
Best Practices for Vectorization
Getting ready for Intel® Advanced Vector Extensions 512

(Intel® AVX-512)

Manel Fernández

Intel HPC Software Workshop Series 2015

May 6th 2015, Munich

The need for SIMD vectorization
Is the Intel® Xeon PhiTM coprocessor right for me?

Single thread (ST) performance is
limited in today’s CPUs

• Clock frequency constraints

• Difficult to discover “near” Instruction
level parallelism (ILP) by hardware

More transistors dedicated to
exploit “distant” parallelism

• Task level parallelism (TLP)
• Improves Multi Thread performance (MT)

• Data level parallelism (DLP)
• Improves Single Thread performance (ST)

• Enabled by using SIMD vectors

2
“Is the Intel® Xeon PhiTM coprocessor right for me?”, by Eric Gardner - https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me

Enable Thread Level
Parallelism (TLP) with

threads

Enable Data Level
Parallism (DLP) with

SIMD vectors

Benefit from
more available

bandwidth

https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me

How to enable SIMD vectorization?
Enabling parallelism with Intel® Parallel Studio XE 2015 tool suite

3

Compiler,
libraries, and

parallel
programming

models

Source code
+

annotations
(OpenMP,

MPI,
compiler

directives)

Single programming model for all your code
• Based on standards: OpenMP/MPI, C/C++/Fortran

• Programmers/tools responsibility to expose DLP/TLP parallelism

Exposing TLP/DLP in your application will benefit today and future Intel®
Xeon® processors and Intel® Xeon PhiTM coprocessors

• Including SIMD vectorization on future Intel® AVX-512 products

Single Instruction Multiple Data (SIMD)

Technique for exploiting DLP on a single thread
• Operate on more than one element at a time

• Might decrease instruction counts significantly

Elements are stored on SIMD registers or vectors

Code needs to be vectorized
• Vectorization usually on inner loops

• Main and remainder loops are generated

4

for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

for (int i = 0; i < N; i += 4)

c[i:4] = a[i:4] + b[i:4];

a[i:4]

b[i:4]

c[i:4]

Scalar loop

SIMD loop (4 elements)

AVX-512

AVX2

Advanced Vector eXtensions (AVX)

Streaming SIMD Extensions (SSE*)

Past, present, and future of Intel SIMD types

5

MultiMedia eXtensions (MMX)
Foundation instructions (FI)

Exponential & Reciprocal Instructions (ERI)

Conflict Detection Instructions (CDI)

Prefetch Instructions (PFI)

Byte & Word Instructions (BWI)

Double-/Quad-word Instructions (DQI)

Vector Length Extensions (VLE)

Initial Many Core Instructions (IMCI)

Current Intel® Xeon PhiTM coprocessors (Knights Corner)

Current Intel® Xeon® processors

Future Intel® Xeon
PhiTM coprocessors
(including Knights Landing)

Future Intel® Xeon®
processors

64-bit SIMD

128-bit SIMD

256-bit SIMD

512-bit SIMD

512-bit SIMD

For more information about Intel® AVX-512 instructions, check out James Reinders’ initial and updated post for this topic.

https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Intel® AVX2/IMCI/AVX-512 differences

Intel® Initial Many Core Instructions

IMCI
Intel® Advanced Vector Extensions 2

AVX2
Intel® Advanced Vector Extensions 512

AVX-512
Introduction 2012 2013 2015

Products Knights Corner Haswell, Broadwell
Knights Landing, future Intel® Xeon®

and Xeon® PhiTM products

Register file
SP/DP/int32/int64 data types
32 x 512-bit SIMD registers

8 x 16-bit mask registers

SP/DP/int32/int64 data types
16 x 256-bit SIMD registers

No mask registers (instr. blending)

SP/DP/int32/int64 data types
32 x 512-bit SIMD registers

8 x (up to) 64-bit mask

ISA features

Not compatible with AVX*/SSE*
No unaligned data support

Embedded broadcast/cvt/swizzle
MVEX encoding

Fully compatible with AVX/SSE*
Unaligned data support (penalty)

