L

© o N o

Build Systems a la Carte
(Under review, feedback is sought)

ANDREY MOKHOV, Newcastle University, United Kingdom
NEIL MITCHELL, United Kingdom
SIMON PEYTON JONES, Microsoft Research, United Kingdom

Build systems are awesome, terrifying — and unloved. They power developers around the world, but are
rarely the object of study. In this paper we offer a systematic, and executable, framework for developing and
comparing build systems, viewing them as related points in landscape rather than as isolated phenomena. By
teasing apart existing build systems, we can recombine their components, allowing us to prototype the first
build system that combines dynamic dependencies and cloud builds.

1 INTRODUCTION

Build systems (such as MAKE) are big, complicated, and used by every software developer on the
planet. But they are a sadly unloved part of the software ecosystem, very much a means to an end,
and seldom the focus of attention. Rarely do people ask questions like “What does it mean for my
build system to be correct?” or “What are the trade-offs between different approaches?”. Moreover,
complex build systems use subtle algorithms, but they are often hidden away, and not the object of
study. Recently, the challenges of scale have driven large software firms like Microsoft, Facebook,
and Google to develop their own build systems, exploring new points in the design space.

In this paper we offer a general framework in which to understand and compare build systems,
in a way that is both abstract (omitting incidental detail) and yet precise (implemented as Haskell
code). Specifically we make these contributions:

e Build systems vary on many axes, including: static vs dynamic dependencies; local vs cloud;
deterministic vs non-deterministic build rules; support for early cutoff; self-tracking build
systems; and the type of persistent build information. In §2 we identify some key properties,
in the context of four carefully-chosen build systems.

e We describe some simple but novel abstractions that crisply encapsulate what a build system
is (§3), allowing us, for example, to speak about what it means for a build system to be correct.

o We identify two key design choices that are typically deeply wired into any build system: the
order in which dependencies are built (§4.1) and whether or not a dependency is (re-)built (§4.2).
These choices turn out to be orthogonal, which leads us to a new classification of the design
space (§4.3).

e We show that we can instantiate our abstractions to describe the essence of a variety of
different real-life build systems, including MAKE, SHAKE, BAZEL, and EXCEL, each in a dozen
lines of code or so (§5). Doing this modelling in a single setting allows the differences and
similarities between these huge systems to be brought out clearly.

e Moreover, we can readily remix the ingredients to describe the first build system that supports
both dynamic dependencies and cloud build (§5.5).

In short, instead of seeing build systems as unrelated points in space, we now see them as locations
in a landscape, leading to a better understanding of what they do and how they compare, and

Authors’ addresses: Andrey Mokhov, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom,
andrey.mokhov@ncl.ac.uk; Neil Mitchell, United Kingdom, ndmitchell@gmail.com; Simon Peyton Jones, Microsoft Research,
Cambridge, United Kingdom, simonpj@microsoft.com.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://doi.org/

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1:2 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

suggesting exploration of other (as yet unoccupied points) in the landscape. We discuss engineering
aspects in §6, and related work in §7.

Papers about “frameworks” are often fuzzy. This one is not: all our abstractions are defined in
Haskell, and we have (freely-available) executable models of all the build systems we describe.

2 BACKGROUND

Build systems automate the execution of simple repeatable tasks for individual users, as well as for
large organisations. In this section we explore the design space of build systems, using four concrete
examples: MAKE [Feldman 1979], SHAKE [Mitchell 2012], BAzeL [Google 2016], and ExceL [De Levie
2004]". We have carefully chosen these four to illustrate the various axes on which build systems
differ; we discuss many other notable examples of build systems, and their relationships, in §7.

2.1 The venerable MAKE: static dependencies and file modification times

MaxkE’ was developed more than 40 years ago to automatically build software libraries and exe-
cutable programs from source code. It uses makefiles to describe tasks (often referred to as build
rules) and their dependencies in a simple textual form. For example:

util.o: util.h util.c
gcc -c util.c

main.o: util.h main.c
gcc -c main.c

main.exe: util.o main.o
gcc util.o main.o -o main.exe

The above makefile lists three tasks: (i) compile a utility library comprising files util.h and util.c into
util.o by executing” the command gcc -c util.c, (ii) compile the main source file main.c into main.o,
and (iii) link object files util.o and main.o into the executable main.exe. The makefile contains the
complete information about the task dependency graph, which is shown in Fig. 1(a).

main.exe main.exe main.exe

| util.c | | util.h | |main.c| ‘ util.c ‘ ‘ util.h ‘ ‘main.c‘ ‘ util.c ‘ ‘ util.h ‘ ‘main.c‘

(a) Task dependency graph (b) Full rebuild (c) Partial rebuild

Fig. 1. A task dependency graph and two build scenarios. Input files are shown as rectangles, intermediate
and output files are shown as rounded rectangles. Modified inputs and files that are rebuilt are highlighted.

If the user runs MAKE specifying main.exe as the desired output, MAKE will first build util.o
and main.o, in any order since these tasks are independent, and then build main.exe. If the user
modifies the sources of util.h and runs MAKE again, it will perform a full rebuild, because all three

1ExcEL appears very different to the others but, seen through the lens of this paper, it is very close indeed.

2There are numerous implementations of MAKE and none comes with a formal specification. In this paper we therefore use
a simple and sensible approximation to a real MAKE that you might find on your machine.

3In this example we pretend gcc is a pure function for the sake of simplicity. In reality, there are multiple versions of gcc
and the actual binary that is used to compile and link files is often also listed as a task dependency.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Build Systems a la Carte 1:3

tasks transitively depend on util.h, as illustrated in Fig. 1(b). On the other hand, if the user modifies
main.c then a partial rebuild is sufficient: the file util.o does not need to be rebuilt, since its inputs
have not changed, see Fig. 1(c). Note that if the dependency graph is acyclic then each task needs
to be executed at most once. Cyclic task dependencies are typically not allowed in build systems
although there are rare exceptions, see §6.6.

The following property is essential for build systems, it is their raison d’étre:

Definition 2.1 (Minimality). A build system is minimal if it executes tasks at most once per build
and only if they transitively depend on inputs that changed since the previous build.

To achieve minimality MAKE relies on two main ideas: (i) it uses file modification time to detect
which files changed?, and (ii) it constructs a task dependency graph from the information contained
in the makefile and executes tasks in a topological order. For a more concrete description see §5.1.

2.2 ExceL: dynamic dependencies at the cost of minimality

ExcCEL is a build system in disguise. Consider the following simple spreadsheet.

Al: 10 B1: AT + A2
A2: 20

There are two input cells A1 and A2, and a single task that computes the sum of their values, writing
the result into the cell B1. If either of the inputs change, ExceL will recompute the result.

Unlike MAKE, EXcEL does not need to know all task dependencies upfront. Some dependencies
may change dynamically according to computation results. For example:

Al: 10 B1: IF(C1=1,A1,A2) Cl: 1
A2: 20

Here the cell C1 controls which branch of the IF function is used to compute B1. When C1=1, the
dependencies of B1 are {C1, A1}, otherwise they are {C1, A2}, which is not known statically”.
ExcEeL handles this example correctly: if C1=1 and the user changes A2, ExcEeL will not require B1
to be computed in advance. Alas, other forms of dynamic dependencies can force EXCEL to perform
unnecessary computation. Consider the following modification of the above example:

Al: 10 B1: INDIRECT("A" & C1) C1: 1
A2: 20

The new version uses the INDIRECT function, which allows us to reference a cell indirectly by a text
string that is not necessarily known in advance. The current implementation of EXCEL recomputes
indirect references in every build [Microsoft 2011]. This approach clearly violates the minimality
property 2.1: if C1=1 and the user modifies A2, ExceL will recompute B1, potentially triggering
further unnecessary recalculation even though B1 does not transitively depend on A2.

ExcEv’s build algorithm [Microsoft 2011] is significantly different from MAKE. EXCEL uses the
calculation chain produced by the previous build as an approximation to the correct topological
order. During recalculation, EXCEL processes cells in this order, but can defer recalculation of a cell
by moving it down the chain if a newly discovered dependency has not yet been rebuilt. We refer
to this algorithm as reordering, and will discuss it in more detail in §5.2.

4Technically, you can fool MAKE by altering the modification time of a file without changing its content, e.g. by using the
command touch. MAKE is therefore minimal only under the assumption that you do not do that.

5One might say that the value of C1 is statically known in this particular example, but imagine that it is the result of a long
computation chain - its value will only become available during the build.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

174
175
176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

1:4 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

Another distinguishing feature of EXCEL is self-tracking. Most build systems only track changes
of inputs and intermediate results, but EXCEL can also track changes in the tasks themselves: if a
formula is modified, ExceL will recompute it and propagate the changes. Self-tracking is uncommon
in software build systems, where one often needs to manually initiate a full rebuild even if just a
single build task has changed. We discuss self-tracking further in §6.5.

release.tar

release.txt

main.exe

(util.o) Gnain.@ |bins.txt| |docs.txt|

| util.c | | util.h | |main.c|

(a) Dependency graph produced after the previous build.

release.tar

release.txt

utlo) (maino) [bins.txt] [docs.txt] §|README\E
/J

1
| util.c | | util.h | |main.c| i:’ieﬁf{ygsri;;;ljcz’r_eﬁ

(b) Since docs.txt was modified, we rebuild release.txt and release.tar, discovering a new dependency.

Fig. 2. Dynamic dependencies example: create README and add it to the list of release documents docs.txt.

