Beyond Block 1/0: Rethinking
Traditional Storage Primitives

Xiangyong Ouyang*‘|‘, David Nellans T , Robert Wipfel‘|‘,
David Flynnt, D. K. Panda’®

" The Ohio State University TFusion-io

Agenda

Introduction and Motivation
— Solid State Storage (SSS) Characteristics
— Duplicated efforts at SSS and upper layers

Atomic-Write Primitive within FTL

Leverage Atomic-Write in DBMS
— Example with MySQL
Experimental Results
Conclusion and Future Work

Evolution of Storage Devices

* Interface to persistent storage remains
unchanged for decades

— seek, read, write
— Fits well with mechanical hard disks

e Solid State Storage (SSS)
v Merits

* Fast random access, high throughput
e Low power consumption
* Shock resistance, small form factor

— Expose the same disk-based block |I/O interface
— Challenges...

NAND-flash Based Solid State Storage (SSS)

e Pitfalls

X Asymmetric read/write latency

* Cannot overwrite before erasure

* Erasure at large unit (64-256 pages), very slow (1+ ms)
X Flash Wear-out: limited write durability

e SLC: 30K erase/program cycles, MLC: 3K erase/program
cycles

File System (0} Applications

Flash Translation Layer

Flash Media

e Flash Translation Layer (FTL)
— Input: Logical Block Address (LBA)
— Output: Physical Block Address (PBA)

Log-Structured FTL

Mapping LBA->PBA

P A
VAN
10 11 12 13
Log head Log tail
2 (314 |5

Log-Structured FTL

Mapping LBA->PBA

2 3 4 5 6
Write Request AR R W AN
6 2 3] VAR
15 16 12 13 14
Log head Log tail Log tailLog tail

Log-FTL Advantages
v'Avoid in-place update (Block Remapping)
v'Even wear-leveling

Duplicated Efforts at Upper Layers and FTL

Multi-Version at Upper Layer
— DBMS (Transactional Log)
— File-systems (Metadata journaling, Copy-on-Write)

— To achieve Write Atomicity
 ACID: Atomicity, Consistency, Isolation, durability

Block-Remapping at FTL
— Avoid in-place update in critical path

Common Thread: Multi-versions of same data
Why duplicate this effort ?

Proposed approach:
— Offload Write-Atomicity guarantee to FTL
— Provide Atomic-Write primitive to upper layers

Agenda

Atomic-Write Primitive at FTL
Leverage Atomic-Write in DBMS
Experimental Results
Conclusion and Future Work

Atomic-Write: a New Block I/O Primitive
Offload the Write-Atomicity guarantee into FTL

Combines multi-block writes into a logical group
(contiguous , non-contiguous)

Commit the group as an atomic unit, if the
compound operation succeeds

Rollback the whole group is any individual fails

Atomic-Write (1): Flag Bit in Block Header

*One Flag Bit per block header

» |dentify blocks belonging to the same atomic-group

Non-AW: flag == Atomic Write Log tail
T Flags==00 ... 1

Flag Bit

LBA 3 5 6 9

1 | 5 | 6 g8 | 9
PBA 10 11 12 \13 14 1¥ 16 17

e Don’t allow Non-AW to interleave with Atomic-Write

Atomic-Write (2): Deferred Mapping Table Update

* Defer mapping table update
»Not expose partial state to readers

Mapping LBA->PBA
4 6 8
/ \

/LN

Incoming Atomic-Write Group 16 17 18

[4 6 8] Log talbg tallog tail
1]

0 0 1

PBA: 10 11 12 13 14 15 16 17 18
11

Atomic-Write (3): Failure Recovery

Atomic-Write Group

4 6 8|

Write LBA 4,6, 8

Update Mapping

Incomplete
Atomic-Write

group

(1) Failure during writing:

*Scan backwards, discard blocks
with “0” flag bits

*Rollback the partial blocks to
previous version

(3) Failure when updating
FTL

Log tail contains “1” flag bit

complete
Atomic-Write *Same as (2)

group

(2) Failure after writing

*Scan the log from beginning,
rebuild the FTL mapping

12

Agenda

* Leverage Atomic-Write in DBMS
— Example with MySQL

* Experimental Results
* Conclusion and Future Work

13

Proposed Storage Stack

DBMS Applications

File System

Write
Atomicity

=>» Example: Leverage Atomic-Write in DBMS (MySQL)

DoubleWrite with MySQL InnoDB Storage Engine

Flush dirty buffer pages to TableFile
* memory pressure

* commit()
DoubleWrite Buffec---_ * Timeout Buffer Pool
L’ . e —— -
r,,, \\\\ ;"” i ~~~”~
II 9 ,,/ \\\
/ VS Memor
i V /7 M\ Y
“““ r—r-—- yvs2cnl ~""V"vtT """ froTT T T e s
i | Phasel & Phase II -
] 1\ Stable Storage
1 RN /
\ I' \\ //
Table File: :.
~ i -

- -
- -
e —————

, | TableSpace Area
DoubleWrite Area

*Every data page is written twice !
= Impact the performance

= Double amount of writes to Flash media
halve device’s lifespan >

MySQL InnoDB: Atomic-Write

Buffer Pool

v

int atomic_write (int fd, void* buf[], long *length[], long * offsets[], int num);

Stable Storage

Table File:

v'Reduce the data written by half
Double the effective wear-out life
v’ Simplify the upper layer design
v'Better performance
v'Guarantee the same level of data integrity as DoubleWrite