VEX encoding

Fully compatible with AVX*/SSE*
Unaligned data support (penalty)
Embedded broadcast/rounding

EVEX encoding

Instruction
features

Fused multiply-and-add (FMA)
Partial gather/scatter

Transcendental support

Fused multiply-and-add (FMA)
Full gather

Fused multiply-and-add (FMA)
Full gather/scatter

Transcendental support (ERI only)
Conflict detection instructions
PFI/BWI/DQI/VLE (if applies)

6

Intel® AVX-512 is a major step in unifying the instruction set of Intel® MIC and Intel® Xeon® architecture

Side effects of SIMD vectorization

Observations
• Significant instruction count reduction (up to vector-length)

• IPC decreases, but so does execution time as well

• Usually translated into speedup

• Compute-bound codes turn into memory-bound codes
• If code already was memory bound, no benefits at all (other than energy reduction)

7

float a[1024], b[1024], c[1024];

…

for (int i = 0; i < 1024; i++)

c[i] = a[i] + b[i];

Scalar loop

#Instructions Scalar
AVX2

(256-bit)

IMCI
AVX-512
(512-bit)

Loads (hit) to a[], b[] 960 + 960 64 + 64 0

Loads (miss) to a[], b[] 64 + 64 64 + 64 64 + 64

SP adds 1024 128 64

Stores to c[] 1024 128 64

Total (Reduction) 4096 (x1) 512 (x8) 256 (x16)

Assumptions
• 64-byte cache lines
• 32-byte (AVX2) and 64-byte (IMCI/AVX-512) SIMD registers
• 4-byte SP elements (float)
• No hardware prefetcher, no ld+op instructions
• Arrays are not cached

Vectorization on Intel® compilers

• Compiler knobs
Auto

Vectorization

• Compiler hints/pragmas

• Array notation
Guided

Vectorization

• C/C++ vector classes

• Intrinsics/Assembly
Low level

Vectorization

8

Easy of use

Fine control

Auto vectorization

Relies on the compiler for vectorization
• No source code changes

• Enabled with -vec compiler knob (default in -O2 and -O3 modes)

Compiler smart enough to apply loop transformations
• It will allow to vectorize more loops

9

Option Description

-OO Disables all optimizations.

-O1 Enables optimizations for speed which are know to not cause code size increase.

-O2/-O

(default)
Enables intra-file interprocedural optimizations for speed, including:
• Vectorization
• Loop unrolling

-O3 Performs O2 optimizations and enables more aggressive loop transformations such as:
• Loop fusion
• Block unroll-and-jam
• Collapsing IF statements
This option is recommended for applications that have loops that heavily use floating-point calculations and process
large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Option Description

-mmic Builds an application that runs natively on Intel® MIC Architecture.

-xfeature

-xHost

Tells the compiler which processor features it may target, referring to which instruction sets and
optimizations it may generate (not available for Intel® Xeon PhiTM architecture). Values for feature are:

• COMMON-AVX512 (includes AVX512 FI and CDI instructions)
• MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions)
• CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions)
• CORE-AVX2

• CORE-AVX-I (including RDRND instruction)
• AVX

• SSE4.2, SSE4.1

• ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction)
• SSSE3, SSE3, SSE2

When using -xHost, the compiler will generate instructions for the highest instruction set available on the
compilation host processor.

-axfeature Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if
there is a performance benefit. Values for feature are the same described for -xfeature option. Multiple
features/paths possible, e.g.: -axSSE2,AVX. It also generates a baseline code path for the default case.

Vectorization: target architecture options
On which architecture do we want to run our program?

10

Vectorized code will be different depending on the chosen target architecture

https://software.intel.com/en-us/node/522798#7E3CDA86-D67D-4805-ACFF-1A61125C7C4E
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522846
https://software.intel.com/en-us/node/522823

Auto vectorization: not all loops will vectorize

Data dependencies between iterations
• Proven Read-after-Write data (i.e., loop carried) dependencies
• Assumed data dependencies

• Aggressive optimizations (e.g., IPO) might help

Vectorization won’t be efficient
• Compiler estimates how better the vectorized version will be
• Affected by data alignment, data layout, etc.