2.3 SHAKE: dynamic dependencies with no remorse

SHAKE was developed to solve the issue of dynamic dependencies [Mitchell 2012] without sacrificing
the minimality requirement. Building on the MAKE example from §2.1, we add the following files
whose dependencies are shown in Fig. 2(a):

o LICENSE is an input text file containing the project license.

e release.txt is a text file listing all files that should be in the release. This file is produced by
concatenating input files bins.txt and docs.txt that list all binary and documentation files of
the project.

e release.tar is the release archive built by executing the command tar on the release files.

The dependencies of release.tar are not known statically: they are determined by the content of
release.txt, which might not even exist before the build. Makefiles cannot express such dependencies,
requiring problematic workarounds such as build phases [Mokhov et al. 2016]. In SHAKE we can
express the rule for release.tar as:

"release.tar" %> _ -> do

need ["release.txt"]

files <- lines <$> readFile "release.txt"
need files

system "tar" $ ["-cf", "result.tar"] ++ files

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

238
239
240
241
242
243
244
245

Build Systems a la Carte 1:5

We first declare the static dependency on release.txt, then read its content (a list of files) and depend
on each listed file, dynamically. Finally, we specify the command to produce the resulting archive.
Crucially, the archive will only be rebuilt if one of the dependencies (static or dynamic) has changed.
For example, if we create another documentation file README and add it to docs.txt, SHAKE will
appropriately rebuild release.txt and release.tar, discovering the new dependency, see Fig. 2(b).

SHAKE’s implementation is different from both MAKE and EXCEL in two aspects. First, it uses
the dependency graph from the previous build to decide which files need to be rebuilt. This idea
has a long history, going back to incremental [Demers et al. 1981], adaptive [Acar et al. 2002],
and self-adjusting computations (see [Acar et al. 2007] and §7). Second, instead of abandoning and
deferring the execution of tasks whose newly discovered dependencies have not yet been built (as
EXcCEL does), SHAKE pauses their execution until the dependencies are brought up to date. We refer
to this build algorithm as recursive.

early cutoff

‘ util.c ‘ ‘ util.h ‘ ’main.c‘

Fig. 3. An early cutoff example: if a comment is added to main.c, the rebuild is stopped after detecting that
main.o is unchanged, since this indicates that main.exe and its dependents do not need to be rebuilt.

SHAKE also supports the early cutoff optimisation. When it executes a task and the result is
unchanged from the previous build, it is unnecessary to execute the dependent tasks, and hence
SHAKE can stop a build earlier, as illustrated in Fig. 3. Not all build systems support early cutoft:
MAKE and ExcEL do not, whereas SHAKE and BAzEL (introduced below) do.

2.4 BAzEL: a cloud build system

When build systems are used by large teams, different team members often end up executing exactly
the same tasks on their local machines. A cloud build system can speed up builds dramatically by
sharing build results among team members. Furthermore, cloud build systems allow one to perform
shallow builds that materialise only end build products locally, leaving all intermediates in the
cloud. We illustrate shallow cloud builds by an example in Fig. 4.

The user starts by checking out the project sources, whose hashes are (for simplicity) 1, 2 and 3,
and requests to build main.exe, see Fig. 4(a,b). By looking up the global history of all previous
builds of the project®, the build system finds that someone has already compiled these exact sources
before and their resulting files util.o and main.o had hashes 4 and 5. Similarly, the build system
finds that the hash of the resulting main.exe should be 6 and downloads the actual binary from the
shared cloud storage, since it is the end build product and must therefore be materialised.

In the second scenario, shown in Fig. 4(c), the user modifies the source util.c, thereby changing
its hash from 1 to 7. The build system finds that nobody has ever compiled the new {util.c, util.h}
combination and must therefore build util.o, which results in changing its hash from 4 to 8. The
combination of hashes of util.o and main.o has not been encountered before either, therefore the
build system first downloads main.o from the cloud and then builds main.exe by linking the two
object files. When the build is complete, the results can be uploaded to the cloud for future reuse
by other team members.

®Here we ignore the issue of limited cloud storage resources for the sake of simplicity; in practice, old entries are regularly
evicted from the storage, as further discussed in §6.4.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294

1:6 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

® ©)

download

ONEENON
skip{util.o} {main.oiskip build (main.o) download
o/ \o/ \a ®
’ util.c ‘ ’ util.h ‘ ’main.c‘ | util.c | | util.h | |main.c| ‘ util.c | ‘ util.h ‘ ‘main.c‘
(a) Checkout source files (b) Build main.exe (c) Modify util.c and rebuild

Fig. 4. A cloud build example: (a) checkout sources, (b) download main.exe from the cloud and skip interme-
diate files (only their hashes are needed), (c) modify util.c and rebuild main.exe, which requires building util.o
(since nobody has compiled util.c before) and downloading main.o. File hashes are shown inside circles.

BazkeL is one of the first examples of openly available cloud build systems. Like MAKE, it does
not support dynamic dependencies and can therefore benefit from the simplicity of building tasks
in a statically known topological order. It is minimal and supports the early cutoff optimisation.
To support cloud builds, BAzEL maintains a content-addressable cache that can be used to fetch a
previously built file given the hash of its content, and dependency graphs from all previous builds,
annotated with observed file hashes. The latter allows builds to bypass the execution of a task, by
predicting the hash of the result from the hashes of its dependencies, and subsequently fetch the
result from the cache. A concrete implementation is provided in §5.

2.5 Summary

We summarise differences between four discussed build systems in Table 1. The column ‘persistent
build information’ refers to the information that build systems persistently store between builds:

e MAKE stores file modification times, or rather, it relies on the file system to do that.

e EXCEL stores one dirty bit per cell and the calculation chain from the previous build.

e SHAKE stores the dependency graph discovered in the previous build, annotated with file
content hashes for efficient checking of file changes.

e BazkL stores all dependency graphs discovered in previous builds annotated with file hashes,
and the content-addressable cache.

Build system || Persistent build information | Algorithm | Dependencies | Minimal | Cutoff | Cloud
MAKE File modification times Topological || Static Yes No No
ExXCEL Dirty cells, calculation chain | Reordering || Dynamic No No No
SHAKE Previous dependency graph Recursive Dynamic Yes Yes No
BAzEL All dependency graphs, cache | Topological || Static Yes Yes Yes

Table 1. Summary of build system differences.

In this paper we elucidate which build system properties are consequences of specific imple-
mentation choices (metadata and algorithm), and how one can obtain new build systems with
desired properties by recombining parts of existing implementations. As a compelling example, we
demonstrate how to combine the advantages of SHAKE and BAZzEL in a cloud build system with
dynamic dependencies, see §5.5.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Build Systems a la Carte 1:7

-- An abstract store
data Store i k v

getInfo :: Store i kv —>1i

putInfo :: 1 ->Store i kv ->Storeikyv

getValue :: k => Store i kv —>v

putValue :: EQq k => k -> v -> Store i k v -> Store i k v
getHash :: Hashable v => k -> Store i k v -> Hash v

initialise :: i -> (k => v) -> Store i k v

-- Hashing
hash :: Hashable a => a -> Hash a

-- Applicative functors

pure :: Applicative f => a -> f a

(<$>) :: Applicative f => (a ->b) -> f a -> f b -- Left-associative
(<*>) :: Applicative f => f (a -=> b) -> f a -> f b -- Left-associative

-- Standard State monad from Control.Monad.State
data State s a
instance Applicative (State s)

instance Monad (State s)

get :: State s s

gets :: (s -> a) -> State s a
modify :: (s -> s) -> State s ()
execState :: State s a > s -> s

-- Standard types from Data.Functor.Identity and Data.Functor.Const
newtype Identity a = Identity { runldentity :: a }
newtype Const m a = Const { getConst tim }

instance Functor (Const m) where
fmap _ (Const m) = Const m

instance Monoid m => Applicative (Const m) where
pure _ = Const mempty
Const x <x> Const y = Const (x <> y)

Fig. 5. Signatures of main data types and library functions.

3 BUILD SYSTEMS, ABSTRACTLY

This section presents purely functional abstractions that allow us to express all the intricacies of
build systems discussed previously in §2, and design complex build systems from simple primitives.
Specifically, we present the task and build abstractions in §3.2 and §3.3, respectively. Sections §4
and §5 scrutinise the abstractions further and provide concrete implementations for several build
systems.

3.1 Common vocabulary for build systems
We begin by establishing a common vocabulary for build systems:

Keys, values, and the store. The goal of any build system is to bring up to date a store that
implements a mapping from keys to values. In software build systems the store is the file system, the
keys are filenames, and the values are file contents. In ExcEL, the store is the worksheets, the keys
are cell names (such as A2) and the values are numbers, strings etc, displayed as the cell contents.
Many build systems use hashes of values as compact summaries with a fast equality check.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

1:8 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

Input, output, and intermediate values. Some values must be provided by the user as input. For
example, main.c can be edited by the user who relies on the build system to compile it into main.o
and subsequently main.exe. End build products, such as main.exe, are output values. All other
values (in this case main.o) are intermediate; they are not interesting for the user but are produced
in the process of turning inputs into outputs.

Persistent build information. As well as the key/value mapping, the store also contains information
maintained by the build system itself, which persists from one invocation of the build system to
the next — its “memory”.

Task description. Any build system requires the user to specify how to compute the new value
for one key, using the (up to date) values of its dependencies. We call this specification the task
description. For example, in EXcEL, the formulae of the spreadsheet constitute the task description;
in MAKE the rules in the makefile are the task description.

Build system. A build system takes a task description, a target key, and a store, and returns a new
store in which the target key and all its dependencies have an up to date value.

