
Bit Operations

Ray Seyfarth

July 30, 2011

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Introduction to bits

2 Not

3 And

4 Or

5 Exclusive or

6 Shift operations

7 Rotate instructions

8 Bit testing and setting

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Bit usage

A bit can mean one of a pair of characteristics

True or false

Male or female

Bit fields can represent larger classes

There are 64 squares on a chess board, 6 bits could specify a position

The exponent field of a float is bits 30-24 of a double word

We could use a 4 bit field to store a color from black, red, green,
blue, yellow, cyan, purple and white

Should you store numbers from 0-15 in 4 bits or in a byte?

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Bit operations

Individual bits have values 0 and 1

There are instructions to perform bit operations

Using 1 as true and 0 as false
I 1 and 1 = 1, or in C, 1 && 1 = 1
I 1 and 0 = 0, or in C, 1 && 0 = 0
I 1 or 0 = 1, or in C, 1 || 0 = 1

We are interested in operations on more bits
I 10101000b & 11110000b = 10100000b
I 10101000b | 00001010b = 10101010b

These are called “bit-wise” operations

We will not use bit operations on single bits, though we will test
individual bits

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Not operation

C uses ! for a logical not

C uses ~ for a bit-wise not

!0 == 1

!1 == 0

~0 == 1

~1 == 0

~10101010b == 01010101b

~0xff00 == 0x00ff

!1000000 == 0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Not instruction

The not instruction flips all the bits of a number - one’s complement

not leaves the flags alone

There is only a single operand which is source and destination

For memory operands you must include a size prefix

The sizes are byte, word, dword and qword

The C operator is

not rax ; invert all bits of rax

not dword [x] ; invert double word at x

not byte [x] ; invert a byte at x

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

And operation

& 0 1

0 0 0
1 0 1

C uses & for a logical and

C uses && for a bit-wise and

11001100b & 00001111b == 00001100b

11001100b & 11110000b == 11000000b

0xabcdefab & 0xff == 0xab

0x0123456789abcdef & 0xff00ff00ff00ff00 == 0x010045008900cd00

Bit-wise and is a bit selector

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

And instruction

The and instruction performs a bit-wise and

It has 2 operands, a destination and a source

The source can be an immediate value, a memory location or a
register

The destination can be a register or memory

Not both destination and source can be memory

The sign flag and zero flag are set (or cleared)

mov rax, 0x12345678

mov rbx, rax

and rbx, 0xf ; rbx has the low nibble 0x8

mov rdx, 0 ; prepare to divide

mov rcx, 16 ; by 16

idiv rcx ; rax has 0x1234567

and rax, 0xf ; rax has the nibble 0x7

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Or operation

| 0 1

0 0 1
1 1 1

C uses | for a logical and

C uses || for a bit-wise and

11001100b | 00001111b == 11001111b

11001100b | 11110000b == 11111100b

0xabcdefab | 0xff == 0xabcdefff

0x0123456789abcdef | 0xff00ff00ff00ff00 == 0xff23ff67ffabffef

Or is a bit setter

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Or instruction

The or instruction performs a bit-wise or

It has 2 operands, a destination and a source

The source can be an immediate value, a memory location or a
register

The destination can be a register or memory

Not both destination and source can be memory

The sign flag and zero flag are set (or cleared)

mov rax, 0x1000

or rax, 1 ; make the number odd

or rax, 0xff00 ; set bits 15-8

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Exclusive or operation

^ 0 1

0 0 1
1 1 0

C uses ^ for exclusive or

00010001b ^ 00000001b == 00010000b

01010101b ^ 11111111b == 10101010b

01110111b ^ 00001111b == 01111000b

0xaaaaaaaa ^ 0xffffffff == 0x55555555

0x12345678 ^ 0x12345678 == 0x00000000

Exclusive or is a bit flipper

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Exclusive or instruction

The xor instruction performs a bit-wise exclusive or

It has 2 operands, a destination and a source

The source can be an immediate value, a memory location or a
register

The destination can be a register or memory

Not both destination and source can be memory

The sign flag and zero flag are set (or cleared)

mov rax, 0 uses 7 bytes

xor rax, rax uses 3 bytes

xor eax, eax uses 2 bytes

mov rax, 0x1234567812345678

xor eax, eax ; set rax to 0

mov rax, 0x1234

xor rax, 0xf ; change to 0x123b

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Shift operations

C uses << for shift left and >> for shift right

Shifting left introduces low order 0 bits

Shifting right propagates the sign bit in C for signed integers

Shifting right introduces 0 bits in C for unsigned integers

Shifting left is like multiplying by a power of 2

Shifting right is like dividing by a power of 2

101010b >> 3 == 10b

111111b << 2 == 11111100b

125 << 2 == 500

0xabcd >> 4 == 0xabc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Shift instructions

