
Biased Reference Counting:
Minimizing Atomic Operations in Garbage Collection

Jiho Choi, Thomas Shull, and Josep Torrellas

University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

ABSTRACT
Reference counting (RC) is one of the two fundamental approaches

to garbage collection. It has the desirable characteristics of low

memory overhead and short pause times, which are key in today’s

interactive mobile platforms. However, RC has a higher execution

time overhead than its counterpart, tracing garbage collection. The

reason is that RC implementations maintain per-object counters,

whichmust be continually updated. In particular, the execution time

overhead is high in environments where low memory overhead is

critical and, therefore, non-deferred RC is used. This is because the

counter updates need to be performed atomically.

To address this problem, this paper proposes a novel algorithm

called Biased Reference Counting (BRC), which significantly im-

proves the performance of non-deferred RC. BRC is based on the

observation that most objects are only accessed by a single thread,

which allows most RC operations to be performed non-atomically.

BRC leverages this by biasing each object towards a specific thread,

and keeping two counters for each object — one updated by the

owner thread and another updated by the other threads. This allows

the owner thread to perform RC operations non-atomically, while

the other threads update the second counter atomically.

We implement BRC in the Swift programming language run-

time, and evaluate it with client and server programs. We find that

BRC makes each RC operation more than twice faster in the com-

mon case. As a result, BRC reduces the average execution time of

client programs by 22.5%, and boosts the average throughput of

server programs by 7.3%.

CCS CONCEPTS
• Software and its engineering → Garbage collection; Soft-
ware performance; Runtime environments;

KEYWORDS
Reference counting; Garbage collection; Swift

ACM Reference Format:
Jiho Choi, Thomas Shull, and Josep Torrellas. 2018. Biased Reference Count-

ing:, Minimizing Atomic Operations in Garbage Collection. In International
conference on Parallel Architectures and Compilation Techniques (PACT ’18),

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT ’18, November 1–4, 2018, Limassol, Cyprus
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00

https://doi.org/10.1145/3243176.3243195

November 1–4, 2018, Limassol, Cyprus. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3243176.3243195

1 INTRODUCTION
High-level programming languages are widely used today. They

provide programmers intuitive abstractions that hide many of the

underlying computer system details, improving both programmer

productivity and portability. One of the pillars of high-level pro-

gramming languages is automatic memory management. It frees

programmers from the obligation to explicitly deallocate resources,

by relying on the runtime to automatically handle memory man-

agement.

Garbage collection is the process of runtime monitoring the life-

time of objects and freeing them once they are no longer necessary.

There are two main approaches to garbage collection: tracing [28]

and reference counting (RC) [17]. Tracing garbage collection main-

tains a root set of live objects and finds the set of objects reachable

from this root set. Objects not reachable from the root set are consid-

ered dead and their resources can be freed. RC garbage collection, on

the other hand, maintains a counter for each object, which tracks

the number of references currently pointing to the object. This

counter is actively updated as references are added and removed.

Once the counter reaches zero, the object can be collected.

Most implementations ofmanaged languages use tracing garbage

collection, as RC is believed to be slower. This belief stems from the

fact that most of the tracing garbage collection can be done in the

background, off the critical path, while RC is on the critical path.

However, many optimization techniques exist to limit the number

of RC operations and reduce the overhead on the critical path.

Furthermore, RC has the desirable characteristics of low memory

overhead and short pause times.

In garbage collection, memory overhead comes from two sources,

namely garbage collectormetadata, and objects that are dead but not

yet reclaimed by the garbage collector. While RC adds, as metadata,

one counter per object, RC can have low overall memory overhead

because it can be designed to free up objects very soon after they

become dead.

Pause times are times when the application is stopped, to allow

the garbage collector to perform maintenance operations. RC can

be designed to have only short pause times — when individual

objects are freed up.

Overall, the combination of low memory overhead and short

pause times makes RC suitable for today’s interactive mobile plat-

forms. For this reason, some languages such as Swift [8] use RC.

Unfortunately, RC can have significant execution time overhead

when using algorithms that reclaim objects immediately after they

become dead — i.e., non-deferred RC algorithms. For example, we

find that the non-deferred RC algorithm used in Swift causes Swift

https://doi.org/10.1145/3243176.3243195
https://doi.org/10.1145/3243176.3243195
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3243176.3243195&domain=pdf&date_stamp=2018-11-01

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

programs to spend 32% of their execution time performing RC

operations. Still, using non-deferred RC is highly desirable when

it is critical to keep memory overhead to a minimum, as in many

mobile platforms.

We find that a major reason for this execution time overhead

of non-deferred RC is the use of atomic operations to adjust the

reference counters of objects. Note that even if a Swift program

has little sharing and, in fact, even if it is single-threaded, it may

have to use atomic operations. This is because, like many program-

ming languages, Swift compiles components separately to allow

for maximum modularity. Separate compilation forces the compiler

to be conservative. Furthermore, Swift is compiled ahead of time,

so the compiler cannot leverage program information gathered

throughout execution to limit the use of atomic operations.

The goal of this paper is to reduce the execution time overhead

of non-deferred RC. To accomplish this goal, we propose to replace

the atomic RC operations with biased RC operations. Similar to

biased locks [25], our biased operations leverage uneven sharing to

create asymmetrical execution times for RC operations based on

the thread performing the operation. Each object is biased toward,

or favors, a specific thread. This allows an object’s favored thread

to perform RC operations without atomic operations, at the cost of

slowing down all the other threads’ RC operations on that object.

While biased RC operations are very effective in most cases,

sometimes multiple threads do try to adjust the reference counter

of the same object. To handle this, we exploit the fact that, unlike

locking, RC does not require strong exclusivity. While only one

thread is allowed to acquire a lock at any given time, it is possible

for multiple threads to perform RC operations on an object concur-

rently — if they use multiple counters and eventually merge the

counters.

Based on these ideas, we propose a novel algorithm called Biased
Reference Counting (BRC), which significantly improves the perfor-

mance of non-deferred RC. BRC maintains two counters per object

— one for the owner thread and another for the other threads. The

owner thread updates its counter without atomic operations; the

other threads update the other counter with atomic operations.

We implement BRC in the Swift runtime. We run various client

and server Swift programs and analyze both their performance and

sharing patterns. Overall, we find that, on average, BRC improves

the execution time of client programs by 22.5%, and the throughput

of server programs by 7.3%.

The contributions of this paper are as follows:

• Characterizes the overheads of RC in Swift programs.

• Characterizes the memory behavior and sharing patterns of Swift

programs.

• Proposes BRC, a new algorithm to reduce the overhead of non-

deferred RC with an efficient biasing technique.

• Implements BRC in the state-of-the-art Swift runtime.

• Provides a detailed evaluation of BRC’s performance.

2 BACKGROUND
2.1 Reference Counting
The fundamental idea of RC [17] is to maintain a per-object counter

denoting the current number of references to the object. These per-

object counters are updated as references are created, reassigned,

and deleted.

Figure 1 shows a simple programwhich highlights all possible RC

operations. The normal program commands are on the numbered

lines. The RC operations required for each command are on the

lines directly above the command in gray and are not numbered.

A RC operation on an object obj is described by rc(obj). In this

example, the reference counts of objects obj1, obj2, and obj3 are

adjusted as different assignments execute.

rc(obj1) = 1
var a = new obj1
rc(obj1)++
var b = a
rc(obj1)--, rc(obj2) = 1
b = new obj2
rc(obj1)--,rc(obj3) = 1

a = new obj3

1

2

3

4
free(obj1)

Figure 1: Basic RC operations.

