IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

Branch and Data Herding: Reducing Control and Memory
Divergence for Error-tolerant GPU Applications

John Sartori and Rakesh Kumar

_Abstract—Control and memory divergence between threads execution allows the processor design to be relatively Emp
within the same execution bundle, or warp, have been shown to app”cation performance may suffer Signiﬁcanﬂy whenever

cause significant performance bottlenecks for GPU applicébns.

In this paper, we exploit the observation that many GPU
applications exhibit error tolerance to propose branch anddata

herding. Branch herding eliminates control divergence by ércing

all threads in a warp to take the same control path. Data herdng

eliminates memory divergence by forcing each thread in a war

to load from the same memory block. To safely and efficiently
support branch and data herding, we propose a static analysi
and compiler framework to prevent exceptions when control ad

data errors are introduced, a profiling framework that aims

to maximize performance while maintaining acceptable outpt

quality, and hardware optimizations to improve the performance
benefits of exploiting error tolerance through branch and dda

herding. Our software implementation of branch herding on

NVIDIA GeForce GTX 480 improves performance by up to

34% (13%, on average) for a suite of NVIDIA CUDA SDK

and Parboil [16] benchmarks. Our hardware implementation

of branch herding improves performance by up to 55% (30%,

on average). Data herding improves performance by up to
32% (25%, on average). Observed output quality degradation
is minimal for several applications that exhibit error tolerance,

especially for visual computing applications.

EDICS: Parallel Architectures and Design Techniques

I. INTRODUCTION

GPUs and similar SIMD architectures are becoming i
creasingly popular in the high performance desktop, serv
and scientific computing domains, especially as singleattir
performance languishes. With the emergence of high-lertQ
programming models such as NVIDIA CUDA [14], ATI
Stream, OpenCL [7], and Microsoft DirectCompute [10], an
the corresponding general purpose GPUs (GPGPUSs), fo

has shifted from exclusively graphics processing appticat

to also supporting myriad data-parallel applications.gi&in
instruction multiple data (SIMD) architectures are area a

energy efficient for data-parallel applications, as ingion
sequencing logic is shared by multiple execution unitsjifen

threads in the same warp behave differently due to control
or memory divergence [14], [12]. Control divergence result
in serialized execution of divergent control paths, legvin
execution resources idle and throttling parallelism. &iny,
memory divergence causes a warp to stall until the longest
memory request for a vector load completes before execut-
ing any dependent instructions. Recent work has shown that
control and memory divergence between threads within a
warp cause significant performance bottlenecks for many GPU
applications [9], [6].

In this paper, we attempt to reduce the amount of control
and memory divergence in GPU applications to improve their
performance. We draw on the observation that many GPU
applications produce acceptable outputs even if a smalbeum
of threads in a SIMD execution unit are forced to go down
the wrong control path or are forced to load from an incorrect
(albeit spatially local) address. This is not surprisingpsider-
ing that many GPU applications are data-intensive — differe
threads in a warp are often operating on similar, often afbati
correlated, data. Similarly, the fraction of branches thagrge
tends to be small (even though the corresponding perforenanc
degradation is large). We exploit these observations tpgse

Iranch herding eliminates control divergence by forcinlg al
threads in a warp to take the same control path. This prevents

rg‘vo novel optimizations -branch herdingand data herding

rialization of branch paths that causes execution regeur
to remain idle for threads on the inactive control path. Data
Berding eliminates memory divergence by forcing each threa

é?#? warp to load from the same memory block. This reduces
t

e number of memory stalls. This also reduces bandwidth
pressure, as fewer blocks need to be loaded from memory.

ﬁNith the aid of static and profiling-based analyses, branch

and data herding are applied discriminately to safely iasee
performance while maintaining acceptable output quality.

more area and power for the execution units themselves.
However, the performance delivered by these architectures
continues to lag the performance demands of emerging ap-
plications, as performance is often limited by the number of
execution units that can fit within the area and power budget
of the chip. As such, performance optimizations for GPUs and
other SIMD architectures are an active area of research.

The nature of SIMD execution requires that groups of
parallel threads that execute together (warps) must egecut
the same instruction in lockstep. While the SIMD nature of

J. Sartori and R. Kumar are with the Department of Electiézal Computer
Engineering, University of lllinois at Urbana-Champaiddrbana, IL 61801.
E-mail: {sartori2,rakeshk@illinois.edu.

Copyright © 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other psegomust be
obtained from the IEEE by sending an email to pubs-permisgieee.org

This paper makes the following contributions:

We demonstrate the potential for significant performance
benefits without a significant degradation in output qual-
ity from carefully reducing control and memory diver-
gence for several GPU applications that exhibit error
tolerance. We confirm that an indiscriminate elimination
of divergence can cause significant degradation in output
quality. Similarly, a naive implementation of divergence
reduction can actuallydegrade performance in some
scenarios.

We propose two optimizations — branch herding and
data herding — that eliminate control and memory di-
vergence, respectively. Our software implementation of
branch herding involves using CUDA intrinsics to force
diverging threads to take the same direction at a branch as
the majority of the threads. A hardware implementation

2 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

of branch herding uses majority logic to identify thém”f; (:_;*&5 ixi(;.)g : ;(04 o 1

branch direction all threads should take. Data herding is * = xx - yy + xC
implemented in hardware by identifying the most popular ix = i . i
memory block (that the majority of loads map to) andl return i;
mapping all loads from different threads in the warp teig. 1. The main computation loop for Mandelbrot. The loopiisolied 20
that block. times in the actual application kernel.

« While it is known that several data-parallel application
can tolerate errors [2], [18], [22], what is really needed
is a way to exploit available error tolerance safely an(
efficiently. To support our branch and data herding im
plementations, we also propose a static analysis a
compiler framework that guarantees that control an
memory errors introduced by herding will not causd
exceptions, a profiling framework that aims to improvg
performance while maintaining acceptable output qualit
and hardware optimizations to improve the performané&@. 2. Original Mandelbrot (left) and Julia (right) imag&#e color of each
benefits of herding. pixel corresponds to the number of main loop iterations etest by a thread

« We quantify the potential performance benefits from dif® determine whether the point is in the Mandelbrot (or Juit.
ferent implementations of branch and data herding. OHf ; :
;) ; the GPU'’s power and area budget to be spent on execution
software implementation of branch herding on NVIDIA% P 9 b

GeForce GTX 480 improves performance by up to 34 nits. While such an architectural organization is bengffoir
(13%, on average) for a suite of NVIDIA CUDA SDK | ost data-parallel applications, the requirement thaha#lads

and Parboil [16] benchmarks. Our hardware implemeln a warp must execute in lockstep can lead to inefficiencies

. J When different threads take different control paths at atina
tation of branch herding improves performance by up t@ontrol divergence)
Ay .

0 0 s
55% (3(;/0' ort1 aglg(r)}a\g(;)é(yData herding improves perf Because instruction sequencing logic is shared by all exe-
\Tvam? y uplot 0 (t t°' onlf':t\ve(rjage).d tion d.fcution lanes in a SM, the common mechanism for resolving

« Ve aiso evaluate output quaily degradation for Gilzq g divergence in a GPU is to execute instructions from

ferent GPU kernels and full applications utilizing Olg%:e control path for a subset of threads until reaching atpoin

|mpler_ne_ntat|ons of pranch and data .heerlng. We ProviGehere control reconverges, then beginning execution on the
quantitative evaluations for all applications and visu ther control path for the remaining threads until revisjti
evaluations when available. Our framework aims to maity. reconvergence point [6], [14], [21], [4]. Since divenge
:ﬁ; i;%efgiiet;i;glgﬁgigua“ty degradation for applicatio branches necessarily throttle the parallelism and thrpugh
o _ of a SM, they can cause significant performance degradation

Note that our evaluations in this paper assume a GRE Gpu applications [6], [9]. For a warp size of 32 (common
archltecture that matches current-generation NV!DIA CUDA, NVIDIA CUDA GPUs [14]), execution could be slowed
devices [13], [14], [12], though we expect the ideas to Bgown by a factor of 32 if all threads take divergent control
applicable to other GPU / SIMD architectures as well. paths through a section of code.