Unsupported loop structure
• While-loop, for-loop with unknown number of iterations
• Complex loops, unsupported data types, etc.
• (Some) function calls within loop bodies

• Not the case for SVML functions

11

for (int i = 0; i < N; i++)

a[i] = a[i-1] + b[i];

RaW dependency

for (int i = 0; i < N; i++)

a[c[i]] = b[d[i]];

Inefficient vectorization

for (int i = 0; i < N; i++)

a[i] = foo(b[i]);

Function call within loop body

Auto vectorization on Intel® compilers

12

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

5.0x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sp
ee

d
u

p
 v

s.
 n

o
n

 v
ec

to
ri

ze
d

 v
er

si
o

n
 (h

ig
h

er
 is

 b
et

te
r)

Pe
rc

en
ta

ge
 o

f
al

l c
an

d
id

at
e

lo
o

p
s

at
 c

o
m

p
ile

 t
im

e

Vectorization breakdown for loop candidates in Polyhedron benchmark suite

Vectorized loops (including memset/memcpy) Outer loop not vectorizable (inner loop already was) Vector dependence prevents vectorization

Non-standard, non-canonical, or too complex loop Vectorization possible but seems inefficient Other

Runtime speedup vs. non vectorized version Polyhedron benchmark suite
Intel® Xeon PhiTM 7120A, 61 cores x 4 threads

Intel® Fortran Compiler 15.0.1.14 [-O3 -fp-model fast=2 -align array64byte -ipo -mmic]

http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite

Validating vectorization success

Generate compiler report about optimizations
-qopt-report[=n] Generate report (level [1..5], default 2)

-qopt-report-file=<fname> Optimization report file (stderr, stdout also valid)

-qopt-report-phase=<phase> Info about opt. phase:

13

LOOP BEGIN at gas_dyn2.f90(193,11) inlined into gas_dyn2.f90(4326,31)

remark #15300: LOOP WAS VECTORIZED

remark #15448: unmasked aligned unit stride loads: 1

remark #15450: unmasked unaligned unit stride loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 53

remark #15477: vector loop cost: 14.870

remark #15478: estimated potential speedup: 2.520

remark #15479: lightweight vector operations: 19

remark #15481: heavy-overhead vector operations: 1

remark #15488: --- end vector loop cost summary ---

remark #25456: Number of Array Refs Scalar Replaced In Loop: 1

remark #25015: Estimate of max trip count of loop=4

LOOP END

LOOP BEGIN at gas_dyn2.f90(2346,15)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 354

remark #25015: Estimate of max trip count of loop=3000001

LOOP END

Vectorized loop

Non-vectorized loop

loop Loop nest optimizations
par Auto-parallelization
vec Vectorization
openmp OpenMP
offload Offload
ipo Interprocedural optimizations
pgo Profile Guided optimizations
cg Code generation optimizations
tcollect Trace analyzer (MPI) collection
all All optimizations (default)

Guided vectorization: disambiguation hints
Get rid of assumed vector dependencies

Assume function arguments won’t be aliased
• C/C++: Compile with -fargument-noalias

C99 “restrict” keyword for pointers
• Compile with -restrict otherwise

Ignore assumed vector dependencies (compiler directive)
• C/C++: #pragma ivdep

• Fortran: !dir$ ivdep

14

void v_add(float *c, float *a, float *b)

{

#pragma ivdep

for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

void v_add(float *restrict c,

float *restrict a,

float *restrict b)

{

for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

Some Intel® compiler directives

Directive Description

distribute, distribute_point Instructs the compiler to prefer loop distribution at the location indicated.

inline Instructs the compiler to inline the calls in question.

ivdep Instructs the compiler to ignore assumed vector dependencies.

loop_count Indicates the loop count is likely to be an integer.

optimization_level Enables control of optimization for a specific function.

parallel/noparallel Facilitates auto-parallelization of an immediately following loop; using
keyword always forces the compiler to auto-parallelize; noparallel pragma
prevents auto-parallelization.