While the idea of RC is straightforward, it should be implemented

carefully to ensure correctness. This is because it is possible to have

data races while adjusting reference counters in otherwise correct

programs. Consider the code example in Figure 2. Note that in the

traditional sense there is no data race in this code. Each thread only

reads shared variable g, and all writes are performed to thread-local

variables. However, due to both threads adding another reference

to obj, it is possible for the reference counter of obj to be updated

incorrectly without synchronization. In other words, it is possible

for the rc(obj)++ corresponding to the commands on lines 2A
and 2B to race and produce incorrect results. Hence, updates to an

object’s reference counter must be done in a synchronized manner.

rc(obj) = 1
var g = new obj;

rc(obj)++
var a = g;

rc(obj)++
var b = g;

Thread A Thread B

Initialization

1

2A 2B

Figure 2: Data race due to RC.

There are several approaches to synchronizing RC operations.

Themost obvious approach is to add locks around the RC operations.

This approach has two main drawbacks. First, the runtime must

decide the number of locks to create. At one extreme, the runtime

can use a single lock for all objects, but this would incur a lot of

contention for the lock by threads trying to adjust the reference

counters of different objects. At the other extreme, each object

can have its own lock. However, this adds an extra overhead to

each object header which can result in less locality and more cache

misses. Another problem is that there is very little work done

Biased Reference Counting PACT ’18, November 1–4, 2018, Limassol, Cyprus

in between the lock’s acquisition and release – i.e., one simple

arithmetic operation to adjust the reference counter. This makes

processor stalls likely.

An alternative approach is a lock-free approach using atomic

operations as shown in Algorithm 1. In this approach, the refer-

ence counter is updated using an atomic compare-and-swap (CAS)

operation. If the CAS is successful, then the operation is complete.

Otherwise, the process is repeated until the operation can complete

successfully. This lock-free approach addresses the problems de-

scribed above for the lock-based approach. First, since there are no

locks, there is no tradeoff between the contention for locks versus

the memory overhead of locks. Second, this algorithm has only

one synchronization operation (the CAS). Because of these benefits,

modern RC implementations use lock-free algorithms.

Algorithm 1 CAS-based increment operation

1: procedure Increment(ob j)
2: do
3: old := ob j .rc_counter ▷ read old value

4: new := old
5: new += 1 ▷ set new value

6: while !CAS (&ob j .rc_counter, old, new)

7: ▷ Atomic update of counter

8: end procedure

2.2 RC Optimization
Previous works to optimize RC can be categorized into two groups:

works that defer reclamation of objects (deferred RC) and works

that do not (non-deferred RC).

2.2.1 Deferred RC. These works postpone dead object reclamation,

and divide execution into distinct mutation and collection phases.

During mutation phases, RC operations are simplified and there is

no reclamation of dead objects; during collection phases, the dead

objects are reclaimed.

There are two groups of techniques: deferral and coalescing. In

deferral [12, 15, 18, 37–40], the mutation phase does not perform

RC operations for local pointer variables stored in the stack or

registers. Then, the collection phase scans the stack and registers,

and determines the objects that have a reference count equal to

zero, and therefore can be reclaimed.

In coalescing [26, 32], the mutation phase only records the mod-

ified pointer variables and their initial values. Then, the collection

phase compares the initial and final values of the modified pointer

variables, and performs RC operations only on the objects pointed

to initially and at the end. Dead objects are found and reclaimed

during the collection phase.

A hybrid approach [15] uses simple tracing garbage collection

for young objects and RC for old objects.

2.2.2 Optimizations of Non-deferred RC. These techniques remove

unnecessary RC operations through static compiler analysis. Some

proposals [14, 21–23, 30] eliminate the RC operations for a reference

R to an object when R’s lifetime is completely nested in the lifetime

of another reference to the same object. Figure 1 shows a simple

example of a candidate for this optimization. In this figure, the

lifetime of the reference to obj1 created on line 2 is completely

nested in the lifetime of the reference to obj1 created on line 1.

Because of this, it is unnecessary to adjust obj1’s reference counter
to reflect var b’s effect, so lines two and three need not adjust

rc(obj1).
Another optimization [21] is to look at sequential chains of RC

operations on the same object, and find matching pairs of incre-

ments and decrements (potentially created by different references).

These RC operations can also be removed, as they negate one an-

other.

2.3 Swift Programming Language
The Swift Programming Language was introduced by Apple in

2014 [7] as an alternative programming language to Objective-C for

development for the Apple platform. Due to its support by Apple

and incorporation into the Apple software ecosystem, Swift has

quickly become popular and is now the preferred programming

language for development on the Apple platform.

Like most modern programming languages, Swift has automatic

memory management. Because of its popularity in the mobile envi-

ronment, where memory overhead is a primary concern, Apple’s

implementation of Swift uses non-deferred RC and uses the opti-

mizations described in Section 2.2.2. Swift uses weak references

to avoid cyclic references, an approach popular in previous litera-

ture [11, 16].

3 MOTIVATION
3.1 Overhead of Reference Counting
To assess the overhead of state-of-the-art non-deferred RC, we mea-

sure the time spent performing RC operations in Swift programs.

Figure 3 shows, for a set of programs, the fraction of time spent

on RC operations for each program. The programs we evaluate

are explained in detail in Section 6. They include client programs

(Swift Bench, CryptoSwift, SwiftyJSON, Raytrace, GCBench-Single,

GCBench-Multi, and Regex-Redux) and server programs (Perfect-

JSON, Perfect-Blog, Kitura-JSON, and Kitura-Blog).

Sw
ift

 B
en

ch
Cr

yp
to

Sw
ift

Sw
ift

yJ
SO

N
Ra

yt
ra

ce
GC

-S
in

gl
e

GC
-M

ul
ti

Re
ge

x-
Re

du
x

Cl
ie

nt
-A

vg
Pe

rfe
ct

-JS
ON

Pe
rfe

ct
-B

lo
g

Ki
tu

ra
-JS

ON
Ki

tu
ra

-B
lo

g
Se

rv
er

-A
vg

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e Rest of Execution
Reference Counting

Figure 3: Overhead of RC in Swift programs.

As shown in the figure, performing RC operations takes on

average 42% of the execution time in client programs, and 15% in

server programs. The average across all programs can be shown to

be 32%. The Swift compiler does implement optimization techniques

to reduce the number of RC operations similar to those described

in Section 2.2.2. Without them, the overhead would be higher. The

RC overhead is lower in server programs than in client programs.

This is because server programs spend relatively less time in Swift

code and RC operations; they spend relatively more time in runtime

functions for networking and I/O written in C++.

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

To estimate the contribution of using atomic operations to this

overhead, we remove the CAS operation from the RC code. Hence,

the Swift runtime performs RC without safeguards. As explained

in Section 2.1, not using atomic operations is incorrect, and may

result in either memory leaks or objects being prematurely freed.

As a result, we are able to run only a subset of the programs with-

out crash. We will show later that, on average, not using atomic

operations reduces the average execution time of the programs by

25%. This means that the large majority of the RC overhead in these

programs is due to the use of the CAS operations.

This large overhead is due to two reasons. First, CAS instructions

are more expensive than normal updates. The reason is that there

is a memory fence associated with a CAS instruction. This limits

the amount of instruction overlapping performed by the hardware,

preventing the out-of-order capabilities of modern cores from being

effectively utilized. Second, due to contention, it may be necessary

to execute a CAS instruction multiple times before completing

successfully. Note that we run all of our experiments on a modern

Intel Haswell processor, which has an efficient CAS implementation.

3.2 Sharing Patterns of Swift Programs
Since the use of atomic operations greatly affects performance, we

evaluate how often in practice they are necessary for correctness.

To do so, we modify the runtime so that, for each RC operation, we

record which thread is invoking the operation and which object’s

reference counter is being updated. We classify objects as private

or shared. An object is classified as private if all of its reference

counter updates throughout its lifetime come from one single thread.

Otherwise, the object is classified as shared.

Table 1 shows our results. Each row corresponds to a different

program. Columns 3 and 4 show the percentage of objects that we

classify as private or shared. Columns 5 and 6 show the percentage

of reference counter updates that go to objects classified as private

or shared. We can see that, on average, over 99% of the objects

in client programs, and over 93% of those in server programs are

private objects. Similarly, about 93% of the RC operations in client

programs, and about 87% of those in server programs are to private

objects. This means that the large majority of RC operations are to

private objects, and one could skip the corresponding atomic oper-

ation. However, as argued in Section 1, the Swift compiler does not

know this because Swift compiles components separately. Hence,

Swift is forced to use atomic operations always for correctness.