The rest of the paper is organized as follows. Section Il 1o ynderstand this better, consider Mandelbrot [20] — an ap-
provides background on control and memory divergence aggation from the NVIDIA CUDA SDK that exhibits control
motivates data and branch herding. Section Il describggergence. Mandelbrot generates the Mandelbrot and Julia
branch herding and its various implementations. Section Béts — complex fractal patterns that are characterizednlsi
descr@bes data herding and its implementation._ Section e\duations. Figure 1 shows the main loop of the kernel used
describes a safety, performance, and output quality asseray, compute the Mandelbrot and Julia sets. In the actual kerne
framework for branch and data herdl_ng. Section VI discussggde, the loop is unrolled 20 times. Each thread in the pragra
the methodology of our study. Section VIl presents resulgymputes whether a particular point in the complex plane is
and analysis. Section VIII discusses related work. Sedon i, the Mandelbrot (or Julia) set. The program outputs images

summarizes and concludes. depicting the Mandelbrot and Julia sets (Figure 2). Thercolo
of a pixel corresponds to the number of main loop iterations
Il. BACKGROUND AND MOTIVATION (z) a thread executes to determine whether the point is in the

Below we describe the control and the memory divergendandelbrot (or Julia) set.
problem and discuss how carefully eliminating divergenagm Control divergence arises in Mandelbrot because the number

lead to significant performance benefits. of iterations required to determine whether a point is in the
) Mandelbrot (or Julia) set varies based on the point's locati
A. Control Divergence especially in image regions near the set boundary, where som

SIMD architectures bolster throughput by sacrificing pethreads execute many iterations while others finish quickly
thread control flow logic in order to increase the number @ivergence results in reduced parallelism, as some lanes in
execution units on a chip. Since multiple threads (a warf)e SMs go unused while threads that have finished their
execute the same instruction in lockstep on a SIMD multcomputations wait until all threads in the same warp reach
processor (SM), only one block of instruction fetch, degoda reconvergence point.
and issue logic is needed per SM, allowing a greater fractionThe effect of control divergence on performance can be

407 —¢ Performance increase (no software overhead)
301 —— Performance increase (software overhead)
5
S 104
=]
e oL
E 0 T T
£ 10 20
£ 101
2
s -20 4
-30
40/
Y%forced uniform branches

Fig. 3. The performance of Mandelbrot can be increased byinfgr
uniformity for more branches. However, if software oveidhda added to Fig. 5. Progression of Mandelbrot (top) and Julia (bottomages from 20%
ensure branch uniformity, increasing the number of affebranches increases to 100% forced branch uniformity in 40% intervals.

overhead and can even result in degraded performance.

divergent branches in a program may be small (in this case,
4~ Nerribrot Cuiput Qusity Degrectin less than 1%), an indiscriminate application of a technique
to all branches may result in significant overhead that dimin
ishes or even eliminates performance gains that result from
reduced divergence. This result reinforces the conclusiah
care should be exercised in selecting the branches to target
for elimination of control divergence. Also, a low-overkea
A//—" mechanism for eliminating control divergence may enable
o 1 2 w® 4 = @ 7o o = 1w Significantly more benefits. The result also confirms thatea’
%forced uniform branches implementations of techniques to eliminate control diesrce

Fig. 4. While eliminating control divergence can increasaf@mance, may actualIydecreaseperformance IN SOMe scenarios.
blindly forcing branch uniformity can result in degradedimut quality.

=
o

—&- Julia Output Quality Degradation

% mismatched output bytes
O R, N WhHAOUUO N 0O

B. Memory Divergence

N) ,) Like control divergence, memory divergence occurs when
significant. Figure 3 shows the potential performance &&ee ihreads in the same warp exhibit different behavior. In the

(runtime reduction) if control divergence can be elimimnbfer GPU, a load operation for a warp is implemented as a
a fraction of the static branches in Mandelbrot (from 0% t@yiection of scalar loads, where each thread potentiabyls
100% of branches). The branches are chosen uniformly rapsm a different address. When a load is issued, the SM
_domlywhen the fraction_is less than 100%. Control divergae_ngetS up destination registers and corresponding scordboar
is preempted by changing the source code to vote withinggiries for each thread in the warp. The load then exits the
warp on the condition of a bran.ch_ and.forc!ng all threads Bipeline, potentially before any of the individual threahds
the warp to take the same (majority) direction at the brangRe finished. When all the memory requests corresponding
(details in Section Ill). Experiments were run natively on & the warp load have finished, the destination vector regist
NVIDIA GeForce GTX 480 GPU (details in Section VI). s marked as ready. Instructions that depend on the load must
While only 10% of dynamic instructions in Mandelbrot argstall if any lanes of the destination vector register arereatly.
branches, and less than 1% of branches diverge, performanqqemory divergence occurs when the memory requests for
can potentially be increased by 31% by eliminating contrgbme threads finish before those of other threads in the same
divergence. As theo software overheaperformance series in warp [9]. Individual threads that delay in finishing theiatts
Figure 3 demonstrates, performance increases for Maratellrevent the SM from issuing any dependent instructions from
as control divergence is eliminated for more branches.réigu that warp, even though other threads are ready to execute.
shows that the quality of the Mandelbrot output set degradm@mory divergence may occur for two reasons. (1) The time
by less than 2%, even when divergence has been eliminaigdomplete each memory request depends on several factors,
for all static branches. This shows that for certain errojcluding which DRAM bank the target memory resides in,
tolerant applications, it may be possible to get significagbntention in the interconnect network, and availability o
performance benefits from eliminating control divergenme fresources (such as MSHRs) in the memory controller. (2)
minimal output quality degradation. A quick look at thesince the target data for a collection of memory requests
Julia output set, however, also suggests that an indistat®i made by a warp may reside in different levels of the memory
selection of branches for herding may result in significamierarchy, the individual memory operations may complate i
output quality degradation for several applications. Efare, different lengths of time.
any implementation of branch herding needs to carefullgctel Most GPU architectures do not implement out-of-order
the branches to target. Figure 5 shows visual represensatiexecution due to its relative complexity and hardware cost.
of the Mandelbrot and Julia output sets as the percentaRgther, GPUs cover long latency stalls by multithreading
of forced uniform branches increases from 20% to 100% jAstructions from a pool of ready warps. Providing each SM
increments of 40%. with plenty of ready warps ensures that long latency staills w
The software overheadpberformance series of Figure 3not be exposed. Memory divergence delays the time when
demonstrates another important consideration for any-techwarp may execute the next dependent instruction, cutting
nigue that eliminates control divergence. Since the foactif into the pool of ready warps and potentially exposing stalls

4 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

—+— Quality Degradation (% mismatched output bytes)

-~ Performance increase (% runtime reduction)

cnBhEBRBYUSEE

»
0 10 20 30 40 50 60 70 80 90 100
% forced uniform loads

Fig. 6. Eliminating memory divergence (forcing more uniforloads)
increases performance but also degrades output quality.

that throttle performance. Divergent memory accesses N
also throttle performance by consuming additional resesirc|j

ing memory divergence can potentially increase performan€ig. 8. Lena images processed by the Sobel edge detectiorelker
especially for data-intensive GPU applications progression from 20% to 100% forced load uniformity in 40%eiwals.