Modelling in Haskell. We will model all our build systems concretely, as Haskell programs. To
that end, Fig. 5 gives the type declarations and function signatures of the library functions. For
example, Store i k v is the type of stores, with several associate functions (getValue, etc.). We
use k as a type variable ranging over keys, v for values, and i for the persistent build information.

3.2 The Task abstraction
Our first main abstraction is for task descriptions:
type Task ¢ k v = forall f. ¢ f => (k -> f v) -> k -> Maybe (f v)
This highly-abstracted type’ is best introduced by an example. Consider this ExcEL spreadsheet:

Al: 10 B1: AT + A2
A2: 20 B2: B1 % 2

Here cell A1 contains the value 10, cell B1 contains the formula A1+A2, etc. We can represent the
formulae of this spreadsheet with the following task description:

sprshl :: Task Applicative String Integer

sprsh1 fetch "B1" = Just ((+) <$> fetch "A1" <x> fetch "A2")
sprsh1 fetch "B2" = Just ((x 2) <$> fetch "B1")

sprshl _ Nothing

We instantiate keys k with String, and values v with Integer. (Real spreadsheet cells would
contain a wider range of values, of course.) The task description sprsh1 embodies all the formulae
of the spreadsheet, but not the input values. Like every Task, sprsh1 is given a callback fetch and
a key. It pattern-matches on the key to see if it has a task description (in the EXcEL case, a formula)
for it. If not, it returns Nothing, indicating the key is an input. If there is a formula in the cell, it
computes the value of the formula, using fetch to find the value of any keys on which it depends.

The code to “compute the value of a formula” in sprsh1 looks a bit mysterious because it takes
place in an Applicative computation [McBride and Paterson 2008] — the relevant type signatures
are given in Fig. 5. We will explain why in subsection §3.3.

For now, we content ourselves with observing that a task description, of type Task c k v, is
completely isolated from the world of compilers, calculation chains, file systems, caches, and all
other complexities of real build systems. It just computes a single output, in a side-effect-free way,
using a callback (fetch) to find the values of its dependencies.

"Readers familiar with lenses or profunctor optics might recognise a familiar pattern. We discuss this in §7.4.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Build Systems a la Carte 1:9

3.3 The Build abstraction

Next comes our second main abstraction — a build system:
type Build ¢ i k v = Task ¢ k v -=> k -> Store i k v -> Store i k v

The signature is very straightforward. Given a task description, a target key, and a store, the build
system returns a new store in which the value of the target key is up to date. What exactly does
“up to date” mean? We answer that precisely in §3.6. Here is a simple build system:

busy :: Eq k => Build Monad () k v
busy task key store = execState (fetch key) store
where
fetch :: k -> State (Store () k v) v
fetch k = case task fetch k of
Nothing -> gets (getValue k)
Just act -> do v <- act; modify (putValue k v); return v

The busy build system defines the callback fetch so that, when given a key, it brings the key up
to date in the store, and returns its value. The function fetch runs in the standard Haskell State
monad - see Fig. 5 — initialised with the incoming store by execState. To bring a key up to
date, fetch asks the task description task how to compute k. If task returns Nothing the key is
an input, so fetch simply reads the result from the store. Otherwise fetch runs the action act
returned by the task to produce a resulting value v, records the new key/value mapping in the
store, and returns v. Notice that fetch passes itself to task as an argument, so that the latter can
use fetch to recursively find the values of k’s dependencies.

Given an acyclic task description, the busy build system terminates with a correct result, but it
is not a minimal build system (Definition 2.1). Since busy has no memory (i = ()), it cannot keep
track of keys it has already built, and will therefore busily recompute the same keys again and
again if they have multiple dependents. We will develop much more efficient build systems in §5.

Nevertheless, busy can easily handle the example sprsh1 from the previous subsection §3.2. In
the GHCi session below we initialise the store with A1 set to 10 and all other cells set to 20.

A> store = initialise () (\key -> if key == "A1" then 10 else 20)
A> result = busy sprshl "B2" store

A> getValue result "B1"

30

A> getValue result "B2"

60

As we can see, busy built both B2 and its dependency B1 in the right order (if it had built B2 before
building B1, the result would have been 20 * 2 = 40 instead of (10 + 20) * 2 = 60). As an example
showing that busy is not minimal, imagine that the formula in cell B2 was B1 + B1 instead of B1* 2.
This would lead to calling fetch "B1" twice — once per occurrence of B1 in the formula.

3.4 The need for polymorphism in Task

The previous example shows why the Task abstraction is polymorphic in f, recall the definition:
type Task ¢ k v = forall f. ¢ f => (k -> f v) -> k -> Maybe (f v)

The busy build system instantiates f to State (Store i k v), so that fetch :: k => f v can
side-effect the Store, thereby allowing successive calls to fetch to communicate with one another.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490

1:10 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

We really, really want Task to be polymorphic in f. Given one task description T, we want to
explore many build systems that can build T — and we will do so in sections §4 and §5. As we shall
see, each build system will use a different f, so the task description must not fix f.

But nor can the task description work for any f; most task descriptions (e.g. sprsh1 in §3.2)
require that f satisfies certain properties, such as Applicative or Monad. That is why Task has
the “c f =>” constraint in its type, expressing that f can only be instantiated by types that satisfy
the constraint c.

So the type Task emerges naturally, almost inevitably. But now that it has emerged, we find the
that constraints c classify task descriptions in a very interesting way:

e Task Applicative. In sprsh1 we needed only Applicative operations, expressing the fact
that the dependencies between cells can be determined statically; that is, by looking at the
formulae, without “computing” them (see §3.7).

e Task Monad. As we shall see in §3.5, a monadic task description allows dynamic dependencies,
in which a formula may depend on the value of cell C, but which cell C depends on the value
of another cell D.

e Task Functor is somewhat degenerate: the task description cannot even use the application
operator <*>, which limits dependencies to a single linear chain. It is interesting to note that,
when run on a Task Functor, the busy build system will build each key at most once, thus
partially fulfilling the minimality requirement 2.1. Alas, it still has no mechanism to decide
which input keys changed since the previous build.

e Task Alternative, Task MonadPlus and their variants can be used for describing tasks with
a certain type of non-determinism, as discussed in §6.3.

Notice also that, even though busy takes a Task Monad as its argument, an application of busy to a
Task Functor or a Task Applicative will typecheck and run just fine. It feels a bit like sub-typing,
but is actually just ordinary higher-rank polymorphism at work [Peyton Jones et al. 2007].

3.5 Monadic tasks

As explained in §2.2, some task descriptions have dynamic dependencies, which are determined by
values of intermediate computations. In our framework, such task descriptions correspond to the
type Task Monad k v. Consider this spreadsheet example:

Al: 10 B1: IF(C1=1,B2,A2) C1: 1
A2: 20 B2: IF(C1=1,A1,B1)

Note that B1 and B2 statically form a dependency cycle, but ExceL (which uses dynamic dependen-
cies) is perfectly happy. We can express this spreadsheet using our task abstraction as:

sprsh2 :: Task Monad String Integer
sprsh2 fetch "B1" = Just $ do c1 <- fetch "C1"

if ¢1 == 1 then fetch "B2" else fetch "A2"
sprsh2 fetch "B2" = Just $ do c1 <- fetch "C1"

if ¢1 == 1 then fetch "A1" else fetch "B1"

sprsh2 _ Nothing

The big difference compared to sprsh1 is that the computation now takes place in a Monad, which
allows us to extract the value of c1 and fetch different keys depending on whether or not c1 == 1.
Since the busy build system introduced in §3.3 always rebuilds every dependency it encounters,
it is easy for it to handle dynamic dependencies. For minimal build systems, however, dynamic
dependencies, and hence monadic tasks, are much more challenging, as we shall see in §5.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Build Systems a la Carte 1:11

3.6 Correctness of a build system

We can now say what it means for a build system to be correct, something that is seldom stated
formally. Our intuition is this: when the build system completes, the target key, and all its dependencies,
should be up to date. What does “up to date” mean? It means that if we recompute the value of the
key (using the task description, and the final store), we should get exactly the same value as we see
in the final store.

To express this formally we need an auxiliary function compute, that computes the value of a
key in a given store without attempting to update any dependencies:

compute :: Task Monad k v -> Store i k v -> k -> Maybe v
compute task store = fmap runldentity. task (\k -> Identity (getValue k store))

Here we do not need any effects in the fetch callback to task, so we can use the standard Haskell
Identity monad (Fig. 5). The use of Identity just fixes the ‘impedance mismatch’ between the
function getValue, which returns a pure value v, and the fetch argument of the task, which must
return an f v for some f. To fix the mismatch, we wrap the result of getValue in the Identity
monad: the function \k -> Identity (getValue k store) has the type k -> Identity v, and can
now be passed to a task. The result comes as Maybe (Identity v), hence we now need to get rid
of the Identity wrapper by applying runIdentity to the contents of Maybe.

Definition 3.1 (Correctness). Suppose build is a build system, task is a build task description,
key is a target key, store is an initial store, and result is the store produced by running the build
system with parameters task, key and store. Or, using the precise language of our abstractions:

build :: Build c i k v
task :: Task c k v
key ok

store, result :: Store i k v

result = build task key store

The keys that are reachable from the target key via dependencies fall into two classes: input keys

and non-input keys, which we will denote by I and O, respectively. Note that key may be in either

of these sets, although the case when key is an input is degenerate: we have I = {key} and O = 0.
The build result is correct if the following two conditions hold:

e store and result agree on inputs, that is, for all input keys k € I:
getValue k store == getValue k result.

