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Branch and Data Herding: Reducing Control and Memory
Divergence for Error-tolerant GPU Applications

John Sartori and Rakesh Kumar

Abstract—Control and memory divergence between threads
within the same execution bundle, or warp, have been shown to
cause significant performance bottlenecks for GPU applications.
In this paper, we exploit the observation that many GPU
applications exhibit error tolerance to propose branch anddata
herding. Branch herding eliminates control divergence by forcing
all threads in a warp to take the same control path. Data herding
eliminates memory divergence by forcing each thread in a warp
to load from the same memory block. To safely and efficiently
support branch and data herding, we propose a static analysis
and compiler framework to prevent exceptions when control and
data errors are introduced, a profiling framework that aims
to maximize performance while maintaining acceptable output
quality, and hardware optimizations to improve the performance
benefits of exploiting error tolerance through branch and data
herding. Our software implementation of branch herding on
NVIDIA GeForce GTX 480 improves performance by up to
34% (13%, on average) for a suite of NVIDIA CUDA SDK
and Parboil [16] benchmarks. Our hardware implementation
of branch herding improves performance by up to 55% (30%,
on average). Data herding improves performance by up to
32% (25%, on average). Observed output quality degradation
is minimal for several applications that exhibit error tolerance,
especially for visual computing applications.

EDICS: Parallel Architectures and Design Techniques

I. I NTRODUCTION

GPUs and similar SIMD architectures are becoming in-
creasingly popular in the high performance desktop, server,
and scientific computing domains, especially as single-thread
performance languishes. With the emergence of high-level
programming models such as NVIDIA CUDA [14], ATI
Stream, OpenCL [7], and Microsoft DirectCompute [10], and
the corresponding general purpose GPUs (GPGPUs), focus
has shifted from exclusively graphics processing applications
to also supporting myriad data-parallel applications. Single
instruction multiple data (SIMD) architectures are area and
energy efficient for data-parallel applications, as instruction
sequencing logic is shared by multiple execution units, leaving
more area and power for the execution units themselves.
However, the performance delivered by these architectures
continues to lag the performance demands of emerging ap-
plications, as performance is often limited by the number of
execution units that can fit within the area and power budget
of the chip. As such, performance optimizations for GPUs and
other SIMD architectures are an active area of research.

The nature of SIMD execution requires that groups of
parallel threads that execute together (warps) must execute
the same instruction in lockstep. While the SIMD nature of
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execution allows the processor design to be relatively simple,
application performance may suffer significantly whenever
threads in the same warp behave differently due to control
or memory divergence [14], [12]. Control divergence results
in serialized execution of divergent control paths, leaving
execution resources idle and throttling parallelism. Similarly,
memory divergence causes a warp to stall until the longest
memory request for a vector load completes before execut-
ing any dependent instructions. Recent work has shown that
control and memory divergence between threads within a
warp cause significant performance bottlenecks for many GPU
applications [9], [6].

In this paper, we attempt to reduce the amount of control
and memory divergence in GPU applications to improve their
performance. We draw on the observation that many GPU
applications produce acceptable outputs even if a small number
of threads in a SIMD execution unit are forced to go down
the wrong control path or are forced to load from an incorrect
(albeit spatially local) address. This is not surprising, consider-
ing that many GPU applications are data-intensive – different
threads in a warp are often operating on similar, often spatially
correlated, data. Similarly, the fraction of branches thatdiverge
tends to be small (even though the corresponding performance
degradation is large). We exploit these observations to propose
two novel optimizations –branch herdingand data herding.
Branch herding eliminates control divergence by forcing all
threads in a warp to take the same control path. This prevents
serialization of branch paths that causes execution resources
to remain idle for threads on the inactive control path. Data
herding eliminates memory divergence by forcing each thread
in a warp to load from the same memory block. This reduces
the number of memory stalls. This also reduces bandwidth
pressure, as fewer blocks need to be loaded from memory.
With the aid of static and profiling-based analyses, branch
and data herding are applied discriminately to safely increase
performance while maintaining acceptable output quality.

This paper makes the following contributions:
• We demonstrate the potential for significant performance

benefits without a significant degradation in output qual-
ity from carefully reducing control and memory diver-
gence for several GPU applications that exhibit error
tolerance. We confirm that an indiscriminate elimination
of divergence can cause significant degradation in output
quality. Similarly, a naı̈ve implementation of divergence
reduction can actuallydegrade performance in some
scenarios.

• We propose two optimizations – branch herding and
data herding – that eliminate control and memory di-
vergence, respectively. Our software implementation of
branch herding involves using CUDA intrinsics to force
diverging threads to take the same direction at a branch as
the majority of the threads. A hardware implementation
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of branch herding uses majority logic to identify the
branch direction all threads should take. Data herding is
implemented in hardware by identifying the most popular
memory block (that the majority of loads map to) and
mapping all loads from different threads in the warp to
that block.

• While it is known that several data-parallel application
can tolerate errors [2], [18], [22], what is really needed
is a way to exploit available error tolerance safely and
efficiently. To support our branch and data herding im-
plementations, we also propose a static analysis and
compiler framework that guarantees that control and
memory errors introduced by herding will not cause
exceptions, a profiling framework that aims to improve
performance while maintaining acceptable output quality,
and hardware optimizations to improve the performance
benefits of herding.

• We quantify the potential performance benefits from dif-
ferent implementations of branch and data herding. Our
software implementation of branch herding on NVIDIA
GeForce GTX 480 improves performance by up to 34%
(13%, on average) for a suite of NVIDIA CUDA SDK
and Parboil [16] benchmarks. Our hardware implemen-
tation of branch herding improves performance by up to
55% (30%, on average). Data herding improves perfor-
mance by up to 32% (25%, on average).

• We also evaluate output quality degradation for dif-
ferent GPU kernels and full applications utilizing our
implementations of branch and data herding. We provide
quantitative evaluations for all applications and visual
evaluations when available. Our framework aims to main-
tain acceptable output quality degradation for applications
that can tolerate errors.

Note that our evaluations in this paper assume a GPU
architecture that matches current-generation NVIDIA CUDA
devices [13], [14], [12], though we expect the ideas to be
applicable to other GPU / SIMD architectures as well.

The rest of the paper is organized as follows. Section II
provides background on control and memory divergence and
motivates data and branch herding. Section III describes
branch herding and its various implementations. Section IV
describes data herding and its implementation. Section V
describes a safety, performance, and output quality assurance
framework for branch and data herding. Section VI discusses
the methodology of our study. Section VII presents results
and analysis. Section VIII discusses related work. SectionIX
summarizes and concludes.

