
Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Building R Packages
An Introduction

David Diez
david@openintro.org

Biostatistics, Harvard SPH

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Why build an R package?

Accessible

Functions and objects contained in a package and installed on a machine
can be easily loaded:
> library(myPackage)

Many R users develop their own functions that they use regularly

Putting code into a package can be worthwhile, even for a sole user

Reliable

Documentation structure is familiar, and it is easy to edit

Basic checks and tests can be automated

Clarity

The process of organizing code and data into a package requires a project
to become organized and set specific goals

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Sharing data, functions, and an analysis online

CRAN features 3646, as of 3/2/2012

(up from 3282 on 9/15/2011 and 2564 on 10/5/2010).

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

What are all these packages?

Methods

Facilitate the use of a new or existing statistical technique

Provide tools for graphics, data exploration, complex numerical
techniques, making it easier to work with big data sets, etc.

Open research

Researchers publish packages that implement new methods or
release data, which supports reproducibility

Data

Sharing old, new, simulated, or research data sets

Many of the best packages have both methods and data

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Keep an eye out

If you are performing raw coding in R, one of the following is true:

You are ignoring existing public functions

The method is too user-specific to have a general function

This may be a place for a new package

Ultimate goal

Build a package to fulfill a need

Considerations

The span of R users is wide: applied, software development,
visualization, teaching, etc.

Even if a method is already available, it doesn’t mean it was written
efficiently, is accurate, or reaches all audiences

May be preferable to help improve an existing package than to build
a new one from the ground-up

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

So you want to build a package...

It would be regrettable to spend 100 hours building something that
already exists

Review CRAN packages for packages related to your idea

cran.r-project.org

Look for similar topics

Identify the audience of other packages

Check if overlapping packages are adequate

Other repositories to check/consider

R Forge: rforge.net

Bioconductor: bioconductor.org

This list is not exhaustive!

http://cran.r-project.org/
http://rforge.net/
http://bioconductor.org/

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

So you are going to build a package...

Mission and goals

Establish clear aims for the software before starting and choose a clear
point at which you will publish your work

Achieve the basics

Make software that runs, is relatively efficient, and does what it claims

The software should be intuitive for the target audience

Good coding practices

Implement clean coding practices so others can review and verify
your work

Document your work

Provide helpful documentation with many examples

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Example package: stockPortfolio

stockPortfolio: Offer a “starter” package for financial analysts
who want to get into statistical modeling with R but have little
background in statistical finance and/or R

What is needed: a logical procedure to familiarize the process of
collecting data, modeling, and obtaining results from models:

(1) Get the data

> tickers <- c("C","BAC", "WFC", "GS")

> financials <- getReturns(tickers, start="2004-01-01",

+ end="2008-12-31")

(2) Build the model

> model <- stockModel(financials, model="CCM")

(3) Obtain the optimal portfolio

> port <- optimalPort(model)

http://cran.r-project.org/web/packages/stockPortfolio/index.html
http://cran.r-project.org/web/packages/stockPortfolio/index.html

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Example package: openintro

openintro: Provide data and functions for reproducing results and
figures in OpenIntro Statistics (open source intro stat textbook)

> data(tips)

> par(mfrow=c(1,1))

> boxPlot(tips$tip, tips$day, horiz=TRUE,

+ key=c("Tuesday", "Friday"))

> dotPlot(tips$tip, tips$day, add=TRUE,

+ at=1:2+0.05, key=c("Tuesday", "Friday"))

http://cran.r-project.org/web/packages/openintro/index.html
http://cran.r-project.org/web/packages/openintro/index.html
http://www.openintro.org/stat/downloads.php

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Example package: ppMeasures

ppMeasures: Provide basic functions for implementing new
methods and reproducing major results from dissertation work

> data(pattEx2)

> x <- pattEx2[pattEx2[,1] == 1,c(2,3)]

> y <- pattEx2[pattEx2[,1] == 2,c(2,3)]

> (xyd <- stDist(x, y, 2))

[1] 5.54

>

> summary(xyd)

Algorithm: IMA

Max branch: 4

9 points were matched

Distance: 5.54

>

> plot(xyd)

http://cran.r-project.org/web/packages/ppMeasures/index.html
http://cran.r-project.org/web/packages/ppMeasures/index.html

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Early planning

Practical considerations

Why will this package be important?

Who will the package serve?

What supplementals, such as data, are needed?

What would be included in the ideal package?

Early code planning:

To gauge when a first release may be appropriate, what is the least
functionality that would still be useful to others?