Another rarely discussed impact of memory divergence is I1l. BRANCH HERDING
on memory utilization. If different loads fetch from diffemt , . L
memory blocks, more memory blocks need to be brought into T he previous section demonstrated that for an application
the chip. (A memory block is the unit of memory puIIeoWith divergent branches, eliminating control divergenas the
in from the memory system by a memory request.) Mofotential to increase performance, p0§S|ny at the expefise
requests increase the bandwidth pressure on the GPU, Wtﬁgﬁputquallty. Due to the unique handling of divergent coht

is often already bandwidth-limited. So, if memory divergen 1OW instructions in GPUs and the forgiving nature of many
is eliminated (for example, when all loads fetch from the sanfi@t@-intensive GPU applications, we propose a SIMD-syecifi

memory block), bandwidth pressure reduces. technique for eliminating control divergence. We call our
. ! o . techniquebranch herding Branch herding eliminates control
To gauge the potential benefit of eliminating memory d'Veﬁ‘ivergence by herding all the threads in a warp onto the

gence, we look at the SobelFilter application from the N\VADI oo ntr0] path taken by the majority of threads. Thus, when the
CUDA SDK. SobelFilter applies an edge detection filter kerng,reads in a warp each evaluate the boolean condition for a
to an input image and produces an output image. Each thrgad,ch, the majority outcome is decided and all threadswoll
in SobelFilter loads a block of pixels from the input image,e majority decision, precluding the possibility of canitr
and processes them in different arrangements with the eq@srgence. Because control divergence is eliminatechdbra
detection kernel. We eliminate load divergence for theth‘ﬁerding has the potential to increase performance for egpli
kernels of SobelFilter by modifying the application so thgjons with divergent branches. Also, for GPU applicaticmatt

for each load, all threads in a warp load data from the samg lerate errors, acceptable output quality can be aiazd
address (that of the first active thread in the warp). Thus, thnen branch herding is used (see Sections V and VII), even

individual thrgad Io_ads can be coale_sced into a single MEMYfough some minority of threads are allowed to perform
request, making divergence impossible. inexact computations.

While the actual loads for individual threads in a warp may The implementation of branching in GPUs leads to benefits
indeed diverge, the threads all load data from a localizéor branch herding in addition to the elimination of branch
region of the input image. Since the image data exhibipath serialization. The normal implementation of branghm
spatial correlation, eliminating divergence by loadingnfran the GPU uses a reconvergence stack and a special reconver-
address that corresponds to a neighboring pixel may oftgance instruction that is inserted before a potentiallgjent
return a similar or even identical value. Figure 6 showsranch [6], [4], [21]. The reconvergence instruction passe
the impact on performance and output quality of increasirige hardware the location (PC) of the reconvergence point of
the fraction of warp loads that are forced to load from thiae branch (the next instruction that will be executed bgdlais
same address. The figure reveals that eliminating memany both control paths). The instruction at the reconvergenc
divergence (forcing load uniformity) increases perforgghy point is also flagged using a special field in the instruction
up to 15%. However, output quality is also degraded, resyltiencoding [21], [4]. Whenever a branch is reached, a 32-bit
in up to 40% mismatching bytes in the output image. Thuyread mask is computed for the warp, indicating which activ
some intelligence may be required to determine how atitieads take the branch. If the branch diverges, the mask
for which loads to eliminate memory divergence such th#& pushed onto the reconvergence stack, along with the PC
acceptable output quality is maintained. Figure 7 shows thelicating the alternate branch target and the reconvemsgen
Lena input image along with the pristine filter output (0%C. A subset of the threads (indicated by the mask) execute
forces load uniformity), while Figure 8 shows a progressiathe taken branch path [21], [4], while the other lanes in the
of output images produced by filtering the Lena input imageM are idle. When execution reaches the reconvergence point
with an increasing fraction of forced uniform loads (fromP20 the stack is popped, and the remaining threads (indicated by
to 100% load uniformity). the mask) begin executing from the stored PC. The next time

__device__ inline bool BRH(int condition){

return (__popc(__ballot(condition)) > BRH THRESH);} evaluated for each thread, the SM combines the conditien bit

i £(BRH(condi ti on)) from the threads to form the 32-bit branch mask, then checks
whi | e(BRH(condi tion)) for uniformity of the mask (all Os or all 1s). If the branch
for(initial; BRH(condition); update) is not uniform, the SM updates the reconvergence stack, as
Fig. 9. Software branch herding implementation and exampks. explained above.

Hardware branch herding works the same way as the normal
the reconvergence point is reached, all threads that atlgin branching implementation, but instead of evaluating thiéoun
reached the branch begin executing together again. Note tidty of the mask and potentially updating the reconvergence
this mechanism can also handle nested divergence. stack, the SM evaluates the majority value for the mask.

Since branch herding eliminates control divergence, tidie majority condition determines the next instruction for
reconvergence stack is not needed for herded branchesallrthreads in the warp. Evaluation of the majority logic can
addition, by ensuring that all branches will be uniforntake place in the timing slack apportioned for the unifoymit
branches [12], branch herding obviates the need for tlagic and updating the reconvergence stack (since divesgen
special reconvergence instruction. Thus, the compiles ¢ is impossible with branch herding). Thus, hardware branch
insert the reconvergence instruction when the branch ingrdherding should not affect cycle time and should not incur
compiler flag is set or when a kernel call or particular brangkdditional cycles of overhead. Overhead will be in terms of
instruction is marked for branch herding. It may also be posfea, since one block of majority logic is needed per SM.
sible to eliminate the reconvergence instruction by idginty However, the area of one majority block for a 32-bit word
the reconvergence point using a field of the branch inswncti is insignificant compared with the area of the SM. Branch

. herding logic can be activated at a coarse granularity binget
A. Software Brgnch Herd'”? _ ~an enable bit in the hardware when the GPU is initialized
~ Branch herding can be implemented relatively efficientlipr a kernel call or at a fine granularity by using a special
in software, using the CUDA intrinsics ballot (ballot) and field in the branch instruction to denote that the branch Ehou
population count (_popc) [14]. The ballot intrinsic is a warp pe herded. The branch instruction contains an optional field
vote function that combines predicates computed by eaclinj) to identify a uniform branch (i.e., a branch for which
thread in a warp and sets th&'" bit in a 32-bit integer it js possible to statically determine that the branch wik n
if the predicate evaluates to non-zero for tNé" thread in giverge). For branch herding, we override the field with a

the warp. In the context of branch herding, the result is @iferent code frd) to indicate that the branch should be
32-bit integer that specifies the branch condition outcoone fherded.

each thread in a warp. The ballot result is broadcasted to a
destlnat_mn register f_or _each thread in the warp. We use '_[he IV. DATA HERDING
population count intrinsic to count the number of set bits in))])

the ballot result. In context, this means that each threasvkn AS discussed in Section 1-B, memory divergence can occur
how many threads in the warp should take the branch. TWben a load mstructlon_for a warp generates multiple memory
branch herding function compares the population count to igduests that access different regions of memory or diftere
(half warp size) and returrtsue if the majority of threads take '€velS of the memory hierarchy. The number of memory
the branch andalse otherwise. Figure 9 shows the softward€duests generated by a load instruction is determined by
implementation of branch herding, and provides examples ¢#@leéscing hardware in the SM [14]. Memory coalescing
how software branch herding can be used in programs, Sim'g;,yperformed to determine the minimum number of unique

by passing the condition of a control statement (e.g., ifjlayh memory requests that can satisfy the individual scalardoad
for) to the branch herding procedure. that make up a vector load instruction. Each scalar loadesddr

