefits of deeply integrating Optane DC memory into the system stack. As we accelerate the storage
media and remove software overheads on the critical path to persistence, real-world applications get significantly
faster. This figure represents the storage outlook of the near future as we migrate from old devices and interfaces onto
a far flatter and faster storage stack.

SQLite Kyoto Cabinet LMDB RocksDB Redis0
5

10
15
20
25
30
35
40

No
rm

al
ize

d
Op

s/
Se

c

Ext4 SSD-SATA
Ext4-DJ SSD-SATA
XFS SSD-SATA

Ext4 SSD-Optane
Ext4-DJ SSD-Optane
XFS SSD-Optane

Ext4 PM-Optane
Ext4-DJ PM-Optane
XFS PM-Optane

Ext4-DAX PM-Optane
XFS-DAX PM-Optane
NOVA PM-Optane

NOVA-Relaxed PM-Optane
Mapped PM-Optane

MySQL MongoDB0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.051 75 129

Figure 38: Application throughput on Optane DC and SSDs These data show the impact of more aggressively
integrating Optane DC into the storage system. Replacing flash memory with Optane DC in the SSD gives a significant
boost, but for most applications deeper integration with hardware (e.g., putting the Optane DC on a DIMM rather than
an SSD) and software (e.g., using an PMEM-optimized file system or rewriting the application to use memory-mapped
Optane DC) yields the highest performance (see data in csvroot/storage/app/summary 1 full.csv and csvroot/storage/
app/summary 2 full.csv).

Copyright © 2019 the authors.
2019-08-09 7041bc9

55

Observation 23. Performance improves as Optane DC memory becomes more integrated into the storage stack.
The major performance difference between Optane DC memory and previous storage media means that software
modifications at the application level may reap significant performance benefits.

Copyright © 2019 the authors.
2019-08-09 7041bc9

56

7 Conclusion
This paper has provided a large sampling of performance experiments on Intel’s new Intel® Optane™ DC Persistent
Memory Module. These experiments confirm that the Optane DC PMM creates a new tier of memory technology that
lies between DRAM and storage, and that its performance properties are significantly different from any medium that
is currently deployed.

Our experiments, though early, were able to come to some conclusions. Optane DC memory, when used in
cached mode, provides comparable performance to DRAM for many of the real world applications we explored and
can greatly increase the total amount of memory available on the system. Furthermore, Optane DC memory provides
significantly faster access times than hard drives or SSDs and seem well positioned to provide a new layer in the storage
hierarchy when used in an uncached mode. For many real-world storage applications, using Optane DC memory and
an NVMM-aware file system will drastically accelerate performance. Additionally, user-space applications that are
NVMM-aware can achieve even greater performance benefits, particularly when software overheads are already low.
That said, it appears that previous research exploring persistent memory software systems have been overly optimistic
in assuming that Optane DC memory will have comparable performance to DRAM (both local and remote), and further
work remains to be done in adapting these new designs to real Optane DC memory.

In closing, we hope that the data presented here will be useful to other researchers exploring these new memory
devices. Compared to what we now know about other memory technologies, this report is only the beginning. We
believe important questions remain both unasked and unanswered, and that future work is necessary to complete our
understanding.

Copyright © 2019 the authors.
2019-08-09 7041bc9

57

References
[1] Brian Aker. memaslap - Load testing and benchmarking a server. http://docs.libmemcached.org/bin/memaslap.

html.
[2] Bill Bridge. NVM Support for C Applications, 2015. Available at http://www.snia.org/sites/default/files/

BillBridgeNVMSummit2015Slides.pdf.
[3] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-generation compute bench-

mark. In Companion of the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE ’18,
pages 41–42, New York, NY, USA, 2018. ACM.

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging Locks for Non-volatile Mem-
ory Consistency. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 433–452, New York, NY, USA, 2014. ACM.