In other words, no inputs were corrupted during the build.
e The result is consistent with the task, i.e. for all non-input keys k € O, the result of recom-
puting the task matches the value stored in the result:

Just (getValue k result) == compute task result k.

A build system is correct if it produces a correct result for any given task, key and store.

It is hard to satisfy the above definition of correctness given a task description with cycles. All
build systems discussed in this paper are correct only under the assumption that the given task
description is acyclic. This includes the busy build system introduced earlier: it will loop indefinitely
given a cyclic task. Some build systems provide a limited support for cyclic tasks, see §6.6.

The presented definition of correctness needs to be adjusted to accommodate non-deterministic
tasks and shallow cloud builds, as will be discussed in sections §6.3 and §6.4, respectively.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

3.7 Computing dependencies

Earlier we remarked that a Task Applicative could only have static dependencies. Usually we
would extract such static dependencies by (in the case of Excer) looking at the syntax tree of
the formula. But a task description has no such syntax tree. Yet, remarkably, we can use the
polymorphism of a Task Applicative to find its dependencies without doing any of the actual
work. Here is the code:

dependencies :: Task Applicative k v -> k -> [k]
dependencies task key = case task (\k -> Const [k]) key of
Nothing -> [1
Just (Const ks) -> ks

Here Const is a standard Haskell type defined in Fig. 5. We instantiate f to Const [k]. So a
value of type f v, or in this case Const [k] v, contains no value v, but does contain a list of keys of
type [k] which we use to record dependencies. The fetch callback that we pass to task records a
single dependency; and the standard definition of Applicative for Const (which we give in Fig. 5)
combines the dependencies from different parts of the task. Running the task with f = Const [k]
will thus accumulate a list of the task’s dependencies — and that is just what dependencies does:

A> dependencies sprsh1l "A1"

[]
A> dependencies sprsh1l "B1"
[llA‘l II, IIA2I|]

Notice that these calls to dependencies do no actual computation (in this case, spreadsheet arith-
metic). They cannot: we are not supplying a store or any input numbers. So, through the wonders
of polymorphism, we are able to extract the dependencies of the spreadsheet formula, and to do so
efficiently, simply by running its code in a different Applicative! This is not new, for example
see [Capriotti and Kaposi 2014], but it is cool.

So much for applicative tasks. What about monadic tasks with dynamic dependencies? As we have
seen in §2.3, dynamic dependencies need to be tracked too. This cannot be done statically; notice that
the application of the function dependencies to a Task Monad will not typecheck. We need to run
a monadic task on a store with concrete values, which will determine the discovered dependencies.
Accordingly, we introduce the function track: a combination of compute and dependencies that
computes both the resulting value and the list of its dependencies in an arbitrary monadic context m:

import Control.Monad.Writer

track :: Monad m => Task Monad k v -> (k -> m v) -> k -> Maybe (m (v, [k]))
track task fetch = fmap runWriterT . task trackingFetch
where
trackingFetch :: k -> WriterT [kl m v
trackingFetch k = tell [k] >> 1lift (fetch k)

This implementation uses the standard Haskell WriterT monad transformer [Liang et al. 1995],
which allows us to record additional information — a list of keys of type [k] — when computing
a task in an arbitrary monad m. We substitute the given fetch with a trackingFetch that, in
addition to fetching a value, tracks the corresponding key. The task returns the value of type
Maybe (WriterT [k] mv), which we unwrap by applying runWriterT to the contents of Maybe.
Below we give an example of tracking monadic tasks when m = I0.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Build Systems a la Carte 1:13

A> fetchIO k = do putStr (k ++ ": "); read <$> getLine
A> fromJust $ track sprsh2 fetchIO "B1"

Cl: 1

B2: 10

(1®’ I:HC»I " , nBZn])

A> fromJust $ track sprsh2 fetchIO "B1"
Cl: 2

A2: 20

(20,["C1","A2"])

As expected, the dependencies of the cell B1from sprsh2 (see the spreadsheet in §3.5) are determined
by the value of C1, which in this case is obtained by reading from the standard input.

4 BUILD SYSTEMS A LA CARTE

The focus of this paper is on a variety of implementations of Build c i k v, given a client-supplied
implementation of Task c k v. That is, we are going to take Task as given from now on, and explore
variants of Build: first abstractly (in this section) and then concretely in §5.

As per the definition of minimality 2.1, a minimal build system must rebuild only out-of-date
keys and at most once. The only way to achieve the “at most once” requirement while producing a
correct build result (§3.6) is to build all keys in an order that respects their dependencies.

We have bolded two different phrases above, and tackle each aspect separately.

4.1 Respecting the dependency order

The build systems overview (§2.5) highlighted three distinct approaches to respecting the depen-
dency order. This subsection explores their properties and possible implementations.

4.1.1 Topological. The topological approach pre-computes a linear order, which when followed,
ensures the build is correct regardless of the initial store. Given a function from a key to its
dependencies, and the output key, you can compute the linear order by first finding the reachable
dependencies of key, and then computing a topological sort. However, as we have seen in §3.7, we
can only extract dependencies from an applicative task, which requires the build system to choose
c = Applicative, ruling out dynamic dependencies.

4.1.2 Reordering. The topological approach has two downsides: it is limited to Applicative
build systems and requires a fresh topological sort each time. So, while the actions themselves may
be incremental (i.e. unnecessary tasks will not be performed), the pre-processing is not. We can
try to incrementalise the topological sort by storing the topological order between build runs and
assume it to be correct, but if the build discovers it is wrong, fix it up.

This approach requires a way to abort tasks that have failed due to out-of-date dependencies.
It is also not minimal in the sense that a task may start, do some meaningful work, then abort.
However, in the case of an Applicative system, that work is zero.

4.1.3 Recursive. An alternative approach, utilised by the busy build system (§3.3), is to simply
build dependencies when they are requested. By combining that with a transient set of which keys
have already been built, you can obtain a minimal build system.

This approach requires that a task may be started, then during that execution another task will
have to be run. Assuming an IO-driven task structure, that requires suspending a running task,
which can be done with cheap green threads and blocking (the original approach of SHAKE) or using
continuation-passing style (what SHAKE does currently). An alternative approach to suspending a
task is to abort it and restart it again later, at the cost of doing additional work.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

4.2 Determining out-of-date keys

The second aspect, determining what to rebuild, can be addressed in one of three fundamental
ways, with a number of tweaks and variations within them.

4.2.1 Adirty bit. The idea of a dirty bit is to have one piece of persistent information per key,
saying whether the key is dirty or clean. After a build, all bits are set to clean. When the next build
starts, anything that changed between the two states is marked dirty. When reaching a key;, if it
and all its transitive dependencies are clean, the key does not need recomputing.

ExcEeL models the dirty bit approach most directly, having an actual dirty bit associated with
each cell, marking the cell dirty if the user modifies it. When rebuilding, if a cell only depends on
clean cells it is skipped, otherwise it is rebuilt and marked dirty so that the cells that depend on it
are subsequently rebuilt too.

MAKE uses file modification times, and compares files to their dependencies, which can be
thought of as a dirty bit which is set when a file is newer than its dependencies. The interesting
property of this dirty bit is that it is not under the control of MAKE; rather it is existing file-system
information that has been repurposed. In particular, modifying a file automatically clears its dirty
bit, and automatically sets the dirty bit of the nodes depending on it. One thing MAKE does require
is that file timestamps only go forward in time — something that can be violated by backup software.

When using a dirty bit, it is necessary to check all the dependencies of a key. For applicative build
systems that list is easy to obtain, but for monadic build systems there is no general way to get all
dependencies. Instead EXCEL computes a static approximation of the dependencies. For applicative
tasks that approximation is correct. For functions such as IF it marks the cell dirty if any potential
dependency has changed, even on the untaken if branch. For functions such as INDIRECT whose
dependencies cannot be guessed, it conservatively assumes the dependencies have always changed.

With a dirty bit it is simple to achieve minimality. However, to achieve early cutoff (§2.3) it would
be important to not set the dirty bit after a computation that did not change the value. ExceL could
use this approach, but does not. In contrast, MAKE cannot implement early cutoff nicely - to do so
it would have to mark the node clean (so it would not rebuild in the next run) and at the same time
not mark the things it depends on dirty — an impossible task with only the ability to update to the
latest modification time. MAKE can approximate early cutoff by not modifying the result file, and
not marking it clean, but then it will rerun in every subsequent build.

4.2.2 Verifying traces. An alternative way to determine if a key is dirty is to record what state
the values/hashes of dependencies were used at last time, and if something has changed, the key is
dirty and must be recomputed - in essence a trace which we can use to verify existing values. We
can describe a trace as:

data Trace k v = Trace

{ key itk
, dependencies :: [(k, Hash v)]
, result :: Hash v }

We assume that Hash v is a small constant size, constructed from hashing the underlying v rather
than storing it directly. Checking a trace requires ensuring all the dependencies are up to date
(using whatever ordering strategy as per §4.1), then comparing if the dependencies are same as the
current value and that the result is the same.

A build system that uses verifying traces needs to persistently maintain a set of traces. After
computing a fresh value we add its Trace k v to the set. Therefore the information stored by a build
system that verifies traces can be modelled as a list or set — we chose [Trace k v] for simplicity. In
practice, different build systems can optimise the data structures used by traces for their specific
use cases, which we discuss in §5.6.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Build Systems a la Carte 1:15

4.2.3 Constructive traces. A verifying trace allows us to mark a key dirty and rebuild it. Extending
that information we can store a constructive trace which is the trace plus the actual result. Once we
are storing the complete result it makes sense to record many constructive traces per key, and to
share them with other users, providing cloud-build functionality. We can represent that as:

data Traces k v = Traces
{ traces :: [Trace k v]
, contents :: Map (Hash v) v }

We have a list of traces, plus a Map from the hash to the actual contents. Checking a trace is the
same as before, but if the result is the only thing that is different we can simply retrieve a fresh
result from contents without recomputing it. We split the traces and contents because in cloud
interactions to a remote server the checking system may have to examine many traces/hashes, but
only retrieve at most one complete file per key.