What functions will be necessary for this first build of the package?

What other utilities will be built up in later versions, and how
should these affect the structure and functions of the earlier release?

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Planning function details

After roughly laying out function actions and relations

What arguments will be available in each function?

What information must be contained in the output of each function?

Complex function output is common

Are the objects simple enough for users to interact with directly?

Is there a need for diagnostics, assessment, and exploration of these
data objects?

Could the review of these data objects be streamlined using classes
and methods? If so, how should these be structured?

S3 classes and methods are useful in creating a clean user
experience for complex data objects, and they are discussed in the
next section

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

General R coding advice

Performance

Initialize an entire object rather than grow it slowly

Compute unchanging values only once (don’t recompute in a loop!)

Functionality

Choose variable and function names carefully

Create helpful, robust default values in functions

Outputting a list? Give each list item a name

Aesthetics

Align assignment characters

Use tabs and white space for alignment or when it is meaningful

If including comments, do so in a style that is not obstructive

Avoid all caps

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Evaluating and re-evaluating

Build a foundation of diverse examples

Use test cases to assess accuracy

Using Rprof, Sys.time, or system.time, identify sections of code
that offer meaningful opportunities for efficiency improvements

Sufficiently general

Does it work well for the original problem?

Is it easy to apply to similar scenarios and data?

Are there related settings to which it could be extended?
(Answering yes does not imply the extension must, or even should,
be made.)

http://rfunction.com/blog/archives/317
http://rfunction.com/blog/archives/18

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Picking data sets

Always try to include data in a package

Which examples highlight the package?

If the package is function-centric, choose examples highlighting
performance and graphics

If the statistical or computational method performs poorly in some
instances, make this clear to researchers, possibly with an example

For data-centric packages, use standard plotting functions to show
off the data

Be clear if data are not real or were collected in a haphazard fashion

Real data are strongly preferred, but simulated data are better than
no data

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Classes and methods

Classes and methods encourage and allow users to connect old,
familiar functions with new objects

A class is a set of objects that share specific attributes and a
common label

Example: an object of class "lm", generated from the lm function,
is really just a list with some specific attributes

With S3 classes in R, we can easily change the class associated with
an object or create an entirely new class

A method is a name for a function or action that can be applied to
many types of objects

Examples of methods: print, summary, plot, predict

When we create a new, complex data object from a new function,
creating a new class with methods can drastically improve the
usability of the function and results

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

How to create a new S3 class

To learn the class of an object, apply the class function:
> x <- list(beard=TRUE, legs=4, tails=1)

> class(x)

[1] "list"

We can also use class to change an object’s class:
> class(x) <- "goat"

> class(x)

[1] "goat"

http://rfunction.com/blog/archives/770
http://rfunction.com/blog/archives/770

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

How to create a new S3 class

Usually an object’s class is changed before the end-user ever sees it

To create a new class, simply assign a new class to an object
before returning it from a function

Example: the lm function

The lm function outputs an object of class "lm", which is really just
a list with its class changed

The strategy: initialize the object to be returned, immediately
change the initialized object’s class, and then continue to add on
attributes as needed

Warning. It is possible to assign an existing class (e.g. "lm")
to a new object, but this generally creates problems if the object
doesn’t match the structure of other objects in that class

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Building a method (example)

Suppose we have a method, say print, that we would like to
customize for the new "goat" class, then we build a new function
called print.goat:

> print.goat <- function (x, ...){

+ cat("Number of legs:", x$legs, "\n")

+ cat("Number of tails:", x$tails, "\n")

+ y <- ifelse(x$beard, "This goat has a beard", "")

+ cat(y, "\n")

+ }

>

> x # same as print(x)

Number of legs: 4

Number of tails: 1

This goat has a beard

>

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Making more methods

Generalizing
Consider a method called Method and a new class called "Class"

Suppose we want to allow users to apply Method to an object of
class "Class"

We create a new function called Method.Class, which R will then
invoke whenever Method is applied to an object of class "Class"

Recall: to construct the print method for the "goat" class, we
made a function called print.goat

Complex objects can and should work with a variety of
familiar methods

Specify a summary for a new, complex object of class "Class" by
writing a new function called summary.Class

Similarly, if appropriate, make a custom method of plot for an
object of class "Class" by creating plot.Class

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Considerations

Pros of classes

Users can apply familiar R functions to new objects

Allows output to be formatted for user digestion

Saves the user time in finding or visualizing important information

Cons of classes

Using methods for classes – especially for print – takes the user
one step away from the true R object

