BeOS
CS-450-1: Operating Systems
Fall 2003
Nicole Chung

Brian Hoffman

Robert Robinson

AJ Schuster

Table of Contents

2Table of Contents

3Introduction

3Overview

4Processor Modes

5Allowable Process States

6Memory Management

8Internal Data Structures

8Deadlock

9File Management

10Scheduling

11Threading

11Conclusion

12Bibliography

Introduction

BeOS is essentially an operating system that has run its course: it was written and developed throughout the late 1990s, never widely adopted, and it was discontinued in 2001 when its parent company was bought. Still, more than two years after its apparent “death,” it is still in use, and efforts are being made to “resurrect” it by designing and implementing a working replica of it. How was it consigned to this fate, and what were its state-of-the-art advancing features that prompted such a diehard following?
Overview

Be, Inc. was founded in 1990 by a former Apple executive with the goal of developing a new platform that would “inspire both users and developers.” (“The BeBox Zone – BeBox History” 2003). There were no public releases of hardware or software until 1995, when their proprietary hardware platform, dubbed BeBox, was introduced at Agenda 95, an industry conference. By then, it had already gone through several iterations, first based upon the Hobbit processor built by Eo, then based on PowerPC architecture after Eo was bought out by AT&T.

While Be initially had planned on buying an operating system to run the BeBox platform, they quickly realized that there were none out there at the time that fit their needs (“The BeBox Zone – BeBox History” 2003). Instead, they began work on their own operating system.

Consequently, the operating system for the BeBox platform was written from scratch (not based upon a *NIX, as some believe) and was still unnamed in 1996. That year, Be announced that it would simply be called BeOS. As the prototypes for the BeBox had all been multiprocessor machines to that point, it was specially written to leverage the benefits of such a configuration. As one might expect, it is an entirely multithreaded system written in C++ that allows for the utilization of multiple processors to the extent that is still rarely seen in a general purpose operating system today.

In 1997, Be quit the hardware business and focused instead upon developing BeOS. It was ported to the x86 platform (while the PowerPC version continued to be maintained) and marketed as a replacement to either Windows or MacOS (“Introduction to Be, Inc. and BeOS (1)” 1998). By the end of 1998, Release 4 of BeOS was selling for about US$70 (“Introduction to Be, Inc. and BeOS (2)” 1998). Several years later, in 2000, Be was still struggling for a widespread user base, and made a “Personal Edition” of Release 5 available for free while continuing to sell a “Professional Edition.”

In retrospect, Be Inc.’s fatal flaw was its release of the free Personal Edition, as its only feature limitation was a total partition size of 512MB. In that space, a fully working system could be put together, basically destroying any demand that may have existed for the Professional Edition, Be Inc.’s only real cash source (“yellowTab” 2003). By the time Be realized its mistake, it was too late. Despite making significant advancements in the state-of-the-art with BeOS, Be was bought out by Palm, Inc. in 2001 for only US$11 million.

While BeOS never achieved the widespread following that Be desired, there has long been a dedicated, hardcore base of users that wished to carry on its legacy. yellowTAB has been formed to continue distribution of the Personal Edition, and extend it under the name of Zeta. A similar project under the name of OpenBeOS seeks to recreate BeOS in an open source implementation without use of the original codebase. Meanwhile, BeBits (http://www.bebits.com) continues to make available new drivers and software designed to run on BeOS. While BeOS is “officially” dead as a platform, it seems likely to leave a lasting legacy on, if nothing else, the design of its successor.
Processor Modes

BeOS can be run with either a single processor or multiple processors. BeOS applications don’t know how many processors are in a system the operating system itself controls how to utilize the multiple processors. It supports a high number of processors but the number quoted as being the highest is generally 8 because motherboard manufacturers didn’t really support more than that at the time the specs were written. BeOS can also dynamically support more than one processor meaning you don’t have to recompile just to support another processor.

There are two processor modes in BeOS that are pretty standard. At boot-time, the system starts with the kernel in privileged mode. During user execution, it is switched over to user mode. When interrupts occur, the OS takes over and it is switched back to privileged mode. This is much like the other mainstream operating systems and doesn’t venture too far into unknown territory.

In the BeOS the master/slave idea is implemented in the following ways. The slaves are basically threads that have messaging interfaces while the master is another thread that passes requests as messages to the slave threads. The master is also allowed to use semaphores and locking functions that are available. The BeOS was written from the ground up to include all of these principles and the master/slave idea is implemented fully in the framework.

