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—— Abstract

A minimal perfect hash function (MPHF) maps a set of n keys to the first n integers without
collisions. Representing this bijection needs at least log,(e) & 1.443 bits per key, and there is a wide
range of practical implementations achieving about 2 bits per key. Minimal perfect hashing is a
key ingredient in many compact data structures such as updatable retrieval data structures and
approximate membership data structures.

A simple implementation reaching the space lower bound is to sample random hash functions using
brute-force, which needs about e™ =~ 2.718" tries in expectation. ShockHash recently reduced that to
about (e/2)™ a 1.359™ tries in expectation by sampling random graphs. With bipartite ShockHash,
we now sample random bipartite graphs. In this paper, we describe the general algorithmic ideas of
bipartite ShockHash and give an experimental evaluation. The key insight is that we can try all
combinations of two hash functions, each mapping into one half of the output range. This reduces
the number of sampled hash functions to only about (@)" ~ 1.166" in expectation. In itself,
this does not reduce the asymptotic running time much because all combinations still need to be
tested. However, by filtering out hash function candidates that do not cover all output values before
combining them, we can reduce this to less than 1.175™ combinations in expectation.

Our implementation of bipartite ShockHash is up to 3 orders of magnitude faster than original
ShockHash. Inside the RecSplit framework, bipartite ShockHash-RS enables significantly larger base
cases, leading to a construction that is, depending on the allotted space budget, up to 20 times
faster. In our most extreme configuration, ShockHash-RS can build an MPHF for 10 million keys
with 1.489 bits per key (within 3.3% of the lower bound) in about half an hour, pushing the limits
of what is possible.
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1 Introduction

A perfect hash function (PHF) is a collision-free mapping from a set S of n keys to the
first m integers. If m = n, the function is called a minimal perfect hash function (MPHF)
and forms a bijection between S and [n]. Minimal perfect hashing is a key ingredient in
many compact data structures. For example, it can be used to implement hash tables
with guaranteed constant access time [10], updatable retrieval data structures [14], and
approximate membership data structures [3,8]. The space lower bound is nlog, e bits and
can be achieved by a simple brute-force technique which samples €™ & 2.718" random hash
functions in expectation and stores the index of the first function that is minimal perfect.

The recently introduced ShockHash [11] is a fast approach to minimal perfect hashing.
It samples a pair of hash functions and tries to find a mapping such that each input key is
assigned to one of its two candidate positions. In graph terminology, ShockHash samples
random graphs until one of them can be oriented such that each node has indegree 1. The
paper shows that in expectation, about (e/2)"™ ~ 1.359" graphs need to be sampled, so
storing the hash function seed needs about nlog,(e) — n bits. ShockHash then stores a 1-bit
retrieval data structure, mapping each key to the choice between its two candidate positions,
taking about n bits.

This paper introduces two new ideas. First, instead of using a pair of fresh hash functions
for each construction attempt we build a growing pool of hash functions and consider all pairs
that can be formed from this pool. This reduces the number of hash function evaluations
exponentially. Second, we let the two hash functions hash to disjoint ranges, meaning we
effectively sample a bipartite graph where each edge has one endpoint in both partitions.
In this bipartite setting, the hash functions of both partitions need to be individually
surjective. We can therefore filter the set of candidate hash functions in each partition
individually — before testing all combinations. This improves the construction performance
by an exponential factor, requiring less than 1.175" hash function tries. In this paper, we
describe basic algorithmic ideas and give an experimental evaluation.

RecSplit [7] is a very space-efficient framework for perfect hash functions, which originally
uses the brute-force technique as its base case. The construction performance can be improved
significantly by plugging ShockHash into the base case of RecSplit. Bipartite ShockHash
improves this by a factor of 20 again. For 10 million keys, RecSplit achieves a space usage of
1.584 bits per key within half an hour. In a similar amount of time, 1.499 bits per key can be
achieved by massive parallelization of the approach using a GPU [4]. ShockHash [11] achieves
a space usage of 1.523 bits per key using a single CPU thread. Now, bipartite ShockHash
achieves a new record of just 1.489 bits per key, while using just a single CPU thread.

Outline. In Section 2, we describe RecSplit and plain ShockHash which form the basis of
our paper. We then briefly review other related work in Section 3. In Section 4 we explain
bipartite ShockHash including variants and refinements. We conduct detailed experiments in
Section 5. Finally, we give a conclusion in Section 6.