[no]unroll Instructs the compiler the number of times to unroll/not to unroll a loop

[no]unroll_and_jam Prevents or instructs the compiler to partially unroll higher loops and jam the
resulting loops back together.

unused Describes variables that are unused (warnings not generated).

[no]vector Specifies whether the loop should be vectorised. In case of forcing
vectorization that should be according to the given clauses.

15

https://software.intel.com/en-us/node/524559

Guided vectorization: #pragma simd

Force loop vectorization ignoring all dependencies
• Additional clauses for specify reductions, etc.

Also supported in OpenMP
• Almost same functionality/syntax

• Use #pragma omp simd [clauses] for SIMD loops

• Use #pragma omp declare simd [clauses] for SIMD functions

• See OpenMP 4.0 specification for more information

16

void v_add(float *c, float *a, float *b)

{

#pragma simd

for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

__declspec(vector)

void v_add(float c, float a, float b)

{

c = a + b;

}

…

for (int i = 0; i < N; i++)

v_add(C[i], A[i], B[i]);

SIMD loop SIMD function

https://software.intel.com/en-us/node/524555
http://openmp.org/wp/openmp-specifications/

Intel® compiler directives for vectorization
Directive Clause Description

vector

always Force vectorization even when it might be not efficient.

[un]aligned Use [un]aligned data movement instructions for all array vector references.

[non]temporal(var1[,…])

Do or do not generate non-temporal (streaming) stores for the given array variables.
On Intel® MIC architecture, generates a cache-line-evict instruction when the store is
known to be aligned.

[no]vecreminder Do (not) vectorize the remainder loop when the mail loop is vectorized.

[no]mask_readwrite
Enables/disables memory speculation causing the generation of [non-]masked loads
and stores within conditions.

simd

vectorlength(n1[,…])

vectorlengthfor(dtype)

Assume safe vectorization for the given vector length values or data type.

private(var1[,…])

firstprivate(var1[,…])

lastprivate(var1[,…])

Which variables are private to each iteration; firstprivate, initial value is broadcasted
to all private instances; lastprivate, last value is copied out from the last instance.

linear(var1:step1[,…])
Letting know the compiler that var1 is incremented by step1 on every iteration of the
original loop.

reduction(oper:var1[,…]) Which variables are reduction variables with a given operator.

[no]assert Warning or error when vectorization fails.

[no]vecremainder Do (not) vectorize the remainder loop when the mail loop is vectorized.

17

Explicit vectorization with array notation

Express high-level vector parallel array operations
• Valid notation in Fortran since Fortran 90

• Supported in C/C++ by Intel® compiler (CilkTM Plus) and GCC 4.9
• Enabled by default on Intel® compiler, use -fcilkplus option on GCC

• No additional modifications to source code

• Most arithmetic and logic operations already overloaded

• Also built-in reducers for array sections

Vectorization becomes explicit
• C/C++ syntax: array-expression[lower-bound:length[:stride]]

18

__declspec(vector)

void v_add(float c, float a, float b)

{

c = a + b;

}

…

v_add(C[:], A[:], B[:]);

SIMD function invoked with array notation

a[:] // All elements

a[2:6] // Elements 2 to 7

a[:][5] // Column 5

a[0:3:2] // Elements 0,2,4

Samples

https://www.cilkplus.org/tutorial-array-notation

Improving vectorization: data layout

Vectorization more efficient with unit strides
• Non-unit strides will generate gather/scatter

• Unit strides also better for data locality

• Compiler might refuse to vectorize

AoS vs SoA
• Layout your data as Structure of Arrays (SoA)

Traverse matrices in the right direction
• C/C++: a[i][:], Fortran: a(:,i)

• Loop interchange might help
• Usually the compiler is smart enough to apply it

• Check compiler optimization report

19

// Structure of Arrays (SoA)

struct coordinate {

float x[N], y[N], z[N];

} crd;

…

for (int i = 0; i < N; i++)