Allowable Process States

Since BeOS is carried out by concurrently running threads, it was important for the developers of Be to assign different states for threads. There are 6 different thread states: running, ready, receiving, asleep, suspended, and waiting. The running state is when the thread receives attention from the computer. The ready state is when the thread is waiting for its turn to run. The receiving state is when the thread is in a function called “receive_data” call. This function includes which thread sends the information, type, and the actual information. The asleep state is when the thread is in a function called “snooze” call. This function allows the thread to stop for a number of microseconds. The suspended state is when the thread is first created or is suspended. Lastly, the waiting state is when the thread is waiting to get a semaphore.

Memory Management

When developers designed the BeOS, they were not content with merely revising one of the current operating systems on the market. Instead, they decided to build BeOS from the ground up. They realized that by upgrading a current OS, vast quantities of legacy code would be left from the old system that would serve little purpose but to make the development of media based software exceedingly difficult. Since the BeOS was designed to support real-time applications, developers concentrated on designing a system that was responsive and reliable. In order to do so, improvements had to be made in the area of memory management. With the use of dynamically created virtual memory, an object-oriented design, full memory protection, and an unlimited storage capacity, developers created an OS capable of running today’s multimedia software.

The BeOS engineers wanted to make the BeOS as thread intensive as possible. Therefore, it was designed for threads to use virtual (or “area”) memory. Threads are pre-allocated a memory address. However, the address it not mapped to any memory until the thread runs, and after terminating, the thread releases all memory to the system. This gave developers the option of pre-allocating an unlimited number of threads. However, with virtual memory, memory cannot be given back to the system until it is deleted first. This is implemented in C++ with pointers to dynamic memory.

There are several benefits to using virtual memory. Areas can be shared among threads and processes. Different virtual memory addresses can map to the same physical locations (think pointers in C++). Also, the different areas can belong to different applications. This allows applications to share the same data.

In addition to memory sharing, areas can also be locked into RAM memory. Developers had the option of specifying whether physical memory would be locked on a page-by-page basis as pages are swapped in or that it be swapped in and out as needed. These pages can be set to read, write, or read-only access when they are created. This can lock the data without possible corruption by other threads or processes.

Most of BeOS is implemented in C++ with some of its core components implemented in C. By implementing much of the operating system in C++, developers were able to take an object-oriented approach in the design of the architecture. The structure of the BeOS is depicted in Figure 1. Applications must interact with a layer of frameworks and shared libraries in order to access the kernel or the servers. As shown, the servers and kernel communicate with an application programming interface (Software Kits) and not a user interface (Nathan, 5).

[image: image1.png]Applications

5205 Software Fite

B e B |ES
EE BT EL [T

Wisrakemel

araware

Figure 1 – BeOS Architecture <jon@rupture.net>

In addition to virtual memory and an object-oriented design, BeOS also implements full memory protection. In assuring that one thread does not corrupt data for any other threads, semaphores and benaphores were implemented. Semaphores and benaphores restrict access to critical data sections by only permitting single thread access.

The multi-threaded architecture of the BeOS kernel optimized performance for symmetric multi-processing (SMP) systems running BeOS. By designing an operating system in small, discrete parts with the use of multi-threading, jobs could be executed concurrently on several processors. With BeOS, running tasks on a dual processing system as opposed to the same system but with only one processor can save close to half the time. Since an additional processor is much more affordable than an additional computer, such optimization is also important economically (Nathan, 3).

BeOS objects are controlled by threads as in most traditional operating systems. However, developers decided that C++ pointers should not be used for mapping a thread to an object. If a thread is created with a pointer to an object (e.g. a window), and another thread destroys the object, then any thread associated with that object will now have a pointer to memory that has been deleted. Attempts to write or read from the object would result in memory access errors, and this could violently terminate the thread performing the read or write. To deal with the possibility that multiple processes may need access to a shared object, developers created the BLooper class.

A BLooper object acts as an intermediary for which threads and objects communicate. BLooper objects contain a message handler that either dispatch messages to the appropriate handling function or returns a safe token to the sending thread when the object is not available. BLooper searches first for an internal handler, and only returns the safe token after an appropriate handler is not found in the kernel.