4.3 Build Systems a la Carte

Property H Topological §4.1.1 ‘ Reordering §4.1.2 ‘ Recursive §4.1.3
Dirty bit §4.2.1 MAKE EXCEL Approximate SHAKE *
Verifying trace §4.2.2 Ninja Traced EXcEL * SHAKE
Constructive trace §4.2.3 BAzEL Cloud EXcEL * Cloud SHAKE *

Table 2. Build systems a la carte. Systems marked * are hypothetical systems that do not currently exist.

With the information in this section we can build a table comparing the dependency order strategy
with the out-of-date keys strategy, providing 9 possible build systems, 5 of which are actually
inhabited by existing build systems (we discuss NINJA [Martin 2017] in §7.1). Of the remaining
4 spots, we believe neither Traced or Cloud ExciL make sense — the EXCEL approach of reordering
combined with static approximations reduces the memory usage significantly. However, as soon
as you are paying the cost of storing traces, that benefit is gone. The advantage of Approximate
SHAKE over SHAKE would be that it could avoid storing traces and having a separate information
database, but that advantage is minor compared to the technical restrictions and approximations it
would provide, so we consider it unlikely to be built. The Cloud SHAKE system is an interesting and
important point in the design space, which we explore further in §5.5.

5 BUILD SYSTEMS, CONCRETELY

In the previous sections we discussed the types of build systems, and how they can be broken down.
But these divisions were not obvious to us, and only by concretely implementing and refactoring
each build system did we determine the underlying commonalities. In this section we share some
of the code that got us there.

5.1 MAKE

We provide an implementation of MAKE using our framework in Fig. 6. MAKE processes keys in a
linear order based on a topological sort (see §6.2 for parallel MAKE). For each key, it builds it if it is
older than any of its dependencies. We capture the persistent build information that MAKE stores
by a pair (modTime, now) comprising the file modification time function modTime :: k -> Time
and the current time now. Setting aside the explicit manipulation of file modification times, which
in reality is taken care of by the file system, the function make captures the essence of MAKE in a
clear and precise manner.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

-- Persistent build information
type Time = Integer
type MakeInfo k = (k -> Time, Time)

-- Make build system
make :: Eq k => Build Applicative (MakeInfo k) k v
make = topological process
where
process key deps act = do
(modTime, now) <- gets getInfo
let dirty = or [modTime dep > modTime key | dep <- deps]
when dirty $ do
v <- act
let newModTime k = if k == key then now else modTime k
modify $ putInfo (newModTime, now + 1) . putValue key v

-- Standard graph algorithms (implementation omitted)
reachable :: Eq a => (a -> [al]) -> a -> [a]
topSort :: Eq a => (a -> [al]) -> [a] -> [a]

-- Topological dependency strategy
topological :: Eq k => (k -> [k] -> State (Store i k v) v -> State (Store i k v) ())
-> Build Applicative i k v
topological process task key = execState $ forM_ chain $ \k -> do
let fetch k = gets (getValue k)
case task fetch k of
Nothing -> return ()
Just act -> process k (deps k) act
where
deps = dependencies task -- dependencies is defined in §3.7
chain = topSort deps (reachable deps key)

Fig. 6. An implementation of MAKE using our framework.

The helper function topological calls process on every key in a topological order, providing
the list of its dependencies deps and the action act to compute the resulting value if it needs to be
rebuilt. To determine if the key is dirty, process compares its modification time with those of its
dependencies. If the key needs to be rebuilt, the action act is executed and the obtained result is
stored, along with an updated file modification timestamp.

The implementation of topological encodes the dependency strategy that MAKE has cho-
sen to use. The where clause corresponds to the pre-processing stage, which uses the function
dependencies, defined in §3.7, to extract static dependencies from the provided applicative task.
We compute the linear processing chain by taking the keys reachable from key via dependencies,
and performing the topological sort of the result. We omit implementation of textbook graph
algorithms reachable and topSort, e.g. see [Cormen et al. 2001].

The chain is processed in the State monad, with each non-input key k in the chain passed
to the provided process function, along with k’s dependencies and the action act, which when
executed recomputes the k’s value by fetching its dependencies from the store.

Note that dependencies is only defined for applicative tasks, which is what restricts MAKE to
static dependencies, as reflected in the type Build Applicative. Moreover, any other build system
following the same topological approach will also inherit the same restriction.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Build Systems a la Carte 1:17

-- Approximation of task dependencies
data DependencyApproximation k = SubsetOf [k] | Unknown

-- Persistent build information
type CalcChain k = [k]
type ExcelInfo k = ((k -> Bool, k -> DependencyApproximation k), CalcChain k)

-- Result of speculative task execution
data Result k v = MissingDependency k | Result v [k]

-- Reordering dependency strategy (implementation omitted, 21 lines)

reordering :: Ord k
=> (k -> State (Store i k v) (Result k v) -> State (Store i k v) (Maybe (Result k v)))
-> Build Monad (i, CalcChain k) k v

-- Excel build system
excel :: Ord k => Build Monad (ExcelInfo k) k v
excel = reordering process
where
process key act = do
(dirty, deps) <- gets getInfo
let rebuild = dirty key || case deps key of SubsetOf ks -> any dirty ks
Unknown -> True
if not rebuild
then return Nothing
else do
result <- act
case result of
MissingDependency _ -> return ()
Result v dynamicDependencies -> do
let newDirty k = if k == key then True else dirty k
modify $ putInfo (newDirty, deps) . putValue key v
return (Just result)

Fig. 7. An implementation of ExcEL using our framework.

5.2 EXcEL

We define ExcEL, with it’s reordering dependency strategy, in Fig. 7. EXCEL’s persistently stored
information is a triple: (i) the dirty bit function k -> Bool, (ii) an approximation of key dependencies
k -> DependencyApproximation k that ExciL uses to handle dynamic dependencies, and (iii) the
calculation chain [k] recorded in the previous build (§2.2).

The helper function reordering, whose implementation we omit since it is technical and not
particularly enlightening, calls the function process to try to build a key by executing the action
act, in the order determined by the calculation chain. To decide whether to rebuild the key,
process checks if the key itself is marked dirty or the approximation of its dependencies contains
a dirty key. Notice that if the dependencies of the key are Unknown, e.g. when it uses the INDIRECT
function, the key is always rebuilt. If a rebuild is not needed, process returns Nothing to indicate
that. Otherwise, it executes act leading to one of two possible results:

e MissingDependency k indicates that the execution of act has failed, because one of its
dependencies k was out-of-date, i.e. the calculation chain from the previous build was incorrect
and therefore needs to be reordered, deferring the key to be rebuilt later.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

e Result v dynamicDependencies indicates that the execution has succeeded producing the
value v and the list of the key’s dynamic dependencies. We store the value, and mark it dirty
to trigger the rebuilding of keys that depend on it.

In both of the above cases, we notify the parent reordering function of the outcome by returning
Just result. The astute reader may notice that process ignores dynamicDependencies available
in the result. While not required for ExceL, we have implemented build systems using reordering
which use verifying and constructive traces, effectively turning EXCEL into a cloud build system
and ensuring reordering is not overly fitted to EXcEL alone.

In reality ExciL works slightly differently (as far as we are able to ascertain) — on a change it
propagates the dirty bits forward using the dynamicDependencies, then only checks if the current
key is dirty. While both methods are equivalent, merely changing the interleaving, our approach
allows us to model more of the behaviour of EXcEL.

5.3 SHAKE
The SHAKE approach for dependency tracking involves recording traces and verifying them, for
which we use the Trace type defined in 4.2.2. Complete code is given in §8, split into three functions:

traceMatch takes a list of all recorded Trace values, the key you are currently building, and a
function check which checks a specified dependency. It returns the result field of all traces
that match. Since check is in an arbitrary monad, the function has to use al1M/&&" instead
of the more usual al1/&& functions®.

recursive defines the dependency ordering pattern. It requires a process function that builds
a key given a way to recursively build a dependency, and a way to run task to produce result.
The main purpose of recursive is to ensure that in a single run no key is built twice — for
which it extends the State monad with a list of done keys.

shake ties everything together. First it tests if the traces allow the current state of the target
key. If not, it builds the key and updates the store. The only subtlety is that Shake calls
fetch on the keys while checking them — building the last-recorded dependencies before
checking them. One minor annoyance is that the State has been extended and thus needs to
be projected using fst before it is used.

5.4 BazeL

Now we have seen all three dependency schemes, we can directly reuse topological to define
BazeL. Furthermore, as BAZEL is a tracing build system, we can reuse Trace and traceMatch, along
with the Traces type from §4.2.3. With these pieces in place, the implementation of BAZEL is given
in Fig. 9. We first figure out the possible results given the current state. If there are no recorded
traces for the current dependencies we run it and record the results, otherwise grab a suitable result
from the contents cache.