Our Contributions. With bipartite ShockHash, we present a significant improvement of
the ShockHash perfect hash function that has exponentially faster construction time. When
plugged into the RecSplit framework, our implementation is about 20 times faster than the
original and is the first perfect hash function to achieve 1.489 bits per key for 10 million keys.
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2 Preliminaries

In the following section, we explain ShockHash [11] and RecSplit [7], the methods that our
paper is based on. We also give a short explanation of retrieval data structures and pairing
functions.

Retrieval Data Structures. A retrieval data structure (or static function data structure)
stores a function S — {0,1}" that maps each key of the input set S to a specific r-bit value.
Because it may return arbitrary values for keys not in S, it is possible to represent the
function without representing S itself. In particular, for r = 1, BuRR [(] reduces function
evaluation to XORing a hash function value with a segment of a precomputed table and
reporting the parity of the result. This table can be determined by solving a nearly diagonal
system of linear equations. In practice, BuRR needs about 1.007n bits and can be constructed
in linear time.

ShockHash. ShockHash [11] samples a pair of hash functions and tries to find a mapping
such that each key is assigned to one of its two candidate positions. In graph terminology,
ShockHash samples random graphs until one of them can be oriented such that each node
has indegree 1. The paper shows that each way to pick an assignment from an edge to one of
its two incident vertices essentially provides a new chance for finding a perfect hash function.
An important ingredient for this is to show that the number of orientations of such a graph
is small. Because the graph can be checked for orientability in linear time, ShockHash can
basically check 2™ different hash functions in linear time, leading to exponential speedups.
The paper shows that in expectation, the hash function seed needs about nlog,(e) — n bits.
ShockHash then stores a 1-bit mapping indicating which candidate position was used for
each key using a retrieval data structure, taking about n bits.

RecSplit. RecSplit [7] revolutionized the field of minimal perfect hashing close to the
theoretical bound. It is the first method that achieves very small space usage in practice. As
an initial step, RecSplit hashes N input keys to buckets of expected size b, where a typical
value is b = 2000. Within each bucket, RecSplit then recursively splits the key set to smaller
sets by trying hash functions using brute-force until one divides the keys in a specific way.
This forms a tree, where the leaves are small sets of fixed size n (except the last leaf), where a
typical value is n = 16. Within these leaves, RecSplit then calculates bijections by performing
brute-force search for an MPHF. RecSplit can be parallelized using multi-threading and
using the GPU [4]. The GpuRecSplit paper also introduces rotation fitting, a technique that
reduces the number of hash function evaluations by a factor of n. The idea of rotation fitting
is to divide the keys into two sets and then cyclically rotate (modulo n) all hash values of
one of the sets. Both plain ShockHash and bipartite ShockHash can be used as a base case
inside the RecSplit framework by replacing the brute force search in the leaves. This makes
it possible to increase the leaf size and therefore increase the space efficiency.

Pairing Functions. A pairing function encodes two natural numbers in a single natural
number. More precisely, a pairing function is a bijection between the grid NZ and Ng.
We are interested in pairing functions that can be inverted efficiently. The most popular
pairing function is the Cantor pairing function, which enumerates the 2D grid diagonally (see
Figure 1la). It can be calculated by pair,(z,y) = (z + y)(z +y + 1)/2 +y. Another pairing
function is the one by Szudzik [16], which enumerates the 2D grid following the edges of a
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Figure 1 Illustrations of different pairing functions.

square (see Figure 1b). The pairing function can be calculated by pair,(z,y) = y* +  if
x < y and pairg(z,y) = 2% + = + y otherwise.

In this paper, we require a function that enumerates only those coordinates of the 2D grid
with z > y. We will still call it a pairing function in slight abuse of traditional terminology.
Our triangular pairing function (see Figure 1c) can be calculated by pair, (z,y) = z(x—1)/2+y
with the intuition stemming from the Little Gauss formula. The basic idea for inverting
our function (2/,y') = pair; '(2) is to set y = 0 in the definition and solve for z. This
gives ' = |1/2+ y/1/4 4+ 2z] and ¢y = z — pair,(2,0). In our bipartite implementation, we
use both our triangular pairing function and Szudzik’s pairing function, depending on the
distribution of the numbers we want to encode.