16

Agenda

* Experimental Results
* Conclusion and Future Work

17

Experiment Setup

e Fusion-io 320GB MLC NAND-flash based device

* Atomic-Write implemented in a research branch of
v2.1 Fusion-io driver

« MySQL 5.1.49 InnoDB (extended with Atomic-Write)

— 2 machines connected with 1 GigE
— Both Trans. log and table-file stored on solid state

Processor

DRAM

Boot Device

DB Storage Device
OS

Xeon X3210 @ 2.13GHz

8GB DDR2 667MHz, 4X2GB

250GB SATA-II 3.0Gb/s

Fusion-io ioDrive 320GB PCle 1.0 4x Lanes
Ubuntu 9.10, Linux Kernel 2.6.33

18

Micro Benchmark

e Different Write Mechanismes:
— Synchronous: write() + fsync()
— Asynchronous: libaio
— Atomic-Write

e Different write patterns:

— Sequential
— Strided
— Random

e Buffer strategies
— Buffered 10: OS page cache
— Direct_10: bypasses OS page cache

19

/0 Microbenchmark: Latency

Write Latency (Lower is Better)
(64 blocks, 512B each)

g Write | I Buffering=
] Pattern : i [
| | |
I Random : I Buffered |
: I =DirectIO :
i

:Strided I =Buffered :
L : I DirectiO |
L L

|Sequential= j Buffered :
| [LI |

DirectlO

Latency (us)

L

IS nc
I_V
4042
3542
4006
3447
3955
3402

Write Strategy
______AﬂrE——-.":_AiNL';‘E__.l
1112 : NA
851 671
1146 | : NA
857 669 !
$EE00y Y NA
808 %685 &

eAtomic-Write : all blocks in one compound write
*Synchronous Write: write () + fsync()
*Asynchronous Write: Linux libaio

20

/O Microbenchmark: Bandwidth

Write Bandwidth (Higher is Better)

(64 blocks, 16KB each)

Bandwidth (MB/s)

Write I, Buffering : r =777 7 Write Strategies |
| Pattern I i T RS I
I i I sSync Async < A-Write [

I IL-----------:—---‘---

Random : Buffered : 302 301 * NA
I [IDirectio | 212 505 : 513 G
=Strided : : Buffered : 306 300 : NA
: I : DirectlO : 217 503 513
ISequential : I Buffered | 308 304 s < NA
| i s)

eAtomic-Write : all blocks in one compound write
*Synchronous Write: write () + fsync()
*Asynchronous Write: Linux libaio

21

Transaction Throughput

8% improvement 23% improvement
(not ACID compliant) (ACID compliant)
\ m MySQL ® DoubleWrite Disabled = Atomic-Write
14

N

\

1.2

1 -

0.8 -

0.6 -

0.4 -

Transaction Throughput

0.2 -

B
A

TPC-C TPC-H SysBench

eBuffer Pool : Database =1: 10

*DB workload: TPC-C (DBT2), TPC-H (DBT3), SysBench -

Data Written to SSS

= MySQL ® DoubleWrite Disabled m Atomic-Write
1.2

1

0.8

0.6

0.4 -

Data Written

0.2 -

0 -

sysbench

/PC-C
46% reductio

(not ACID compliant) 43% reduction (ACID compliant)
(High throughput generate more trans. log)

*Buffer Pool : Database=1:10
*DB workload: TPC-C (DBT2), TPC-H (DBT3), SysBench

23

Transaction Latency

= MySQL B DoubleWrite Disabled m Atomic-Write
1.2

Transaction Latency
o o o
B (@)} (0/e]
| | |

o
N
|

TPC-H sysbench

9% improvement 20% improvement
(not ACID compliant) (ACID compliant)

*Buffer Pool : Database =1:10
*DB workload: TPC-C (DBT2), TPC-H (DBT3), SysBench

24

DB-buffer-pool size : DB on-disk size

33% improvement
7% improvement

1.4 ¢/ :> ’\/
1.2 — L

o=

/ 1 Results in previous slidfs
0.8

DoubleWrite 0.6
|

as the
L
WA ARV
1:1 1:2

0.4

9'

N

o

Baseline
1:4 1:10 1:25 1:100 1:500 1:1000

===Trans/Minute (Higher is Better) ==Data Written (Lower is Better)

* DB workload: TPC-C (DBT2)
 Vary Buffer Pool : Database size
*Atomic-Write vs. DoubleWrite 25

1.4

1.2

1
/0.8

DoubleWrite
as the
Baseline 0.

S

©
N

o

DB Records Update Ratio

33% improvement

S

28 - 40% Reduction

L (1] 1

—>

0% 10% 33% 50%

67%

90%

100%

-==Trans/Second (Higher is Better) ===Data Written (Lower is Better)

* DB workload: SysBench
* \Vary Update ratio in total workload
* Atomic-Write vs. DoubleWrite

26

Conclusions

Solid State Storage opens opportunities for higher
order primitives in storage interfaces

Atomic-Write: allows multi-block write operations to
be completed as an atomic unit

Benefit upper layers with ACID requirements
—_ ﬂQ |:||ncuc1'am DBMS. applications

I.JIVIJ I\J II\.:U\-IUII

— Reduced compIeX|ty
— Improved performance
— Improved device durability

27

Future Work

* Work with Linux kernel maintainers to integrate
atomic-write in a non-proprietary way

* To support multiple outstanding atomic-write groups
— Full transactional support

* Explore other higher order |/O primitives

28

Thank You!

OHIO ,F- FUS ON-iO

SIAIE

UNIVERSITY