II. BACKGROUND AND MOTIVATION

Below we describe the control and the memory divergence
problem and discuss how carefully eliminating divergence may
lead to significant performance benefits.

A. Control Divergence

SIMD architectures bolster throughput by sacrificing per-
thread control flow logic in order to increase the number of
execution units on a chip. Since multiple threads (a warp)
execute the same instruction in lockstep on a SIMD multi-
processor (SM), only one block of instruction fetch, decode,
and issue logic is needed per SM, allowing a greater fraction

while (--i && (xx + yy < T(4.0))) {
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;

} return i;

Fig. 1. The main computation loop for Mandelbrot. The loop isunrolled 20
times in the actual application kernel.

Fig. 2. Original Mandelbrot (left) and Julia (right) images. The color of each
pixel corresponds to the number of main loop iterations executed by a thread
to determine whether the point is in the Mandelbrot (or Julia) set.

of the GPU’s power and area budget to be spent on execution
units. While such an architectural organization is beneficial for
most data-parallel applications, the requirement that allthreads
in a warp must execute in lockstep can lead to inefficiencies
when different threads take different control paths at a branch
(control divergence).

Because instruction sequencing logic is shared by all exe-
cution lanes in a SM, the common mechanism for resolving
control divergence in a GPU is to execute instructions from
one control path for a subset of threads until reaching a point
where control reconverges, then beginning execution on the
other control path for the remaining threads until revisiting
the reconvergence point [6], [14], [21], [4]. Since divergent
branches necessarily throttle the parallelism and throughput
of a SM, they can cause significant performance degradation
for GPU applications [6], [9]. For a warp size of 32 (common
in NVIDIA CUDA GPUs [14]), execution could be slowed
down by a factor of 32 if all threads take divergent control
paths through a section of code.

To understand this better, consider Mandelbrot [20] – an ap-
plication from the NVIDIA CUDA SDK that exhibits control
divergence. Mandelbrot generates the Mandelbrot and Julia
sets – complex fractal patterns that are characterized by simple
equations. Figure 1 shows the main loop of the kernel used
to compute the Mandelbrot and Julia sets. In the actual kernel
code, the loop is unrolled 20 times. Each thread in the program
computes whether a particular point in the complex plane is
in the Mandelbrot (or Julia) set. The program outputs images
depicting the Mandelbrot and Julia sets (Figure 2). The color
of a pixel corresponds to the number of main loop iterations
(i) a thread executes to determine whether the point is in the
Mandelbrot (or Julia) set.

Control divergence arises in Mandelbrot because the number
of iterations required to determine whether a point is in the
Mandelbrot (or Julia) set varies based on the point’s location,
especially in image regions near the set boundary, where some
threads execute many iterations while others finish quickly.
Divergence results in reduced parallelism, as some lanes in
the SMs go unused while threads that have finished their
computations wait until all threads in the same warp reach
a reconvergence point.

The effect of control divergence on performance can be
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Fig. 3. The performance of Mandelbrot can be increased by forcing
uniformity for more branches. However, if software overhead is added to
ensure branch uniformity, increasing the number of affected branches increases
overhead and can even result in degraded performance.
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Fig. 4. While eliminating control divergence can increase performance,
blindly forcing branch uniformity can result in degraded output quality.

significant. Figure 3 shows the potential performance increase
(runtime reduction) if control divergence can be eliminated for
a fraction of the static branches in Mandelbrot (from 0% to
100% of branches). The branches are chosen uniformly ran-
domly when the fraction is less than 100%. Control divergence
is preempted by changing the source code to vote within a
warp on the condition of a branch and forcing all threads in
the warp to take the same (majority) direction at the branch
(details in Section III). Experiments were run natively on a
NVIDIA GeForce GTX 480 GPU (details in Section VI).

While only 10% of dynamic instructions in Mandelbrot are
branches, and less than 1% of branches diverge, performance
can potentially be increased by 31% by eliminating control
divergence. As theno software overheadperformance series in
Figure 3 demonstrates, performance increases for Mandelbrot
as control divergence is eliminated for more branches. Figure 4
shows that the quality of the Mandelbrot output set degrades
by less than 2%, even when divergence has been eliminated
for all static branches. This shows that for certain error-
tolerant applications, it may be possible to get significant
performance benefits from eliminating control divergence for
minimal output quality degradation. A quick look at the
Julia output set, however, also suggests that an indiscriminate
selection of branches for herding may result in significant
output quality degradation for several applications. Therefore,
any implementation of branch herding needs to carefully select
the branches to target. Figure 5 shows visual representations
of the Mandelbrot and Julia output sets as the percentage
of forced uniform branches increases from 20% to 100% in
increments of 40%.

The software overheadperformance series of Figure 3
demonstrates another important consideration for any tech-
nique that eliminates control divergence. Since the fraction of

Fig. 5. Progression of Mandelbrot (top) and Julia (bottom) images from 20%
to 100% forced branch uniformity in 40% intervals.

divergent branches in a program may be small (in this case,
less than 1%), an indiscriminate application of a technique
to all branches may result in significant overhead that dimin-
ishes or even eliminates performance gains that result from
reduced divergence. This result reinforces the conclusionthat
care should be exercised in selecting the branches to target
for elimination of control divergence. Also, a low-overhead
mechanism for eliminating control divergence may enable
significantly more benefits. The result also confirms that na¨ıve
implementations of techniques to eliminate control divergence
may actuallydecreaseperformance in some scenarios.

B. Memory Divergence

Like control divergence, memory divergence occurs when
threads in the same warp exhibit different behavior. In the
GPU, a load operation for a warp is implemented as a
collection of scalar loads, where each thread potentially loads
from a different address. When a load is issued, the SM
sets up destination registers and corresponding scoreboard
entries for each thread in the warp. The load then exits the
pipeline, potentially before any of the individual thread loads
have finished. When all the memory requests corresponding
to the warp load have finished, the destination vector register
is marked as ready. Instructions that depend on the load must
stall if any lanes of the destination vector register are notready.

Memory divergence occurs when the memory requests for
some threads finish before those of other threads in the same
warp [9]. Individual threads that delay in finishing their loads
prevent the SM from issuing any dependent instructions from
that warp, even though other threads are ready to execute.
Memory divergence may occur for two reasons. (1) The time
to complete each memory request depends on several factors,
including which DRAM bank the target memory resides in,
contention in the interconnect network, and availability of
resources (such as MSHRs) in the memory controller. (2)
Since the target data for a collection of memory requests
made by a warp may reside in different levels of the memory
hierarchy, the individual memory operations may complete in
different lengths of time.

