
Bitmap Indexing and related 
indexing techniques

Presented by: El Ghailani Maher



3/29/03 El Ghailani Maher 2

Outline
! Introduction
! Why Indexing?
! Factors that determine the convenient Indexing 

technique
! Criteria to develop a new indexing technique
! Bitmap Indexes

" Simple Bitmap index
" Projection Index
" Bit-Sliced Index
" Range-Based Indexes
" Encoded Bitmap Indexes 

! Advantages and disadvantages of Bitmap Indexes
! Comparison of the different Indexes techniques
! Conclusion
! References



3/29/03 El Ghailani Maher 3

Introduction

! The growing interest in Data warehousing 
for decision-makers is becoming more 
and more crucial to make faster and 
efficient decisions

! The problem is that most of the queries 
in a large data warehouse are complex 

! Therefore, many indexing techniques are 
created to speed up access to data within 
the tables and to answer ad hoc queries 
in read-mostly environments. 



3/29/03 El Ghailani Maher 4

Introduction

! Indexes are database objects associated 
with database tables and created to speed 
up access to data within the table. 

! They have already existed in the OLTP 
relational database system but they can 
not handle large amount of data and 
complex queries that are common in 
OLAP systems. 



3/29/03 El Ghailani Maher 5

Why Indexing

! Online decision report needs short 
response. 

! Therefore, many indexing techniques 
have been created to reach this goal in 
read-only environments. 

! the main objective of an indexing 
technique is to provide the ability to 
extract data to answer complex and ad 
hoc queries quickly which is critical for 
data warehouse applications.



3/29/03 El Ghailani Maher 6

Which Indexing technique should be 
used in a column?

What is the best and quick 
way to go to my 

destination?
• B-Tree
• Bitmap

• UB-Tree…



3/29/03 El Ghailani Maher 7

Factors that determine the convenient 
Indexing technique:

1. Cardinality data
2. Distribution
3. Value Range



3/29/03 El Ghailani Maher 8

Criteria to develop a new indexing 
technique:

! The index should be small and utilize 
space efficiently

! The index should operate with other 
indexes to fetch the records before 
accessing raw data.

! The index should support ad hoc and 
complex queries and speed up join 
operations

! The index should be easy to build, implement, 
and maintain 



3/29/03 El Ghailani Maher 9

Bitmap Indexes

! Bitmap Indexes were first introduced by 
O’Neil and implemented in the Model 204 
DBMS. 

! In data warehouse environments insert, 
delete operations are not very common 
therefore, it is better to build an index 
which optimizes the query performance 
rather than the dynamic features. 



3/29/03 El Ghailani Maher 10

Bitmap Indexes

! In Bitmap indexes complex logical selection 
operations can be performed very quickly 
by applying low-cost Boolean operations 
such as OR, AND, and NOT

! thus, reducing  search space before going 
to the primary source data. 



3/29/03 El Ghailani Maher 11

Simple Bitmap Indexes

! The Simple Bitmap Index consists of a collect of 
bitmap vectors each of which is created to 
represent each distinct value of the indexed 
column

! The ith bit in a bitmap vector, representing value 
x, is set to 1 if the ith record in the indexed table 
contains x 

! A Bitmap for a value: an array of bits where the 
ith bit is set to 1 if the ith record has the value

! A Bitmap index: consists of  one bitmap for each 
value that an attribute can take



3/29/03 El Ghailani Maher 12

Figure 1: Stock Trading Example



3/29/03 El Ghailani Maher 13

Stock Trading Example

! stocks are traded at two different stock 
exchanges at NASDAQ and at NYSE 

! we see that our stock example comprises 
12 different stocks which are uniquely 
identified by their record ID given in the 
first column.



3/29/03 El Ghailani Maher 14

Stock Trading Example

! We can represent Stocks and their 
corresponding trading places by the 
following simple bitmap:

Example: 
! NASDAQ: (1 0 0 0 0 1 0 0 0 1 1 1)
! NYSE:      (0 1 1 1 1 0 1 1 1 0 0 0)
! we have a straightforward way of 

describing the stock exchange by means of 
bitmaps.



3/29/03 El Ghailani Maher 15

Stock Trading Example

! Question ? How do we retrieve data from such a 
bitmap index? 