_ maps to a block of memory (32, 64, or 128 bytes depending

B. Hardware Branch Herding on the data type), and each memory request fetches one block

Though our implementation of software branch herding onffom memory. If multiple scalar loads map to the same block
adds 3 extra instructions per branch, even this overhead ntdymemory, they are coalesced into a single memory request.
be intolerable in several scenarios, especially in tighpwor The GPU hardware is designed such that if all scalar loads
for programs that have a large fraction of branches thargése in the same warp access consecutive addresses, they can be
only infrequently. Profiling information for benchmark®ifn coalesced into a single request. Besides generating memory
the NVIDIA CUDA SDK and Parboil [16] suites that exhibitdivergence, non-coalesced loads are inefficient becawese th
control divergence (Figure 10) reveals that the fraction generate multiple memory requests and fetch data that is not
dynamic branches that diverge is indeed often very lowsed, wasting precious memory bandwidth and consuming
This is primarily because GPU programmers usually talelditional memory controller resources such as MSHRs.
pains to reduce potential control divergence. Nevertseleas We propose a data herding implementation based on a
demonstrated in Section Il, even a small fraction of divatgemodified coalescing policy. The modified coalescing har@war
branches can significantly reduce performance. Idealbndit generates only one memory request for a collection of scalar
herding should be implemented as a lightweight hardwal@ads. Rather than forming a queue of unique memory requests
mechanism to maximize potential benefits. required to satisfy the scalar loads, the modified hardware

For the normal implementation of branching in the SMdentifies the most popular memory block (that the majority o
each active thread evaluates the branch condition to fgentioads map to) and maps all loads to that block — some naturally
whether it should fetch the next instruction from the brandind some forcefully. This is done by comparing the number
target or fall through. After the branch condition has beenf loads that coalesce into each potential memory request an

6 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

B %branches (branches / total instructions)

B %divergent branches (divergent branches / branches)

Mandelbrot histogram volumeRender particles SobelFilter oceanFFT sad Ibm AVERAGE

Fig. 10. Branch statistics for applications that exhibihtrol divergence.

discarding requests for all but the most popular block. This abstract syntax tree (AST) and searching through the AST
upper N — loga(line_size) bits of an N-bit address identify to identify vulnerable operations.

the memory block that an address maps to. For any addresggter identifying vulnerable operations, our tool genesat
that does not already map to the most popular memory blogke control and data dependence graphs from the AST and
the most significantV — loga(line_size) bits of the address traces through them to identify the branches and data tleat th
are overwritten with the bits that identify the most populajyinerable operations depend on. Then, to guarantee freedo
block. We propose data herding only for loads to ensure thgém exceptions, the tool does not allow the compiler to
all expected locations are initialized in the case of a stmt@ jnsert herding directives for the branches and data idedtifi
to avoid conflicts that m|ght result if stores were forCQfU”as unsafe during static ana'ysis_ Note that control depmuje
mapped to the same memory block. based static safety analysis for branch herding is contesva
Since our implementation of data herding ensures a sin@@en if vulnerable operations are control-dependent on the
memory request for each load, and a single request is sdtisfigitcome of a branch, the branch may be herded safely if it
at only one level of the memory hierarchy, we prevent bodan be determined from the code that herding the branch will
types of memory divergence and also reduce memory traffigly result in skipping the dependent vulnerable operation
Thus, bandwidth-limited applications may benefit substdigt However, in such cases, it can be determined staticallyttieat
from data herding. Also, it is interesting to note that dataranch will diverge, and the divergence could be eliminated
herding, in itself, will never generate a memory exceptioBoftware (provided that the resulting output quality deigition
due to the nature of GPU memory design and allocatigg acceptable). Preventing herding of “unsafe” branches an
properties. In short, the threads involved all belong tosti®@e data ensures that errors induced by herding will only impact
process, and the entire memory block they will map to alssutput quality.
belongs to the same process. An exception could, however, b gar identifying which branches and data can be safely
generated, depending on how herded data are used later i”HQFded, the next step is to identify which can be profitably
program. We address safety concerns associated with Bergig qeq. As noted in Section II, one challenge of branch and

in Section V. data herding is determining which branches and data to herd
so as to improve performance while maintaining acceptable
output quality. While this can be done by the programmer,
often with little effort (the programmer is often aware of
which branches may diverge and whether or not it would be
It is well-known that several data-parallel applications e acceptable for some threads to perform inexact computation
hibit error tolerance [2], [18], [22]. To efficiently exploihis based on the associated branches or data), we also present an
error tolerance through branch or data herding, the chgdien automated profiling-based framework for determining which
lie in (1) guaranteeing that loading the wrong data or takirggfe branches and data may be most profitable for herding.
the wrong branch path will not cause an exception, andWe use the CUDA Compute Profiler [14] to determine
(2) maximizing performance improvement while maintainingvhich safe branches/loads to safe data exhibit divergence.
acceptable output quality. In this section, we describe These are candidates for branch/data herding. Our profiling
static analysis and compiler framewotkat guarantees (1) framework starts with no herded branches/loads, progeygsi
by identifying branches and data that are safe for herdingarks a larger fraction of the candidate branches/loads for
and aprofiling frameworkthat targets (2) by identifying the herding, and at each step profiles the program for a set of
subset of safe branches and data for which herding increases inputs to characterize the space of output quality adegr
performance while maintaining acceptable output quality. dation and performance vs. number of herded branches/loads
The first step in identifying safe branches and data férom this sampling we can determine an approximate upper
herding is to identifyulnerable operationthat, if affected by bound on output quality degradation corresponding to argive
an errormightcause exceptions. These are pointer derefereramaount of herding by selecting the worst case degradation
and array reference (vulnerable to Segfault), integersitimi observed for a given amount of herded branches/loads. ®urin
(vulnerable to INT divide by zero), and branch conditiomuntime, performance counters [14] track the number of éerd
check (vulnerable to stack overflow if an error causes iinibranches/loads and disable branch/data herding before the
looping or recursion). We have written a clang [17] plugispecified approximate threshold has been exceeded. Toeenabl
that performs safety analysis by first parsing a program inpwofiling and quality monitoring, the programmer should knar

V. SAFETY, PERFORMANCE AND OUTPUT QUALITY
ASSURANCE FORBRANCH AND DATA HERDING

/1 Static Safety Analysis TABLE |. BENCHMARKS
Generate Abstract Syntax Tree AST(A) for Application A '

fSearch AST(A) to idemi‘fy Vul nerabl e Operations VO Benchmark Description G'CUDA SDK, :I: Parboil)
oreach(Vul nerabl e Operation v € VO) -
Trace Control and Data Dependencies of v to classify Safe/Unsafe Branches/Data Mandelbrot Compute Mandelbrot and Julia SEtS
/1 Quality and Performance-targeted Profiling H _hi H
Profile A and identify Divergent, Safe Branches/Loads as Herdi ng Candidates C hlstogram 64 and 256 _bm HIStOgI’aI’ﬂIS
Herded Branches/Loads H = 0 volumeRender Volume Rendering of 3D Texturgs
f’if::cg(eg;f’g;tg*i"g gefrada“"”' Performance = Q(0), P(0) particles Particle Interaction Simulatidn
foreach(Test Input t) _ SobelFilter Sobel Edge Detection Filter
”(;’t"fs'u'ceh ?#a‘l’”‘P?’;':Z ffg'ida;("l’} %()H + e t), Performnce P(H + ¢, t) oceanFFT Ocean Heightfield Simulatign
Approxi mate Quality Degradation Bound B(H +c¢) = maz[Q(H + c,)|t binomialOptions Binomial Option Pricing
R &;n; Moni tor ng nbody Gravitational n-body Simulatian
User specifies desired nmaxinum Qutput Quality Degradation Qmaax dxtc DirectX Texture Compressicjn
Use Profiling Data to find maxi mum Herding Threshold 775, such that B(T3) < Q c R H R H 7
Count Fercin i natances 1o and @ Sekle Nerci g when Ihh iy h max recursiveGaussiar _ Recursive Gaussian Blur Filter _
) -) lbm Lattice-Boltzmann Method Fluid Dynamits
Fig. 11. Pseudocode describing safety, performance, atplioguality sad Sum of Absolute Differencds

assurance framework for branch and data herding.