Most GPU architectures do not implement out-of-order
execution due to its relative complexity and hardware cost.
Rather, GPUs cover long latency stalls by multithreading
instructions from a pool of ready warps. Providing each SM
with plenty of ready warps ensures that long latency stalls will
not be exposed. Memory divergence delays the time when
a warp may execute the next dependent instruction, cutting
into the pool of ready warps and potentially exposing stalls
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Fig. 6. Eliminating memory divergence (forcing more uniform loads)
increases performance but also degrades output quality.

that throttle performance. Divergent memory accesses may
also throttle performance by consuming additional resources,
such as MSHRs and memory bandwidth. Therefore, eliminat-
ing memory divergence can potentially increase performance,
especially for data-intensive GPU applications.

Another rarely discussed impact of memory divergence is
on memory utilization. If different loads fetch from different
memory blocks, more memory blocks need to be brought into
the chip. (A memory block is the unit of memory pulled
in from the memory system by a memory request.) More
requests increase the bandwidth pressure on the GPU, which
is often already bandwidth-limited. So, if memory divergence
is eliminated (for example, when all loads fetch from the same
memory block), bandwidth pressure reduces.

To gauge the potential benefit of eliminating memory diver-
gence, we look at the SobelFilter application from the NVIDIA
CUDA SDK. SobelFilter applies an edge detection filter kernel
to an input image and produces an output image. Each thread
in SobelFilter loads a block of pixels from the input image
and processes them in different arrangements with the edge
detection kernel. We eliminate load divergence for the three
kernels of SobelFilter by modifying the application so that
for each load, all threads in a warp load data from the same
address (that of the first active thread in the warp). Thus, the
individual thread loads can be coalesced into a single memory
request, making divergence impossible.

While the actual loads for individual threads in a warp may
indeed diverge, the threads all load data from a localized
region of the input image. Since the image data exhibits
spatial correlation, eliminating divergence by loading from an
address that corresponds to a neighboring pixel may often
return a similar or even identical value. Figure 6 shows
the impact on performance and output quality of increasing
the fraction of warp loads that are forced to load from the
same address. The figure reveals that eliminating memory
divergence (forcing load uniformity) increases performance by
up to 15%. However, output quality is also degraded, resulting
in up to 40% mismatching bytes in the output image. Thus,
some intelligence may be required to determine how and
for which loads to eliminate memory divergence such that
acceptable output quality is maintained. Figure 7 shows the
Lena input image along with the pristine filter output (0%
forces load uniformity), while Figure 8 shows a progression
of output images produced by filtering the Lena input image
with an increasing fraction of forced uniform loads (from 20%
to 100% load uniformity).

Fig. 7. Original Lena image and pristine Sobel filter output.

Fig. 8. Lena images processed by the Sobel edge detection kernel –
progression from 20% to 100% forced load uniformity in 40% intervals.

III. B RANCH HERDING

The previous section demonstrated that for an application
with divergent branches, eliminating control divergence has the
potential to increase performance, possibly at the expenseof
output quality. Due to the unique handling of divergent control
flow instructions in GPUs and the forgiving nature of many
data-intensive GPU applications, we propose a SIMD-specific
technique for eliminating control divergence. We call our
techniquebranch herding. Branch herding eliminates control
divergence by herding all the threads in a warp onto the
control path taken by the majority of threads. Thus, when the
threads in a warp each evaluate the boolean condition for a
branch, the majority outcome is decided and all threads follow
the majority decision, precluding the possibility of control
divergence. Because control divergence is eliminated, branch
herding has the potential to increase performance for applica-
tions with divergent branches. Also, for GPU applications that
can tolerate errors, acceptable output quality can be maintained
when branch herding is used (see Sections V and VII), even
though some minority of threads are allowed to perform
inexact computations.

The implementation of branching in GPUs leads to benefits
for branch herding in addition to the elimination of branch
path serialization. The normal implementation of branching in
the GPU uses a reconvergence stack and a special reconver-
gence instruction that is inserted before a potentially divergent
branch [6], [4], [21]. The reconvergence instruction passes to
the hardware the location (PC) of the reconvergence point of
the branch (the next instruction that will be executed by threads
on both control paths). The instruction at the reconvergence
point is also flagged using a special field in the instruction
encoding [21], [4]. Whenever a branch is reached, a 32-bit
thread mask is computed for the warp, indicating which active
threads take the branch. If the branch diverges, the mask
is pushed onto the reconvergence stack, along with the PC
indicating the alternate branch target and the reconvergence
PC. A subset of the threads (indicated by the mask) execute
the taken branch path [21], [4], while the other lanes in the
SM are idle. When execution reaches the reconvergence point,
the stack is popped, and the remaining threads (indicated by
the mask) begin executing from the stored PC. The next time
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__device__ inline bool BRH(int condition){
return (__popc(__ballot(condition)) > BRH_THRESH);}

if( BRH(condition) )
while( BRH(condition) )
for(initial; BRH(condition); update)

Fig. 9. Software branch herding implementation and exampleuses.

the reconvergence point is reached, all threads that originally
reached the branch begin executing together again. Note that
this mechanism can also handle nested divergence.

Since branch herding eliminates control divergence, the
reconvergence stack is not needed for herded branches. In
addition, by ensuring that all branches will be uniform
branches [12], branch herding obviates the need for the
special reconvergence instruction. Thus, the compiler does not
insert the reconvergence instruction when the branch herding
compiler flag is set or when a kernel call or particular branch
instruction is marked for branch herding. It may also be pos-
sible to eliminate the reconvergence instruction by identifying
the reconvergence point using a field of the branch instruction.

A. Software Branch Herding

Branch herding can be implemented relatively efficiently
in software, using the CUDA intrinsics ballot (ballot) and
population count ( popc) [14]. The ballot intrinsic is a warp
vote function that combines predicates computed by each
thread in a warp and sets theN th bit in a 32-bit integer
if the predicate evaluates to non-zero for theN th thread in
the warp. In the context of branch herding, the result is a
32-bit integer that specifies the branch condition outcome for
each thread in a warp. The ballot result is broadcasted to a
destination register for each thread in the warp. We use the
population count intrinsic to count the number of set bits in
the ballot result. In context, this means that each thread knows
how many threads in the warp should take the branch. The
branch herding function compares the population count to 16
(half warp size) and returnstrue if the majority of threads take
the branch andfalse otherwise. Figure 9 shows the software
implementation of branch herding, and provides examples of
how software branch herding can be used in programs, simply
by passing the condition of a control statement (e.g., if, while,
for) to the branch herding procedure.