… = … f(crd.x[i], crd.y[i], crd.z[i]);

// Array of Structures (AoS)

struct coordinate {

float x, y, z;

} crd[N];

…

for (int i = 0; i < N; i++)

… = … f(crd[i].x, crd[i],y, crd[i].z);

x0 x1 … x(n-1) y0 y1 … y(n-1) z0 z1 … z(n-1)

x0 y0 z0 x1 y1 z1 … x(n-1) y(n-1) z(n-1)

Consecutive elements in memory

Array of Structures vs Structure of Arrays

Consecutive elements in memory

Improving vectorization: data alignment

Unaligned accesses might cause significant performance degradation
• Two instructions on current Intel® Xeon PhiTM coprocessor

• Might cause “false sharing” problems
• Consumer/producer thread on the same cache line

Alignment is generally unknown at compile time
• Every vector access is potentially an unaligned access

• Vector access size = cache line size (64-byte)

• Compiler might “peel” a few loop iterations
• In general, only one array can be aligned, though

When possible, we have to
• Align our data

• Tell the compiler data is aligned
• Might not be always the case

20

Improving vectorization: data alignment (cont’d)

21

How to… Language Syntax Semantics

…align data

C/C++ void* _mm_malloc(int size, int n)
Allocate memory on heap aligned to n
byte boundary.C/C++

int posix_memalign

(void **p, size_t n, size_t size)

C/C++ __declspec(align(n)) array

Alignment for variable declarations.
Fortran (not in
common section)

!dir$ attributes align:n::array

Fortran
(compiler option)

-alignnbyte

…tell the
compiler
about it

C/C++ #pragma vector aligned Vectorize assuming all array data
accessed are aligned (may cause fault
otherwise).Fortran !dir$ vector aligned

C/C++ __assume_aligned(array, n) Compiler may assume array is aligned to
n byte boundary.Fortran !dir$ assume_aligned array:n

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Padding might be necessary to guarantee aligned access to matrices

Vectorization with multi-version loops

22

LOOP BEGIN at gas_dyn2.f90(2330,26)

<Peeled>

remark #15389: vectorization support: reference AMAC1U has unaligned access

remark #15381: vectorization support: unaligned access used inside loop body

remark #15301: PEEL LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at gas_dyn2.f90(2330,26)

remark #25084: Preprocess Loopnests: Moving Out Store

remark #15388: vectorization support: reference AMAC1U has aligned access

remark #15399: vectorization support: unroll factor set to 2

remark #15300: LOOP WAS VECTORIZED

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 8

remark #15477: vector loop cost: 0.620

remark #15478: estimated potential speedup: 15.890

remark #15479: lightweight vector operations: 5

remark #15488: --- end vector loop cost summary ---

remark #25018: Total number of lines prefetched=4

remark #25019: Number of spatial prefetches=4, dist=8

remark #25021: Number of initial-value prefetches=6

LOOP END

LOOP BEGIN at gas_dyn2.f90(2330,26)

<Remainder>

remark #15388: vectorization support: reference AMAC1U has aligned access

remark #15388: vectorization support: reference AMAC1U has aligned access

remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

Peel loop
Alignment purposes
Might be vectorized

Remainder loop
Remainder iterations
Might be vectorized

Main loop
Vectorized

Unrolled by x2 or x4

Improving vectorization: trip count hints

Vectorization can be seen as aggressive unrolling
• Main loop usually unrolled by x2 or x4

• Peel and remainder loop are vectorized with masks

• If trip count is low, vectorization might not be efficient
• Remainder loop becomes the hotspot

Take a look at remainder loops
• Specify loop trip counts for efficient vectorization

• #pragma loop_count (n1,[n2…])

• #pragma loop_count min(n1), max(n2), avg(n3)

• Consider padding (Intel® Xeon PhiTM only)
• Otherwise, remainder loops using gather/scatter loops

• -qopt-assume-safe-padding to avoid it

23

Peel loop
Alignment purposes
Might be vectorized

Remainder loop
Remainder iterations
Might be vectorized

Main loop
Vectorized

Unrolled by x2 or x4

Other considerations

Loop tiling/blocking to improve data locality
• Square tiles so elements can be reused