calls (@nstruction_countsw _pr_nera). We scale these in-
uction counts by the CPI for the corresponding kernels

the variable in the code that represents output quality afi .
b put g Y Plsw br_nerd_kerner) @nd discount the total cycle count by

specify the desired approximate bound on output quali

degradation. Figure 11 presents pseudocode describing g amount.
control flow of our safety, performance, and output qualitif’®/—cVelesHW br_herd_kernet = total_cyclessw pr_perd_kernet =
assurance framework for branch and data herding. instruction_countsw br_nerd * CPISW br_herd_kernel

Since evaluating data herding requires changing the behav-
r of coalescing hardware and cannot be easily emulated
software, we use the GPGPU-Sim [1] simulator for our

It should be noted that our profiling framework can onIY
provide output quality guarantees for profiled inputs (quits)i;
similar to the profiled inputs). For all other inputs, we onl) : .
provce an approxmateupperbound onauput aualy e RIS, T Syttt o e el s N
dation. However, we observed that the approximate bound y P

S : : ; : .1 binaries.
often effective in practice. Creating more rigorous teghes v :
for performance and output quality assurance is a subject c)1Potent|ally error-tolerant benchmarks are selected frioen t

ongoing work. NVIDIA CUDA SDK and Parboil [16] benchmark suites.
Note that while hardware-based herding implementatioﬁ%r_ (avaluatloR of grSa(;chfhﬁrdlgg, we u;e aIIhbeng_hmarksgor
can improve the performance benefit of herding (Section, VII ich more than 0.5% of the dynamic branches diverge. For
software-based herding can be implemented for off-thé-shdat@ herding, we select benchmarks only from the NVIDIA
GPUs and applications, and thus has the potential to dem JDA E.Dr}f.(vil). thactj are czmgauble ;‘"th GP(;';).U'S'm
strate real, immediate benefits of exposing control and datg X, whic 'E esllgne arolun fU”DA \é 1. Indag |t|gn to
errors in applications. In fact, our software herding rtsulcomputa}tlon Rerng S, e gvla uate fu 'FanT -Itl())-en enctr:] na
(Section VII) show speedups for applications running reagiv (€-9-» volumeRender, particles, oceanFFT, lbm, etc.},dba-

on NVIDIA GeForce GTX 480. Typically, we use data herding)‘;in multiple kernel calls, as a partial means of demorisgat
for all loads to the largest data structure of the applicati at outputs from kernels that use h.erdlng are stil e_lcctlieta
in the context of the greater application. Table | providesrs

identified as safe for herding. Section VIl provides infotima o . .
on which branches and data were identified as safe atﬁ%scnpnons of the benchmarks used in our evaluations.
profitable for herding by our framework. Where possible, we Although we do not expect any performance overhead for
hardware branch herding (Section IIl), we collect resufts a
gpming different cycle overheads to provide both consemat
and expected performance results. While we also expect that
data herding based on modified coalescing can be performed
in the same timing slack used for normal coalescing, we
assume a cycle overhead for a more conservative estimate of
We perform experiments using two different execution efihe performance benefits.
vironments. We run branch herding experiments natively on
a CUDA system comprised of a NVIDIA GeForce GTX 480 VIl. RESULTS
GPU and a 2.27 GHz Intel Xeon E5520 CPU with 24 GB)
of memory. The NVIDIA CUDA v3.2 Toolkit and SDK are A- Branch Herding
installed on the system. Branch herding increases the performance of GPU applica-
Software branch herding performance and output quality a@rens that normally exhibit control divergence by prevagti
measured directly at runtime. Thus, reported benefits are the serialization of branch paths and eliminating overbead
native execution on a state-of-art GPU architecture. To-messsociated with divergent branch handling. Figure 12 shows
sure the number of cycles taken to execute a kernel that upetential performance gains for branch herding for appli-
hardware branch herdingtdfal_cyclesgw pr_nerd_rerner), Cations that normally exhibit control divergence. Hardsvar
we start with the number of cycles taken to executeranch herding increases performance by 30% on average and
the same kernel when software branch herding is used to 55% for individual applications. While we do not expect
(total_cyclessw br_herd_kerner) @nd use CUDA Compute any performance overhead for hardware branch herding (see
Profiler [14] profile counters to measure the number @&ection Ill), we also show conservative results that assame
instructions added by software branch herding functidhcycle overhead for hardware branch herding. Our software

quality results.

VI. METHODOLOGY

8 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

branch herding implementation, which runs natively on co
mercial GPU products, achieves 13% performance benef
on average. Recall that the software branch herding imp

S

Bin Value

mentation targets only safe branches that exhibit diverger§§ -(B)r(;?'crﬁll-brcing

AND show benefits from software branch herding. Therefor§

performance improvements are significantly higher than al ‘ ‘ ‘ ‘ ‘
naive software branch herding implementation that targét 0 5 10 150 200 250

static branches (Figure 3). .
Since branch herding exploits error tolerance to eliminafég- 13. Lena image proFig. 14. Comparison of histogram output with
divergence, it may result in output quality degradatiorl&al f;csﬂsfnd k%{nzfﬁheg?;nfﬁ”d without branch herding.
compares output quality degradation for the benchmarks Wierding. Compare to origi-
and without branch herding. Quantifying output quality deg nal result in Figure 7.
dation is difficult, because really, the consumer of the data
determines whether or not it is acceptable, and acceptabili
is often application-dependent. We provide output quality
measurements in terms of the quality metrics incorporated
by the original benchmark writers, however, our framework
is modular and can easily use any other metrics (e.g., SNR)
of interest to the programmer or end user. Output quality
degradation is reported in terms of the fraction of mismiaigh
bytes in the program output, except where otherwise noted.
Overall, branch herding does not result in much additional
output quality degradation (and degradation can be appro'iip- 15. Output comparison — original volume renderingtleid branch
mately bounded by our framework). Branch and data herdifig/@™9 result right).

may be especially applicable for visual computing applret 5hosite side of the output range, adding some noise to the
(e.g., video rendering or gaming), where performance agthnytimage, which can be seen in Figure 13. Our framework
energy-efficiency may be more critical than perfect outpihnfirms the safety of herding in this case, as it only affects
quality. We provide image outputs for several visual cormmit niye| values. Herding is not profitable for all branchesgcsin
applications to demonstrate that post-herding outputiyualherding branches in tight loops that rarely diverge does not
may often be acceptable for such applications. improve performance. Despite noise added by herding, edges
Mandelbrot: In Mandelbrot, which is described in detail ingre still detected.

Section I1, typically only a small fraction of dynamic brdves hjistogram: Histogram has the highest fraction of divergent
diverge, but divergence is spread over all of the staticéitas pranches of all the applications we tested and sees coabider

in the program. Analysis identifies all branches as safe fgpeedups for both software and hardware branch herding. Al
herding. While herding more divergent branches improvege divergence is caused by one static branch in a frequently
performance, the amount of branch herding that can be allowgslled function that adds data to the sub-histogram gesetrat
depends on the desired output quality and the region f a warp. (Sub-histograms are later merged together tdecrea
interest in the image, since the amount of divergence depemge final output.) This branch is safe for herding, as herding
on the region of the Mandelbrot set being viewed. Regioggly affects histogram data. Branch herding may cause a
with intricate detail can result in substantial divergengkile few values not to be added to the bins, resulting in slightly
monochrome regions generate no divergence. Although fhi€dercounting the bin values. On average, bin values are
overall fraction of divergent branches is often small, tay undercounted by 6%, as seen in Figure 14. Output quality
significantly impact performance. Hardware branch herding reported as the average absolute difference betweerirthe b
achieves about 3.5x better performance improvement thn {jues in the computed and reference outputs. It should be
software version, since software branch herding adds eegrh noted that quality degradation, and thus acceptabilitgedes

to many non-divergent branches in a relatively tight loop. on the characteristics of the input data.