B. Hardware Branch Herding

Though our implementation of software branch herding only
adds 3 extra instructions per branch, even this overhead may
be intolerable in several scenarios, especially in tight loops or
for programs that have a large fraction of branches that diverge
only infrequently. Profiling information for benchmarks from
the NVIDIA CUDA SDK and Parboil [16] suites that exhibit
control divergence (Figure 10) reveals that the fraction of
dynamic branches that diverge is indeed often very low.
This is primarily because GPU programmers usually take
pains to reduce potential control divergence. Nevertheless, as
demonstrated in Section II, even a small fraction of divergent
branches can significantly reduce performance. Ideally, branch
herding should be implemented as a lightweight hardware
mechanism to maximize potential benefits.

For the normal implementation of branching in the SM,
each active thread evaluates the branch condition to identify
whether it should fetch the next instruction from the branch
target or fall through. After the branch condition has been

evaluated for each thread, the SM combines the condition bits
from the threads to form the 32-bit branch mask, then checks
for uniformity of the mask (all 0s or all 1s). If the branch
is not uniform, the SM updates the reconvergence stack, as
explained above.

Hardware branch herding works the same way as the normal
branching implementation, but instead of evaluating the unifor-
mity of the mask and potentially updating the reconvergence
stack, the SM evaluates the majority value for the mask.
The majority condition determines the next instruction for
all threads in the warp. Evaluation of the majority logic can
take place in the timing slack apportioned for the uniformity
logic and updating the reconvergence stack (since divergence
is impossible with branch herding). Thus, hardware branch
herding should not affect cycle time and should not incur
additional cycles of overhead. Overhead will be in terms of
area, since one block of majority logic is needed per SM.
However, the area of one majority block for a 32-bit word
is insignificant compared with the area of the SM. Branch
herding logic can be activated at a coarse granularity by setting
an enable bit in the hardware when the GPU is initialized
for a kernel call or at a fine granularity by using a special
field in the branch instruction to denote that the branch should
be herded. The branch instruction contains an optional field
(.uni) to identify a uniform branch (i.e., a branch for which
it is possible to statically determine that the branch will not
diverge). For branch herding, we override the field with a
different code (.hrd) to indicate that the branch should be
herded.

IV. DATA HERDING

As discussed in Section II-B, memory divergence can occur
when a load instruction for a warp generates multiple memory
requests that access different regions of memory or different
levels of the memory hierarchy. The number of memory
requests generated by a load instruction is determined by
coalescing hardware in the SM [14]. Memory coalescing
is performed to determine the minimum number of unique
memory requests that can satisfy the individual scalar loads
that make up a vector load instruction. Each scalar load address
maps to a block of memory (32, 64, or 128 bytes depending
on the data type), and each memory request fetches one block
from memory. If multiple scalar loads map to the same block
of memory, they are coalesced into a single memory request.
The GPU hardware is designed such that if all scalar loads
in the same warp access consecutive addresses, they can be
coalesced into a single request. Besides generating memory
divergence, non-coalesced loads are inefficient because they
generate multiple memory requests and fetch data that is not
used, wasting precious memory bandwidth and consuming
additional memory controller resources such as MSHRs.

We propose a data herding implementation based on a
modified coalescing policy. The modified coalescing hardware
generates only one memory request for a collection of scalar
loads. Rather than forming a queue of unique memory requests
required to satisfy the scalar loads, the modified hardware
identifies the most popular memory block (that the majority of
loads map to) and maps all loads to that block – some naturally
and some forcefully. This is done by comparing the number
of loads that coalesce into each potential memory request and
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Fig. 10. Branch statistics for applications that exhibit control divergence.

discarding requests for all but the most popular block. The
upperN − log2(line size) bits of an N-bit address identify
the memory block that an address maps to. For any address
that does not already map to the most popular memory block,
the most significantN − log2(line size) bits of the address
are overwritten with the bits that identify the most popular
block. We propose data herding only for loads to ensure that
all expected locations are initialized in the case of a storeand
to avoid conflicts that might result if stores were forcefully
mapped to the same memory block.

Since our implementation of data herding ensures a single
memory request for each load, and a single request is satisfied
at only one level of the memory hierarchy, we prevent both
types of memory divergence and also reduce memory traffic.
Thus, bandwidth-limited applications may benefit substantially
from data herding. Also, it is interesting to note that data
herding, in itself, will never generate a memory exception,
due to the nature of GPU memory design and allocation
properties. In short, the threads involved all belong to thesame
process, and the entire memory block they will map to also
belongs to the same process. An exception could, however, be
generated, depending on how herded data are used later in the
program. We address safety concerns associated with herding
in Section V.

V. SAFETY, PERFORMANCE, AND OUTPUT QUALITY

ASSURANCE FORBRANCH AND DATA HERDING

It is well-known that several data-parallel applications ex-
hibit error tolerance [2], [18], [22]. To efficiently exploit this
error tolerance through branch or data herding, the challenges
lie in (1) guaranteeing that loading the wrong data or taking
the wrong branch path will not cause an exception, and
(2) maximizing performance improvement while maintaining
acceptable output quality. In this section, we describe a
static analysis and compiler frameworkthat guarantees (1)
by identifying branches and data that are safe for herding,
and aprofiling frameworkthat targets (2) by identifying the
subset of safe branches and data for which herding increases
performance while maintaining acceptable output quality.

The first step in identifying safe branches and data for
herding is to identifyvulnerable operationsthat, if affected by
an error,mightcause exceptions. These are pointer dereference
and array reference (vulnerable to Segfault), integer division
(vulnerable to INT divide by zero), and branch condition
check (vulnerable to stack overflow if an error causes infinite
looping or recursion). We have written a clang [17] plugin
that performs safety analysis by first parsing a program into

its abstract syntax tree (AST) and searching through the AST
to identify vulnerable operations.

After identifying vulnerable operations, our tool generates
the control and data dependence graphs from the AST and
traces through them to identify the branches and data that the
vulnerable operations depend on. Then, to guarantee freedom
from exceptions, the tool does not allow the compiler to
insert herding directives for the branches and data identified
as unsafe during static analysis. Note that control dependence-
based static safety analysis for branch herding is conservative.
Even if vulnerable operations are control-dependent on the
outcome of a branch, the branch may be herded safely if it
can be determined from the code that herding the branch will
only result in skipping the dependent vulnerable operations.
However, in such cases, it can be determined statically thatthe
branch will diverge, and the divergence could be eliminatedin
software (provided that the resulting output quality degradation
is acceptable). Preventing herding of “unsafe” branches and
data ensures that errors induced by herding will only impact
output quality.