Because threads can only process one message at a time, a receiving thread will block if it receives a message while processing another. Developers avoided this situation by implementing ports. A port is a system-wide message repository into which a thread can copy a buffer of data and from which another thread can retrieve the buffer. Ports can store multiple messages from multiple sources, and this repository is implemented as a first-in/first-out (FIFO) message queue.

Previously, contention involving threads sending messages was resolved with the implementation of ports. Developers also considered the contention that occurs when several threads attempt to access object at one time. However, this was resolved with the implementation of semaphores. Semaphores insure data protection by serving as a lock with only one key. Access to a critical data section is restricted to one thread at a time (since there is only one key).
Checking for availability of critical data sections and acquiring a semaphore (key) could take almost 25 milliseconds. Releasing a semaphore could take almost 10 milliseconds. The overhead of this process would add considerably to the execution time of the application. In most cases, the thread spends more time just acquiring the semaphore than executing in the critical data section. Therefore, BeOS developers desiring a faster technique for data protection, decided to implement benaphores.
Benaphores use an atomic variable that acts as a flag indicating how many threads are waiting to access the critical data section. A value of zero of course means that there is no contention. If the thread were to only use the semaphore, it would have
to acquire the semaphore before entering the data section. This would take about 25
Bibliography Note:
“News From the Front: Threads and BLooper Class” provided information ont threads and BLooper objects

“BE ENGINEERING INSIGHTS: Fun with Semaphores” provided information on semaphores and benaphores
milliseconds. However, by checking the atomic variable of the benaphore and entering the critical data section immediately after finding that its value is zero would only take approximately 1.5 milliseconds. By implementing benaphores rather than traditional semaphores, developers were able to make it fifteen times faster for the first thread to enter the critical data section.
Internal Data Structures

The Be operating system uses a variety of internal data structures to carry out functions dealing with process, memory, and file management. Processes are managed by threads. Threads are created by the spawn_thread() function. Once called, the function returns a system-wide thread_id identifying the newly created thread. The function, spawn_thread() is defined:

thread_id spawn_thread (thread_func func,

Const char *name,

Int32 priority,

Void *data)

func is a pointer to the thread function, for searching purposes (find_thread() function), name is a 32 character name identifying the thread, and data is any data that the caller would like to pass to the newly created thread.

Thread creation only pre-allocates a virtual memory address. Thread execution is carried out by the functions, resume_thread() and wait_for_thread(). The function, resume_thread() immediately begins operation of the new thread. Whereas, function, wait_for_thread will cause the new thread to wait until another thread (this thread’s id is passed as an argument to wait_for_thread()) is finished executing before running. Once a thread begins running, execution can be suspended for a specified time interval via the function snooze(time) and suspended indefinitely via suspend_thread(). Thread are terminated by the functions calls, kill_thread(), exit_thread(), and kill_team(). Unlike kill_thread(), exit_thread() returns the terminating thread’s exit status. Terminating an entire team of threads (aka processes) can be done via kill_team().
Bibliography Note:
The Be Book R4 contained information pertaining to data structures

A variety of internal data structures are also used in memory management. Such structures include BLooper objects, semaphores, ports, and images. BLooper objects serve as an message handling interface between objects and threads. Listeners are created by the run(void) command. This immediately spawns a new thread with sole purpose of listening for messages (BMessage objects sent to BLooper) matching one of the internal handlers of BLooper.

In addition to BLooper objects, images are also used in memory management. An image is an dynamically accessed thread that acts as a subprogram. It is similar to functions in C++ since it can be accessed by any application and it serves to eliminate redundant coding. Using an image, the developers were able to spawn an application without having to include the code for it every time the application is used. An image is loaded by calling the load_image() function with an argument specifying the thread_id. The thread_id can then be passed to the resume_thread() or wait_for_thread().

Ports and semaphores are managed as follows. Ports are created with create_port() which is passed the length of the port and the name of the port. This assigns the port to the team of the calling thread, and when the team of the calling thread dies, the port also dies. Ports can be transferred to other teams with the set_port_owner() function and deleted with delete_port(). On the other hand, semaphores are created by create_sem() and destroyed by delete_sem(). If a thread wishes to acquire the semaphore, it calls the acquire_sem() function, passing it the unique id of the semaphore. When the thread has finished executing in the critical data section of code, it makes the semaphore available once again via release_sem().