Output images resemble those in Section Il. Note thaslumeRender: VolumeRender renders a 3D texture. Although
because branch herding may estimate whether a point iswe can safely use branch herding for all the branches, most
the Mandelbrot set before completely finishing the caleoiat divergence is due to two static branches that cause threads
for that point, even though some output pixels are not cdloreo finish their computations either when the object at that
correctly by the application, the determination of the Marpixel is opaque or too far away to be seen. Branch herding
delbrot set may be correct for those points. Thus, whether @in result in some threads exiting early when the majority of
not branch herding produces acceptable results may dependipeads in the same warp have finished their computations.
whether the output data will be used, e.g., for a visualizati Eliminating divergence improves performance signifigantl
or as a mathematical set. and only increases output quality degradation by 1%. Fi@Gre
SobelFilter: Divergence is targeted in the SobelFilter kernedompares the original image produced by volumeRender to the
(described in Section 1l) in corner cases where the computietage produced with branch herding.
output pixel value for one or more threads in a warp does nudrticles: The particles application performs a simulation of
lie in the valid output range. Ignoring these cases with dnanphysical interactions between a system of particles in an
herding causes the affected pixel values to roll over on tleeclosed volume. The output describes the positions and

60 - m Software Branch Herding

40 A
30 4
20 4
10 4
0 - T T T

Mandelbrot histogram volumeRender particles SobelFilter oceanFFT sad Ibm AVERAGE

m Hardware Branch Herding (expected: no performance overhead)

Hardware Branch Herding (conservative: 1 cycle overhead)

% Runtime Reduction

Fig. 12. Potential performance improvement for softward hardware branch herding. Although we don’t expect anytemidil performance overhead for
our implementation of hardware branch herding, we also shaenservative performance measurement assuming a 1 oxaleead. Overhead is at most
1 cycle, since the additional logic (majority) is simpleathpopulation count logic, which evaluates within a singlele.

TABLE Il. OUTPUT QUALITY DEGRADATION (%) FORBRANCH HERDING COMPARED TOORIGINAL

% Mismatch | Mandelbrot| histogram| volumeRender| particles| SobelFilter| oceanFFT| sad Ibm
Original 0.03 0.00 6.72 18.24 0.00 0.03 0.00 | 6.7E-7
Branch Herding 1.87 5.82 7.61 18.24 6.00 0.03 0.42 | 5.6E-5

velocities of the particles after a certain number of timdom: The Ibm benchmark performs a lid-driven cavity fluid
steps. Herding branches identified by the framework onflynamics simulation involving a fluid that interacts with
impacts these positions and velocities. A large fraction obstacles in a simulated volume. We use branch herding to
the instructions inparticles are branches that are part okliminate divergence in the condition that tests for cihs
collision checks between particles and with the surface bétween the fluid and an obstacle in a particular cell of
the enclosure. Even though the fraction of divergent braschthe volume. Since the branch paths following the collision-
is less than 1%, the number of divergent branches and tetection branch contain many instructions, throughput ca
effect of divergence on performance is significant. Elirtima be affected substantially if the branch diverges. Thouglstmo
divergence with branch herding does not affect the outperlls in the volume remain error-free, branch herding cawuse
much because even if a collision is missed in one time stegpme perturbations in the fluid simulation results. Thughéf

it will likely be observed in a subsequent time step. Thid wigoal of the simulation is to simulate the fluid dynamics as
result in a slightly different collision, but a similar oradtical accurately as possible (which may very well be the case in
net effect. Both software and hardware branch herding ingroa scientific simulation), branch herding may be inapprdpria
performance significantly without producing any noticeablfor [bm.

degradation in the output. Whether or not results are aabégpt .

may depend on whether the simulation is for a visualization f- Data Herding

a scientific experiment. For example, degraded output tyuali Figure 16 shows potential for performance improvements
may be more acceptable in a physics simulation performed for various benchmarks with data herding. Benefits can be
a video game. substantial or nonexistent, depending on the benchmark. Fo
oceanFFT: The oceanFFT benchmark computes a heightfielde three benchmarks that do not see benefits for data herding
for a region of ocean using spectral methods. Divergenceléss than 0.2% of dynamic instructions are loads. Output
oceanFFT arises due to boundary checks at the edge of g@lity degradation associated with data herding is coatpar
simulated region. Ignoring divergence with branch herdirggainst original output quality degradation in Table III.

results in some slight deviations in the output around tlgeed ~ Data herding achieves performance benefits for two reasons.
of the simulated region, but does not cause the reportedibutpirst, all non-coalesced loads to the herded data will be
quality to change by a noticeable amount. In cases where tlmlesced into a single memory request. This reduces memory
application would be used for a graphic visualization of thkandwidth usage and contention for resources. Reduced band
ocean, the deviations caused by branch herding would mwédth and contention can also reduce the latency of memory
likely be unnoticeable to the human eye. requests. Second, since only one memory request is made for
sad: The sad benchmark performs sum of absolute differencesioad, memory divergence is eliminated, and warps do not
based motion estimation as part of the H.264 video encodgpend cycles waiting for additional requests to finish atfter
Previous works have observed error tolerance for SAD-bad@dt request returns. Figure 17 shows results for data herdi
motion estimation [18] due to the approximate nature of thguantifying the reduction in bandwidth usage and cycles tha
block matching that it performs. We use branch herding foeady warps spend stalled and waiting for outstanding mgmor
all safe branches in the sad kernel, which results in less th@quests.

0.5% output quality degradation. For most branches idedtifi Below we explain results for individual benchmarks.

as unsafe, disallowing herding does not hurt much, since thistogram: In histogram, we target loads to the initial data set
alternate branch path is empty. In most cases, inexactnesde binned in the histogram, as well as the data in the sub-
imposed by branch herding does not impact sad values enobhigtograms computed by the warps. Static analysis idestifie
to hinder block matching in the greater application. Thushese data as safe for herding. The benchmark consists of two
herding is often acceptable. kernels — one that adds values to sub-histograms and one that

10 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

W Data Herding (no performance overhead)

W Data Herding (conservative: 1 cycle)

B8 Y8 H

% Runtime Reduction
N
o

o w

T T T
Mandelbrot binomialOptions dxtc histogram SobelFilter nbody recursiveGaussian AVERAGE

Fig. 16. Data herding improves performance for error-tolerbenchmarks, except when the fraction of loads is verylisteaving little opportunity for
improvement.