After identifying which branches and data can be safely
herded, the next step is to identify which can be profitably
herded. As noted in Section II, one challenge of branch and
data herding is determining which branches and data to herd
so as to improve performance while maintaining acceptable
output quality. While this can be done by the programmer,
often with little effort (the programmer is often aware of
which branches may diverge and whether or not it would be
acceptable for some threads to perform inexact computations
based on the associated branches or data), we also present an
automated profiling-based framework for determining which
safe branches and data may be most profitable for herding.

We use the CUDA Compute Profiler [14] to determine
which safe branches/loads to safe data exhibit divergence.
These are candidates for branch/data herding. Our profiling
framework starts with no herded branches/loads, progressively
marks a larger fraction of the candidate branches/loads for
herding, and at each step profiles the program for a set of
test inputs to characterize the space of output quality degra-
dation and performance vs. number of herded branches/loads.
From this sampling we can determine an approximate upper
bound on output quality degradation corresponding to a given
amount of herding by selecting the worst case degradation
observed for a given amount of herded branches/loads. During
runtime, performance counters [14] track the number of herded
branches/loads and disable branch/data herding before the
specified approximate threshold has been exceeded. To enable
profiling and quality monitoring, the programmer should mark
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// Static Safety Analysis
Generate Abstract Syntax Tree AST (A) for Application A

Search AST (A) to identify Vulnerable Operations V O

foreach(Vulnerable Operation v ∈ V O)
Trace Control and Data Dependencies of v to classify Safe/Unsafe Branches/Data

// Quality and Performance-targeted Profiling
Profile A and identify Divergent, Safe Branches/Loads as Herding Candidates C

Herded Branches/Loads H = ∅
Baseline Output Quality Degradation,Performance = Q(∅), P(∅)
foreach(Candidate c ∈ C)

foreach(Test Input t)
Profile Output Quality Degradation Q(H + c, t), Performance P (H + c, t)

if(∃ t such that P (H + c, t) > P(H, t))
Approximate Quality Degradation Bound B(H + c) = max[Q(H + c, t)|t
H + = c

// Runtime Quality Monitoring
User specifies desired maximum Output Quality Degradation Qmax
Use Profiling Data to find maximum Herding Threshold Th such that B(Th) ≤ Qmax
Count Herding Instances Ih and disable herding when Ih == Th

Fig. 11. Pseudocode describing safety, performance, and output quality
assurance framework for branch and data herding.

the variable in the code that represents output quality and
specify the desired approximate bound on output quality
degradation. Figure 11 presents pseudocode describing the
control flow of our safety, performance, and output quality
assurance framework for branch and data herding.

It should be noted that our profiling framework can only
provide output quality guarantees for profiled inputs (or inputs
similar to the profiled inputs). For all other inputs, we only
provide an approximate upper bound on output quality degra-
dation. However, we observed that the approximate bound is
often effective in practice. Creating more rigorous techniques
for performance and output quality assurance is a subject of
ongoing work.

Note that while hardware-based herding implementations
can improve the performance benefit of herding (Section VII),
software-based herding can be implemented for off-the-shelf
GPUs and applications, and thus has the potential to demon-
strate real, immediate benefits of exposing control and data
errors in applications. In fact, our software herding results
(Section VII) show speedups for applications running natively
on NVIDIA GeForce GTX 480. Typically, we use data herding
for all loads to the largest data structure of the application
identified as safe for herding. Section VII provides information
on which branches and data were identified as safe and
profitable for herding by our framework. Where possible, we
aim for conservative results by using input data not character-
ized during profiling when capturing performance and output
quality results.

VI. M ETHODOLOGY

We perform experiments using two different execution en-
vironments. We run branch herding experiments natively on
a CUDA system comprised of a NVIDIA GeForce GTX 480
GPU and a 2.27 GHz Intel Xeon E5520 CPU with 24 GB
of memory. The NVIDIA CUDA v3.2 Toolkit and SDK are
installed on the system.

Software branch herding performance and output quality are
measured directly at runtime. Thus, reported benefits are for
native execution on a state-of-art GPU architecture. To mea-
sure the number of cycles taken to execute a kernel that uses
hardware branch herding (total cyclesHW br herd kernel),
we start with the number of cycles taken to execute
the same kernel when software branch herding is used
(total cyclesSW br herd kernel) and use CUDA Compute
Profiler [14] profile counters to measure the number of
instructions added by software branch herding function

TABLE I. B ENCHMARKS

Benchmark Description (†CUDA SDK, ‡ Parboil)
Mandelbrot Compute Mandelbrot and Julia sets†
histogram 64 and 256-bin Histograms†

volumeRender Volume Rendering of 3D Textures†
particles Particle Interaction Simulation†

SobelFilter Sobel Edge Detection Filter†
oceanFFT Ocean Heightfield Simulation†

binomialOptions Binomial Option Pricing†
nbody Gravitational n-body Simulation†
dxtc DirectX Texture Compression†

recursiveGaussian Recursive Gaussian Blur Filter†
lbm Lattice-Boltzmann Method Fluid Dynamics‡
sad Sum of Absolute Differences‡

calls (instruction countSW br herd). We scale these in-
struction counts by the CPI for the corresponding kernels
(CPISW br herd kernel) and discount the total cycle count by
this amount.
total cyclesHW br herd kernel = total cyclesSW br herd kernel −

instruction countSW br herd ∗ CPISW br herd kernel

Since evaluating data herding requires changing the behav-
ior of coalescing hardware and cannot be easily emulated
in software, we use the GPGPU-Sim [1] simulator for our
experiments. The simulator models the behavior of a NVIDIA
Quadro FX 5800 GPU and can run natively-compiled CUDA
v2.1 binaries.

Potentially error-tolerant benchmarks are selected from the
NVIDIA CUDA SDK and Parboil [16] benchmark suites.
For evaluation of branch herding, we use all benchmarks for
which more than 0.5% of the dynamic branches diverge. For
data herding, we select benchmarks only from the NVIDIA
CUDA SDK (v2.1) that are compatible with GPGPU-Sim
v2.x, which is designed around CUDA v2.1. In addition to
computation kernels, we evaluate full, end-to-end benchmarks
(e.g., volumeRender, particles, oceanFFT, lbm, etc.), that con-
tain multiple kernel calls, as a partial means of demonstrating
that outputs from kernels that use herding are still acceptable
in the context of the greater application. Table I provides short
descriptions of the benchmarks used in our evaluations.

Although we do not expect any performance overhead for
hardware branch herding (Section III), we collect results as-
suming different cycle overheads to provide both conservative
and expected performance results. While we also expect that
data herding based on modified coalescing can be performed
in the same timing slack used for normal coalescing, we
assume a cycle overhead for a more conservative estimate of
the performance benefits.