The program presented above captures certain aspects of BAZEL, but the real implementation
makes one important additional assumption on Task — namely that it is deterministic. With that
assumption BAZEL is able to create the result hash in a trace by hashing together the result hashes of
the dependencies and the key - as the mapping between dependencies and results is deterministic.
As a consequence BAZEL can compute the results of traces locally, without looking at Traces
(potentially saving a roundtrip to the server). To model this change in the code would require
storing an additional transient piece of information done of type Map k (Hash v), storing the
computed hashes so far this run. With that available, getHash key s would become:

hash (key, [done Map.! d | d <- ds 1)
And that new hash would have to be stored in done.

8These functions are all available in the extra library on Hackage.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

909
910
911
912
913
914
915
916
917
918
919
920
921
922

924
925
926
927
928
929
930
931

Build Systems a la Carte

-- Determine whether a trace is relevant to the current state
traceMatch :: (Monad m, Eq k)
=> (k -> Hash v -> m Bool) -> k -> [Trace k v] -> m [Hash v]
traceMatch check key ts = mapMaybeM f ts
where f (Trace k dkv v) = do
b <- return (key == k) &&”* allM (uncurry check) dkv
return $ if b then Just v else Nothing

-- Recursive dependency strategy
recursive :: Eq k => (k -> (k -> State (Store i k v, [k]l) v)
-> State (Store i k v, [k1) (v, [kD)
-> State (Store i k v, [k1))
-> Build Monad i k v
recursive process task key store = fst $ execState (ensure key) (store, [])
where
ensure key = do
let fetch k = do ensure k; gets (getValue k . fst)
done <- gets snd
when (key ‘notElem* done) $ do
modify $ \(s, done) -> (s, key:done)
case track task fetch key of -- track is defined in §3.7
Nothing -> return ()
Just act -> process key fetch act

-- Shake build system
shake :: (Eq k, Hashable v) => Build Monad [Trace k v] k v
shake = recursive $ \key fetch act -> do
traces <- gets (getInfo . fst)
poss <- traceMatch (\k v -> (==) v . hash <$> fetch k) key traces
current <- gets (getHash key . fst)
when (current ‘notElem‘ poss) $ do
(v, ds) <- act
modify $ \(s, done) ->
let t = Trace key [(d, getHash d s) | d <- ds] (getHash key s)
in (putInfo (t : getInfo s) (putValue key v s), done)

Fig. 8. An implementation of SHAKE using our framework.

bazel :: (Eq k, Hashable v) => Build Applicative (Traces k v) k v
bazel = topological $ \key ds act -> do

s <- get
let Traces traces contents = getInfo s
poss <- traceMatch (\k v -> return $ getHash k s == v) key traces
if null poss then do
v <- act

modify $ \s ->
let t = Trace key [(d, getHash d s) | d <- ds] (getHash key s)
ts = Traces (t : traces) (Map.insert (hash v) v contents)
in putInfo ts (putValue key v s)
else do
when (getHash key s ‘notElem‘ poss) $
modify $ putValue key (contents Map.! head poss)

Fig. 9. An implementation of BAzEL using our framework; topological is defined in Fig. 6.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

968
969
970
971

973
974
975
976

978
979
980

1:20 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

cloudShake :: (Eq k, Hashable v) => Build Monad (Traces k v) k v
cloudShake = recursive $ \key fetch act -> do
s <- gets fst
let Traces traces contents = getInfo s
poss <- traceMatch (\k v -> (==) v . hash <$> fetch k) key traces
if null poss then do
(v, ds) <- act
modify $ \(s,done) —->
let t = Trace key [(d, getHash d s) | d <- ds] (getHash key s)
ts = Traces (t : traces) (Map.insert (hash v) v contents)
in (putInfo ts (putValue key v s), done)
else do
s <- gets fst
when (getHash key s ‘notElem‘ poss) $
modify $ \(s, done) -> (putValue key (contents Map.! head poss) s, done)

Fig. 10. An implementation of Cloud SHAKE using our framework.

5.5 Cloud SHAKE

Using the abstractions and approaches built thus far, we have shown how to combine dependency
scheme and change approach to reproduce existing build systems. In the attached materials we
have implemented 9 build systems corresponding to all three dependency schemes, matched with
all three change approaches. To us, the most interesting build system as yet unavailable would
matching recursive ordering with constructive traces — providing a cloud-capable build system
with minimality, cutoff and monadic dependencies. Using our framework it is possible to define
and test such a system as per Fig. 10.

The differences from bazel are minor — the dependency scheme has changed from topological
to recursive, and thus the dependency keys dk are captured from the action rather than in advance,
the transient state has gained a list of keys, and the checking calls fetch to get the result instead
of accessing the store directly.

5.6 Smarter [Trace] data structures

In the examples above, we have used [Trace k v] to capture a list of traces — however, using a list
necessarily means that finding the right trace takes O(n). For each of the Trace based systems it is
possible to devise a smarter representation, which we sketch below. Note that these implementations
do not avoid calls to compute, merely overheads in the build system itself.

(1) Any system using verifying traces, e.g. SHAKE, is unlikely to see significant benefit from
storing more than one Trace per key’. Therefore, such systems can store Map k (Trace k v),
where the initial k is the key field of Trace.

(2) Any system using Applicative dependencies can omit the dependency keys from the Trace
as they can be recovered from the key field.

(3) Any Applicative build system storing constructive traces, e.g. BAZEL, can index directly
from the key and results to the output result — i.e. Map (k, [Hash v]) (Hash v). Importantly,
assuming the traces are stored on a central server, the client can compute the key and the
hashes of its dependencies, then make a single call to the server to retrieve the result hash. In
this formulation we have removed the possibility for a single key/dependency state to map
to multiple different hashes, e.g. on a non-deterministic build — something BazEL already
prohibits which is discussed more in §6.3.

9There is a small chance of a benefit if the dependencies change but the result does not, and then the dependencies change
back to what they were before.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

981
982

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Build Systems a la Carte 1:21

(4) Finally, a Monad build system with constructive traces can be stored as Map k (Choice k v),

assuming a definition of Choice as:
data Choice k v = Choice k (Map (Hash v) Choice)
| Result (Hash v)

Here the Choice encodes a tree, asking successive questions about keys, and taking different
branches based on the answers, until it reaches a final result. Implementing this structure
over client-server communication requires either a chatty interface with lots of round-trips
per Choice step, or sending over a part of the tree that is not subsequently explored.

6 ENGINEERING ASPECTS

In the previous sections we have modelled the most critical subset of various build systems. However,
like all real-world systems, there are many corners that obscure the essence. In this section we
discuss some of those details, what would need to be done to capture them in our model, and what
the impact would be.

6.1 Partial stores and exceptions

Our model assumes a world where the store is fully-defined, every k is associated with a v, and
every compute successfully completes returning a valid value. In the real world, build systems
frequently deal with errors, e.g. “file not found”, or “compilation failed”. We can model such failure
conditions by instantiating v to either Maybe v (for missing values) or Either e v (for exceptions
of type e). That can model the values inside the store and the Task, but because v is polymorphic
for builds, it does not let the build system apply special behaviour for errors, e.g. early aborting.

6.2 Parallelism

While we have given simple implementations assuming a single thread of execution, all the build
systems we address can actually build independent keys in parallel. While it complicates the model,
the complications can be restricted exclusively to the dependency strategy:

(1) The topological function can build the full dependency graph, and whenever all dependen-
cies of a task are complete, the task itself can be started.

(2) The reordering function can be made parallel in a few ways, but the most direct is to have
n threads reading entries from the list of keys. As before, if a key requires something not
yet built, it is added to the end - the difference is that sometimes things will be moved to
the back of the queue not because they are out of order but because of races with earlier
nodes that had not yet finished. As a consequence, over successive runs, potentially racey
dependencies will be separated, giving better parallelism over time.

(3) The recursive function can be made parallel by starting static dependencies of a Task
in parallel, while dynamic dependencies are being resolved, using the strategy described
by Marlow et al. [2014].

The actual implementation of the parallel strategies is not overly onerous, but neither is it
beautiful or informative.

6.3 Impure computations

In our model we define Task as a function — when given the same inputs it will always produce
the same outputs. Alas, the real-world is not so obliging. Some examples of impure tasks include:

Untracked state Some tasks depend on untracked state — for example C compilation will
explicitly list the source.c file as a dependency, but it may not record that the version of gcc
is also a dependency.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

Non-determinism Some tasks are non-deterministic, producing a result from a possible set.
As an example, GHC when compiled using parallelism can change the order in which unique
variables are obtained from the supply, producing different but semantically identical results.

Volatility Some tasks are defined to change in every execution, for example EXCEL provides
a “function” RANDBETWEEN which produces a random number in a specified range — on
each recalculation it is defined to change. Similarly, build systems like MAKE and SHAKE
provide phony rules which are also volatile.

Interestingly, there is significant interplay between all three sources of impurity. Systems like
BazEL use various sandboxing techniques to guard against missing dependencies, but none are
likely to capture all dependencies right down to CPU model and microcode version. Rules that
do have untracked state can be marked as volatile, a technique ExcEL takes with the INDIRECT
function, removing the untracked state at the cost of minimality.

Most of the implementations in §5 can deal with non-determinism, apart from Bazgr, which
requires deterministic execution, and in turn can optimise the number of roundtrips required to
the server.

One tempting way of modelling non-determinism is to enrich Task from Applicative or Monad
to Alternative or MonadPlus, respectively. More concretely, the following task description corre-
sponds to a spreadsheet with the formula B1 = A1+ RANDBETWEEN(1,2):

sprsh3 :: Task MonadPlus String Integer
sprsh3 fetch "B1" = Just $ (+) <$> fetch "A1" <*> pure 1 ‘mplus‘ pure 2
sprsh3 _ _ = Nothing

Handling such tasks is possible in our framework, but requires an adjustment of the correctness
definition (§3.6): instead of requiring that the result of recomputing the task matches the value
stored in the result:

Just (getValue k result) == compute task result k
we now require that result contains one possible result of recomputing the task:
Just (getValue k result) ‘*elem* computeND task result k

where computeND : : Task MonadPlus k v -> Store i k v => k -=> Maybe [v] returns the list of all
possible results of the task instead of just one value (‘ND’ stands for ‘non-deterministic’).