4 BIASED REFERENCE COUNTING
4.1 Main Idea
The goal of this paper is to reduce the overhead of non-deferred

RC by minimizing the use of atomic operations. We do this with

a novel algorithm for RC that we call Biased Reference Counting
(BRC). BRC leverages the observation that many objects are only

accessed by a single thread. Hence, BRC gives the ownership of, or

biases, each object to a specific thread. BRC provides two modes of

updating an object’s reference count: the object’s owner thread is

allowed to update the reference count using non-atomic operations,

while non-owner threads must use atomic operations to update the

reference count.

Program Objects RC operations

Name Priv (%) Shar (%) Priv (%) Shar (%)

C
l
i
e
n
t

Swift

Benchmark 100.00 0.00 100.00 0.00

CryptoSwift 100.00 0.00 100.00 0.00

SwiftyJSON 100.00 0.00 100.00 0.00

Raytrace 100.00 0.00 100.00 0.00

GCBench-Single 100.00 0.00 100.00 0.00

GCBench-Multi 99.84 0.16 99.68 0.32

Regex-Redux 99.99 0.01 51.13 48.87

Average 99.98 0.02 92.97 7.03

S
e
r
v
e
r

Perfect-JSON 94.74 5.26 83.99 16.01

Perfect-Blog 94.58 5.42 95.33 4.67

Kitura-JSON 91.41 8.59 84.29 15.71

Kitura-Blog 91.59 8.41 83.32 16.68

Average 93.08 6.92 86.73 13.27

Table 1: Sharing patterns of Swift programs.

BRC allows these two modes of execution by maintaining sepa-
rate counters for the owner (or biased) thread and for the non-owner
threads. The first counter, called the Biased counter, counts the num-

ber of references to the object added by the owner thread minus

those removed by the owner thread. The second counter, called the

Shared counter, maintains the active reference count for all non-

owner threads combined. Since the first counter is only accessed by

the owner thread, it can be accessed without atomic operations. The

second counter may be accessed by multiple threads concurrently.

Therefore, it requires atomic operations to prevent data races. The

biasing information is maintained on a per-object basis. This allows

each object to be biased toward the thread most likely to update its

reference counter.

In BRC, an object can be deallocated only when the sum of its two

counters is zero. Hence, the two counters first need to be merged.

Since only the owner thread can read the biased counter reliably,

the owner thread is responsible for merging the counters. To merge

the counters, the owner thread first atomically accumulates the

biased counter into the shared counter. Next, the owner sets a

flag to indicate that the two counters have been merged. Once the

counters are merged, if the shared counter is zero, the object may

be deallocated; otherwise, the owner unbiases the object, and all

subsequent reference counter updates will be performed on the

shared counter. When the shared counter reaches zero, the object

may be deallocated.

In the following, we describe the changes that BRC introduces

to the object header, list the invariants in the BRC algorithm, show

a few examples of counter transitions, and then describe the BRC

algorithm in detail.

4.2 Object Header Structure
To support RC, the compiler reserves one word in each object’s

header, called RCWord (for Reference Counting Word). The Swift

runtime uses a 64-bit word. Figure 4 shows the structure of the

RCWord. It has a 30-bit counter to keep track of the number of

references to the object. The remaining 34 bits are reserved for

weak reference counting and flags to describe the state of the object.

Weak references are used to prevent cycles, and are outside of the

scope of this paper. To prevent race conditions, accesses to RCWord

always use atomic operations.

BRC modifies RCWord as shown in Figure 5. The new RCWord

is now divided into two half-words: Biased and Shared. The biased

Biased Reference Counting PACT ’18, November 1–4, 2018, Limassol, Cyprus

Counter Reserved

30 bits 34 bits

Figure 4: Original RCWord.

Biased Shared

TID Counter Counter Flags Reserved

18 bits 14 bits 14 bits 2 bits 16 bits

Figure 5: BRC’s RCWord.

half-word contains two fields: the owner thread identifier (TID)

and the biased counter. The TID indicates which thread, if any, the

object is currently biased to. This thread has the exclusive right to

modify the biased counter.

The shared half-word contains fields shared by all the threads.

The shared counter field tracks RC activity by non-owner threads.

Then, there are two flags to support the BRC algorithm: Merged
and Queued. The Merged flag is set by the owner thread when it

has merged the counters. The Queued flag is set by a non-owner

thread to explicitly request the owner thread to merge counters.

More details about the counter operations are explained later.

To prevent race conditions, BRC uses atomic operations to ac-

cess the shared half-word. In some situations, the BRC algorithm

requires multiple fields of the shared half-word to be updated to-

gether atomically. This is why the flags must be inside of the shared

half-word.

BRC reduces the number of bits per counter from 30 bits to 14 bits,

which is more than enough for RC. Many Java programs need only

7 bits [37], and we observe similar behavior in our Swift programs.

BRC also reduces the number of the reserved bits used for weak

reference counting and existing flags to 16 bits. Weak references

occur significantly less frequently than regular RC operations, so

this size is acceptable. Alternatively, we could keep the number of

bits per counter unchanged to 30 by increasing the size of RCWord

at the cost of adding more memory overhead. We evaluate the

memory overhead of this alternative design as well in Section 7.4.

4.3 Algorithm Invariants
To understand the BRC algorithm, we start by describing its main

invariants. They are described in Table 2. Recall that the value of

the counter in the original RCWord (Figure 4) reflects the number

of current references to the object, and must always be zero or

higher. For the same reason, in BRC, invariant I1 in Table 2 says

that the sum of the biased and shared counters must always be zero

or higher.

Invariant I2 in Table 2 says that the biased counter must always

be zero or higher. This is because, as we will show, as soon as

the biased counter reaches zero, the owner unbiases the object.

This action makes the biased counter inaccessible, and we say it

implicitly merges the two counters into the shared counter. The

owner thread also sets the Merged flag.

On the other hand, I3 says that the shared counter can be negative.
This is because a pair of positive and negative updates may be split

between the biased and shared counters, pushing the shared counter

below zero. As an example, consider two threads T1 and T2. Thread

T1 creates an object and sets itself as the owner of it. It points a

Invariant Description

I1: biased + shared = total number of references to object

* Must be zero or higher

* If zero, object can be deallocated

I2: biased = (references added - references removed) by owner

* Must be zero or higher

* When it reaches 0, owner unbiases object, implicitly merging

counters

I3: shared = (references added - references removed) by non-owners

* Can be negative

* If negative, biased must be positive, and object is placed

in owner’s QueuedObjects list so that owner can unbias it

I4: Owner only gives up ownership when it merges counters, namely:

* When biased reaches zero (implicit merge)

* Or when the owner finds the object in its QueuedObjects
list (explicit merge)

I5: Object can only be placed into QueuedObjects list once
* Placed when shared becomes negative for first time

* Removed when counters are explicitly merged

Table 2: Invariants of the BRC algorithm.

global pointer to the object, setting the biased counter to one. Then,

T2 overwrites the global pointer, decrementing the shared counter

of the object. As a result, the shared counter becomes negative.

When the shared counter for an object becomes negative for

the first time, the non-owner thread updating the counter also sets

the object’s Queued flag. In addition, it puts the object in a linked

list belonging to the object’s owner thread called QueuedObjects.
Without any special action, this object would leak. This is because,

even after all the references to the object are removed, the biased

counter will not reach zero — since the shared counter is negative.

As a result, the owner would trigger neither a counter merge nor a

potential subsequent object deallocation.

To handle this case, BRC provides a path for the owner thread to

explicitly merge the counters called the ExplicitMerge operation.