VII. R ESULTS

A. Branch Herding

Branch herding increases the performance of GPU applica-
tions that normally exhibit control divergence by preventing
the serialization of branch paths and eliminating overheads
associated with divergent branch handling. Figure 12 shows
potential performance gains for branch herding for appli-
cations that normally exhibit control divergence. Hardware
branch herding increases performance by 30% on average and
up to 55% for individual applications. While we do not expect
any performance overhead for hardware branch herding (see
Section III), we also show conservative results that assumea
1 cycle overhead for hardware branch herding. Our software
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branch herding implementation, which runs natively on com-
mercial GPU products, achieves 13% performance benefits,
on average. Recall that the software branch herding imple-
mentation targets only safe branches that exhibit divergence
AND show benefits from software branch herding. Therefore,
performance improvements are significantly higher than any
naı̈ve software branch herding implementation that targets all
static branches (Figure 3).

Since branch herding exploits error tolerance to eliminate
divergence, it may result in output quality degradation. Table II
compares output quality degradation for the benchmarks with
and without branch herding. Quantifying output quality degra-
dation is difficult, because really, the consumer of the data
determines whether or not it is acceptable, and acceptability
is often application-dependent. We provide output quality
measurements in terms of the quality metrics incorporated
by the original benchmark writers, however, our framework
is modular and can easily use any other metrics (e.g., SNR)
of interest to the programmer or end user. Output quality
degradation is reported in terms of the fraction of mismatching
bytes in the program output, except where otherwise noted.
Overall, branch herding does not result in much additional
output quality degradation (and degradation can be approxi-
mately bounded by our framework). Branch and data herding
may be especially applicable for visual computing applications
(e.g., video rendering or gaming), where performance and
energy-efficiency may be more critical than perfect output
quality. We provide image outputs for several visual computing
applications to demonstrate that post-herding output quality
may often be acceptable for such applications.
Mandelbrot: In Mandelbrot, which is described in detail in
Section II, typically only a small fraction of dynamic branches
diverge, but divergence is spread over all of the static branches
in the program. Analysis identifies all branches as safe for
herding. While herding more divergent branches improves
performance, the amount of branch herding that can be allowed
depends on the desired output quality and the region of
interest in the image, since the amount of divergence depends
on the region of the Mandelbrot set being viewed. Regions
with intricate detail can result in substantial divergence, while
monochrome regions generate no divergence. Although the
overall fraction of divergent branches is often small, theycan
significantly impact performance. Hardware branch herding
achieves about 3.5x better performance improvement than the
software version, since software branch herding adds overhead
to many non-divergent branches in a relatively tight loop.

Output images resemble those in Section II. Note that
because branch herding may estimate whether a point is in
the Mandelbrot set before completely finishing the calculation
for that point, even though some output pixels are not colored
correctly by the application, the determination of the Man-
delbrot set may be correct for those points. Thus, whether or
not branch herding produces acceptable results may depend on
whether the output data will be used, e.g., for a visualization
or as a mathematical set.
SobelFilter: Divergence is targeted in the SobelFilter kernel
(described in Section II) in corner cases where the computed
output pixel value for one or more threads in a warp does not
lie in the valid output range. Ignoring these cases with branch
herding causes the affected pixel values to roll over on the

Fig. 13. Lena image pro-
cessed by Sobel edge de-
tection kernel with branch
herding. Compare to origi-
nal result in Figure 7.
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Fig. 14. Comparison of histogram output with
and without branch herding.

Fig. 15. Output comparison – original volume rendering (left) and branch
herding result (right).

opposite side of the output range, adding some noise to the
output image, which can be seen in Figure 13. Our framework
confirms the safety of herding in this case, as it only affects
pixel values. Herding is not profitable for all branches, since
herding branches in tight loops that rarely diverge does not
improve performance. Despite noise added by herding, edges
are still detected.
histogram: Histogram has the highest fraction of divergent
branches of all the applications we tested and sees considerable
speedups for both software and hardware branch herding. All
the divergence is caused by one static branch in a frequently-
called function that adds data to the sub-histogram generated
by a warp. (Sub-histograms are later merged together to create
the final output.) This branch is safe for herding, as herding
only affects histogram data. Branch herding may cause a
few values not to be added to the bins, resulting in slightly
undercounting the bin values. On average, bin values are
undercounted by 6%, as seen in Figure 14. Output quality
is reported as the average absolute difference between the bin
values in the computed and reference outputs. It should be
noted that quality degradation, and thus acceptability, depends
on the characteristics of the input data.
volumeRender: VolumeRender renders a 3D texture. Although
we can safely use branch herding for all the branches, most
divergence is due to two static branches that cause threads
to finish their computations either when the object at that
pixel is opaque or too far away to be seen. Branch herding
can result in some threads exiting early when the majority of
threads in the same warp have finished their computations.
Eliminating divergence improves performance significantly,
and only increases output quality degradation by 1%. Figure15
compares the original image produced by volumeRender to the
image produced with branch herding.
particles: The particles application performs a simulation of
physical interactions between a system of particles in an
enclosed volume. The output describes the positions and
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TABLE II. O UTPUT QUALITY DEGRADATION (%) FOR BRANCH HERDING COMPARED TOORIGINAL

% Mismatch Mandelbrot histogram volumeRender particles SobelFilter oceanFFT sad lbm
Original 0.03 0.00 6.72 18.24 0.00 0.03 0.00 6.7E-7

Branch Herding 1.87 5.82 7.61 18.24 6.00 0.03 0.42 5.6E-5

velocities of the particles after a certain number of time
steps. Herding branches identified by the framework only
impacts these positions and velocities. A large fraction of
the instructions inparticles are branches that are part of
collision checks between particles and with the surface of
the enclosure. Even though the fraction of divergent branches
is less than 1%, the number of divergent branches and the
effect of divergence on performance is significant. Eliminating
divergence with branch herding does not affect the output
much because even if a collision is missed in one time step,
it will likely be observed in a subsequent time step. This will
result in a slightly different collision, but a similar or identical
net effect. Both software and hardware branch herding improve
performance significantly without producing any noticeable
degradation in the output. Whether or not results are acceptable
may depend on whether the simulation is for a visualization or
a scientific experiment. For example, degraded output quality
may be more acceptable in a physics simulation performed for
a video game.
oceanFFT: The oceanFFT benchmark computes a heightfield
for a region of ocean using spectral methods. Divergence in
oceanFFT arises due to boundary checks at the edge of the
simulated region. Ignoring divergence with branch herding
results in some slight deviations in the output around the edges
of the simulated region, but does not cause the reported output
quality to change by a noticeable amount. In cases where the
application would be used for a graphic visualization of the
ocean, the deviations caused by branch herding would most
likely be unnoticeable to the human eye.
sad: The sad benchmark performs sum of absolute differences-
based motion estimation as part of the H.264 video encoder.
Previous works have observed error tolerance for SAD-based
motion estimation [18] due to the approximate nature of the
block matching that it performs. We use branch herding for
all safe branches in the sad kernel, which results in less than
0.5% output quality degradation. For most branches identified
as unsafe, disallowing herding does not hurt much, since the
alternate branch path is empty. In most cases, inexactness
imposed by branch herding does not impact sad values enough
to hinder block matching in the greater application. Thus,
herding is often acceptable.