While pairing uses only integer operations, all three pairing functions rely on the square
root operation and rounding for inverting. This means that inverting the functions in practice
can lead to problems due to floating point inaccuracies. Whether inverting z succeeded
can easily be checked by verifying that pair(z’,3’) = 2. In our implementation, we check
invertibility at construction time, so we do not get a run-time overhead during queries.

3 Related Work

In addition to RecSplit [7] and ShockHash [11] which we explained in the previous section,
there is a wide range of perfect hash function constructions. The methods all have a different
focus — while RecSplit is focused more on achieving very small space usage, others focus
more on query speed. We only describe other approaches briefly here and refer to Ref. [12]
for a more detailed overview of related work.

(M)PHFs with Hash-and-Displace [1,9,15] allow fast queries and asymptotically optimal
space consumption. Each key x is first hashed to a small bucket b(x) of keys. For each bucket
b, an index i(b) of a hash function f;«) is stored such that x +— f;,)) () is an injective
function. For a particular bucket, this index is then found by trying hash functions using
brute-force.

Perfect hashing through fingerprinting [2,5,13,14] hashes the n keys to yn positions using
an ordinary hash function, where v > 1 is a tuning parameter. A bit vector of length yn
indicates positions to which exactly one key was mapped. Keys that caused collisions are
handled recursively in another layer of the same data structure.

SicHash [12] uses a mix of 1-3 bit retrieval data structures to store hash function choices
for each key. Compared to ShockHash, it does not achieve minimality directly and works
best for about 2-3 bits per key.
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return

Figure 2 ShockHash and bipartite ShockHash. The pseudocode illustrates the overall idea but
does not lead to any performance improvements yet.

4 Bipartite ShockHash

In this section, we explain our new enhancement to ShockHash [11]. Bipartite ShockHash
enables significantly faster construction compared to plain ShockHash, which enables more
aggressive parameter choices when integrated into RecSplit, thereby leading to improved
space-efficiency. While ShockHash samples random graphs, bipartite ShockHash now samples
bipartite random graphs. Figure 2 gives an illustration and very simple pseudocode. In plain
ShockHash, each edge is connected to two nodes using two independent hash functions. In
bipartite ShockHash, the hash functions have a range of [n/2], but we shift the hashes of
one of the hash functions by n/2, meaning each edge gets one endpoint in [r/2] and one in
n/2 + [n/2]. This idea might sound not very helpful at first, but opens up several ways of
pruning the search space. In the following, we assume that n is an even number. We give an
extension to uneven numbers later.

Filtering Seed Candidates. We know that testing about (e/2)" ~ 1.359™ pairs of hash
functions is sufficient for classical ShockHash. The idea of bipartite ShockHash is that it is
basically just as good to consider roughly (1/e/2)" = (e/2)"/? hash functions and all pairs
that can be formed from them. This already improves the practical running time because
fewer hash functions need to be evaluated. However, this alone would not improve asymptotic
running time much, because we still need to test all combinations. A key realization is that
in the bipartite case, a pair (hg, h1) of hash functions can only work if both hg and hy (both
with range [n/2]) are individually surjective. In the non-bipartite case, in contrast, the check
was that hg and h; (both with range [n]) together hit each position in [n] at least once. This
means that we can filter the list of hash functions before pairing them up.

Filter Effectiveness. In each of the partitions, we look at n keys mapping to n/2 positions.
A seed passes the filter if every output value is hit at least once. This event has a probability
of less than (1 — e~2)™/2 ~ 0.865™/2 because when fixing a specific output value, it is never
hit with probability (1 — 1/n)"/2. The real probability is actually smaller (around 0.836"/2)
because the events of each output value are correlated. The upper bound suggests that if
we pair up only the hash functions passing the filter then we will be considering at most
((e/2)"/? - (1 — e=2)"/2)2 ~ 1.175" pairs.

The Bipartite ShockHash Algorithm. The following paragraph describes our new bipartite
ShockHash algorithm. We maintain a set of seed candidates that are surjective on [n/2].
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Function construct(S)
surjectiveCandidates < ()
for so = 0 to oo
if hg, is surjective on S
for s1 € surjectiveCandidates
if 3f € {0,1}° 12— 2 - f(z) + hs; ., (%) is a bijection
return f as retrieval data structure, pair,(so, 1)
surjectiveCandidates < surjectiveCandidates U {so}
Function evaluate(x)
return 3 - f(z) + hs,(, (2)

Figure 3 Pseudocode of bipartite ShockHash.