[5] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven
Swanson. NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation, Non-volatile Memories.
In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’11, pages 105–118, New York, NY, USA, 2011. ACM.

[6] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick
Coetzee. Better I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pages 133–146, New York, NY, USA, 2009. ACM.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM.

[8] Intel Corporation. Intel Memory Latency Checker v3.5. Available at https://software.intel.com/en-us/articles/
intelr-memory-latency-checker.

[9] Intel Corporation. Persistent Memory Development Kit. Available at http://pmem.io/pmdk/.
[10] Intel Corporation. Persistent Memory Storage Engine for MongoDB. Available at https://github.com/pmem/

pmse.
[11] Intel Corporation. pmem-redis. Available at https://github.com/pmem/redis.
[12] Intel Corporation. pmemkv. Available at https://github.com/pmem/pmemkv.
[13] Jeffrey Dean and Sanjay Ghemawat. LevelDB. https://github.com/google/leveldb.
[14] Z. Duan, H. Liu, X. Liao, and H. Jin. Hme: A lightweight emulator for hybrid memory. In 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1375–1380, March 2018.
[15] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System Software for Persistent Memory. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[16] Facebook. RocksDB, 2017. http://rocksdb.org.
[17] FAL Labs. Kyoto Cabinet: a straightforward implementation of DBM, 2010. http://fallabs.com/kyotocabinet/.
[18] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit. News, 34(4):1–17, Septem-

ber 2006.
[19] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory updates via JUSTDO

logging. In Proceedings of the 21st International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XXI, pages 427–442, New York, NY, USA, April 2016. ACM.

[20] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and Youjip Won. AndroStep: Android Storage
Performance Analysis Tool. In Software Engineering (Workshops), volume 13, pages 327–340, 2013.

[21] Ankur Limaye and Tosiron Adegbija. A workload characterization of the spec cpu2017 benchmark suite. In
Performance Analysis of Systems and Software (ISPASS), 2018 IEEE International Symposium on, pages 149–
158. IEEE, 2018.

[22] Memcached. http://memcached.org/.
[23] MongoDB, Inc. WiredTiger Storage Engine. Available at https://docs.mongodb.com/manual/core/wiredtiger.
[24] MongoDB, Inc. MongoDB, 2017. https://www.mongodb.com.
[25] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly Keeton. An Analysis

of Persistent Memory Use with WHISPER. In Proceedings of the Twenty-Second International Conference on

Copyright © 2019 the authors.
2019-08-09 7041bc9

58

http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://pmem.io/pmdk/
https://github.com/pmem/pmse
https://github.com/pmem/pmse
https://github.com/pmem/redis
https://github.com/pmem/pmemkv
https://github.com/google/leveldb
http://rocksdb.org
http://fallabs.com/kyotocabinet/
https://docs.mongodb.com/manual/core/wiredtiger
https://www.mongodb.com

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’17, pages 135–148, New
York, NY, USA, 2017. ACM.

[26] Raghunath Nambiar, Meikel Poess, Andrew Masland, H. Reza Taheri, Andrew Bond, Forrest Carman, and
Michael Majdalany. Tpc state of the council 2013. In Revised Selected Papers of the 5th TPC Technology
Conference on Performance Characterization and Benchmarking - Volume 8391, pages 1–15, Berlin, Heidel-
berg, 2014. Springer-Verlag.

[27] Intel Newsroom. Details and Mitigation Information for L1 Terminal Fault.
[28] Oracle Corporation. MySQL. https://www.mysql.com/.
[29] pmem.io. Persistent Memory Development Kit, 2017. http://pmem.io/pmdk.
[30] redislabs. Redis, 2017. https://redis.io.
[31] SQLite. SQLite, 2017. https://www.sqlite.org.
[32] Symas. Lightning Memory-Mapped Database (LMDB), 2017. https://symas.com/lmdb/.
[33] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible framework for file system benchmarking.