Some users will be unsure how to explore all the attributes of
new objects

General tip: learn about an R object by applying str

> str(objName) # prints summary information

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Prerequisites

Knowing these functions will be useful

save(..., file="filename.rda")

Save specific R objects to a file

getwd()

Learn an R session’s current working directory

prompt(object)

Generate a help (.Rd) file for an R object, usually for a data object
or function that is being added to an existing package

http://rfunction.com/blog/archives/420
http://rfunction.com/blog/archives/1001
http://rfunction.com/blog/archives/992

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

When to start building

Existing functions

Package existing functions immediately to facilitate documentation
and access

May later remove depreciated functions or add new functions
(the same is true of data)

Upcoming projects

Even if no code or data exist, initialize a package for the project

Save future functions within the package, and add documentation
files once a function’s name and arguments take form

Overhauling a function within a package is not overly complex, so
don’t hesitate to document a draft of the function

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Overview

Step 1: Create the package files

Load the new package’s data objects and functions into an R session

To generate the basic package files, run
package.skeleton("packageName")

Step 2: Edit the package files

Fill in the DESCRIPTION and help files (man > .Rd)

Edit or add a NAMESPACE file

Function or data updates should be done within the package files

Step 3: Build, check, and install the package

Run a few Unix commands to build, check, and install the package

Usually errors arise when checking the package, so return to step 2
as needed

http://rfunction.com/blog/archives/922

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 1: Create the package files

Process overview (the easy way)

Load all data objects and functions to be included in the package
into an R session

Run the package.skeleton command with a single argument of
the package name (in quotation marks) to generate the package files

Learn where these package files got placed using the getwd function

Find the package files in this folder and move them, if needed, to
where you want the package files to live on your computer

Alternative to the last two steps

An optional path argument is available in package.skeleton to
specify a location where the package should be saved

http://rfunction.com/blog/archives/922
http://rfunction.com/blog/archives/1001
http://rfunction.com/blog/archives/922

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 1: Create the package files

> addBeard <- function(x){ x$beard <- TRUE; return(x) }

> moreLegs <- function(x){ x$legs <- x$legs+1; return(x) }

>

> dolly <- data.frame(beard = FALSE, legs = 4, tails = 1)

> class(dolly) <- "goat"

>

> source("print.goat.R")

>

> package.skeleton("myPackageName")

Creating directories ...

Creating DESCRIPTION ...

Creating NAMESPACE ...

Creating Read-and-delete-me ...

Saving functions and data ...

Making help files ...

Done.

Further steps are described in ’./myPackageName/Read-and-delete-me’.

>

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 1: Create the package files

The package source folder, which has the same name as that
specified in package.skeleton, contains several files and folders
that were automatically generated

data (folder) Contains .rda files of each data object
DESCRIPTION General package information
man (folder) Help files
NAMESPACE Manages function, method, and dependency info
R (folder) Contains .R files for each function
Read-and-delete-me File to be deleted

http://rfunction.com/blog/archives/922

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – DESCRIPTION

DESCRIPTION file instructions
Update all information
Choose your license (e.g. GPL-3 or GPL (>= 2))
If the package is dependent on one or more other packages, create a
new line in the DESCRIPTION file that starts as Depends: and list
the required packages, separated by commas
If the package depends on a later version of R, say version 2.10.1 or
later, then this is accomplished by specifying R (>= 2.10.1) on the
Depends line

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – DESCRIPTION

Example of a revised DESCRIPTION file

Notice the license option, which permits GPL version 2 or later

The stats, utils, graphics, and grDevices packages are often
already loaded in any R session, but it may be helpful to list them
as dependencies

The R version 2.10.1 dependency is listed in the Depends entry
as an example, and it is not actually necessary for this package

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – NAMESPACE

Very basic NAMESPACE file

Earlier versions of R don’t automatically generate a NAMESPACE file,
so add one if needed with no extension (eliminate the txt extension
after the file is created, if it was added by the text editor)

If there are no special functions you want hidden, no methods in the
package, and no package dependencies, then just leave the file as-is

If you had to make your own NAMESPACE (probably because you are
using R version < 2.14.0), put in the exportPattern command
listed below

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – NAMESPACE

Editing the NAMESPACE file
To have hidden functions. Replace the exportPattern command
with an export command, where export’s arguments are
comma-separated function names that should be accessible to users
Methods. To specify S3 method called Method for class "Class",
create a line in the NAMESPACE file as S3method(Method, Class)