lbm: The lbm benchmark performs a lid-driven cavity fluid
dynamics simulation involving a fluid that interacts with
obstacles in a simulated volume. We use branch herding to
eliminate divergence in the condition that tests for collisions
between the fluid and an obstacle in a particular cell of
the volume. Since the branch paths following the collision-
detection branch contain many instructions, throughput can
be affected substantially if the branch diverges. Though most
cells in the volume remain error-free, branch herding causes
some perturbations in the fluid simulation results. Thus, ifthe
goal of the simulation is to simulate the fluid dynamics as
accurately as possible (which may very well be the case in
a scientific simulation), branch herding may be inappropriate
for lbm.

B. Data Herding

Figure 16 shows potential for performance improvements
for various benchmarks with data herding. Benefits can be
substantial or nonexistent, depending on the benchmark. For
the three benchmarks that do not see benefits for data herding,
less than 0.2% of dynamic instructions are loads. Output
quality degradation associated with data herding is compared
against original output quality degradation in Table III.

Data herding achieves performance benefits for two reasons.
First, all non-coalesced loads to the herded data will be
coalesced into a single memory request. This reduces memory
bandwidth usage and contention for resources. Reduced band-
width and contention can also reduce the latency of memory
requests. Second, since only one memory request is made for
a load, memory divergence is eliminated, and warps do not
spend cycles waiting for additional requests to finish afterthe
first request returns. Figure 17 shows results for data herding
quantifying the reduction in bandwidth usage and cycles that
ready warps spend stalled and waiting for outstanding memory
requests.

Below we explain results for individual benchmarks.
histogram: In histogram, we target loads to the initial data set
to be binned in the histogram, as well as the data in the sub-
histograms computed by the warps. Static analysis identifies
these data as safe for herding. The benchmark consists of two
kernels – one that adds values to sub-histograms and one that
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Fig. 17. Data herding improves performance by reducing memory stalls and bandwidth usage due to divergent memory requests.

TABLE III. O UTPUT QUALITY DEGRADATION (%) FOR DATA HERDING COMPARED TOORIGINAL

% Mismatch Mandelbrot histogram nbody binomialOptions SobelFilter dxtc recursiveGaussian
Original 0.02 0.00 0.00 3.8E-5 0.00 0.019 0.00

Data Herding 0.99 0.6 0.95 3.8E-5 1.81 0.019 0.00

merges sub-histograms. Most of the speedup from data herding
comes from the kernel that performs merging, since it can
generate many non-coalesced loads. While we observed that
data herding often has only a small effect on output quality,
output quality degradation depends on the characteristicsof the
input data. For example, uniformly distributed random data
can be herded without affecting output quality substantially.
On the other hand, if individual sub-histograms contain very
distinct bin counts, data herding may be inappropriate for this
benchmark. This brings up an important point to remember
about profiling-directed herding. Output quality could poten-
tially change undesirably for a pathological input data set.
Thus, while our results do not guarantee acceptable output
quality for the benchmarks over all possible data sets, they
do demonstrate the potential for benefits for error tolerant
applications, especially if the target data set can be accurately
characterized.

nbody: Nbody performs an all-pairs N-body simulation for
a collection of bodies. The application is considerably
bandwidth-limited, especially as the number of bodies in-
creases, since the data requirement scales approximately as
O(N2), stemming from theO(N2) forces that exist between
N bodies. The output of the N-body simulation describes
the positions of all the bodies after a specified number of
timesteps. We use data herding for the body data and observe
less than 1% output quality degradation, measured in terms of
the average absolute difference in body positions between the
computed output and a reference data set. While the deviations
in the output set are visually imperceptible, they do exist.Thus,
herding may be appropriate for a visualization, but may be
inappropriate for a high-precision scientific simulation.

SobelFilter: As in Section II, we herd image data for SobelFil-

ter. While the performance results are similar to the maximum
benefits achieved in the motivational experiment, the output
quality degradation is significantly less, since loads thatmap to
the most popular memory block receive their actual data with
our proposed implementation of data herding (Section IV).
Output quality is also better than in the branch herding case,
since data herding takes advantage of spatial correlation in
the image data, which contributes to the error resilience of
SobelFilter. Since the output image after herding is visually
indistinguishable from the original filtered image, we omitthe
image here to save space and refer the reader to the images
in Section II.

recursiveGaussian: RecursiveGaussian performs Gaussian
blur filtering on an input image. As in the case of SobelFilter,
we herd the input image data. Error tolerance stems from
the spatially correlated image data and the nature of the
Gaussian filtering operation. Since the output value for a pixel
is a weighted sum of the neighboring pixels, based on a
Gaussian function, mixing in a few incorrect values is usually
imperceptible, especially if the incorrect pixel values are close
to the intended values due to spatial correlation. Because of the
shape of the Gaussian function, the farther a neighboring pixel
is from the pixel being computed, the less it affects the output.
Thus, ignoring memory divergence due to non-contiguous data
that cannot be coalesced usually has little effect on the output,
since the data tend to be further apart in the image. We often
did not observe any difference in output quality when data
herding was used. Of course, output quality degradation may
be greater for highly uncorrelated inputs. Figure 18 compares
the original filter result to the post-herding result for a sample
input image.

Mandelbrot, binomialOptions, and dxtc: For these three
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Fig. 18. Output comparison – Original gaussian blur filtering (left) and data
herding result (right).

applications that do not see benefits from data herding, loads
make up only 0.2% of the instruction mix. Thus, there is
almost no potential for benefits with these applications to begin
with.