7 HBandwidth Reduction B Memory Stall Reduction

% Reduction
oBRN858833888

Mandelbrot binomialOptions dxtc histogram SobelFilter nbody recursiveGaussian AVERAGE

Fig. 17. Data herding improves performance by reducing nmgrstalls and bandwidth usage due to divergent memory régjues

TABLE Ill. OUTPUT QUALITY DEGRADATION (%) FOR DATA HERDING COMPARED TOORIGINAL

% Mismatch | Mandelbrot| histogram| nbody | binomialOptions| SobelFilter | dxtc | recursiveGaussiah
Original 0.02 0.00 0.00 3.8E-5 0.00 0.019 0.00
Data Herding 0.99 0.6 0.95 3.8E-5 1.81 0.019 0.00

merges sub-histograms. Most of the speedup from data lierdier. While the performance results are similar to the maximu
comes from the kernel that performs merging, since it cdrenefits achieved in the motivational experiment, the dutpu
generate many non-coalesced loads. While we observed tipadlity degradation is significantly less, since loads thap to
data herding often has only a small effect on output qualithe most popular memory block receive their actual data with
output quality degradation depends on the characteristitee our proposed implementation of data herding (Section 1V).
input data. For example, uniformly distributed random datautput quality is also better than in the branch herding case
can be herded without affecting output quality substalgtial since data herding takes advantage of spatial correlation i
On the other hand, if individual sub-histograms containyvethe image data, which contributes to the error resilience of
distinct bin counts, data herding may be inappropriatelite t SobelFilter. Since the output image after herding is vigual
benchmark. This brings up an important point to remembirdistinguishable from the original filtered image, we othi¢
about profiling-directed herding. Output quality could grot image here to save space and refer the reader to the images
tially change undesirably for a pathological input data sah Section Il.

Thus_, while our results do not guarantee acceptable outpll 4\eGaussan: RecursiveGaussian performs Gaussian
quality for the benchmarks_over all posg.lble data sets, they,, filtering on an input image. As in the case of SobelFilter
do demonstrate the potential for benefits for error toler herd the input image data. Error tolerance stems from
applications, especially if the target data set can be ateyr o gpatially correlated image data and the nature of the
characterized. Gaussian filtering operation. Since the output value forxalpi
nbody: Nbody performs an all-pairs N-body simulation folis a weighted sum of the neighboring pixels, based on a
a collection of bodies. The application is considerablgaussian function, mixing in a few incorrect values is ulyual
bandwidth-limited, especially as the number of bodies inmperceptible, especially if the incorrect pixel values alose
creases, since the data requirement scales approximaelyoahe intended values due to spatial correlation. Becatigeo
O(N?), stemming from theD(N?) forces that exist betweenshape of the Gaussian function, the farther a neighborixe pi

N bodies. The output of the N-body simulation describds from the pixel being computed, the less it affects the outp
the positions of all the bodies after a specified number @hus, ignoring memory divergence due to hon-contiguous dat
timesteps. We use data herding for the body data and obsehat cannot be coalesced usually has little effect on thputut
less than 1% output quality degradation, measured in tefmssince the data tend to be further apart in the image. We often
the average absolute difference in body positions betwieen tlid not observe any difference in output quality when data
computed output and a reference data set. While the dewgatibierding was used. Of course, output quality degradation may
in the output set are visually imperceptible, they do eXibus, be greater for highly uncorrelated inputs. Figure 18 corepar
herding may be appropriate for a visualization, but may hbe original filter result to the post-herding result for agde
inappropriate for a high-precision scientific simulation. input image.

SobelFilter: As in Section Il, we herd image data for SobelFilMandelbrot, binomialOptions, and dxtc: For these three

11

for dynamic warp formation. Nested divergence complicates
the problem, making it harder to find a full warp of threads
with the same next PC.
o o Dynamic warp formation also adds complexity in the regis-
' ter file, which is typically heavily banked, such that eaafela
‘ of a SM can access one bank of the register file. Dynamically
grouping multiple threads from the same home lane into the
same warp requires adding a crossbar network so that each
thread can access its registers when mapped to a differemt la
Fig. 18. Output comparison — Original gaussian blur filtgrifeft) and data than jts home lane. This also results in bank conflicts when
herding result (right). multiple threads from the same home lane are grouped into
L , . the same warp, such that register file accesses are setialize
applications that do not see t_)eneﬁts_ from _data herd'ngsloiacaler multiple cycles. One possible solution to this problem
make up only 0.2% of the instruction mix. Thus, there ig, 1 es passing along the home lane that a thread belongs
al_most no potential for benefits with these applicationsagil to and using lane information during dynamic warp formation
with. so that threads are only grouped together if they belong to
different home lanes. This method reduces bank conflicts, bu
VIII. RELATED WORK it adds complexity to the dynamic warp formation hardware
Dynamic Warp Subdivision: The basic unit of SIMD execu- and also makes it somewhat harder to find threads that can

tion is the warp. However, all threads in a warp must be read§ 9rouped into efficient, full warps, potentially diminiis
in order to issue the next instruction. When SIMD restricsio (e €ffectiveness of dynamic warp formation. Furthermfme,

stall execution, some threads in the warp may be ready whijgMe divergence patterns, it is impossible to group threads
others are stalled. Normally, GPUs use warp-level multis manner [6]. _
threading to hide latency, but this strategy requires ael,argglVe_rgence Avoidance Through Software Transformation:
costly register file. Instead of deep warp-level multi-timg, Besides hardware-based techniques such as those discussed
dynamic warp subdivision [9] advocates using intra-warPove, software-based techniques for avoiding divergeace
latency hiding to increase throughput, by allowing a diesrg also been proposed [3], [23]. These techniques aim to avoid
warp to occupy multiple scheduler slots without increastag divergence by re-mapping memory or transf_ormmg memory
register usage. This allows threads on divergent brandhspafeferences to reorganize the layout of data, improve memory
to subdivide their warp and execute independently. Sintilar coalescing, and reduce control and memory divergence. Like
a previous work advocating “diverge on miss” [15], this alsg§oftware-based herding, these software-based technigves
allows a subset of threads in a warp to continue executigfie benefit of being immediately deployable on real GPUs.
when the remaining threads are still waiting on memory. THéest-effort Computing for Parallel Applications: Related
main drawback to dynamic warp subdivision is that it at lea#torks on best effort computing for a GPU version of se-
doubles the complexity and hardware cost of scheduling:loghantic document search [2] and parallel implementations of
for each SM [9]. recognition and mining applications [8] also recognize and
Dynamic Warp Formation: The goal of dynamic warp for- €xploit the forgiving nature of certain parallel algoritbrto
mation [6] is to increase hardware utilization by dynamiical increase performance by relaxing correctness. The authors
combining threads from multiple divergent warps. When mugbserve acceptable results for target applications aétexing
tiple warps diverge, threads that take the same branchtidinec data dependencies and dropping computations. They retax da
in one warp can be grouped with threads that take the safiRPendencies between iterations of a function call to give
branch direction in other warps. Thus, fuller warps are fedm the parallel processor or GPU more work to do in parallel.
dynamically, increasing throughput and partially mitiggt They also monitor the usefulness of iteratively computed
the inefficiency caused by control divergence. The schedufata during runtime and drop computations between iteratio
forms new warps out of ready threads by grouping threa@ien the observed usefulness of the computed data fallesbelo
that have the same next PC. Thread block compaction]threshold. The idea of exploiting the forgiving nature of
applies dynamic warp formation whenever a divergent branggrallel applications to improve performance is commonto o
is encountered by synchronizing warps and compacting th&vark. We, however, propose a different set of optimizations
into new warps, in which all threads take the same contrélat target GPU and SIMD-specific inefficiencies.
path. A large warp microarchitecture [11] performs a simileReliability - Performance Tradeoffs for Data-parallel Work-
optimization by exposing a larger warp of threads to tHeads. A similar work demonstrates that reliability can be
scheduler, which is able to select SIMD width-sized subpsartraded for increased efficiency in certain data-paralletkwo
that have the same control behavior. loads [22]. The authors argue that data-parallel physizaan
While dynamic warp formation has the potential to increag®ns require perceptibility, rather than strict numekmarrect-
throughput for some applications, it is not always possibleess. As such, they propose reducing floating point prettsio
to find enough divergent threads that take the same brarigtprove energy efficiency. Exploiting error tolerance deab
direction to fill a warp within the scheduling window ofhigher performance for the same cost, as they can afford to
available warps. Thread block compaction may help in thigut more, reduced-precision FPUs on a chip, as opposed to
regard, but in some cases, warps must remain partially emfgyer, high-precision FPUs.
anyway, even with the additional hardware overhead requir®utcome Tolerant Branches. A work on Y-branches [19]