We linearly check seeds until we find a seed sy that is surjective. Given that new candidate,
we combine it with all previous candidates s; by checking if the graph defined by the two
hash functions hg : @ — hs,(z) and hy :  — n/2 + hg, (x) is orientable. If it is orientable
(meaning that we find a collision-free assignment from each key to one of the candidate hash
values), we have found a perfect hash function. We only need to store the assignment from
keys to their candidate hash function (hg or hp) in a retrieval data structure and the two
seeds sop and sp. If the combination with none of the previous seed candidates leads to an
orientable graph, we add the new candidate sy to the set of surjective candidates and search
for the next one. Figure 3 gives a pseudocode for this algorithm.

Note that it does not matter which function we use for which partition of the graph.
Switching the partitions just gives an isomorphic graph and does not influence orientability.
We therefore always use the newly determined candidate directly and shift the old candidate
by n/2. Also, we neglect the possibility that a hash function combined with itself on both
partitions leads to successful construction.! This allows us to store the two seeds so and 1,
knowing that s; < sg. We do so in one integer using our triangular pairing function that we
explain in Section 2. Note that the pairing function enumerates the seed pairs in exactly the
same order that we test them in. Compared to storing two variable-length integers, pairing
reduces constant overheads.

4.1 Seed Candidate Generation

Until now, we have tested hash function seeds linearly, using a new hash function in each
iteration. However, with this technique, hash function evaluations are still a bottle-neck
in practice. In the following, we describe additional ways of coming up with a stream of
surjective hash function candidates that we can then combine with previous candidates.

4.1.1 Rotation Fitting

Rotation fitting [1] creates new hash function candidates by dividing the key set into two
subsets using a constant 1-bit hash function. Note that the subsets usually do not have the
same size. Both sets are then hashed with the same hash function. Seed candidates are
generated by cyclically rotating (mod n/2) one of the sets. Each rotation can be tested for
surjectivity using simple bit shifts that can happen in registers. In practice, this significantly

! The function would have to map exactly two keys to each of the n/2 positions, which happens with
probability (2 o 2) (5) "= e~"2" ?poly(n).
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improves the construction time because fewer hash functions need to be evaluated. However,
rotation fitting only affects a polynomial factor in the construction time, while other measures
can contribute exponential factors.

4.1.2 Quad Split

The quad split technique reduces the amount of time spent on finding surjective seed
candidates even more. It basically applies the idea of bipartite ShockHash on another level
of the same data structure. Like in rotation fitting, we split the input set into two sets A
and B using a constant 1-bit hash function. Now we can hash each of the two sets using
independent hash functions. In particular, we can test all combinations of assigning some
hash function to each of the two sets. This reduces the number of hash function evaluations
significantly. To encode the combined seed, we use a pairing function again. In contrast
to the bipartite tries in ShockHash, the hash functions cannot be exchanged, so we cannot
assume that one seed is larger than the other. We therefore need a more general pairing
function. The most fitting pairing function here is Szudzik’s pairing function (see Section 2),
which enumerates, for all k& € N, all pairs in [k] x [k] before moving on to pairs involving
numbers bigger than k. This means that we can test all combinations of previous hash
functions before having to evaluate the next one. In our implementation, we make sure to
try hash function combinations in linear order in the value of the pairing function.

Bit-parallel Compatibility Check. We use bit patterns to determine the compatibility of
two seeds efficiently. For both subsets, we linearly evaluate hash function seeds on both sets.
For each seed, we determine a bit pattern for each subset that indicates positions that are
hit by hash values. Let a and b be the bit patterns of the two subsets A and B. Then we can
calculate the logical OR of a and all previous patterns from B. We perform the same check
between b and all previous patterns from A, and also check (a OR b). If the result has all bits
set to 1, we have found a surjective seed candidate. If it doesn’t, we append each pattern to
its corresponding list and determine the next pattern using the next hash function seed. In
practice, using a sentinel element for this inner loop comparing bit patterns improves the
performance significantly.