VIII. R ELATED WORK

Dynamic Warp Subdivision: The basic unit of SIMD execu-
tion is the warp. However, all threads in a warp must be ready
in order to issue the next instruction. When SIMD restrictions
stall execution, some threads in the warp may be ready while
others are stalled. Normally, GPUs use warp-level multi-
threading to hide latency, but this strategy requires a large,
costly register file. Instead of deep warp-level multi-threading,
dynamic warp subdivision [9] advocates using intra-warp
latency hiding to increase throughput, by allowing a divergent
warp to occupy multiple scheduler slots without increasingits
register usage. This allows threads on divergent branch paths
to subdivide their warp and execute independently. Similarto
a previous work advocating “diverge on miss” [15], this also
allows a subset of threads in a warp to continue execution
when the remaining threads are still waiting on memory. The
main drawback to dynamic warp subdivision is that it at least
doubles the complexity and hardware cost of scheduling logic
for each SM [9].
Dynamic Warp Formation: The goal of dynamic warp for-
mation [6] is to increase hardware utilization by dynamically
combining threads from multiple divergent warps. When mul-
tiple warps diverge, threads that take the same branch direction
in one warp can be grouped with threads that take the same
branch direction in other warps. Thus, fuller warps are formed
dynamically, increasing throughput and partially mitigating
the inefficiency caused by control divergence. The scheduler
forms new warps out of ready threads by grouping threads
that have the same next PC. Thread block compaction [5]
applies dynamic warp formation whenever a divergent branch
is encountered by synchronizing warps and compacting them
into new warps, in which all threads take the same control
path. A large warp microarchitecture [11] performs a similar
optimization by exposing a larger warp of threads to the
scheduler, which is able to select SIMD width-sized sub-warps
that have the same control behavior.

While dynamic warp formation has the potential to increase
throughput for some applications, it is not always possible
to find enough divergent threads that take the same branch
direction to fill a warp within the scheduling window of
available warps. Thread block compaction may help in this
regard, but in some cases, warps must remain partially empty
anyway, even with the additional hardware overhead required

for dynamic warp formation. Nested divergence complicates
the problem, making it harder to find a full warp of threads
with the same next PC.

Dynamic warp formation also adds complexity in the regis-
ter file, which is typically heavily banked, such that each lane
of a SM can access one bank of the register file. Dynamically
grouping multiple threads from the same home lane into the
same warp requires adding a crossbar network so that each
thread can access its registers when mapped to a different lane
than its home lane. This also results in bank conflicts when
multiple threads from the same home lane are grouped into
the same warp, such that register file accesses are serialized
over multiple cycles. One possible solution to this problem
involves passing along the home lane that a thread belongs
to and using lane information during dynamic warp formation
so that threads are only grouped together if they belong to
different home lanes. This method reduces bank conflicts, but
it adds complexity to the dynamic warp formation hardware
and also makes it somewhat harder to find threads that can
be grouped into efficient, full warps, potentially diminishing
the effectiveness of dynamic warp formation. Furthermore,for
some divergence patterns, it is impossible to group threadsin
this manner [6].
Divergence Avoidance Through Software Transformation:
Besides hardware-based techniques such as those discussed
above, software-based techniques for avoiding divergencehave
also been proposed [3], [23]. These techniques aim to avoid
divergence by re-mapping memory or transforming memory
references to reorganize the layout of data, improve memory
coalescing, and reduce control and memory divergence. Like
software-based herding, these software-based techniqueshave
the benefit of being immediately deployable on real GPUs.
Best-effort Computing for Parallel Applications: Related
works on best effort computing for a GPU version of se-
mantic document search [2] and parallel implementations of
recognition and mining applications [8] also recognize and
exploit the forgiving nature of certain parallel algorithms to
increase performance by relaxing correctness. The authors
observe acceptable results for target applications after relaxing
data dependencies and dropping computations. They relax data
dependencies between iterations of a function call to give
the parallel processor or GPU more work to do in parallel.
They also monitor the usefulness of iteratively computed
data during runtime and drop computations between iterations
when the observed usefulness of the computed data falls below
a threshold. The idea of exploiting the forgiving nature of
parallel applications to improve performance is common to our
work. We, however, propose a different set of optimizations
that target GPU and SIMD-specific inefficiencies.
Reliability - Performance Tradeoffs for Data-parallel Work-
loads: A similar work demonstrates that reliability can be
traded for increased efficiency in certain data-parallel work-
loads [22]. The authors argue that data-parallel physics anima-
tions require perceptibility, rather than strict numerical correct-
ness. As such, they propose reducing floating point precision to
improve energy efficiency. Exploiting error tolerance enables
higher performance for the same cost, as they can afford to
put more, reduced-precision FPUs on a chip, as opposed to
fewer, high-precision FPUs.
Outcome Tolerant Branches: A work on Y-branches [19]
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showed that taking the wrong direction for some branches
may still bring the processor to a correct architectural state. By
toggling the outcome of random branches in a program, the
authors observed that for 40% of dynamic branches, taking
either branch direction leads to a valid architectural state.
The percentage was higher (around 50%) when allowing a
mispredicted branch to continue executing on the wrong path.
The authors note that outcome tolerance (the property of a
branch indicating that the program output does not depend
on the chosen branch direction) is a result of redundancies
inserted by the programmer or compiler, as well as partially
dead code.

Branch herding may benefit from outcome-tolerance in
branches, but does not require it. In general, we rely on the
error resilient nature of applications to tolerate inexactness
in some thread computations. We also evaluate the effect on
program outputs of allowing some branches to take incorrect
control paths, observing acceptable outputs for many applica-
tions. In our experiments, we never observed a program crash
as a result of herding branches onto the same branch path.

IX. CONCLUSION

In this paper, we demonstrate that significant potential
performance benefits are possible from safely and efficiently
reducing control and memory divergence for GPU applications
that can tolerate errors. We propose two optimizations – branch
herding and data herding – that eliminate control and memory
divergence, respectively. To ensure safety when introduc-
ing control and memory errors, while targeting performance
benefits and acceptable output quality, we propose a static
analysis and compiler framework, a profiling framework, and
hardware support for branch and data herding. Our software
implementation of branch herding uses CUDA intrinsics and
forces diverging threads to take the same direction at a branch
as the majority of the threads. Our hardware implementation
of branch herding uses majority logic to identify the branchdi-
rection all threads should take. Data herding is implemented in
coalescing hardware by identifying the most popular memory
block (that the majority of loads map to) and mapping all loads
from different threads in the warp to that block. Our software
implementation of branch herding on NVIDIA GeForce GTX
480 improves performance by up to 34% (13%, on average) for
a suite of NVIDIA CUDA SDK and Parboil [16] benchmarks.
Our hardware implementation of branch herding improves
performance by up to 55% (30%, on average). Data herding
improves performance by up to 32% (25%, on average). For
this level of performance benefits, observed output quality
degradation is minimal for several applications that exhibit
error tolerance.
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