Dependencies. Some users may prefer Imports: instead of
Depends: in the DESCRIPTION file, and they must then also
provide a command import in the NAMESPACE file whose arguments
are the names of packages that the new package imports

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – man files

Basic rules of help (.Rd) files

Notation is similar to LATEX where commands start with a backslash

Use \code{ } to write in Courier

Note: the \example section already uses Courier

To create a link to a help file for a data object or function, say
addBeard, use \link{addBeard}
If the data object or function is from another package, its package
name must also be in the link: \link[otherPkg]{otherFcn}
Usually place \link command inside of \code but never vice-versa

Equations with LATEX notation require two new commands

In-line equations use the \eqn{ } command instead of dollar signs

Stand-alone one-line equations use \deqn{ }
The LATEX-formatted equations will only show up in the package
manual and otherwise appear plain

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – man files

Delete help (.Rd) files for functions that are both not exported and
not S3 methods

Follow the template instructions in each help file
Must provide a title for every help file

Delete sections that are not needed, perhaps \details{ } or
\references{ }
The package help file may have a few lines outside of any
commands (starting with ∼), which should be deleted

Merging help files for two or more functions
Choose one help file that will be the help file for the functions

Copy the \alias{ } and possibly also any \usage{ } commands
from the other help files into this main help file

Add in additional argument descriptions, as needed, and any
supplemental descriptions to the merged help file

Finally, delete the other help files

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – man files (data)

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – man files (function)

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – man files (function)

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – adding data

To add a new data object, say object obj

Load the data into R and save the data object to a file:
save(obj, file="obj.rda")

Create a help file: prompt(obj)

See where the two files got saved: getwd()

Move the files into the data and man folders, respectively

If the package didn’t already have a data folder, then add one

It is okay to replace an existing .rda file and then update the
existing help file

http://rfunction.com/blog/archives/420
http://rfunction.com/blog/archives/992
http://rfunction.com/blog/archives/1001

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 2: Edit the package files – adding functions

Add a new function, say fcn

Save the function declaration/definition to a .R file
(a text file with a .R file extension)

Load the function into R and generate a help file: prompt(fcn)

See where the help file got saved: getwd()

Move the .R file to the package’s R folder and move the help file
to the man folder

It is okay to update an existing .R file and then update the
existing help file, but do be sure to update the usage and
arguments sections, if needed

http://rfunction.com/blog/archives/992
http://rfunction.com/blog/archives/1001

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 3: Build, check, and install on Mac OS X

Quick-start directions

Copy the package files to your Desktop

Open Applications > Utilities > Terminal

Navigate to the Desktop by typing
cd Desktop

ls

The ls command above should print out a list of files and folders,
one of which should be your package, but if not...

Type pwd and hit return to learn your present working directory
Copy the package files to this directory

Users familiar with navigating in UNIX: feel free to modify the
directions above as you see fit

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 3: Build, check, and install on Mac OS X

Inside of Terminal (iTerm is also okay)

To build a .tar.gz file (a “tarball”) for sharing the package
R CMD build myPackageName

To install the package from its folder
R CMD install myPackageName

To check the package, perhaps before submitting to CRAN
R CMD check myPackageName

Fix errors, often in package documentation, as needed

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 3: Build, check, and install on Mac OS X

Problems with building, checking, or installing a package from
UNIX may indicate that some software installations may be needed

LaTeX compiler, such as the one in MacTex, are generally required
for checking a package
tug.org/mactex

Apple Xcode, which is free for Lion but now difficult to come by for
Snow Leopard, may be required on your computer
developer.apple.com/xcode

http://www.tug.org/mactex/
http://www.tug.org/mactex/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 3: The check step often requires attention

Warnings and errors are very common in the check stage

Sometimes the package will install even if check returns an error

Package only for personal use? Consider initially skipping the check

stage

CRAN will not accept a package that has warnings or errors
from check

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Step 3 on Windows

Windows requires Rtools and, if running check, a LaTeX compiler

Required. Install a copy of Rtools, which can be found on
cran.r-project.org/bin/windows/Rtools/

Install a LaTeX compiler, such as miktex.org
miktex.org

Users installing MikTeX may find the UCLA ATS website useful:
www.ats.ucla.edu/stat/latex/icu/install win.htm