Specifically, each thread has its own thread-safe QueuedObjects
list. The thread owns the objects in the list. At regular intervals, a

thread examines its list. For each queued object, the thread merges

the object’s counters by accumulating the biased counter into the

shared counter. If the sum is zero, the thread deallocates the object.

Otherwise, the thread unbiases the object, and sets the Merged
flag. Then, when a thread sets the shared counter to zero, it will

deallocate the object. Overall, as shown in invariant I4, an owner

only gives up ownership when it merges the counters.

Invariant I5 in Table 2 says that an object can be placed into

QueuedObjects list only once. It is placed there when its shared

counter becomes negative for the first time. After that, while its

shared counter may continue to change, since the object is already

marked as queued, no action is required. It will remain in the

owner’s QueuedObjects list until the owner unbiases it.

4.4 Examples of Counter Transitions
Figure 6 shows some examples of RCWord transitions in BRC. To

start with, Figure 6(a) shows the RCWord structure without the Re-

served field. Then, in Figure 6(b), we show the RCWord transitions

for a private (i.e., thread-local) object. In this example, thread T1

allocates the object and becomes the owner thread. Next, T1 creates

up to N references to the object, incrementing the biased counter

up to N . Finally, T1 removes these references, decrementing the

biased counter to zero, and deallocates the object.

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

TID BC SC M Q

Thread ID

Biased
Counter

Shared
Counter

Merged
Flag

Queued
Flag

T1 1 0 0 0

T1 allocates an object

T1 N 0 0 0

T1 creates N references

T1 0 0 0 0

T1 removes all references
T1 deallocates object

(b) Private Object
T1 1 0 0 0

T1 allocates an object

T1 1 1 0 0

T2 creates a reference

0 1 1 0

T1 removes its reference
T1 implicitly merges

T2 removes its reference
T2 deallocates object

(c) Shared Non-Queued Object

0 0 1 0

T1 1 0 0 0

T1 allocates an object

T1 1 -1 0 1

T2 removes the reference
T2 sets the Queued flag

0 0 1 1

T1 explicitly merges
T1 deallocates object

(d) Shared Queued Object

(a) RCWord Structure

Figure 6: Examples of RCWord transitions.

In Figure 6(c), we show the RCWord transitions for a shared

object that is not queued in a QueuedObjects list during its lifetime.

Thread T1 first allocates the object and sets itself as the owner

of it. Next, a second thread T2 creates a reference to the object,

incrementing the shared counter. Then, T1 removes its reference to

the object, decrementing the biased counter. As the biased counter

becomes zero, T1 performs an implicit counter merge: it sets the

Merged flag and unbiases the object. Later, T2 removes its reference

to the object, decrementing the shared counter. Since the shared

counter is zero and the Merged flag is set, T2 deallocates the object.

In Figure 6(d), we show the RCWord transitions for a shared

object that is queued in a QueuedObjects list during its lifetime.

Thread T1 first allocates the object and sets itself as the owner

of it. Then, thread T2 overwrites the reference to the object and

hence decrements the shared counter. Since the shared counter

becomes negative, T2 also sets the Queued flag and places the object
in T1’s QueuedObjects list. Later, T1 invokes the ExplicitMerge
operation and explicitly merges the counters, setting the Merged
flag and unbiasing the object. Since the sum of the counters is zero,

T1 deallocates the object.

4.5 BRC Algorithm
The BRC algorithm introduces several changes to a conventional

RC algorithm. First, when an object is allocated, BRC saves the ID of

the thread allocating the object in the RCWord, effectively biasing

the object. Second, BRCmodifies the RC operations (i.e., Increment
and Decrement) to update one of the two RCWord counters based

on which thread an object is biased to. Finally, BRC adds two new

operations, Queue and ExplicitMerge, to handle a special case

introduced by using two counters. In the following paragraphs, we

explain these operations in detail. We use a dot notation to access

the biased and shared half-words, and their fields in the algorithms.

Note that the algorithms given below sacrifice performance for

maximum clarity. BRC’s implementation on the Swift runtime is

more efficient than what is shown here.

Algorithm 2 shows BRC’s Increment operation. It begins by

checking whether the new reference is being created by the object’s

owner thread (line 4). If so, the owner thread continues to the

FastIncrement procedure to increment the biased counter (line 11).

Otherwise, a non-owner thread calls SlowIncrement and uses an

atomic CAS operation to increment the shared counter (line 19).

Algorithm 2 Increment operation

1: procedure Increment(ob j) ▷ Increment the reference count of obj

2: owner_t id := ob j .rcword .biased .t id
3: my_t id := GetThreadID()

4: if owner_t id ==my_t id then
5: Fast Increment (ob j) ▷ Owner access

6: else
7: SlowIncrement (ob j) ▷ Non-owner access

8: end if
9: end procedure

10: procedure FastIncrement(ob j)
11: ob j .rcword .biased .counter += 1

12: ▷ Non-atomic increment of biased counter

13: end procedure

14: procedure SlowIncrement(ob j)
15: do
16: old := ob j .rcword .shared ▷ Read shared half-word

17: new := old
18: new .counter += 1

19: while !CAS (&ob j .rcword .shared, old, new)

20: ▷ Atomic increment of shared counter

21: end procedure

Algorithm 3 shows BRC’s Decrement operation. Similar to Increment,
it first checks whether the reference is being removed by the ob-

ject’s owner thread (line 4). If so, the owner thread continues to

the FastDecrement procedure to decrement the biased counter

(line 11). If the resulting value of the counter is higher than zero

(line 13), no further action is required. Otherwise, the biased counter

is zero, and the owner thread performs an implicit merge of the

counters. Specifically, it sets the Merged flag (line 19) by atomically

updating the shared half-word (line 20). Next, the shared counter

is read. If its value is zero (line 22), the object is deallocated. Other-

wise, BRC unbiases the object by clearing the owner TID (line 25).

Now, all future RC operations to this object will invoke either the

SlowIncrement or the SlowDecrement procedures. In addition, any
thread can make the decision to deallocate the object. Note that the

Deallocate call in line 23 does not need to lock the object. This

is because the last reference has been removed so no other thread

can access the object.

If the Decrement operation is invoked by a non-owner thread,

it continues to the SlowDecrement procedure (line 28). BRC decre-

ments the shared counter (line 32) and, if the counter’s new value

is negative, BRC also sets the Queued flag (line 34). The shared

half-word is updated atomically (line 36). If the Queued flag has

been set for the first time by this invocation (line 38), BRC invokes

function Queue to insert the object in a list to be handled later by

the owner (line 40) — note that this case implies that the counters

have not been merged yet, as the shared counter’s value is negative.

Otherwise, if the Merged flag is set and the shared counter is zero

(line 41), BRC deallocates the object.

Biased Reference Counting PACT ’18, November 1–4, 2018, Limassol, Cyprus

Algorithm 3 Decrement operation

1: procedure Decrement(ob j) ▷ Decrement the reference count of obj

2: owner_t id := ob j .rcword .biased .t id
3: my_t id := GetThreadID()

4: if owner_t id ==my_t id then
5: FastDecrement (ob j) ▷ Owner access

6: else
7: SlowDecrement (ob j) ▷ Non-owner access

8: end if
9: end procedure

10: procedure FastDecrement(ob j)
11: ob j .rcword .biased .counter −= 1

12: ▷ Non-atomic decrement of biased counter
13: if ob j .rcword .biased .counter > 0 then
14: return
15: end if
16: do ▷ biased counter is zero
17: old := ob j .rcword .shared ▷ Read shared half-word

18: new := old
19: new .merдed :=True ▷ Set merged flag
20: while !CAS (&ob j .rcword .shared, old, new)

21: ▷ Atomic update of shared half-word

22: if new .counter == 0 then
23: Deallocate(ob j)
24: else
25: ob j .rcword .biased .t id := 0 ▷ Give up ownership

26: end if
27: end procedure

28: procedure SlowDecrement(ob j)
29: do
30: old := ob j .rcword .shared ▷ Read shared half-word

31: new := old
32: new .counter −= 1

33: if new .counter < 0 then
34: new .queued :=True ▷ Set queued flag
35: end if
36: while !CAS (&ob j .rcword .shared, old, new)

37: ▷ Atomic decrement of shared counter

38: if old .queued , new .queued then
39: ▷ queued has been first set in this invocation

40: Queue(ob j)
41: else if new .merдed ==True and new .counter == 0 then
42: ▷ Counters are merged and shared counter is zero

43: Deallocate(ob j)
44: end if
45: end procedure

BRC adds two new operations, Queue and ExplicitMerge (Al-
gorithm 4), to support a special case introduced by having two

counters. Specifically, the first time that the shared counter attains

a negative value, Queue is invoked. As indicated in Section 4.3, at

this point, the biased counter has a positive value. If BRC did not

take any special action, the biased counter might never be decre-

mented to zero and, thus, the counters might never be merged, and

the object might never be deallocated. This is a memory leak.