Shift left: shl

Shift right: shr

Shift arithmetic left: sal

Shift arithmetic right: sar

shl and sal are the same

shr introduces 0 bits on the top end

sar propagates the sign bit

There are 2 operands
I A destination register or memory
I In immediate number of bits to shift or cl

The sign and zero flags are set (or cleared)

The carry flag is set to the last bit shifted out

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Extracting a bit field

There are at least 2 ways to extract a bit field

Shift right followed by an and
I To extract bits m − k with m ≥ k , shift right k bits
I And this value with a mask of m − k + 1 bits all set to 1

Shift left and then right
I Shift left until bit m is the highest bit
I With 64 bit registers, shift left 63 −m bits
I Shift right to get original bit k in position 0
I With 64 bit registers, shift right 63 − (m − k) bits

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Extracting a bit field with shift/and

Shift right 3 bits

And with 0x7f

1 1 0 0 0 1 1 1 0 0 011

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 01

1 1 0 0

0 1 1 0 0 011

0 1 1 1 0 0 011000

0 0 0 0 0 0 0 0

Need to extract bits 9−3

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Extracting a bit field with shift/shift

Shift left 6 bits

Shift right 9 bits

1 1 0 0 0 1 1 1 0 0 011

00 0 0 0 0 0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 01

1 1 0 0 011

Need to extract bits 9−3

1 1 0 0 011 00 0 0 0 001 11

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Rotate instructions

The ror instruction rotates the bits of a register or memory location
to the right

Values from the top end of the value start filling in the low order bits

The rol instruction rotates left

Values from the low end start filling in the top bits

These are 2 operand instructions like the shift instructions

The first operand is the value to rotate

The second operand is the number of bits to rotate

The second operand is either an immediate value or cl

Assuming 16 bit rotates

1 ror 2 = 0100000000000000b

0xabcd rol 4 = 0xbcda

0x4321 ror 4 = 0x1342

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Filling a field

There are at least 2 ways of filling in a field

You can shift the field and a mask and then use them
I Working with a 64 bit register, filling bits m − k
I Prepare a mask of m − k + 1 bits all 1
I Shift the new value and the mask left k bits
I Negate the mask
I And the old value and the mask
I On in the new value for the field

Use rotate and shift instructions and or in new value
I Rotate the register right k bits
I Shift the register right m − k + 1 bits
I Rotate the register left m − k + 1 bits
I Or in the new value
I Rotate the register left k bits

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Bit testing and setting

It takes a few instructions to extract or set bit fields

The same technique could be used to test or set single bits

It can be more efficient to use special instructions operating on a
single bit

The bt instruction tests a bit

bts tests a bit and sets it

btr tests a bit and resets it (sets to 0)

These are all 2 operand instructions

The first operand is a register or memory location

The second is the bit to work on, either an immediate value or a
register

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Set operations example code

rax contains the bit number to work on

This bit number could exceed 64

We compute the quad-word of data which holds the bit

We also compute the bit number within the quad-word

mov rbx, rax ; copy bit number to rbx

shr rbx, 6 ; qword index of data to test

mov rcx, rax ; copy bit number to rcx

and rcx, 0x3f ; extract rightmost 6 bits

xor edx, edx ; set rdx to 0

bt [data+8*rbx],rcx ; test bit

setc dl ; edx equals the tested bit

bts [data+8*rbx],rcx ; set the bit, insert into set

btr [data+8*rbx],rcx ; clear the bit, remove

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Introduction to bits
	Not
	And
	Or
	Exclusive or
	Shift operations
	Rotate instructions
	Bit testing and setting