The remaining details of packaging on Windows are not minor,
so here’s a good reference to keep you moving:
stevemosher.wordpress.com/ten-steps-to-building-

an-r-package-under-windows

http://cran.r-project.org/bin/windows/Rtools/
http://miktex.org/
http://miktex.org/
http://www.ats.ucla.edu/stat/latex/icu/install_win.htm
http://stevemosher.wordpress.com/ten-steps-to-building-an-r-package-under-windows/
http://stevemosher.wordpress.com/ten-steps-to-building-an-r-package-under-windows/

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Recap on package building mechanics

Step 1: Create the package files

Packaging all data and objects in an R session is easy:
package.skeleton("packageName")

Step 2: Edit the package files

Fill in DESCRIPTION and man files

Modify or add a NAMESPACE file

May edit functions, but make corresponding changes in help files

Step 3: Build, check, and install the package

If a package is being submitted to CRAN, it must pass check

Warning: installing a package will overwrite any previous version of
the package

http://rfunction.com/blog/archives/922

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Other useful UNIX commands

R CMD remove packName

Remove a package

R CMD build --binary packName

Creates a binary archive of a package

R CMD Rd2pdf packName

Make a PDF manual for a package

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Other random bits of knowledge

Other files and folders in packages

Reserved folder names: demo, exec, inst, po, src, tests

The following file names are also reserved for special purposes:
cleanup, configure, INDEX, LICENSE, LICENCE, and NEWS

May add misc. files to inst, e.g. derivations, but keep total file size
under about 5MB

C, Fortran, etc in packages

Guide to using C in R:
www.ats.ucla.edu/stat/r/library/interface.pdf

C, C++, and Fortran source code goes in the src folder

Requires updates to NAMESPACE file

Specify package name in the calls the C or Fortran code by
specifying the PACKAGE argument in .C, .Fortran, etc (see ?.C):
PACKAGE="myPackageName"

http://www.ats.ucla.edu/stat/r/library/interface.pdf

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Submitting to CRAN

Verbatim from CRAN:

To “submit” to CRAN, simply upload to
ftp://cran.r-project.org/incoming and send email to
cran@r-project.org. Please do not attach submissions to
emails, because this will clutter up the mailboxes of half a
dozen people.

Note that we generally do not accept submissions of precompiled
binaries due to security reasons. All binary distribution listed above
are compiled by selected maintainers, who are in charge for all
binaries of their platform, respectively.

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Submitting to CRAN

Before submitting

Install the package on your computer and ensure the help files and
examples look proper and run as expected

Verify one last time that R CMD check runs with no warnings
or errors

Uploading files

Use an FTP client to upload files, such as Cyberduck (Mac)

Keep in mind

CRAN personnel post packages for free, so be especially considerate
of their time

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Remarks

Packages can lead to papers

Initially a package may provide support for an applied and methodological
paper in the name of open research

A robust package can have its own paper

Two journals to consider, both with free access

Journal of Statistical Software – www.jstatsoft.org

R Journal – journal.r-project.org

Find the source of packages on their CRAN pages

http://www.jstatsoft.org/
http://journal.r-project.org/

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Helpful videos

Screen-capture videos showing how to build a package on
Mac OS X

youtube.com/watch?v=d5TvxbtMZKg

youtube.com/watch?v=TX5 6L991CQ

youtube.com/watch?v=qzCQHmPXax8

Rory Winston presenting on package building

youtube.com/watch?v=8-dGf-7arFI

http://www.youtube.com/watch?v=d5TvxbtMZKg
http://www.youtube.com/watch?v=TX5_6L991CQ
http://www.youtube.com/watch?v=qzCQHmPXax8
http://www.youtube.com/watch?v=8-dGf-7arFI

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

Helpful references

Software for Data Analysis

www.r-project.org/doc/bib/R-books.html

John Chambers

Springer, 2008

Creating R Packages: A Tutorial
cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

Friedrich Leisch
Department of Statistics
Ludwig-Maximilians-Universität München
R Development Core Team

http://www.r-project.org/doc/bib/R-books.html#R:Chambers:2008
http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

Overview Before building S3 classes Packaging 1 Packaging 2 Packaging 3 Wrap-up

David M Diez
david@openintro.org
@RFunction (Twitter)

RFunction.com

ddiez.com

http://www.twitter.com/rfunction
http://rfunction.com
http://www.ddiez.com

	Overview and importance of R packages
	

	Before building an R package
	
	
	

	How to build S3 classes and methods in R
	

	Packaging, step 1
	
	

	Packaging, step 2
	

	Packaging, step 3
	
	

	Submitting to CRAN, references
	