To guard against such scenarios, BRC keeps track of objects

that may leak. As shown in the Queue procedure of Algorithm 4,

the non-owner thread that first finds that the shared counter be-

comes negative, inserts the object in a thread-safe list belonging

to the object’s owner thread. The list is part of a structure called

QueuedObjects (line 3), which is organized as per-thread lists of

potentially leaked objects. Potentially leaked objects are added to

the QueuedObjects list belonging to the object’s owner thread.

At regular intervals, a thread checks its QueuedObjects list,

to explicitly merge counters and enable object deallocation. The

ExplicitMerge procedure of Algorithm 4 performs this operation.

The procedure searches through the thread’s QueuedObjects list

Algorithm 4 Extra operations

1: procedureQueue(ob j)
2: owner_t id := ob j .rcword .biased .t id
3: QueuedObjects[owner_t id].append (ob j)
4: ▷ Adds object to list belonging to owner_tid

5: end procedure

6: procedure ExplicitMerge

7: my_t id := GetThreadID()

8: for all ob j ∈ QueuedObjects[my_t id] do
9: do
10: old := ob j .rcword .shared ▷ Read shared half-word

11: new := old
12: new .counter += ob j .rcword .biased .counter
13: ▷ Merge counters

14: new .merдed :=True
15: while !CAS (&ob j .rcword .shared, old, new)

16: ▷ Atomic update of shared half-word

17: if new .counter == 0 then
18: Deallocate(ob j)
19: else
20: ob j .rcword .biased .t id := 0 ▷ Give up ownership

21: end if
22: QueuedObjects[my_t id].r emove(ob j)
23: end for
24: end procedure

and, for each object, explicitly merges its two counters. Note that

this merging can only be done by the owner thread, so the procedure

only accesses the QueuedObjects list owned by the thread invoking
the procedure (line 8). For each object in the list, BRC accumulates

the biased counter into the shared counter (line 12) and sets the

Merged flag (line 14). This change is atomic (line 15). If the merged

counter becomes zero, the owner deallocates the object (line 18).

Otherwise, it unbiases the object (line 20) so that all future RC

operations are performed on the shared counter. Once this merging

is completed, it is no longer possible for the object to be leaked,

and thus the owner removes the object from QueuedObjects in a

thread-safe manner (line 22).

A given object can only be put in the QueuedObjects list once.
This is because, before an object is taken out of the list, its counters

are merged. Such merging eliminates the possibility that the shared

counter become negative anymore.

Lastly, when a thread terminates, it processes the objects re-

maining in its QueuedObjects list, and de-registers itself from

the QueuedObjects structure. Theoretically, an object can out-

live its owner thread if its biased counter is positive, and has not

been queued in the QueuedObjects list when the owner thread

terminates. We handle this case as follows. When a non-owner

thread makes the shared counter of an object negative, it first

checks whether the object’s owner thread is alive by looking-up

the QueuedObjects structure — which implicitly records the live

threads. If the owner thread is not alive, the non-owner thread

merges the counters instead of queuing the object, and either deal-

locates the object or unbiases it.

5 PUTTING BRC IN CONTEXT
In this section, we qualitatively compare BRC to other RC algo-

rithms. Table 4 examines the space-time trade-off of various RC

implementations. Each row corresponds to a different RC implemen-

tation. The table ranks the RC implementations from 1 (lowest) to 4

(highest) in terms of performance overhead and memory overhead.

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

Program Multi-

Name threaded? Description

C
l
i
e
n
t

Swift Benchmark No A set of 212 benchmarks covering a number of important Swift workloads designed to track Swift performance and catch

performance regressions

CryptoSwift No Performance tests of a Swift package for cryptography algorithms

SwiftyJSON No Performance tests of a Swift package for JSON handling

Raytrace No Ray tracing application

GCBench-Single No Single-threaded implementation of an artificial garbage collection benchmark that creates perfect binary trees

GCBench-Multi Yes Multi-threaded implementation of GCBench

Regex-Redux Yes Benchmark that uses regular expressions to match and replace DNA 8-mers

S
e
r
v
e
r

Perfect-JSON Yes JSON generator running on the Perfect framework

Perfect-Blog Yes Blog engine running on the Perfect framework

Kitura-JSON Yes JSON generator running on the Kitura framework

Kitura-Blog Yes Blog engine running on the Kitura framework

Table 3: Client and server programs used.

Algorithm Performance

Overhead

Memory Over-

head

Basic non-deferred RC 4 1 (tie)

Non-deferred RC w/ optimization 3 1 (tie)

Deferred RC (DRC) 1 3

BRC 2 2

Table 4: Ranking performance andmemory overheads ofRC
implementations from 1 (lowest) to 4 (highest).

The first row corresponds to the basic non-deferred RC described

in Section 2.1. It suffers from a high execution time overhead due to

frequent atomic RC operations. However, it has a minimal memory

overhead thanks to immediate reclamation.

The second row corresponds to the non-deferred RC with the

optimization described in Section 2.2.2. This is Swift’s RC imple-

mentation. Compared to basic non-deferred RC, the execution time

overhead is dramatically reduced. This is because many unnec-

essary RC operations are removed at compile time. Specifically,

we found that Swift removes up to 97% of RC operations in our

programs. This implementation is very effective at removing RC

operations for local variables. At the same time, it maintains im-

mediate reclamation, and hence has the same minimal memory

overhead as the basic non-deferred RC.

The third row corresponds to deferred RC (DRC) implementa-

tions, as described in Section 2.2.1. The performance overhead is

lower, as deferral and coalescing avoid atomic RC operations during

the mutation phase. However, since DRC does not perform imme-

diate reclamation for all objects, the memory overhead is higher

than the basic non-deferred RC.

The last row corresponds to BRC. While Swift’s non-deferred

RC with optimization is fast, it is still slower than DRC (about

20% [21]). BRC narrows this performance gap by replacing atomic

RC operations with non-atomic ones in most cases. It also retains

immediate reclamation for most objects in our programs. Hence, it

increases the memory overhead very little compared to the basic

non-deferred RC. We discuss BRC’s impact on performance and

memory in Section 7.3 and 7.4 in detail.

Overall, we believe that BRC enables a new space-time trade-off

in the RC design space, different from what has been proposed thus

far. Further, we believe that BRC aligns well with Swift’s philosophy

that emphasizes speed and low memory consumption.

6 EXPERIMENTAL SETUP
To evaluate BRC, we implement it in the Swift version 3.1.1 run-

time. We evaluate the three configurations shown in Table 5. The

Original configuration (O) is the unmodified Swift runtime, which

implements RC with lock-free atomic operations. The Ideal con-
figuration (I) takes O and eliminates all the atomic operations. In

this configuration, due to data races, counters may have incorrect

values. In particular, an object may be accessed after being deal-

located, which may lead to a crash. We collect data from I only
when the program runs to completion, and its output and number

RC operations are same as in O’s execution. This ensures that I
did not change semantics. Lastly, the biased configuration (B) is
O enhanced with BRC. As a result, all of Swift’s RC optimizations

(which are present in O) are enabled in B by default.