USENIX; login, 41, 2016.
[34] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan Varadarajan, Prashant Saxena, and

Michael M. Swift. Aerie: Flexible File-system Interfaces to Storage-class Memory. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14, pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[35] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight Persistent Memory. In ASPLOS
’11: Proceeding of the 16th International Conference on Architectural Support for Programming Languages and
Operating Systems, New York, NY, USA, 2011. ACM.

[36] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A File System for Storage Class Memory. In Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[37] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories. In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages 323–338, Santa
Clara, CA, February 2016. USENIX Association.

[38] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, pages 478–496, New York,
NY, USA, 2017. ACM.

[39] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He. Nv-tree: Re-
ducing consistency cost for nvm-based single level systems. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 167–181, Santa Clara, CA, 2015. USENIX Association.

[40] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. Parsec3.0: A multicore benchmark suite with
network stacks and splash-2x. SIGARCH Comput. Archit. News, 44(5):1–16, February 2017.

Copyright © 2019 the authors.
2019-08-09 7041bc9

59

https://www.mysql.com/
http://pmem.io/pmdk
https://redis.io
https://www.sqlite.org
https://symas.com/lmdb/

A Observations
Observation 1. The read latency of random Optane DC memory loads is 305 ns This latency is about 3× slower than
local DRAM.

Observation 2. Optane DC memory latency is significantly better (2×) when accessed in a sequential pattern. This
result indicates that Optane DC PMMs merge adjacent requests into a single 256 byte access.

Observation 3. For small accesses, clflushopt and clwb give better performance than clflush or non-
temporal stores. This result demonstrates the utility of ISA modifications in support of persistent memory.

Observation 4. Our six interleaved Optane DC PMMs’ maximum read bandwidth is 39.4 GB/sec, and their maximum
write bandwidth is 13.9 GB/sec. This experiment utilizes our six interleaved Optane DC PMMs, so accesses are spread
across the devices.

Observation 5. Optane DC reads scale with thread count; whereas writes do not. Optane DC memory bandwidth
scales with thread count, achieving maximum throughput at 17 threads. However, four threads are enough to saturate
Optane DC memory write bandwidth.

Observation 6. The application-level Optane DC bandwidth is affected by access size. To fully utilize the Optane DC
device bandwidth, 256 byte or larger accesses are preferred.

Observation 7. Optane DC is more affected than DRAM by access patterns. Optane DC memory is vulnerable to
workloads with mixed reads and writes.

Observation 8. Optane DC bandwidth is significantly higher (4×) when accessed in a sequential pattern. This result
indicates that Optane DC PMMs contain access to merging logic to merge overlapping memory requests — merged,
sequential, accesses do not pay the write amplification cost associated with the NVDIMM’s 256 byte access size.

Observation 9. The DRAM cache is effective for workloads with small memory footprints. With the Optane DC
PMM cached mode, workloads that fit in DRAM are unaffected by Optane DC memory’s higher latency and lower
throughput.

Observation 10. Optane DC memory’s lower bandwidth can impact real-world applications. Optane DC memory’s
bandwidth can be saturated with real-world multi-threaded applications, resulting in a performance overhead when
using uncached Optane DC as main memory.

Observation 11. Non-DAX file systems can outperform DAX file systems on Optane DC because non-DAX file systems
benefit from the fast DRAM page cache. For non-DAX systems, the page cache can serve to hide the read latency of
Optane DC memory.

Observation 12. The relatively long latency of Optane DC can amplify small inefficiencies in file system designs.
NOVA’s copy-on-write mechanism for ensuring strong consistency of data writes incurs extra latency overhead.

Observation 13. Small random writes can result in drastic performance differences between DRAM emulation and
real Optane DC memory. PM-Optane impacts NOVA and NOVA-Relaxedmost with the fileserver workload because
it generates lots of small random writes that consequently cause write amplification on Optane DC PMMs.