Several internal data structures used in file management include Bfile and Bdirectory objects. Bdirectory objects are used to view and manipulate directories. Whereas, Bfile objects are used to view and manipulate files.

Deadlock

Deadlock is a major issue when developing an operating system. It can occur when one or more messages are sent to a receiving thread before it has time to receive the previous message. When this occurs, the receiving thread will block until it processes the current thread.

One method to account for this, the developers of BeOS used ports. Ports act as a message queue, and assure that each thread receives any additional messages only after it is finished processing the previously received message. Therefore, by acting as an intermediary between sending and receiving threads, ports eliminate the danger of deadlock.

Another problem associated with deadlock is the manipulation of data by another process during execution. This is where a semaphore is implemented. A semaphore is used to prevent race situations or situations where multiple instructions must execute without interference. It restricts access to the data only one thread at a time by putting a “lock” on the data for protection. This single thread access is called the critical section. The semaphore restricts other threads from changing data until the critical section has executed.

The BeOS developers were not fully satisfied with the semaphore so they developed the Benaphore. The Benaphore helps the problem with the change in the instructions between the times the first and second function is executed; an error in the second function may occur. This method is a combination of an atomic variable and a semaphore. A major benefit of a benaphore versus the semaphore is that the first thread enters the critical section fifteen times faster than the semaphore.

The last problem associated with deadlock is the unknown CPU times of each thread. BeOS developers established priority levels for all threads, which helps to organize the different CPU times within the current running threads. Each thread priority level is entered into the function that the thread will execute.

File Management

The BeOS File System (abbreviated BFS), like the rest of the OS, was written specifically for BeOS. The designers borrowed heavily from the design of the standard UNIX file system, contributing to the widespread misconception that the entire operating system is based on UNIX, but there are some important differences. For one, BFS was one of the earliest desktop file systems to introduce journaling.

Journaling is a method for making data loss less likely in the event of a catastrophic system power event. Many systems without journaling, for example, cache disk writes. Should the system lose power in the time before the disk writes are executed, or as data is being written, data may be lost. While there are methods for dealing with this difficulty (such as fsck on UNIX or scandisk on Windows), it requires a complete (and time-consuming) scan of the entire hard disk. A journaling file system, on the other hand, maintains a complete record of every disk write. The writes are then committed to the disk as an atomic operation, so that no incomplete writes may occur. This is a more processor-intensive method of tracking disk activity than the traditional method, but is significantly more stable, and is also supported in Linux’ EXT3 and ReiserFS, and Microsoft’s NTFS.

Another strength of BFS is its rich metadata model. Unlike the MS convention of three-character filename extensions, information about the contents of a file is stored within the file itself. In fact, much more than just the type of file can be stored: in BeOS, like in some UNIX systems, everything is represented by a file. For example, instead of using a separate application to search through her email, a user may simply run a file system search with a constraint to only search email.
This database-like approach to file system design allowed for other novel advances in file management, as well. Directories may be defined only by a query, and be dynamically updated based on its parameters every time it is accessed. Microsoft is currently pursuing a model like this, where disparate data storage models are unified under a single file system called Longhorn. A “developmental preview” was released recently, but it is still several years away from public release. BeOS has had it for years.
Scheduling

CPU scheduling on the BeOS operating system is a feature that has been outperforming competitors since its inception. Most users of BeOS consider it to be one of the most important parts of this operating system. The creators of BeOS built into their operating system the ability to control scheduling in a way that Mac OS and Windows users only dreamed of. The idea of scheduling is tied in closely to threads. There are two types of threads that scheduler acknowledges: time-sharing and real-time. This distinction is set up when the thread is created with the spawn_thread() function. Each thread is also assigned a priority level 1-120. Levels 1-99 are assigned to time-sharing threads and 100-120 are assigned to real-time threads. The 120 priority level is assigned using the B_REAL_TIME_PRIORITY constant. This level is usually reserved for real time audio and video applications. The CPU scheduler makes sure that real-time threads are executed as soon as the thread is ready to be executed. Time-sharing threads are only executed when there are no real-time threads waiting in the queue. Time-sharing threads are chosen based on their priority level and a logarithmic scale of base 2. So a thread with priority 10 would be 210 or 1024 and a thread with priority 8 would be 256 and therefore a thread with priority of 10 would be four times more likely to execute than the 8 priority thread. A new time-sharing thread is picked to execute every “scheduler quantum” or every 3 milliseconds. Multiple processors work similarly but are a little more complicated. Once again no time-sharing thread keeps a real-time thread from executing. If there are multiple processors then a real-time thread can be executing on the first processor while a time-sharing thread executes on another processor. If another real-time thread wakes up or begins then it blocks the time-sharing thread and executes on the second processor so the time-sharing thread always yields to the real-time thread.
Threading