Name Configuration

O Original: The unmodified Swift runtime

I Ideal: O with no atomic operations

B Biased: O enhanced with BRC

Table 5: Configurations evaluated.

Table 3 shows the client and server programs that we evaluate.

The official Swift Benchmark Suite [6] consists of a set of tests

which cover important Swift workloads. The suite is designed to

track Swift performance and catch performance regressions. Cryp-

toSwift [2] and SwiftyJSON [10] are popular Swift packages for

cryptography and JSON handling, respectively. We also use a Swift

version of ray tracing [9]. GCBench [1] is an artificial garbage col-

lection benchmark which creates and discards perfect binary trees

to estimate the collector performance. We use single-threaded and

multi-threaded implementations of GCBench. Lastly, Regex-Redux

is a regular expression benchmark that uses regular expressions to

match and replace DNA sequences.

Our server programs are based on two popular server-side frame-

works for Swift, namely Perfect [4] and Kitura [3]. For each frame-

work, we run a blog engine that returns random images and blog

posts for each request, and a JSON generator that returns a JSON

dictionary of random numbers for each request [5]. For the server

programs, we measure throughput instead of execution time.

We run our experiments on a desktop machine with an Intel

Core i7 processor and 16 GB of memory running Ubuntu 16.04 LTS.

The processor has four cores cycling at 3.50 GHz. Each experiment

is run 10 times and the average is reported.

Biased Reference Counting PACT ’18, November 1–4, 2018, Limassol, Cyprus

Original Biased

% of Obj. RC RC Ops. RC % of % of RC Ops. % of RC Ops. % of % of RC Ops.

Program Shared Allocs. Ops. per Ops. RC Ops. to to Biased to Shared Queued Setting

Name Obj. per µs per µs Obj. per µs Shared Obj. Counter Counter Obj. Queued Flag

C
l
i
e
n
t

Swift 0.00 1.91 29.18 15.24 33.16 0.00 100.00 0.00 0.00 0.00

Benchmark

CryptoSwift 0.00 2.39 56.54 23.61 68.16 0.00 100.00 0.00 0.00 0.00

SwiftyJSON 0.00 2.60 68.19 26.24 93.77 0.00 100.00 0.00 0.00 0.00

Raytrace 0.00 0.00 101.70 27258.42 173.94 0.00 100.00 0.00 0.00 0.00

GCBench-Single 0.00 12.87 64.07 4.98 86.03 0.00 100.00 0.00 0.00 0.00

GCBench-Multi 0.16 50.69 150.39 2.97 195.44 0.32 99.97 0.03 0.01 0.00

Regex-Redux 0.01 2.58 92.61 35.91 123.99 48.87 88.02 11.98 0.00 0.00

Average 0.02 10.44 80.38 39338.19 110.64 7.03 98.28 1.72 0.00 0.00

S
e
r
v
e
r

Perfect-JSON 5.26 0.55 4.56 8.25 4.95 16.01 88.64 11.36 1.99 0.24

Perfect-Blog 5.42 0.45 12.57 27.95 12.90 4.67 96.72 3.28 1.95 0.07

Kitura-JSON 8.59 0.40 7.27 18.05 7.55 15.71 87.38 12.62 2.76 0.15

Kitura-Blog 8.41 0.39 6.12 15.81 6.34 16.68 86.68 13.32 2.70 0.17

Average 6.92 0.45 7.63 17.51 7.93 13.27 89.85 10.15 2.35 0.16

Table 6: Reference counting statistics.

7 EVALUATION
7.1 Characterization
We start by investigating the overhead of RC in the Original (O)
and Biased (B) configurations. Table 6 shows various metrics of RC

behavior during execution for both configurations. For reference,

Column 3 repeats the data shown in Table 1 about the percentage

of shared objects in each program. Recall that we consider an object

as shared if its reference counter updates come from more than

one thread. Next, Columns 4-6 refer to the O configuration, while

columns 7-12 refer to the B configuration.

Columns 4 and 5 show the number of object allocations per

µsecond and the number of RC operations per µsecond, respectively.
The latter are counter increments and decrements. Based on the

data in these two columns, Column 6 shows the average number of

RC operations per object. We can see that, discounting Raytrace,

there are 3–36 RC operations per object in client programs, and

8–28 in server programs.

Column 7 shows the number of RC operations per µsecond in

the B configuration. Due to the improved performance of B, these
numbers are higher than in O for all the programs.

Column 8 shows the percentage of RC operations to shared

objects, and Columns 9 and 10 the percentage of RC operations

to the biased and shared counters, respectively. We see that only

a small percentage of the RC operations are performed on shared

objects (7.03% in client programs and 13.27% in server programs),

and an even smaller percentage are performed on shared counters

(1.72% in client programs and 10.15% in server programs). The

outlier is Regex-Redux, where nearly 50% of the RC operations are

on shared objects, and 12% use the shared counter. Overall, the

small fraction of the RC operations that use the shared counter is

the reason for the speed-ups of B over O; only such operations use

atomic instructions.

Column 11 shows the percentage of the total objects that are

queued. On average, this number is 0.00% in client programs, and

2.35% in server programs. This number is very small, in part because

the percentage of objects that are shared (Column 3) is already small.

Finally, Column 12 shows the percentage of RC operations that set

the Queued flag and add the object to the QueuedObjects list. We

see that this is a rare event, which occurs 0.00% of the time in client

programs, and 0.16% in server programs. Overall, queuing in the

QueuedObjects list is a negligible overhead.

7.2 Latency of RC Operations
Wemeasure the time it takes to increment a reference counter in the

different configurations. For this measurement, we create kernels

that repeatedly increment the counter in a loop. Therefore, the

operations have a near-perfect cache behavior. In addition, these

kernels are single-threaded and, therefore, the measured times do

not include contention. Overall, our experiments measure best-case

timings.

Table 7 shows the time to perform a counter increment in our

different configurations: O, I , and B. For the B configuration, we

show the operation time for the owner thread and for non-owner

threads. As shown in the table, the increment operation takes 13.84

ns in O and 5.77 ns I . Hence, the use of atomic operations slows

down the operation by 2.40x. In B, the owner’s increment takes only

6.28 ns, while the non-owner increment takes 15.57 ns. Ideally, the

former should be as fast as I , while the latter should take as long as
O. In practice, BRC adds some overhead to each of these operations,

as the TID and various flags are checked before performing the

increment. Consequently, B owner takes 8.8% longer than I , and B
non-owner takes 12.5% longer than O.

Configuration Time (ns)

Original 13.84

Ideal 5.77

Biased (operation by owner) 6.28

Biased (operation by non-owner) 15.57

Table 7: Time of counter increment operations.

7.3 Performance Improvement
In this section, we evaluate the performance improvements attained

by BRC. Figure 7 shows the execution time of the client programs

for theO, I , and B configurations, normalized to theO configuration.

On average, B reduces the execution time by 22.5% over O. This is
a substantial speed-up, which is attained inexpensively in software

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

by improving the RC algorithm. Further, this speed-up implies that

a large fraction of the RC overhead inO has been eliminated. Indeed,

as shown in Figure 3, client programs spend on average 42% of their

time in RC operations. With B, it can be shown that we eliminate

more than half of such RC time.

Sw
ift

Ben
ch

Cryp
toS

wift

Sw
ifty

JSO
N

Ray
tra

ce

GC-Si
ng

le

GC-M
ult

i

 R
eg

ex
-Red

ux

Ave
rag

e
0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Original Ideal Biased

Figure 7: Execution time of client programs under the O, I ,
and B configurations.

We see that, on average, the B configuration is within 3.7% of

the I configuration. This difference is smaller than the 8.8% differ-

ence observed in Table 7 between the B (owner) and I increment

operations. This is due to Amdahl’s law, as programs only spend a

fraction of their time performing RC operations.