Note that Task MonadPlus is powerful enough to model dependency-level non-determinism,
for example, INDIRECT("A" & RANDBETWEEN(1,2)), whereas most build tasks in real-life build
systems only experience a value-level non-determinism. Excgr handles this example simply by
marking the cell volatile — an approach that can be readily adopted by any of our implementations
by introducing a special key RealWorld whose value is changed between every run.

6.4 Cloud implementations

Our model of cloud builds provides a basic framework to discuss and reason about them, but lacks
a number of important engineering corners:

Eviction The store of traces as shown grows indefinitely, but often resource constraints require
evicting old items from the store. One option is to evict the contents and any trace that
mentions the now-defunct Hash v. However, if the build system can defer materialisation, it
may be possible to only evict the contents, allowing builds to pass-through hashes of values
where the underlying value is not known. If so, the build must be able to recreate the value if
required, potentially dealing with a different result in a future run.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Build Systems a la Carte 1:23

Frankenbuilds A build is considered a frankenbuild [Esfahani et al. 2016] if a value is calculated
locally, but something that depends on that key is pulled from the cache, and the value
calculated locally does not match what was previously calculated and stored in the cloud.
Our implementations avoid this issue by storing complete traces, but if a cloud build system
was to only reference input nodes this situation can arise.

Communication When traces or contents are stored on a central server communication can
become a bottleneck, so it is important to send only the minimum amount of information,
optimising with respect to build-system specific invariants — see §5.6 for some possible
optimisations.

Offloading Once the cloud is storing build products and traces, it is possible for the cloud to
also contain dedicated workers that can execute tasks remotely - offloading some of the
computation and potentially running vastly more commands in parallel.

Shallow builds Sometimes input files will involve many intermediate tasks before producing
the end result, e.g. an installer package. These intermediate steps may be large, so some cloud
build systems are designed to build end products without downloading or materialising the
results of intermediate tasks — only the final result — a so-called shallow build. Some build
systems can go even further, integrating with the file system to only materialise the file when
the user accesses it [Microsoft 2017].

To legitimise shallow builds, we need to relax the correctness Definition 3.1 as follows. Let the
shallow store correspond to the result of a shallow build. Then shallow is correct, if there exists
result which satisfies all requirements of Definition 3.1, such that shallow agrees with result
on the input keys k € I:

getValue k shallow == getValue k result
and on the target key:
getValue key shallow == getValue key result.

This relaxes the requirements on shallow builds by dropping the constraints on the shallow store
for all intermediate keys k € O \ {key}.

6.5 Tracking and self-tracking

Some build systems, for example Excer and Ninja, are capable of recomputing a task if either its
dependencies change, or the rule itself changes. For example:

Al = 20 B1 = AT + A2

A2 = 10
In ExcEL the user can alter the value produced by B1 by either editing the inputs of A1 or A2, or
editing the formula in B1 - e.g. to A1 - A2. This pattern can be captured by describing the rule
producing B1 as also depending on the value B1-formula. The implementation can be given very
directly in a Task Monad as:

task fetch "B1" = do
formula <- fetch "B1-formula"
evalFormula fetch formula

Namely, first look up the formula, then interpret it. It is not possible to change dependencies
based on the formula in a Task Applicative, as would be required, so instead the formula can be
captured as a dependency (but its value not used) and also baked directly into the task function.
The build systems that have precise self-tracking are all ones which use a non-embedded domain
specific language to describe computations. Those which make use of a full programming language,

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1:24 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

e.g. SHAKE, are faced with the challenge of implementing equality on arbitrary task functions. For
such build systems the incredibly pessimistic assumption of saying that any change to the build
system potentially changes any build rule can often be used - the classic example being a makefile
depending on itself.

6.6 Iterative computations

Some computations are best described not by a chain of acyclic dependencies, but by a loop - for
example KIgEX requires repeated rebuilding until it reaches a fixed point — something that can be
directly expressed in build systems, such as PLuto [Erdweg et al. 2015]. Another example of cyclic
computations is EXceL, where a cell can depend on itself, for example:

Al = A1 + 1

In such cases ExceL will normally not execute anything, but if the “Iterative Calculations” feature
is enabled will execute the formula for a specified maximum number N of times per calculation
(where N is a setting that defaults to 100).

For examples like KIEX we consider the proper encoding to not be with circular tasks, but
with a series of iterative steps, as described by Mitchell [2013]. It is important that the number of
executions is bounded, otherwise the build system may not terminate (a legitimate concern with
KIgX, which can be put into a situation where it is bistable or diverging over multiple executions).

The examples in EXcEL tend to encode either mutable state, or recurrence relations. The former
is only required because ExcEL inherently lacks the ability to write mutable state, and the latter is
probably better solved using explicit recurrence formulae.

Overall we choose not to deal with cyclic rules, a choice that most build systems also follow.

6.7 Polymorphism

Our build system abstraction assumes a k/v store, along with a build system that works directly
on k and v values. However, certain build systems provide greater flexibility, e.g. SHAKE permits
polymorphic keys and values, allowing types that are only stored in the SHAKE information, and
never persisted to the store.

As one example of richer key/value types, consider the version of gcc — for many builds it should
be a dependency. In SHAKE it is possible to define an oracle rule as per [Mitchell 2012] whose
value is the result of running gcc —version and which is volatile, making the gcc version something
that can be depended upon. Of course, provided the build can express volatile dependencies and
supports cutoff, the version number could equally be written to a file and used in a similar way.

A more compelling example is build tasks that produce multiple output keys - for example, ghc
Foo.hs produces both Foo.hi and Foo.o. That can be represented by having a key whose value is
a pair of file names, and whose result is a pair of file contents. From that, the rule for Foo.hi can
be the first component of the result of the pair. Again, such an operation can be encoded without
polymorphic keys provided the pair of files (or a dummy file representing the pair) is marked as
changed if either of the contained files change. Once again, polymorphic dependencies provide
convenience rather than power.

SHAKE users have remarked that polymorphism provides a much easier expression of concepts,
e.g. [Mokhov et al. 2016], but it is not essential and thus not necessary to model.

7 RELATED WORK

While there is research on individual build systems, there has been little research to date comparing
different build systems. In §2 we covered several important build systems — in this section we relate a
few other build systems to our abstractions, and discuss other work where similar abstractions arise.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Build Systems a la Carte 1:25

7.1 Other Build Systems

Most build systems, when viewed at the level we talk, can be captured with minor variations on
the code presented in §5. As some examples:

e Ninja [Martin 2017] combines the dependency strategy of MAKE with the validating traces
of SHAKE - our associated implementation provides such a combination. Ninja is also capable
of modelling rules that produce multiple results, a limited form of polymorphism §6.7.

e Tup [Shal 2009] functions much like MAKE, but with a refined dirty-bit implementation that
watches the file system for changes and can thus avoid rechecking the entire graph, and with
automatic deleting of stale results.

e REDO [Pennarun 2012] almost exactly matches SHAKE at the level of detail given here, differing
only on aspects like polymorphic dependencies §6.7.

e Buck [Facebook 2013] is very similar to BAZEL at the level of abstraction presented here.

e CroupBuiLp [Esfahani et al. 2016] differs from BazEL by allowing non-determinism §6.3,
thus more closely modelling our original definition of BAzEL from §5.4.

e Nix [Dolstra et al. 2004] has coarse-grained dependencies, with precise hashing of dependen-
cies and downloading of precomputed build products. When combined with import-from-
derivation, Nix can also be considered monadic, making it similar to Cloud SHAKE from §5.5.
However, N1x is not intended as a build system, and the coarse grained nature (packages, not
individual files) makes it targeted to a different purpose.

e Pruto [Erdweg et al. 2015] is based on a similar model to SHAKE, but additionally allows
cyclic build rules combined with a user-specific resolution strategy. Often such a strategy
can be unfolded into the user rules without loss of precision, but a fully general resolution
handler extends the Task abstraction with additional features.

The one build system we are aware of that cannot be modelled in our framework is FABRI-
caTE [Hoyt et al. 2009]. In FABRICATE a build system is a script which is run in-order, in the spirit
of %:

gcc -c util.c

gcc -c main.c

gcc util.o main.o -o main.exe

To achieve minimality, each separate command is traced at the OS-level, allowing FABRICATE to
record a trace entry stating that gcc -c util.c reads from util.c. In future runs FABRICATE runs the
script from start to finish, skipping any commands where no inputs have changed.

Taking our abstraction, it is possible to encode FABRICATE assuming that commands like gcc -c
util.c are keys, there is a linear dependency between each successive node, and that the OS-level
tracing can be lifted back as a monadic Task function''. However, in our pure model the mapping
is not perfect as gcc writes to arbitrary files whose locations are not known in advance.

7.2 Self-adjusting computation

While not typically considered build systems, self-adjusting computation is a well studied area, and
in particular the contrast between different formulations has been thoroughly investigated [Acar
et al. 2007].

Self-adjusting computations can automatically adjust to an external change to their inputs.
A classic example is a self-adjusting sorting algorithm, which can efficiently (in O(logn) time

10FABRICATE requires scripts to be written in Python, but those details are not fundamental to what makes FABRICATE
special.