Filtering. The quad split technique described above significantly improves the running time
because it drastically reduces the number of hash function evaluations. However, it does not
improve the asymptotic running time much because all combinations still need to be tested.
What makes this method interesting from a theoretical point of view is that we can again
perform filtering here. The filter is less effective than on the main layer of the data structure,
but it can still improve the asymptotic running time of the entire construction. Recall that
we want to find surjective hash functions from n keys to [n/2] positions here. We observe
that if we fix one of the hash functions and this hash function does not hit one of the output
values, the other hash function has to hit that output value. Therefore, we can skip testing
the combination with all other hash functions that do not hit that output value. We can
organize all candidate hash functions in a binary trie data structure based on the positions
that are hit. Testing a new candidate hash function now boils down to traversing the tree.
In theory, this is more efficient than testing all combinations. In practice, at least for the
input sizes that we use in our experiments, the technique is likely slower because of constant
factors, so we do not implement it. Preliminary experiments show that a version that uses
bucketing based on the output values that are hit is not practical. While it is slightly faster
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for extreme configurations with large n, it is usually slower than simply checking all bit
patterns.

4.2 Variants and Enhancements

Until now, we have assumed that the input size n is an even number, but we now show
how bipartite ShockHash can be enhanced to support uneven numbers of input keys as well.
Additionally, we give further implementation tricks to improve the performance even more.

Supporting Uneven n. To support uneven numbers n of input keys, we can relax the
bipartite property. The idea is that the output value [n/2] can be hit by both hash functions,
but each with half the probability. When then combining the two halves, it gets the normal
probability like all other output values. For filtering candidate hash functions for surjectivity,
the corresponding bit needs to be ignored — a seed candidate can be valid both if the bit is
set or not set. While this is possible in theory, it is less elegant at query time. The problem
is that both hash functions apply the reduced weight to the value [n/2], but one function
gets shifted. Therefore, we need to mirror the shifted hash function so that the middle
value receives the reduced weight. In our implementation we therefore simply accept that
the output value [n/2] is hit with twice the probability. Supporting uneven n then just
boils down to rounding compile time constants to the right direction. When integrated into
RecSplit, we expect uneven n to happen only once in every two buckets, so it has a negligible
overhead of about 1/2b bits per key.

Isolated Keys Filter. Bipartite ShockHash generates a set of surjective hash function
candidates and then tests all combinations for orientability. By using an additional filter,
we can speed up this test for orientability. The idea is to look at the case that a key is the
only one mapping to a position. We refer to this key as isolated for that hash function seed.
More formally, a key x is isolated using a hash function candidate h, if =1 (h(x)) = {z}.
If a key is isolated in both of the candidate hash functions, then in graph terminology this
corresponds to a connected component with two nodes and one edge. Since each connected
component of the final graph must have the same number of nodes and edges, there is then
no need to perform the full test for orientability. We can determine bit patterns for each
seed, indicating which of the keys are isolated. Then seed combinations can be ruled out
using simple bit-parallel operations checking if the bit patterns are orthogonal. Note that
the bit patterns used in the quad split technique refer to output positions (and have size
n/2), while the patterns here refer to input keys (and therefore have size n). While this
check saves the more complex check for orientability, this does not change the asymptotic
running time much because all combinations still need to be compared. In theory, we could
use a trie structure similar to the one in the quad split technique again. Then only seeds
that have compatible isolated nodes need to be tested.

Seed Cache. Evaluating the hash functions can be a bottle-neck depending on the input
size. An obvious idea is to cache the hash function output values of the seed candidates.
Because the input sets and therefore the hash values are very small, we can store each hash
value in a single byte. This makes the amount of space needed for each seed candidate
relatively small.

Parallelization. When integrating bipartite ShockHash into the RecSplit framework, similar
to how it is done in plain ShockHash, parallelization is obvious. Each bucket in RecSplit
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can be handled independently, and there are so many buckets that a simple distribution
of buckets to threads is likely well load-balanced. The main missing part for ShockHash
parallelization is that the space-efficient retrieval data structure we use (BuRR [6]) is not
parallelized. However, in the most space-efficient configurations, the retrieval data structure
does not have a significant influence on the construction time. Therefore, our implementation
of bipartite ShockHash only parallelizes the hash function search within buckets, based on
SIMDRecSplit [4].

Bipartite ShockHash can also be parallelized using SIMD instructions. Compared to plain
ShockHash, the bipartite version introduces more complex data structures. We achieve good
performance improvements on large n by SIMD-parallelizing the comparison of candidate bit
patterns. However, the other more involved data structures are harder to parallelize using
SIMD because of more complex control flows. Therefore, we use SIMD only for checking lists
of bit patterns, which is the main bottle-neck for large n. It is possible to use a small trick
here: We can halve the size of the bit patterns, which doubles the number of SIMD lanes we
can use. If there is a match, we then need to check the full pattern before continuing. Note
also that even if the full pattern is never compared, this does not hurt correctness because
the patterns are only used for filtering. However, on the machines we have tried this, the idea
does not improve the performance. SIMDRecSplit [4] does not support the large leaf sizes
that we can now achieve with bipartite ShockHash. Therefore, our SIMD implementation
parallelizes only the leaves using bipartite ShockHash, not the splittings.