Figure 8 shows the throughput of the server programs under the

O and B configurations, normalized to the O configuration. We do

not show data for the I configuration because running these pro-

grams without atomic operations causes frequent program crashes

due to premature object deallocations. The figure shows that B
attains a substantial average throughput increase of 7.3% over O.
This improvement is smaller than the 22.5% average reduction in

the execution time of the client programs. This is expected, given

that the overhead of RC in Figure 3 is higher in the client programs

than in the server ones.

Pe
rfe

ct-
JSO

N

Pe
rfe

ct-
Blog

Kit
ura

-JS
ON

Kit
ura

-Blog

Ave
rag

e
0.8

0.9

1.0

1.1

No
rm

al
ize

d
Th

ro
ug

hp
ut

Original Biased

Figure 8: Throughput of the server programs under the O
and B configurations.

7.4 Memory Overhead
In this section, we evaluate BRC’s memory overhead by comparing

the peak memory usage of the O and B configurations. Figure 9

shows the peak memory usage of these configurations normalized

to the peak memory usage of O. Recall from Section 4.2 that our

BRC design does not increase the size of the per-object RCWord.

Hence, the additional memory overhead of B comes from the use

of the QueuedObjects structure.

Sw
ift

 B
en

ch

Cr
yp

to
Sw

ift

Sw
ift

yJ
SO

N

Ra
yt

ra
ce

GC
-S

in
gl

e

GC
-M

ul
ti

Re
ge

x-
Re

du
x

Pe
rfe

ct
-JS

ON

Pe
rfe

ct
-B

lo
g

Ki
tu

ra
-JS

ON

Ki
tu

ra
-B

lo
g

Av
er

ag
e0.8

0.9

1.0

1.1

No
rm

al
ize

d
Pe

ak
 M

em
or

y
Us

ag
e

Original Biased

Figure 9: Peak memory usage under the O and B configura-
tions.

We observe that, on average, B has only a 1.5% higher mem-

ory overhead than O. Single-threaded programs (i.e., the first 5

programs) have no additional memory overhead in B because the

shared counter is not used and, consequently, there are no queued

objects. While GCBench-single and Regex-Redux are multithreaded,

they have negligible additionalmemory overhead because they have

almost no queued objects (Column 11 of Table 6). The server pro-

grams have only a small fraction of queued objects and, therefore,

their additional memory overhead is on average about 4%.

We also measure the memory overhead in the alternative B im-

plementation described in Section 4.2, where we add an additional

64-bit word to the object header to preserve 30-bit counters. In this

case, the peak memory usage in B can be shown to be, on average,

a modest 6% higher than in O.

7.5 Sensitivity Study
To simulate a worst-case scenario for BRC, we create a synthetic

benchmark where we can control the number of queued objects.

In the benchmark, a main thread creates 1,000,000 objects, creat-

ing a reference to each object, then performs a fixed amount of

dummy computation, and finally removes any remaining references

to the objects. In parallel, a second thread removes the references

to 1, 000, 000 × R objects allocated by the main thread. When a

shared counter becomes negative, the second thread adds the cor-

responding object to the main thread’s QueuedObjects list. In our

experiments, we vary R, which we call Ratio of Queued Objects.

Figure 10 shows the execution time and peak memory usage under

the B configuration as we vary R, normalized to the O configuration.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Queued Objects

0.6
0.8
1.0
1.2

Execution Time Peak Memory Usage

Figure 10: Normalized execution time and normalized peak
memory usage of the B configuration as we vary the number
of queued objects.

Biased Reference Counting PACT ’18, November 1–4, 2018, Limassol, Cyprus

Our results show that, for B to perform worse than the O config-

uration, one needs 75% or more queued objects. In reality, as shown

in Table 6, the percentage of queued objects in our programs is

much lower than this break-even point.

We also measure the additional memory overhead of B for this

benchmark. As we see in the figure, the additional memory over-

head is kept low, under 12% over the O configuration. This is be-

cause the counter merging and object dequeuing happen frequently

enough that reclamation of dead queued objects is not delayed too

much. Note that, for our programs in Table 6, the percentage of

queued objects is very small and, therefore, the additional memory

overhead of BRC is small.

8 RELATEDWORK
There have been many works [19, 25, 29, 34–36, 42] which try to

limit the amount of overhead to acquire uncontested locks. While

BRC is inspired by biased locking [25], it is not a straightforward

re-application of biased locking. BRC proposes an efficient biasing

technique tailored to RC by exploiting the fact that RC does not
require strong exclusivity like locking. BRC lets multiple threads ac-

cess the same object concurrently, by dividing an object’s reference

count into two counters. In biased locking, this is not possible. BRC

also makes ownership revocation very cheap. This is because own-

ership is typically voluntarily revoked in BRC and only requires

one CAS. On the other hand, ownership revocation is extremely

expensive in biased locking. It is triggered by a non-owner thread,

and requires inter-thread communication through OS signals or

safepoints. This is the main drawback of biased locking.

Subsequent works on biased locking [19, 29, 34–36, 42] improve

on the original work by making ownership revocation more effi-

cient, enabling ownership transfer, or determining when it is best

to bias an object. It is possible to apply such ownership transfer

techniques to BRC. In future work, we plan to implement similar

techniques to better support various program behaviors.

Many prior works on RC [12, 14, 15, 18, 21–23, 26, 30, 32, 37–

40] focus on reducing the number of RC operations. They are are

briefly summarized in Section 2.2, and compared to BRC in Sec-

tion 5. Another category of works attempt to efficiently detect and

remove cyclic references [13, 24, 27, 31, 33]. Swift solves this prob-

lem through weak references, an approach popular in previous

literature [11, 16]. We believe that BRC can also be integrated into

RC implementations with cyclic reference detection and removal

algorithms.

Joao et al. [20] propose hardware support for RC. They augment

the cache hierarchy to gradually merge RC operations. Due to the

delay of merging in hardware, their technique does not support

immediate reclamation. In contrast, BRC supports immediate recla-

mation in most cases.

Recently, Ungar et al. [41] propose a compiler-assisted dynamic

optimization technique for RC in Swift. It is similar to BRC in that it

dynamically replaces atomic RC operations with non-atomic ones.

It adds checks before stores to conservatively capture escaping

objects, and uses atomic RC operations for escaped objects only.

Compared to BRC, their technique maintains the immediate recla-

mation property of non-deferred RC, while BRC relaxes this for

queued objects. However, their technique uses more atomic oper-

ations than BRC due to its conservative escape detection, and its

lack of the notion of biased threads. In addition, it increases the

overhead of the store barrier to detect and recursively mark escap-

ing objects. Finally, it does not fully support all of Swift’s function

argument passing semantics.

9 CONCLUSION
This paper proposed Biased Reference Counting (BRC), a novel

approach to speed-up non-deferred RC for garbage collection. BRC

is based on the observations that most objects are mostly accessed

by a single thread, and that atomic operations have significant

overheads. BRC biases each object toward a specific thread. Further,

BRC adds a second counter to the object header, enabling the owner

thread to have its own counter. These changes allow the owner

thread of each object to perform RC operations without atomic

operations, while the other threads atomically update the other

counter. BRC correctly manages the merging of these two counters,

handling all corner cases.

We implemented BRC in the Swift programming language run-

time and evaluated it with various client and server programs. We

found that BRC accelerated non-deferred RC. Specifically, it re-

duced the average execution time of client programs by 22.5%, and

improved the average throughput of server programs by 7.3%.

ACKNOWLEDGMENTS
This work was supported in part by NSF under grant CCF 15-27223.

REFERENCES
[1] An Artificial Garbage Collection Benchmark. http://www.hboehm.info/gc/gc_

bench.html

[2] CryptoSwift. https://github.com/krzyzanowskim/CryptoSwift

[3] Kitura: A Swift Web framework and HTTP Server. http://www.kitura.io/

[4] Perfect: Server-side Swift. http://perfect.org/

[5] Server-side swift benchmarks. https://github.com/rymcol/

Server-Side-Swift-Benchmarks-Summer-2017

[6] Swift Benchmark Suite. https://github.com/apple/swift/tree/master/benchmark

[7] Swift Has Reached 1.0. https://developer.apple.com/swift/blog/?id=14

[8] Swift Programming Language. https://swift.org/.