Use streaming loads/stores to save bandwidth
• #pragma vector [non]temporal(list)

• -qopt-streaming-stores=[always|never|auto]

• -qopt-streaming-cache-evict[=n] (Intel® MIC only)

Tune software prefetcher
• -qopt-prefetch[=n]

• -qprefetch-distance=n1[,n2] (Intel® MIC only)

• #pragma [no]prefetch [clauses] (Intel® MIC only)

24

Low level (explicit) vectorization
A.k.a “ninja programming”

Vectorization relies
on the programmer
with some help from
the compiler

Might be convenient
for low level
performance tuning
of critical hotspots

Not portable among
different SIMD
architectures

25

SIMD C++ class Intrinsics Assembly

#include <fvec.h>

F32vec4 a,b,c;

a = b +c;

#include <xmmintrin.h>

__m128 a,b,c;

a = _mm_add_ps(b,c);

__m128 a,b,c;

__asm {

movaps xmm0,b

movaps xmm1,c

addps xmm0,xmm1

movaps a, xmm0

}

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

How to get ready for Intel® AVX-512?

BKM: Start optimizing your application today for current generation of
Intel® Xeon® processors and Intel® XeonTM Phi coprocessors

Tune your AVX-512 kernels on non-existing silicon
• Compile with latest compiler toolchains

• Intel® compiler (v15.0): -xCOMMON-AVX512, -xMIC-AVX512, -xCORE-AVX512

• GNU compiler (v4.9): -mavx512f, -mavx512cd, -mavx512er, -mavx512pf

• Run Intel® Software Development emulator (SDE)
• Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® MPX, …)

• Tools available for detailed analysis

• Instruction type histogram

• Pointer/misalignment checker

• Also possible to debug the application while emulated

26

https://software.intel.com/en-us/articles/intel-software-development-emulator

Summary

Programmers are mostly responsible of exposing DLP (SIMD) parallelism

Intel® compilers provide sophisticated/flexible support for vectorization
• Auto, guided (assisted), and low-level (explicit) vectorization

• Based on OpenMP standards and specific directives

• Easily portable across different Intel® SIMD architectures

Fine-tuning of generated code is key to achieve the best performance
• Check whether code is actually vectorized

• Data layout, alignment, remainder loops, etc.

Get ready for Intel® AVX-512 by optimizing your application today on
current generation of Intel® Xeon® processors and Intel® XeonTM Phi
coprocessors

27

Online resources

Intel® Xeon PhiTM

• Developer portal Programming guides, tools, trainings, case studies, etc.

• Solutions catalog Existing Intel® Xeon PhiTM solutions for known codes

Intel® software development tools, performance tuning, etc.
• Documentation library All available documentation about Intel software

• Learning lab Learning material with Intel® Parallel Studio XE

• Performance Resources about performance tuning on Intel hardware

• Forums Public discussions about Intel SIMD, threading, ISAs, etc.

Other resources (white papers, benchmarks, case studies, etc.)
• Go parallel BKMs for Intel multi- and many-core architectures

• Colfax research Publications and material on parallel programming

• Bayncore labs Research and development activities (WIP)

28

https://software.intel.com/mic-developer
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/forum
http://goparallel.sourceforge.net/
http://research.colfaxinternational.com/
http://www.bayncore.com/bayncore-labs/

Recommended books

29

Intel® Xeon PhiTM coprocessor
high-performance programming,

by Jim Jeffers and James Reinders,
Morgan Kaufmann, 2013

Optimizing HPC applications with
Intel® cluster tools, by Alexander
Supalov et al, Apress, 2014

High performance parallelism pearls: multi-core
and many-core approaches, by James Reinders
and Jim Jeffers, Morgan Kaufmann, 2014

Parallel programming with Intel® Parallel Studio XE, by
Stephen Blair-Chappell and Andrew Stokes, Wrox press, 2012

The software optimization handbook,
by Aart Bik, Intel® press, 2004