! If we make a simple modification of our example 
and suppose that some stocks are traded at both 
stock exchanges 

! NASDAQ: (1 0 1 1 0 1 0 0 0 1 1 1)
! NYSE:      (0 1 1 1 1 0 1 1 1 0 1 0)

! We notice that the 3rd, 4th and 11th bit in our 
example are traded at both stock exchange. 



3/29/03 El Ghailani Maher 16

Stock Trading Example

! We simply AND both bitmaps together so that to 
retrieve this information from our database.

! NASDAQ:  (1 0 1 1 0 1 0 0 0 1 1 1)
! NYSE:       (0 1 1 1 1 0 1 1 1 0 1 0)  AND
! (0 0 1 1 0 0 0 0 0 0 1 0)

! Given that the 3rd, the 4th and the 11th bits of 
the resulting bitmap are set to 1, we can know 
that these stocks are traded at both stock 
exchanges.



3/29/03 El Ghailani Maher 17

Projection Index

! A Projection Index on an indexed column A 
in a table T stores all values of A in the 
same order as they appear in T. 

! it is simply a sequence of column values 
from any table where the ordinal row 
number of table gives the order of the 
bitmap index.



3/29/03 El Ghailani Maher 18

Figure 2.1 : Projection Index 
Example

Col4Col3Col2
v1
v2
.
.
.
vk

Col1 Col2
v1
v2
.
.
.
vk



3/29/03 El Ghailani Maher 19

An other Example

Figure 2.2: An example of the PRODUCT, CUSTOMER and SALE table.



3/29/03 El Ghailani Maher 20

Projection Index Example



3/29/03 El Ghailani Maher 21

Projection Index

! having the Projection Index on these 
columns reduces extremely the cost of 
querying

! because a single I/O operation may bring 
more values into memory.



3/29/03 El Ghailani Maher 22

Bit-Sliced Index

! Bit-Sliced Index is 
a set of bitmap 
slices which are 
orthogonal to the 
data held in a 
projection index. 



3/29/03 El Ghailani Maher 23

Bit-Sliced Index

! A bit-sliced index based on converting 
integer values to binary values in order to 
perform fast logical operations on them 
since that hardware support directly.

! We should choose an optimal number of 
bits per bit-vector in order to represent 
the whole attribute domain and to occupy 
minimum space.



3/29/03 El Ghailani Maher 24

Range-Based Indexes

! The space complexity of the Simple Bitmap 
index is low for low cardinality attributes 
but large for high cardinality attributes. 

! Range-Based Index is a simple modification 
of the bitmap index that handles to some 
extent this clear weakness 

! The variation is that the bitmap vector is 
used to represent a range rather than a 
distinct attribute value as we saw it in our 
previous example for the attribute 
Exchange.

!



3/29/03 El Ghailani Maher 25

Range-Based Indexes

! The most important idea of Range-Based 
Indexes is to reduce storage overhead 

! by partitioning, That is, attribute values 
are split into smaller number of ranges 
and represented by bitmap vectors.

! Indeed, a bit is set to 1 if a record falls 
into specified range; otherwise this bit is 
set to 0.



3/29/03 El Ghailani Maher 26

Range-Based Indexes
Example

! We suppose that a maximum trading 
volume per day is 20.000.000 shares. 

! Then we divide the attribute Trading 
Volume into two equal ranges:

[10.000.000, 20.000.000]: (0 0 0 0 0 0 0 0 0 1 0 1)
[0, 10.000.000):                (1 1 1 1 1 1 1 1 1 0 1 0)

! For example, the 10th and 12th stock are 
traded in a volume greater than 
10.000.000 stocks per day 



3/29/03 El Ghailani Maher 27

Range-Based Indexes
Example

! The great advantage of a Range-Based 
index over the Simple Bitmap index is that 
only a lower number of bitmap vectors 
need to be stored.

! Nevertheless, the resulting query process 
might be longer.



3/29/03 El Ghailani Maher 28

But how are data retrieved?

! We suppose that we are interested in all stocks at 
NYSE that have a trading volume of more than 4 
millions shares.

! Therefore, the two bitmap vectors for the 
attribute Exchange and the range                     
[0, 10.000.000) are ANDed together:

! [0, 10.000.000):    (1 1 1 1 1 1 1 1 1 0 1 0)
! NYSE:                   (0 1 1 1 1 0 1 1 1 0 0 0)  AND
! Candidates            (0 1 1 1 1 0 1 1 1 0 0 0)



3/29/03 El Ghailani Maher 29

But how are data retrieved?