[9] Swift Version of Ray Tracing. https://github.com/rnapier/raytrace

[10] SwiftyJSON. https://github.com/SwiftyJSON/SwiftyJSON

[11] T. H. Axford. 1990. Reference Counting of Cyclic Graphs for Functional Programs.

Comput. J. 33, 5 (1990), 466–472.
[12] David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and Stephen Smith.

2001. Java Without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage

Collector. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI ’01). 92–103.

[13] David F. Bacon and V. T. Rajan. 2001. Concurrent Cycle Collection in Reference

Counted Systems. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP ’01). 207–235.

[14] Jeffrey M. Barth. 1977. Shifting Garbage Collection Overhead to Compile Time.

Commun. ACM 20, 7 (1977), 513–518.

[15] Stephen M. Blackburn and Kathryn S. McKinley. 2003. Ulterior Reference Count-

ing: Fast Garbage Collection Without a Long Wait. In Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA ’03). 344–358.

[16] David R. Brownbridge. 1985. Cyclic reference counting for combinator machines.

In Conference on Functional Programming and Computer Architecture. 273–288.
[17] George E. Collins. 1960. AMethod for Overlapping and Erasure of Lists. Commun.

ACM 3, 12 (Dec. 1960), 655–657.

[18] L. Peter Deutsch and Daniel G. Bobrow. 1976. An Efficient, Incremental, Auto-

matic Garbage Collector. Commun. ACM 19, 9 (1976), 522–526.

[19] David Dice, Mark Moir, and William Scherer III. 2003. Quickly Reacquirable Locks.
Technical Report. Sun Microsystem Laboratories.

[20] José A. Joao, Onur Mutlu, and Yale N. Patt. 2009. Flexible Reference-counting-

based Hardware Acceleration for Garbage Collection. In Proceedings of the 36th

http://www.hboehm.info/gc/gc_bench.html
http://www.hboehm.info/gc/gc_bench.html
https://github.com/krzyzanowskim/CryptoSwift
http://www.kitura.io/
http://perfect.org/
https://github.com/rymcol/Server-Side-Swift-Benchmarks-Summer-2017
https://github.com/rymcol/Server-Side-Swift-Benchmarks-Summer-2017
https://github.com/apple/swift/tree/master/benchmark
https://developer.apple.com/swift/blog/?id=14
https://github.com/rnapier/raytrace
https://github.com/SwiftyJSON/SwiftyJSON

PACT ’18, November 1–4, 2018, Limassol, Cyprus Jiho Choi, Thomas Shull, and Josep Torrellas

Annual International Symposium on Computer Architecture (ISCA ’09). 418–428.
[21] Pramod G. Joisha. 2006. Compiler Optimizations for Nondeferred Reference-

Counting Garbage Collection. In Proceedings of the 5th International Symposium
on Memory Management (ISMM ’06).

[22] Pramod G. Joisha. 2007. Overlooking Roots: A Framework for Making Non-

deferred Reference-counting Garbage Collection Fast. In Proceedings of the 6th
International Symposium on Memory Management (ISMM ’07). 141–158.

[23] Pramod G. Joisha. 2008. A Principled Approach to Nondeferred Reference-

counting Garbage Collection. In Proceedings of the 4th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’08). 131–140.

[24] Richard E. Jones and Rafael D. Lins. 1993. Cyclic Weighted Reference Counting

Without Delay. In Proceedings of the 5th International PARLE Conference on Parallel
Architectures and Languages Europe (PARLE ’93). 712–715.

[25] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. 2002. Lock Reservation:

Java Locks CanMostly DoWithout Atomic Operations. In Proc. of the 17th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA ’02).

[26] Yossi Levanoni and Erez Petrank. 2001. An On-the-fly Reference Counting

Garbage Collector for Java. In Proceedings of the 16th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA
’01). 367–380.

[27] A. D. Martínez, R. Wachenchauzer, and R. D. Lins. 1990. Cyclic Reference Count-

ing with Local Mark-scan. Inf. Process. Lett. 34, 1 (1990), 31–35.
[28] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I. Commun. ACM 3, 4 (1960), 184–195.

[29] Tamiya Onodera, Kikyokuni Kawachiya, and Akira Koseki. 2004. Lock Reser-

vation for Java Reconsidered. In Proceedings of the 18th European Conference on
Object-Oriented Programming (ECOOP ’04).

[30] Young Gil Park and Benjamin Goldberg. 1991. Reference Escape Analysis: Opti-

mizing Reference Counting Based on the Lifetime of References. In Proceedings
of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation (PEPM ’91). 178–189.

[31] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T. Rajan. 2007.

An Efficient On-the-fly Cycle Collection. ACM Trans. Program. Lang. Syst. 29, 4
(2007).

[32] Harel Paz and Erez Petrank. 2007. Using Prefetching to Improve Reference-

counting Garbage Collectors. In Proceedings of the 16th International Conference
on Compiler Construction (CC’07). 48–63.

[33] Harel Paz, Erez Petrank, David F. Bacon, Elliot K. Kolodner, and V. T. Rajan. 2005.

An Efficient On-the-fly Cycle Collection. In Proceedings of the 14th International
Conference on Compiler Construction (CC’05). 156–171.

[34] Filip Pizlo, Daniel Frampton, and Antony L. Hosking. 2011. Fine-grained Adaptive

Biased Locking. In Proceedings of the 9th International Conference on Principles
and Practice of Programming in Java (PPPJ ’11). 171–181.

[35] Ian Rogers and Balaji Iyengar. 2011. Reducing Biased Lock Revocation by Learn-

ing. In Proceedings of the 6th Workshop on Implementation, Compilation, Opti-
mization of Object-Oriented Languages, Programs and Systems. 65–73.

[36] Kenneth Russell and David Detlefs. 2006. Eliminating Synchronization-related

Atomic Operations with Biased Locking and Bulk Rebiasing. In Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). 263–272.

[37] Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. 2012. Down for

the Count? Getting Reference Counting Back in the Ring. In Proceedings of the
2012 International Symposium on Memory Management (ISMM ’12). 73–84.

[38] Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. 2014. Fast

Conservative Garbage Collection. In Proceedings of the 2014 ACM International
Conference on Object-oriented Programming Systems Languages, and Applications
(OOPSLA ’14). 121–139.

[39] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S. McKinley.

2013. Taking off the Gloves with Reference Counting Immix. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object-oriented Programming
Systems Languages, and Applications (OOPSLA ’13). 93–110.

[40] David Ungar. 1984. Generation Scavenging: A Non-disruptive High Performance

Storage Reclamation Algorithm. In Proceedings of the First ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development Envi-
ronments (SDE 1). 157–167.

[41] David Ungar, David Grove, and Hubertus Franke. 2017. Dynamic Atomicity:

Optimizing Swift Memory Management. In Proceedings of the 13th ACM SIGPLAN
International Symposium on Dynamic Languages (DLS ’17). 15–26.

[42] Nalini Vasudevan, Kedar S. Namjoshi, and Stephen A. Edwards. 2010. Simple and

Fast Biased Locks. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’10). 65–74.

	Abstract
	1 Introduction
	2 Background
	2.1 Reference Counting
	2.2 RC Optimization
	2.3 Swift Programming Language

	3 Motivation
	3.1 Overhead of Reference Counting
	3.2 Sharing Patterns of Swift Programs

	4 Biased Reference Counting
	4.1 Main Idea
	4.2 Object Header Structure
	4.3 Algorithm Invariants
	4.4 Examples of Counter Transitions
	4.5 BRC Algorithm

	5 Putting BRC in Context
	6 Experimental Setup
	7 Evaluation
	7.1 Characterization
	7.2 Latency of RC Operations
	7.3 Performance Improvement
	7.4 Memory Overhead
	7.5 Sensitivity Study

	8 Related Work
	9 Conclusion
	References