12 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. Y, MONTH XX, 2012.

showed that taking the wrong direction for some branches] w. Fung and T. Aamodt. Thread block compaction for effitiSIMT

may still bring the processor to a correct architecturdestay (6]
toggling the outcome of random branches in a program, the
authors observed that for 40% of dynamic branches, takin
either branch direction leads to a valid architecturalestat 8]
The percentage was higher (around 50%) when allowing a
mispredicted branch to continue executing on the Wrong.patlﬂ;]
The authors note that outcome tolerance (the property of a
branch indicating that the program output does not depend
on the chosen branch direction) is a result of redundancté
inserted by the programmer or compiler, as well as partially
dead code. 12]
Branch herding may benefit from outcome-tolerance 3]
branches, but does not require it. In general, we rely on tﬂﬁ]
error resilient nature of applications to tolerate inerast [15]
in some thread computations. We also evaluate the effect on
program outputs of allowing some branches to take incorréty!
control paths, observing acceptable outputs for many egpli [17]
tions. In our experiments, we never observed a program crzhsgi
as a result of herding branches onto the same branch path[.19]

IX. CONCLUSION [20]

In this paper, we demonstrate that significant potentigh]
performance benefits are possible from safely and effigientl
reducing control and memory divergence for GPU applicatiorpy)
that can tolerate errors. We propose two optimizations rdira
herding and data herding — that eliminate control and mem 0%
divergence, respectively. To ensure safety when introduc-
ing control and memory errors, while targeting performance

control flow. InHPCA, pages 25-36, 2011.

W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp fation
and scheduling for efficient GPU control flow. MICRO, pages 407—
420, 2007.

Khronos Group.OpenCL, 2010.

J. Meng, S. Chakradhar, and A. Raghunathan. Best-efiarallel
execution framework for recognition and mining applicaoInIPDPS
pages 1-12, 2009.

J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivisfor
integrated branch and memory divergence tolerancelS@A pages
235-246, 2010.

Microsoft. GPGPU Computing Horizon2010.

V. Narasiman, M. Shebanow, C. Lee, R. Miftakhutdinov, Mutlu, and
Y. Patt. Improving GPU performance via large warps and tevell
warp scheduling. I'MICRO, pages 308-317, 2011.

NVIDIA. NVIDIA Compute PTX: Parallel Thread Executjo2009.
NVIDIA. NVIDIA's Next Generation CUDA Compute Architecture:
Fermi, 2009.

NVIDIA. NVIDIA CUDA Programming Guide, Version 3.2010.

D. Tarjan, J. Meng, and K. Skadron. Increasing memorgsmolerance
for SIMD cores. InSG pages 22:1-22:11, 2009.

The IMPACT Research Group. Parboil benchmark suité:Mimpact.
crhc.illinois.edu/parboil.php.

University of lllinois. clang: a C language family freend for LLVM.
http://clang.llvm.org/.

G. Varatkar and N. Shanbhag. Energy-efficient motictimestion using
error-tolerance. IHSLPED, pages 113-118, 2006.

N. Wang, M. Fertig, and S. Patel. Y-branches: When yomedo a
fork in the road, take it. IFPACT, pages 56—, 2003.

Wikipedia. Mandelbrot set, 2011. http://fen.wikipadirg/wiki/
Mandelbrot set.

H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and AosWiovos.
Demystifying GPU microarchitecture through microbenchdry. In
ISPASSpages 235 —246, 2010.

T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G.Ram The
art of deception: Adaptive precision reduction for areaciffit physics
acceleration. IMICRO, pages 394 —406, 2007.

E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-tlyeefimination
of dynamic irregularities for GPU computing. IRSPLOS pages 369—
380, 2011.

benefits and acceptable output quality, we propose a statie
analysis and compiler framework, a profiling framework, and
hardware support for branch and data herding. Our software
implementation of branch herding uses CUDA intrinsics and
forces diverging threads to take the same direction at achramn
as the majority of the threads. Our hardware implementatipn
of branch herding uses majority logic to identify the bradeh

rection all threads should take. Data herding is implentkinte

Rakesh Kumar (M'07) is an Assistant Professor
in the Electrical and Computer Engineering Depart-
ment at the University of lllinois at Urbana Cham-
paign. He received a B.Tech. degree in Computer

PLACE Science and Engineering from the Indian Institute
PHOTO of Technology (IIT), Kharagpur in 2001 and a Ph.D.
HERE degree in Computer Engineering from the University

of California, San Diego in September 2006. Prior
to moving to Champaign in 2007, he was a visiting
researcher with Microsoft Research at Redmond. His
research interests include reliable and low power

coalescing hardware by identifying the most popular memor

meuting. His past research on heterogeneous multi-cmtgtecture and

block (that the majority of loads map to) and mapping all E)"J‘QC:onjoined-core architectures has directly influenced gsser products and
from different threads in the warp to that block. Our softevaroadmaps from several companies. His current researctesteare in error

implementation of branch herding on NVIDIA GeForce G-D{esilient computer systems and low power computer archites for emerging

. orkloads. His research has been recognized by severadswiarcluding
480 improves performance by up to 34% (13%, on average) #dst paper Awards (CASES 2011, SRC TECHCON 2011), Best Paper

a suite of NVIDIA CUDA SDK and Parboil [16] benchmarks.Award Nominations (HPCA 2012), ARO Young Investigator AdaArnold

; ; ; ; Beckman Research Award, FAA Creative Research Award, UCSE
Our hardware |mplementat|on of branch herdlng Improv est Dissertation Award, and an IBM PhD Fellowship. Otherogmitions

performance by up to 55% (30%, on average). Data herdiRgude Keynote Invitations (WRA 2011, WDSN 2011, LPonTRL20etc.),
improves performance by up to 32% (25%, on average). Rovited/Plenary lectures at conferences and workshops$SE®$2011, ISLPED

this level of performance benefits. observed output qua" 10, IOLTS, 2010, etc.), and Invited Guest Editorship&E@ ransactions on

. . . . ' . Multimedia, IEEE Embedded Systems Letters, etc.). He hagdeas a Chair
degradation is minimal for several applications that eihilyf wwo Workshops in the area of robust computing and multeamputing
error tolerance.

(SELSE 2011 and dasCMP 2005-2008). When not doing comptesearch,
he enjoys studying interactions between technology, pofiad society.

John Sartori (S'03) is a Ph.D. candidate in Elec-
trical and Computer Engineering at the University
of lllinois at Urbana-Champaign. He received a
B.S. degree in Electrical Engineering, Computer

REFERENCES

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Azalg
CUDA workloads using a detailed GPU simulator. IBPASS pages

163 —174, 2009.] PLACE Science, and Mathematics from the University of
[2] S. Byna, J. Meng, A. Raghunathan, S. Chakradhar, and Sar@hi. PHOTO North Dakota and a M.S. degree in ECE from UIUC.
Best-effort semantic document search on GPUGRGPU, pages 86— HERE His thesis research explores design, architecture, and

93, 2010.
[3] S. Che, J. Sheaffer, and K. Skadron. Dymaxion: optingizmemory
access patterns for heterogeneous systemsSdnpages 13:1-13:11,
2011.
B. Coon. United States Patent #7,353,369: System and Method f
Managing Divergent Threads in a SIMD ArchitecturdVIDIA, 2008.

compiler techniques for stochastic processors. His
research has been recognized by several awards,
including a Best Paper Award (CASES 2011), a Best
Paper Award Nomination (HPCA 2012), and an Intel
@’omputer Engineering Fellowship.

[4]