Threading in BeOS is quite similar to the threading in Linux. Because BeOS is a multi-threaded , multi-tasking operating system, it can run multiple applications concurrently while managing multiple processes within those applications. In BeOS, each thread runs concurrently and asynchronously with the other threads. These threads are grouped into teams, and a team usually defines an application or subprogram. The team starts with a main thread and all threads spawned from that main subsequently become part of the team. Transferring threads from one team to another is not possible. All threads within a team share the same address space which enables the sharing of global variables and other resources.

Threads can be classified as belonging to one of two categories or threads, real-time and time-sharing. Real-time threads take priority over time-sharing threads since they are responsible for carrying out tasks that are time critical. Time-sharing threads must wait until higher priority threads (such as real-time) execute before they can run (“BE ENGINEERING INSIGHTS: The Kernel Scheduler and Real-Time Threads”).

Two types of threads that are usually overlooked include listener and image threads. Listener threads are created for an instance of BLooper, and these threads are responsible with listening for messages that BLooper can handle. Images, on the contrary, act as functions that are accessed dynamically. Images may contain one thread or a team of threads.
Conclusion

The developers of BeOS introduced an operating system capable of running the intensive multimedia applications of today. This multiprocessor system was “designed from the ground up for users who want to blend an assortment of audio, video and graphics data in real time with immediate feedback control” (Jean-Louis Gassee). The fact that after two years of being discontinued various companies are trying to recreate BeOS, shows that BeOS was well designed and will get better in time.

Bibliography

“BE ENGINEERING INSIGHTS: The Kernel Scheduler and Real-Time Threads,”

Cyril Meurillon, Be Newsletter, Issue 37; August 21, 1996.

“BE ENGINEERING INSIGHTS: Fun with Semaphores,” Benoit Schillings, Be Newsletter, Issue 37; April 2, 1997.

“BeOS – Wikipedia.” http://en.wikipedia.org/wiki/BeOS (Visited 2003-12-03).
“BeTimeline.” http://wiki.bebits.com/page/BeTimeline (Visited 2003-12-03)

“Introduction to Be, Inc. and BeOS. (1)” http://www.beatjapan.org/mirror/www.be.com/products/introtobe/oldos.html (Visited 2003-12-03).
“Introduction to Be, Inc. and BeOS. (2)” http://www.beatjapan.org/mirror/www.be.com/products/introtobe/get.html (Visited 2003-12-03).
“Journaling File System – Wikipedia.” http://en.wikipedia.org/wiki/Journaling_filesystem (Visited 2003-12-03).
Kozierok, Charles M. “BeOS File System (BFS).” http://www.pcguide.com/ref/hdd/file/fileBe-c.html (Visited 2003-12-03)
Nathan, Jonathan. “Case Study: The BeOS.” http://www.rupture.net/~join/content/research/beos.html (Visited 2003-11-27)

“News From the Front: Threads and BLooper Class”, William Adams, Be Newsletter, Issue 90, September 10, 1997.

“Operating Systems and File Systems BeOS.” http://www.dewassoc.com/kbase/hard_drives/file_systems_beos.htm (Visited 2003-12-03).
“OpenBeOS Project.” http://www.openbeos.org/ (Visited 2003-12-03).
“OpenBeFS Team Page.” http://www.bug-br.org.br/openbfs/ (Visited 2003-12-03).
The Be Book, R4, “The Kernel Kit”, published by Be, Inc. in Menlo Park, California

http://www.be.com/documentation/be_book/index.html (Visited 2003-11-29).
“The BeBox Zone – BeBox History.” http://www.bebox.nu/history.php (Visited 2003-12-03).
“The BeBox Zone – BeBox Operating Systems.” http://www.bebox.nu/os.php?s=os/beos/index (Visited 2003-12-03)
“yellowTab – New Generation BeOS Solutions.” http://www.yellowtab.com/company/history.php (Visited 2003-12-03).

PAGE
7