Finally, it is also possible to develop a hybrid CPU/GPU implementation. Many of the
data structures used in bipartite ShockHash are more complex in terms of control flow and
memory access. They are therefore hard to parallelize on the GPU. However, for large n, the
majority of the construction time in bipartite ShockHash is spent on comparing bit patterns
of hash function values with each other to check if they are compatible. Here we can use
the massive parallelism of GPUs to produce hash function candidates by comparing many
patterns in parallel. Then the CPU can perform the less frequent and more complex checks
for orientability.

5 Experiments

In the following section, we describe experiments comparing bipartite ShockHash to the
original implementation, as well as to competitors from the literature.

Experimental Setup. We run our experiments on an Intel i7 11700 processor with 8 cores
and a base clock speed of 2.5 GHz. The machine runs Ubuntu 22.04 with Linux 5.15.0
and supports AVX-512 instructions. We use the GNU C++ compiler version 11.2.0 with
optimization flags -03 -march=native. As input data, we use strings of uniform random
length € [10, 50] containing random characters except for the zero byte. Note that, as a first
step, almost all compared codes generate a master hash code of each key using a high quality
hash function. This makes the remaining computation independent of the input distribution.
All experiments use a single thread.

Construction. Figure 4 shows different methods to generate seed candidates. Filtering
based on isolated keys (see Section 4.2) makes the construction about two times faster. While
rotation fitting already gives impressive speedups, our quad split technique (see Section 4.1.2)
is even faster for large n. The quad split technique is about one order of magnitude faster
than a basic implementation of bipartite ShockHash. For comparison, the plot also includes



10

Bipartite ShockHash: Pruning ShockHash Search for Efficient Perfect Hashing

T o107 |
N F —o— Bipartite
= 3 Bipartite + Filter
i 10° —e— Bipartite + Filter + QuadSplit
o g —=— Bipartite 4 Filter + RF
g 100 | —w— ShockHash + RF [11]
= g Brute-Force [7]
10*

Input size n

Figure 4 Construction throughput using different methods to come up with seed candidates. For
comparison, the plot also includes Brute-Force search, as well as plain ShockHash.

Brute-Force search, as well as the plain ShockHash implementation. It shows that, overall,
bipartite ShockHash is up to about 3 orders of magnitude faster than the previous state
of the art. Note that the comparison here is a bit unfair because different methods have
different space overheads based on n. However, for larger n, the methods have almost the
same space usage.

Comparison with Competitors. In the literature, there are many perfect hash function
constructions. As with plain ShockHash, the input sets for bipartite ShockHash are still
rather small (n < 128). For a comparison with competitors, we therefore integrate it into
the RecSplit [7] framework (see Section 2), just like plain ShockHash. RecSplit recursively
divides the input set of size N into many smaller subsets, most of them having size n. We
call this integrated variant bipartite ShockHash-RS. In the following, we always use the quad
split technique with filtering based on isolated keys.

Figure 5 gives a Pareto front? of space usage vs construction performance for competitors
from the literature. Note that we are mainly interested in the space usage configurations
close to the theoretical lower bound. Therefore, the Figure uses a logarithmic x-axis. All of
the competitors achieving below 1.8 bits per key use the RecSplit framework. This shows how
seminal the RecSplit paper is, and how well the idea of the splitting tree works in practice.
Bipartite ShockHash-RS becomes Pareto optimal for space usages less than 1.54 bits per key
and is the first method to achieve a space usage of 1.489 bits per key in practice.