Observation 14. Applications generally perform slower on real Optane DC than on emulated persistent memory,
and the gap grows when the file system is fast. This result is expected given the latency differences observed in the
previous sections.

Observation 15. Block-oriented file systems are not necessarily slower than their DAX counterparts in real-world
application benchmarks, especially on read-oriented workloads. This result seems to indicate the importance of
using the DRAM page cache for boosting application performance.

Copyright © 2019 the authors.
2019-08-09 7041bc9

60

Observation 16. Native NVMM file systems (NOVA, NOVA-Relaxed) generally provide better performance than
adapted file systems throughout all applications we studied, especially those that use frequent sync operations. Al-
though this trend might not be the case for other types of applications or workloads, our result highlights the value of
native NVMM file systems and efficient sync mechanisms.

Observation 17. Switching between PM-LDRAM, PM-RDRAM, and PM-Optane does not have a considerable impact
on the performance (i.e., throughput) of running YCSB-A and YCSB-B workloads against MongoDB storage engines.
We believe this observation correlates to the high cost of the client-server communications between the YCSB client
and MongoDB server as well as the software overhead of MongoDB’s query processing engine.

Observation 18. PMem storage engine provides similar performance to MongoDB’s default storage engine (WiredTiger)
for both write-dominant (YCSB A) and read-dominant (YCSB B) workloads.

Observation 19. For sequential reads in applications, Optane DC memory provides comparable latency to DRAM.
In comparison to PM-LDRAM, running PMemKV on PM-Optane increases the latency by 2% to 15% for sequential
read and between 45% and 87% for random read operations.

Observation 20. Optane DC incurs up to 2.05× higher latency for PMemKV write operations in comparison to PM-
LDRAM. This result agrees with the write performance gap between Optane DC memory and DRAM measured in
Section 3.

Observation 21. In comparison to PM-LDRAM, PM-Optane increases execution time of WHISPER benchmarks by
an average of 24%. This is an expected outcome due to the performance gap between Optane DC memory and DRAM.

Observation 22. The performance difference between PM-Optane and PM-LDRAM is greatest for persistent data
structures and lowest for client-server applications. We observe that the portion of persistent memory accesses of
each benchmark correlates to the gap between its PM-LDRAM and PM-Optane execution times.

Observation 23. Performance improves as Optane DC memory becomes more integrated into the storage stack.
The major performance difference between Optane DC memory and previous storage media means that software
modifications at the application level may reap significant performance benefits.

Copyright © 2019 the authors.
2019-08-09 7041bc9

61

	1 Introduction
	2 Background and Methodology
	2.1 Optane DC Memory
	2.1.1 Intel's Optane DC PMM
	2.1.2 Operation Modes

	2.2 System Description
	2.3 Configurations
	2.3.1 Memory Configurations
	2.3.2 Persistence Configurations

	3 Basic Performance
	3.1 Latency
	3.1.1 Read Latency
	3.1.2 Memory Instruction Latency

	3.2 Bandwidth
	3.2.1 Maximum Bandwidth
	3.2.2 Concurrency and Bandwidth
	3.2.3 Access Size and Bandwidth
	3.2.4 Bandwidth under Mixed Workloads
	3.2.5 Performance under Load

	4 Optane DC as Main Memory
	4.1 SPEC CPU 2006 and 2017
	4.2 PARSEC
	4.3 Memcached
	4.4 Redis

	5 Optane DC as Persistent Storage
	5.1 File Operation Latency
	5.2 FIO Bandwidth
	5.3 Filebench
	5.4 RocksDB
	5.5 Redis
	5.6 Kyoto Cabinet
	5.7 MySQL
	5.8 SQLite
	5.9 LMDB
	5.10 MongoDB

	6 Optane DC as Persistent Memory
	6.1 Redis-PMEM
	6.2 RocksDB-PMEM
	6.3 MongoDB-PMEM
	6.4 PMemKV
	6.5 WHISPER
	6.6 Summary

	7 Conclusion
	A Observations