! There are 7 candidates which are represented by 
the 1-bit, but we still need to check the value 
either larger than 4 millions or not. 

! Range-Based index needs two search steps 
instead of only one which is true for Simple 
Bitmap index.

! But, one of the great difficulties with this index is 
to find an optimal partitioning of the range in 
order to lower the processing time in step 2.



3/29/03 El Ghailani Maher 30

Encoded Bitmap Indexes

! The weaknesses of SBI for high cardinality 
attributes lead to the suggestion of 
encoded bitmap indexing which provides 
the advantage of a drastic reduction in 
space requirements

! The main idea of EBI is to encode the 
attribute domain.  



3/29/03 El Ghailani Maher 31

Encoded Bitmap Indexes Example

We will see the following example:
! We assume that we have a fact table SALES with 

N tuples and a dimension table PRODUCT with 
12.000 different products. 

! If we build a simple bitmap index on PRODUCT, It 
will require 12.000 bitmap vectors of N bits in 
length. 

! However, if we use encoded bitmap indexing we 
only need ceil(log² 12.000)=14 bitmap vectors 
plus a mapping table which is a very significant 
reduction of the space complexity.



3/29/03 El Ghailani Maher 32

Encoded Bitmap Indexes Example

! In this new example we will show how Huffman 
encoding used for reducing the space complexity of 
bitmap indexes:

! We assume that our attribute domain is given by the 
table T is {a,b,c}. 

! The encoding schema of EBI is stored in a separate 
table called mapping table and simply encodes the 
values from a SBI by means of Huffman encoding 

! therefore reduces the number of bitmaps vectors. In 
particular, we use only ceil(log² 3)=2 Encoded Bitmap 
vectors instead of 3 simple bitmap vectors. 



3/29/03 El Ghailani Maher 33

Encoded Bitmap Indexes Example

! This means that 2 bits are used to encode 
the domain {a,b,c}. 

! For example, the attribute value of a is 
represented by the bit string 100 in the 
table of the SBI but in the table of EBI the 
attribute value a is encoded as 00.



3/29/03 El Ghailani Maher 34

Figure3: Huffman encoded bitmap index



3/29/03 El Ghailani Maher 35

Advantages and disadvantages of Simple Bitmap 
Indexes

" Advantages:
! One of the main advantages of bitmap indexes 

is that logical operations are very well supported 
by hardware and, thus, the operations are 
executed quite fast. 

! In addition, both the cost for constructing 
bitmap indexes and the processing costs are 
very low.

" Disadvantages:
! For high cardinality attributes the space 

complexity becomes so large that this technique 
might not be very space efficient.



3/29/03 El Ghailani Maher 36

Comparison of the different Indexes 
techniques



3/29/03 El Ghailani Maher 37

Comparison of the different Indexes 
techniques



3/29/03 El Ghailani Maher 38

Comparison of the different Indexes 
techniques



3/29/03 El Ghailani Maher 39

Comparison of the different Indexes 
techniques



3/29/03 El Ghailani Maher 40

Conclusion

! There is no basic index that is best suited for all 
applications. Each application has its own 
specificities.

! The Bitmap indexing works well in low cardinality 
but not for high cardinalities.

! Compressed Bitmap is a promising technique to 
overcome this problem. 

! we need some other efficient encoding techniques 
to lower the number of logical operations.



3/29/03 El Ghailani Maher 41

References
! [1] Mag. Kurt Stockinger. Optimization of DB-Access. 

Literaturseminar SS 1999
! [2] Ming-Chuan Wu, Alejandro P. Buchmann. Encoded 

Bitmap Indexing for data warehouses. DVS1, Computer 
Science Department, Technische Universitat Darmstadt, 
Germany. 

! [3] Sirirut Vanichayobon Le Gruenwald. Indexing techniques 
for Data Warehouses’ queries. The University of Oklahoma.

! [4] Chee-Yong Chan and Yannis E. loannidis. Bitmap Index 
Design and Evaluation. University of Wisconsin-Madison

! [5] Sihem Amer-Yahia and Theodore Johnson. Optimizing 
queries on compressed Bitmaps.  AT&T Labs-Research

! [6] Marcus Jurgens, Hans-J Lenz. Tree Based Indexes vs
Bitmap Indexes: A performance Study.  Institute of Statistics 
and Econometrics. 