In addition to the Pareto front, we give a selection of configurations of the most space
efficient competitors in Table 1. Given the same construction time, original RecSplit achieves
a space usage of 1.584 bits per key, SIMDRecSplit a space usage of 1.560 bits per key and
plain ShockHash-RS achieves a space usage of 1.524 bits per key. Bipartite ShockHash-RS
reduces this to a space usage of only 1.489 bits per key. Therefore, making ShockHash
bipartite reduces the distance to the lower bound from 0.081 bits per key to 0.046 bits per
key, which is a reduction by 43%. Bipartite ShockHash-RS achieves a space usage within
3.3% of the lower bound for practically relevant input set sizes. Comparing configurations
with the same space usage, plain ShockHash-RS generates a MPHF with 1.523 bits per key
in about 19 minutes, while bipartite ShockHash-RS needs less than 1 minute to achieve the

2 A point is on the Pareto front if there is no point from the same competitor that has simultaneously
better space consumption and construction throughput.
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Figure 5 Pareto front of space usage vs construction performance. Note that both axes are
logarithmic. N = 10 million keys. We plot all Pareto optimal data points but only show markers for
every second point to increase readability. Therefore, the lines might bend on positions without
markers.

Table 1 Query and construction performance of the most space efficient competitors. N =5
million keys. Space is given in bits per key and construction time is given in ns per key.

Method Space Constr. Query
PTHash, ¢=7.0, «=0.99, C-C 3.313 200 ns 20 ns
RecSplit, n=14, b=2000 1.584 126140 ns 97 ns
SIMDRecSplit, n=14, b=2000 1.585 11696 ns 109 ns
SIMDRecSplit, n=16, b=2000 1.560 137919 ns 99 ns
ShockHash-RS, n=30, b=2000 1.582 797 ns 121 ns
ShockHash-RS, n=39, b=2000 1.556 1813 ns 123 ns
ShockHash-RS, n=58, b=2000 1.523 112072 ns 121 ns

Bip. ShockHash-RS, n=64, b=2000 1.524 5724 ns 131 ns
Bip. ShockHash-RS, n=104, b=2000 1.496 24406 ns 121 ns
Bip. ShockHash-RS, n=128, b=2000 1.489 188041 ns 113 ns

same space consumption. This makes bipartite ShockHash-RS about 20 times faster than
the plain version. The reason why bipartite ShockHash-RS has a lower speedup than the
base case is that for this configuration, about 80% of the construction time is spent in the
splitting tree. The most relevant configurations of bipartite ShockHash-RS, where the base
case dominates the construction time, are entirely impractical for plain ShockHash-RS.
Table 1 also gives the query time of different configurations of competitors. Note that
while the splitting tree at the core of RecSplit leads to impressive space usage, it is rather
slow to traverse. Therefore, methods inside the RecSplit framework, which are focused mainly
on space consumption, have rather slow (but still constant-time) queries. This is compared
to less space efficient competitors numerous times in the literature [4, 11, 15]. In the Table,
we therefore only give PTHash as an example, which is currently the MPHF with the fastest
queries. In general, we expect any ShockHash implementation to have slower queries than
RecSplit because of the additional access to a retrieval data structure. Compared to plain
ShockHash-RS, our bipartite implementation loses about 10% of the query performance at
the same space usage. This is due to un-pairing seeds and having to do case distinctions based
on the partitions and on the subset during quad split. However, bipartite ShockHash-RS

11
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has the potential to make queries faster by increasing the size of the leaf nodes, as shown in
the measurements. This reduces the time spent on traversing RecSplit’s splitting tree data
structure, which is a major bottleneck for the queries.

6 Conclusion and Future Work

With bipartite ShockHash, we have presented an extension of ShockHash that significantly
improves the space consumption that can be achieved in practice. The idea is to generate the
ShockHash graph by two independent hash functions and testing all pairwise combinations of
them. This significantly reduces the number of hash functions that need to be evaluated. On
top, filtering the seed candidates provides exponential construction time speedups. In itself,
the construction is up to 3 orders of magnitude faster than plain ShockHash. Integrating
bipartite ShockHash into the RecSplit framework to support larger input sets, we get bipartite
ShockHash-RS. Even though bipartite ShockHash-RS works best far beyond the smallest
practical configurations plain ShockHash-RS, it is already 20 times faster than the smallest
configuration of plain ShockHash-RS.

Future Work. This paper only describes the algorithmic ideas and gives initial experiments.
An important next step therefore is a formal analysis of bipartite ShockHash that proves the
properties we only used intuitively in this paper. Additionally, a hybrid parallelization of
the technique using a GPU would be an interesting future direction. For full utilization of
SIMD hardware, a further next step would be to work on SIMD-parallel splittings in the
RecSplit framework that support the large leaf sizes that we can now achieve with bipartite
ShockHash.
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