1n fact, SHAKE has an execution mode that can model FABRICATE-like build systems — see Development . Shake . Forward
in the SHAKE library.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

where n is the length of the input) recalculate the result given an incremental change of the input.
While very close to build systems in spirit, self-adjusting computations are mostly used for in-
memory computation and rely on the ability to dynamically allocate new keys in the store for
sharing intermediate computations — an intriguing feature rarely seen in build systems (SHAKE’s
oracles §6.7 can be used to model this feature to a limited degree).

A lot of research has been dedicated to finding efficient data structures and algorithms for
self-adjusting computations — we plan to investigate how these insights can be utilised by build
systems as future work.

7.3 Memoization

Memoization is a classic optimisation technique for storing values of a function instead of recomput-
ing them each time the function is called. Minimal build systems (see the Definition 2.1) certainly
perform memoization: they store values instead of recomputing them each time. Memoization can
therefore be reduced to a minimal build system (as we demonstrate below), but not vice versa, since
minimal build systems solve a more complex optimisation problem.

As a simple example of using a build system for memoization, we solve a textbook dynamic
programming problem — Levenshtein’s edit distance [Levenshtein 1966]: given two input strings
a and b, find the shortest series of edit operations that transforms a to b. The edit operations
are typically inserting, deleting or replacing a symbol. The dynamic programming solution of this
problem is so widely known (e.g., see [Cormen et al. 2001]) that we provide its encoding in our
Task abstraction without further explanation. We address elements of strings a; and b; by keys A i
and B i, respectively, while the cost of a subproblem d;; is identified by D i j.

data Key = A Integer | B Integer | D Integer Integer deriving Ord

editDistance :: Task Monad Key Integer

editDistance _ (D i©@) = Just $ pure i
editDistance _ (D @ j) = Just $ pure j
editDistance fetch (D i j) = Just $ do
ai <- fetch (A i)
bj <- fetch (B j)
if ai == bj
then fetch (D (i - 1) (G - 1))
else do
insert <- fetch (D i G- 1)
delete <- fetch (D (i - 1) j)

replace <- fetch (D (i - 1) (J - 1))
return (1 + minimum [insert, delete, replace])
editDistance = Nothing

When asked to build D n m, a minimal build system will calculate the result using memoization.
Furthermore, when an input symbol a; is changed, only necessary, incremental recomputation will
be performed - an optimisation that cannot be achieved just with memoization.

Self-adjusting computation, memoization and build systems are inherently related topics, which
poses the question of whether there is an underlying common abstraction waiting to be discovered.

7.4 Profunctor Optics
The definition of Task is:
type Task ¢ k v = forall f. ¢ f => (k -=> f v) -> k -> Maybe (f v)

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Build Systems a la Carte 1:27

Which looks tantalisingly close to the profunctor optics definition by [Pickering et al. 2017]:
type Opticpabst=pab->pst

Provided we instantiate p to something like k => f v — which many of the actual instances in
that paper do. The properties of such optics are well studied, and the functions like dependencies
are very much based on observations from that field of work. Alas, we have been unable to remove
the Maybe used to encode whether a file is an input, without complicating other aspects of our
definition. Furthermore, the Build abstraction lacks any further such symmetry.

8 CONCLUSIONS

We have investigated multiple build systems, showing how their properties are consequences of
two implementation choices: what order you build in and whether you decide to rebuild. By first
decomposing the pieces, we show how to recompose the pieces to find new points in the design
space. In particular, a simple recombination leads to a design for a monadic cloud build system.
Armed with that blueprint we hope to actually implement such a system as future work.

ACKNOWLEDGMENTS

Thank you for reading and feedback!
Andrey Mokhov is funded by a Royal Society Industry Fellowship on the topic “Towards Cloud
Build Systems with Dynamic Dependency Graphs”.

REFERENCES

Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2002. Adaptive Functional Programming. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 247-259.

Umut A Acar, Matthias Blume, and Jacob Donham. 2007. A consistent semantics of self-adjusting computation. In European
Symposium on Programming. Springer, 458-474.

Paolo Capriotti and Ambrus Kaposi. 2014. Free applicative functors. Proceedings 5th Workshop on Mathematically Structured
Functional Programming 153, 2-30.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. 2001. Introduction To Algorithms. MIT Press.

R. De Levie. 2004. Advanced Excel for Scientific Data Analysis. Oxford University Press.

Alan Demers, Thomas Reps, and Tim Teitelbaum. 1981. Incremental Evaluation for Attribute Grammars with Application
to Syntax-directed Editors. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 105-116.

Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-Free System for Software Deployment. In
LISA, Vol. 4. 79-92.

Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound and optimal incremental build system with dynamic
dependencies. ACM SIGPLAN Notices 50, 10 (2015), 89-106.

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac, Wolfram Schulte, Newton Sanches,
and Srikanth Kandula. 2016. CloudBuild: Microsoft’s distributed and caching build service. In Proceedings of the 38th
International Conference on Software Engineering Companion. ACM, 11-20.

Facebook. 2013. Buck: A high-performance build tool. (2013). https://buckbuild.com/.

Stuart I Feldman. 1979. Make—A program for maintaining computer programs. Software: Practice and experience 9, 4 (1979),
255-265.

Google. 2016. Bazel. (2016). http://bazel.io/.

Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. 2009. Fabricate: The better build tool. (2009). https://github.com/SimonAlfie/
fabricate.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics
doklady, Vol. 10. 707-710.

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad transformers and modular interpreters. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 333-343.

Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. 2014. There is no fork: An abstraction for efficient, concurrent,
and concise data access. In ACM SIGPLAN Notices, Vol. 49. ACM, 325-337.

Evan Martin. 2017. Ninja build system homepage. (2017). https://ninja-build.org/.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://buckbuild.com/
http://bazel.io/
https://github.com/SimonAlfie/fabricate
https://github.com/SimonAlfie/fabricate
https://ninja-build.org/

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28 Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones

Conor McBride and Ross Paterson. 2008. Applicative programming with effects. Journal of functional programming 18, 1
(2008), 1-13.

Microsoft. 2011. Excel Recalculation (MSDN documentation). (2011). https://msdn.microsoft.com/en-us/library/office/
bb687891.aspx. Also available in Internet Archive https://web.archive.org/web/20180308150857/https://msdn.microsoft.
com/en-us/library/office/bb687891.aspx.

Microsoft. 2017. Git Virtual File System. (2017). https://www.gvfs.io/.

Neil Mitchell. 2012. Shake before building: Replacing Make with Haskell. In ACM SIGPLAN Notices, Vol. 47. ACM, 55-66.

Neil Mitchell. 2013. How to write fixed point build rules in Shake. (2013). https://stackoverflow.com/questions/14622169/
how-to-write-fixed-point-build-rules-in-shake-e-g-latex.

Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow. 2016. Non-recursive Make Considered Harmful:
Build Systems at Scale. In Proceedings of the 9th International Symposium on Haskell (Haskell 2016). ACM, 170-181.

Avery Pennarun. 2012. redo: a top-down software build system. (2012). https://github.com/apenwarr/redo.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-
rank types. Journal of functional programming 17, 1 (2007), 1-82.

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. 2017. Profunctor Optics: Modular Data Accessors. The Art, Science,
and Engineering of Programming 1 (2017). Issue 2.

Mike Shal. 2009. Build System Rules and Algorithms. (2009). http://gittup.org/tup/build_system_rules_and_algorithms.pdf/.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

https://msdn.microsoft.com/en-us/library/office/bb687891.aspx
https://msdn.microsoft.com/en-us/library/office/bb687891.aspx
https://web.archive.org/web/20180308150857/https://msdn.microsoft.com/en-us/library/office/bb687891.aspx
https://web.archive.org/web/20180308150857/https://msdn.microsoft.com/en-us/library/office/bb687891.aspx
https://www.gvfs.io/
https://stackoverflow.com/questions/14622169/how-to-write-fixed-point-build-rules-in-shake-e-g-latex
https://stackoverflow.com/questions/14622169/how-to-write-fixed-point-build-rules-in-shake-e-g-latex
https://github.com/apenwarr/redo
http://gittup.org/tup/build_system_rules_and_algorithms.pdf/

	Abstract
	1 Introduction
	2 Background
	2.1 The venerable Make: static dependencies and file modification times
	2.2 Excel: dynamic dependencies at the cost of minimality
	2.3 Shake: dynamic dependencies with no remorse
	2.4 Bazel: a cloud build system
	2.5 Summary

	3 Build systems, abstractly
	3.1 Common vocabulary for build systems
	3.2 The Task abstraction
	3.3 The Build abstraction
	3.4 The need for polymorphism in haskellTask
	3.5 Monadic tasks
	3.6 Correctness of a build system
	3.7 Computing dependencies

	4 Build Systems à la Carte
	4.1 Respecting the dependency order
	4.2 Determining out-of-date keys
	4.3 Build Systems à la Carte

	5 Build systems, concretely
	5.1 Make
	5.2 Excel
	5.3 Shake
	5.4 Bazel
	5.5 Cloud Shake
	5.6 Smarter haskell[Trace] data structures

	6 Engineering aspects
	6.1 Partial stores and exceptions
	6.2 Parallelism
	6.3 Impure computations
	6.4 Cloud implementations
	6.5 Tracking and self-tracking
	6.6 Iterative computations
	6.7 Polymorphism

	7 Related work
	7.1 Other Build Systems
	7.2 Self-adjusting computation
	7.3 Memoization
	7.4 Profunctor Optics

	8 Conclusions
	Acknowledgments
	References

